Linux 5.9.7
[linux/fpc-iii.git] / drivers / base / power / main.c
blob205a06752ca90c4bfe601477cc203c5dc6007302
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/power/main.c - Where the driver meets power management.
5 * Copyright (c) 2003 Patrick Mochel
6 * Copyright (c) 2003 Open Source Development Lab
8 * The driver model core calls device_pm_add() when a device is registered.
9 * This will initialize the embedded device_pm_info object in the device
10 * and add it to the list of power-controlled devices. sysfs entries for
11 * controlling device power management will also be added.
13 * A separate list is used for keeping track of power info, because the power
14 * domain dependencies may differ from the ancestral dependencies that the
15 * subsystem list maintains.
18 #define pr_fmt(fmt) "PM: " fmt
20 #include <linux/device.h>
21 #include <linux/export.h>
22 #include <linux/mutex.h>
23 #include <linux/pm.h>
24 #include <linux/pm_runtime.h>
25 #include <linux/pm-trace.h>
26 #include <linux/pm_wakeirq.h>
27 #include <linux/interrupt.h>
28 #include <linux/sched.h>
29 #include <linux/sched/debug.h>
30 #include <linux/async.h>
31 #include <linux/suspend.h>
32 #include <trace/events/power.h>
33 #include <linux/cpufreq.h>
34 #include <linux/cpuidle.h>
35 #include <linux/devfreq.h>
36 #include <linux/timer.h>
38 #include "../base.h"
39 #include "power.h"
41 typedef int (*pm_callback_t)(struct device *);
43 #define list_for_each_entry_rcu_locked(pos, head, member) \
44 list_for_each_entry_rcu(pos, head, member, \
45 device_links_read_lock_held())
48 * The entries in the dpm_list list are in a depth first order, simply
49 * because children are guaranteed to be discovered after parents, and
50 * are inserted at the back of the list on discovery.
52 * Since device_pm_add() may be called with a device lock held,
53 * we must never try to acquire a device lock while holding
54 * dpm_list_mutex.
57 LIST_HEAD(dpm_list);
58 static LIST_HEAD(dpm_prepared_list);
59 static LIST_HEAD(dpm_suspended_list);
60 static LIST_HEAD(dpm_late_early_list);
61 static LIST_HEAD(dpm_noirq_list);
63 struct suspend_stats suspend_stats;
64 static DEFINE_MUTEX(dpm_list_mtx);
65 static pm_message_t pm_transition;
67 static int async_error;
69 static const char *pm_verb(int event)
71 switch (event) {
72 case PM_EVENT_SUSPEND:
73 return "suspend";
74 case PM_EVENT_RESUME:
75 return "resume";
76 case PM_EVENT_FREEZE:
77 return "freeze";
78 case PM_EVENT_QUIESCE:
79 return "quiesce";
80 case PM_EVENT_HIBERNATE:
81 return "hibernate";
82 case PM_EVENT_THAW:
83 return "thaw";
84 case PM_EVENT_RESTORE:
85 return "restore";
86 case PM_EVENT_RECOVER:
87 return "recover";
88 default:
89 return "(unknown PM event)";
93 /**
94 * device_pm_sleep_init - Initialize system suspend-related device fields.
95 * @dev: Device object being initialized.
97 void device_pm_sleep_init(struct device *dev)
99 dev->power.is_prepared = false;
100 dev->power.is_suspended = false;
101 dev->power.is_noirq_suspended = false;
102 dev->power.is_late_suspended = false;
103 init_completion(&dev->power.completion);
104 complete_all(&dev->power.completion);
105 dev->power.wakeup = NULL;
106 INIT_LIST_HEAD(&dev->power.entry);
110 * device_pm_lock - Lock the list of active devices used by the PM core.
112 void device_pm_lock(void)
114 mutex_lock(&dpm_list_mtx);
118 * device_pm_unlock - Unlock the list of active devices used by the PM core.
120 void device_pm_unlock(void)
122 mutex_unlock(&dpm_list_mtx);
126 * device_pm_add - Add a device to the PM core's list of active devices.
127 * @dev: Device to add to the list.
129 void device_pm_add(struct device *dev)
131 /* Skip PM setup/initialization. */
132 if (device_pm_not_required(dev))
133 return;
135 pr_debug("Adding info for %s:%s\n",
136 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
137 device_pm_check_callbacks(dev);
138 mutex_lock(&dpm_list_mtx);
139 if (dev->parent && dev->parent->power.is_prepared)
140 dev_warn(dev, "parent %s should not be sleeping\n",
141 dev_name(dev->parent));
142 list_add_tail(&dev->power.entry, &dpm_list);
143 dev->power.in_dpm_list = true;
144 mutex_unlock(&dpm_list_mtx);
148 * device_pm_remove - Remove a device from the PM core's list of active devices.
149 * @dev: Device to be removed from the list.
151 void device_pm_remove(struct device *dev)
153 if (device_pm_not_required(dev))
154 return;
156 pr_debug("Removing info for %s:%s\n",
157 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
158 complete_all(&dev->power.completion);
159 mutex_lock(&dpm_list_mtx);
160 list_del_init(&dev->power.entry);
161 dev->power.in_dpm_list = false;
162 mutex_unlock(&dpm_list_mtx);
163 device_wakeup_disable(dev);
164 pm_runtime_remove(dev);
165 device_pm_check_callbacks(dev);
169 * device_pm_move_before - Move device in the PM core's list of active devices.
170 * @deva: Device to move in dpm_list.
171 * @devb: Device @deva should come before.
173 void device_pm_move_before(struct device *deva, struct device *devb)
175 pr_debug("Moving %s:%s before %s:%s\n",
176 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
177 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
178 /* Delete deva from dpm_list and reinsert before devb. */
179 list_move_tail(&deva->power.entry, &devb->power.entry);
183 * device_pm_move_after - Move device in the PM core's list of active devices.
184 * @deva: Device to move in dpm_list.
185 * @devb: Device @deva should come after.
187 void device_pm_move_after(struct device *deva, struct device *devb)
189 pr_debug("Moving %s:%s after %s:%s\n",
190 deva->bus ? deva->bus->name : "No Bus", dev_name(deva),
191 devb->bus ? devb->bus->name : "No Bus", dev_name(devb));
192 /* Delete deva from dpm_list and reinsert after devb. */
193 list_move(&deva->power.entry, &devb->power.entry);
197 * device_pm_move_last - Move device to end of the PM core's list of devices.
198 * @dev: Device to move in dpm_list.
200 void device_pm_move_last(struct device *dev)
202 pr_debug("Moving %s:%s to end of list\n",
203 dev->bus ? dev->bus->name : "No Bus", dev_name(dev));
204 list_move_tail(&dev->power.entry, &dpm_list);
207 static ktime_t initcall_debug_start(struct device *dev, void *cb)
209 if (!pm_print_times_enabled)
210 return 0;
212 dev_info(dev, "calling %pS @ %i, parent: %s\n", cb,
213 task_pid_nr(current),
214 dev->parent ? dev_name(dev->parent) : "none");
215 return ktime_get();
218 static void initcall_debug_report(struct device *dev, ktime_t calltime,
219 void *cb, int error)
221 ktime_t rettime;
222 s64 nsecs;
224 if (!pm_print_times_enabled)
225 return;
227 rettime = ktime_get();
228 nsecs = (s64) ktime_to_ns(ktime_sub(rettime, calltime));
230 dev_info(dev, "%pS returned %d after %Ld usecs\n", cb, error,
231 (unsigned long long)nsecs >> 10);
235 * dpm_wait - Wait for a PM operation to complete.
236 * @dev: Device to wait for.
237 * @async: If unset, wait only if the device's power.async_suspend flag is set.
239 static void dpm_wait(struct device *dev, bool async)
241 if (!dev)
242 return;
244 if (async || (pm_async_enabled && dev->power.async_suspend))
245 wait_for_completion(&dev->power.completion);
248 static int dpm_wait_fn(struct device *dev, void *async_ptr)
250 dpm_wait(dev, *((bool *)async_ptr));
251 return 0;
254 static void dpm_wait_for_children(struct device *dev, bool async)
256 device_for_each_child(dev, &async, dpm_wait_fn);
259 static void dpm_wait_for_suppliers(struct device *dev, bool async)
261 struct device_link *link;
262 int idx;
264 idx = device_links_read_lock();
267 * If the supplier goes away right after we've checked the link to it,
268 * we'll wait for its completion to change the state, but that's fine,
269 * because the only things that will block as a result are the SRCU
270 * callbacks freeing the link objects for the links in the list we're
271 * walking.
273 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
274 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
275 dpm_wait(link->supplier, async);
277 device_links_read_unlock(idx);
280 static bool dpm_wait_for_superior(struct device *dev, bool async)
282 struct device *parent;
285 * If the device is resumed asynchronously and the parent's callback
286 * deletes both the device and the parent itself, the parent object may
287 * be freed while this function is running, so avoid that by reference
288 * counting the parent once more unless the device has been deleted
289 * already (in which case return right away).
291 mutex_lock(&dpm_list_mtx);
293 if (!device_pm_initialized(dev)) {
294 mutex_unlock(&dpm_list_mtx);
295 return false;
298 parent = get_device(dev->parent);
300 mutex_unlock(&dpm_list_mtx);
302 dpm_wait(parent, async);
303 put_device(parent);
305 dpm_wait_for_suppliers(dev, async);
308 * If the parent's callback has deleted the device, attempting to resume
309 * it would be invalid, so avoid doing that then.
311 return device_pm_initialized(dev);
314 static void dpm_wait_for_consumers(struct device *dev, bool async)
316 struct device_link *link;
317 int idx;
319 idx = device_links_read_lock();
322 * The status of a device link can only be changed from "dormant" by a
323 * probe, but that cannot happen during system suspend/resume. In
324 * theory it can change to "dormant" at that time, but then it is
325 * reasonable to wait for the target device anyway (eg. if it goes
326 * away, it's better to wait for it to go away completely and then
327 * continue instead of trying to continue in parallel with its
328 * unregistration).
330 list_for_each_entry_rcu_locked(link, &dev->links.consumers, s_node)
331 if (READ_ONCE(link->status) != DL_STATE_DORMANT)
332 dpm_wait(link->consumer, async);
334 device_links_read_unlock(idx);
337 static void dpm_wait_for_subordinate(struct device *dev, bool async)
339 dpm_wait_for_children(dev, async);
340 dpm_wait_for_consumers(dev, async);
344 * pm_op - Return the PM operation appropriate for given PM event.
345 * @ops: PM operations to choose from.
346 * @state: PM transition of the system being carried out.
348 static pm_callback_t pm_op(const struct dev_pm_ops *ops, pm_message_t state)
350 switch (state.event) {
351 #ifdef CONFIG_SUSPEND
352 case PM_EVENT_SUSPEND:
353 return ops->suspend;
354 case PM_EVENT_RESUME:
355 return ops->resume;
356 #endif /* CONFIG_SUSPEND */
357 #ifdef CONFIG_HIBERNATE_CALLBACKS
358 case PM_EVENT_FREEZE:
359 case PM_EVENT_QUIESCE:
360 return ops->freeze;
361 case PM_EVENT_HIBERNATE:
362 return ops->poweroff;
363 case PM_EVENT_THAW:
364 case PM_EVENT_RECOVER:
365 return ops->thaw;
366 break;
367 case PM_EVENT_RESTORE:
368 return ops->restore;
369 #endif /* CONFIG_HIBERNATE_CALLBACKS */
372 return NULL;
376 * pm_late_early_op - Return the PM operation appropriate for given PM event.
377 * @ops: PM operations to choose from.
378 * @state: PM transition of the system being carried out.
380 * Runtime PM is disabled for @dev while this function is being executed.
382 static pm_callback_t pm_late_early_op(const struct dev_pm_ops *ops,
383 pm_message_t state)
385 switch (state.event) {
386 #ifdef CONFIG_SUSPEND
387 case PM_EVENT_SUSPEND:
388 return ops->suspend_late;
389 case PM_EVENT_RESUME:
390 return ops->resume_early;
391 #endif /* CONFIG_SUSPEND */
392 #ifdef CONFIG_HIBERNATE_CALLBACKS
393 case PM_EVENT_FREEZE:
394 case PM_EVENT_QUIESCE:
395 return ops->freeze_late;
396 case PM_EVENT_HIBERNATE:
397 return ops->poweroff_late;
398 case PM_EVENT_THAW:
399 case PM_EVENT_RECOVER:
400 return ops->thaw_early;
401 case PM_EVENT_RESTORE:
402 return ops->restore_early;
403 #endif /* CONFIG_HIBERNATE_CALLBACKS */
406 return NULL;
410 * pm_noirq_op - Return the PM operation appropriate for given PM event.
411 * @ops: PM operations to choose from.
412 * @state: PM transition of the system being carried out.
414 * The driver of @dev will not receive interrupts while this function is being
415 * executed.
417 static pm_callback_t pm_noirq_op(const struct dev_pm_ops *ops, pm_message_t state)
419 switch (state.event) {
420 #ifdef CONFIG_SUSPEND
421 case PM_EVENT_SUSPEND:
422 return ops->suspend_noirq;
423 case PM_EVENT_RESUME:
424 return ops->resume_noirq;
425 #endif /* CONFIG_SUSPEND */
426 #ifdef CONFIG_HIBERNATE_CALLBACKS
427 case PM_EVENT_FREEZE:
428 case PM_EVENT_QUIESCE:
429 return ops->freeze_noirq;
430 case PM_EVENT_HIBERNATE:
431 return ops->poweroff_noirq;
432 case PM_EVENT_THAW:
433 case PM_EVENT_RECOVER:
434 return ops->thaw_noirq;
435 case PM_EVENT_RESTORE:
436 return ops->restore_noirq;
437 #endif /* CONFIG_HIBERNATE_CALLBACKS */
440 return NULL;
443 static void pm_dev_dbg(struct device *dev, pm_message_t state, const char *info)
445 dev_dbg(dev, "%s%s%s\n", info, pm_verb(state.event),
446 ((state.event & PM_EVENT_SLEEP) && device_may_wakeup(dev)) ?
447 ", may wakeup" : "");
450 static void pm_dev_err(struct device *dev, pm_message_t state, const char *info,
451 int error)
453 pr_err("Device %s failed to %s%s: error %d\n",
454 dev_name(dev), pm_verb(state.event), info, error);
457 static void dpm_show_time(ktime_t starttime, pm_message_t state, int error,
458 const char *info)
460 ktime_t calltime;
461 u64 usecs64;
462 int usecs;
464 calltime = ktime_get();
465 usecs64 = ktime_to_ns(ktime_sub(calltime, starttime));
466 do_div(usecs64, NSEC_PER_USEC);
467 usecs = usecs64;
468 if (usecs == 0)
469 usecs = 1;
471 pm_pr_dbg("%s%s%s of devices %s after %ld.%03ld msecs\n",
472 info ?: "", info ? " " : "", pm_verb(state.event),
473 error ? "aborted" : "complete",
474 usecs / USEC_PER_MSEC, usecs % USEC_PER_MSEC);
477 static int dpm_run_callback(pm_callback_t cb, struct device *dev,
478 pm_message_t state, const char *info)
480 ktime_t calltime;
481 int error;
483 if (!cb)
484 return 0;
486 calltime = initcall_debug_start(dev, cb);
488 pm_dev_dbg(dev, state, info);
489 trace_device_pm_callback_start(dev, info, state.event);
490 error = cb(dev);
491 trace_device_pm_callback_end(dev, error);
492 suspend_report_result(cb, error);
494 initcall_debug_report(dev, calltime, cb, error);
496 return error;
499 #ifdef CONFIG_DPM_WATCHDOG
500 struct dpm_watchdog {
501 struct device *dev;
502 struct task_struct *tsk;
503 struct timer_list timer;
506 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd) \
507 struct dpm_watchdog wd
510 * dpm_watchdog_handler - Driver suspend / resume watchdog handler.
511 * @t: The timer that PM watchdog depends on.
513 * Called when a driver has timed out suspending or resuming.
514 * There's not much we can do here to recover so panic() to
515 * capture a crash-dump in pstore.
517 static void dpm_watchdog_handler(struct timer_list *t)
519 struct dpm_watchdog *wd = from_timer(wd, t, timer);
521 dev_emerg(wd->dev, "**** DPM device timeout ****\n");
522 show_stack(wd->tsk, NULL, KERN_EMERG);
523 panic("%s %s: unrecoverable failure\n",
524 dev_driver_string(wd->dev), dev_name(wd->dev));
528 * dpm_watchdog_set - Enable pm watchdog for given device.
529 * @wd: Watchdog. Must be allocated on the stack.
530 * @dev: Device to handle.
532 static void dpm_watchdog_set(struct dpm_watchdog *wd, struct device *dev)
534 struct timer_list *timer = &wd->timer;
536 wd->dev = dev;
537 wd->tsk = current;
539 timer_setup_on_stack(timer, dpm_watchdog_handler, 0);
540 /* use same timeout value for both suspend and resume */
541 timer->expires = jiffies + HZ * CONFIG_DPM_WATCHDOG_TIMEOUT;
542 add_timer(timer);
546 * dpm_watchdog_clear - Disable suspend/resume watchdog.
547 * @wd: Watchdog to disable.
549 static void dpm_watchdog_clear(struct dpm_watchdog *wd)
551 struct timer_list *timer = &wd->timer;
553 del_timer_sync(timer);
554 destroy_timer_on_stack(timer);
556 #else
557 #define DECLARE_DPM_WATCHDOG_ON_STACK(wd)
558 #define dpm_watchdog_set(x, y)
559 #define dpm_watchdog_clear(x)
560 #endif
562 /*------------------------- Resume routines -------------------------*/
565 * dev_pm_skip_resume - System-wide device resume optimization check.
566 * @dev: Target device.
568 * Return:
569 * - %false if the transition under way is RESTORE.
570 * - Return value of dev_pm_skip_suspend() if the transition under way is THAW.
571 * - The logical negation of %power.must_resume otherwise (that is, when the
572 * transition under way is RESUME).
574 bool dev_pm_skip_resume(struct device *dev)
576 if (pm_transition.event == PM_EVENT_RESTORE)
577 return false;
579 if (pm_transition.event == PM_EVENT_THAW)
580 return dev_pm_skip_suspend(dev);
582 return !dev->power.must_resume;
586 * device_resume_noirq - Execute a "noirq resume" callback for given device.
587 * @dev: Device to handle.
588 * @state: PM transition of the system being carried out.
589 * @async: If true, the device is being resumed asynchronously.
591 * The driver of @dev will not receive interrupts while this function is being
592 * executed.
594 static int device_resume_noirq(struct device *dev, pm_message_t state, bool async)
596 pm_callback_t callback = NULL;
597 const char *info = NULL;
598 bool skip_resume;
599 int error = 0;
601 TRACE_DEVICE(dev);
602 TRACE_RESUME(0);
604 if (dev->power.syscore || dev->power.direct_complete)
605 goto Out;
607 if (!dev->power.is_noirq_suspended)
608 goto Out;
610 if (!dpm_wait_for_superior(dev, async))
611 goto Out;
613 skip_resume = dev_pm_skip_resume(dev);
615 * If the driver callback is skipped below or by the middle layer
616 * callback and device_resume_early() also skips the driver callback for
617 * this device later, it needs to appear as "suspended" to PM-runtime,
618 * so change its status accordingly.
620 * Otherwise, the device is going to be resumed, so set its PM-runtime
621 * status to "active", but do that only if DPM_FLAG_SMART_SUSPEND is set
622 * to avoid confusing drivers that don't use it.
624 if (skip_resume)
625 pm_runtime_set_suspended(dev);
626 else if (dev_pm_skip_suspend(dev))
627 pm_runtime_set_active(dev);
629 if (dev->pm_domain) {
630 info = "noirq power domain ";
631 callback = pm_noirq_op(&dev->pm_domain->ops, state);
632 } else if (dev->type && dev->type->pm) {
633 info = "noirq type ";
634 callback = pm_noirq_op(dev->type->pm, state);
635 } else if (dev->class && dev->class->pm) {
636 info = "noirq class ";
637 callback = pm_noirq_op(dev->class->pm, state);
638 } else if (dev->bus && dev->bus->pm) {
639 info = "noirq bus ";
640 callback = pm_noirq_op(dev->bus->pm, state);
642 if (callback)
643 goto Run;
645 if (skip_resume)
646 goto Skip;
648 if (dev->driver && dev->driver->pm) {
649 info = "noirq driver ";
650 callback = pm_noirq_op(dev->driver->pm, state);
653 Run:
654 error = dpm_run_callback(callback, dev, state, info);
656 Skip:
657 dev->power.is_noirq_suspended = false;
659 Out:
660 complete_all(&dev->power.completion);
661 TRACE_RESUME(error);
662 return error;
665 static bool is_async(struct device *dev)
667 return dev->power.async_suspend && pm_async_enabled
668 && !pm_trace_is_enabled();
671 static bool dpm_async_fn(struct device *dev, async_func_t func)
673 reinit_completion(&dev->power.completion);
675 if (is_async(dev)) {
676 get_device(dev);
677 async_schedule_dev(func, dev);
678 return true;
681 return false;
684 static void async_resume_noirq(void *data, async_cookie_t cookie)
686 struct device *dev = (struct device *)data;
687 int error;
689 error = device_resume_noirq(dev, pm_transition, true);
690 if (error)
691 pm_dev_err(dev, pm_transition, " async", error);
693 put_device(dev);
696 static void dpm_noirq_resume_devices(pm_message_t state)
698 struct device *dev;
699 ktime_t starttime = ktime_get();
701 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, true);
702 mutex_lock(&dpm_list_mtx);
703 pm_transition = state;
706 * Advanced the async threads upfront,
707 * in case the starting of async threads is
708 * delayed by non-async resuming devices.
710 list_for_each_entry(dev, &dpm_noirq_list, power.entry)
711 dpm_async_fn(dev, async_resume_noirq);
713 while (!list_empty(&dpm_noirq_list)) {
714 dev = to_device(dpm_noirq_list.next);
715 get_device(dev);
716 list_move_tail(&dev->power.entry, &dpm_late_early_list);
717 mutex_unlock(&dpm_list_mtx);
719 if (!is_async(dev)) {
720 int error;
722 error = device_resume_noirq(dev, state, false);
723 if (error) {
724 suspend_stats.failed_resume_noirq++;
725 dpm_save_failed_step(SUSPEND_RESUME_NOIRQ);
726 dpm_save_failed_dev(dev_name(dev));
727 pm_dev_err(dev, state, " noirq", error);
731 mutex_lock(&dpm_list_mtx);
732 put_device(dev);
734 mutex_unlock(&dpm_list_mtx);
735 async_synchronize_full();
736 dpm_show_time(starttime, state, 0, "noirq");
737 trace_suspend_resume(TPS("dpm_resume_noirq"), state.event, false);
741 * dpm_resume_noirq - Execute "noirq resume" callbacks for all devices.
742 * @state: PM transition of the system being carried out.
744 * Invoke the "noirq" resume callbacks for all devices in dpm_noirq_list and
745 * allow device drivers' interrupt handlers to be called.
747 void dpm_resume_noirq(pm_message_t state)
749 dpm_noirq_resume_devices(state);
751 resume_device_irqs();
752 device_wakeup_disarm_wake_irqs();
754 cpuidle_resume();
758 * device_resume_early - Execute an "early resume" callback for given device.
759 * @dev: Device to handle.
760 * @state: PM transition of the system being carried out.
761 * @async: If true, the device is being resumed asynchronously.
763 * Runtime PM is disabled for @dev while this function is being executed.
765 static int device_resume_early(struct device *dev, pm_message_t state, bool async)
767 pm_callback_t callback = NULL;
768 const char *info = NULL;
769 int error = 0;
771 TRACE_DEVICE(dev);
772 TRACE_RESUME(0);
774 if (dev->power.syscore || dev->power.direct_complete)
775 goto Out;
777 if (!dev->power.is_late_suspended)
778 goto Out;
780 if (!dpm_wait_for_superior(dev, async))
781 goto Out;
783 if (dev->pm_domain) {
784 info = "early power domain ";
785 callback = pm_late_early_op(&dev->pm_domain->ops, state);
786 } else if (dev->type && dev->type->pm) {
787 info = "early type ";
788 callback = pm_late_early_op(dev->type->pm, state);
789 } else if (dev->class && dev->class->pm) {
790 info = "early class ";
791 callback = pm_late_early_op(dev->class->pm, state);
792 } else if (dev->bus && dev->bus->pm) {
793 info = "early bus ";
794 callback = pm_late_early_op(dev->bus->pm, state);
796 if (callback)
797 goto Run;
799 if (dev_pm_skip_resume(dev))
800 goto Skip;
802 if (dev->driver && dev->driver->pm) {
803 info = "early driver ";
804 callback = pm_late_early_op(dev->driver->pm, state);
807 Run:
808 error = dpm_run_callback(callback, dev, state, info);
810 Skip:
811 dev->power.is_late_suspended = false;
813 Out:
814 TRACE_RESUME(error);
816 pm_runtime_enable(dev);
817 complete_all(&dev->power.completion);
818 return error;
821 static void async_resume_early(void *data, async_cookie_t cookie)
823 struct device *dev = (struct device *)data;
824 int error;
826 error = device_resume_early(dev, pm_transition, true);
827 if (error)
828 pm_dev_err(dev, pm_transition, " async", error);
830 put_device(dev);
834 * dpm_resume_early - Execute "early resume" callbacks for all devices.
835 * @state: PM transition of the system being carried out.
837 void dpm_resume_early(pm_message_t state)
839 struct device *dev;
840 ktime_t starttime = ktime_get();
842 trace_suspend_resume(TPS("dpm_resume_early"), state.event, true);
843 mutex_lock(&dpm_list_mtx);
844 pm_transition = state;
847 * Advanced the async threads upfront,
848 * in case the starting of async threads is
849 * delayed by non-async resuming devices.
851 list_for_each_entry(dev, &dpm_late_early_list, power.entry)
852 dpm_async_fn(dev, async_resume_early);
854 while (!list_empty(&dpm_late_early_list)) {
855 dev = to_device(dpm_late_early_list.next);
856 get_device(dev);
857 list_move_tail(&dev->power.entry, &dpm_suspended_list);
858 mutex_unlock(&dpm_list_mtx);
860 if (!is_async(dev)) {
861 int error;
863 error = device_resume_early(dev, state, false);
864 if (error) {
865 suspend_stats.failed_resume_early++;
866 dpm_save_failed_step(SUSPEND_RESUME_EARLY);
867 dpm_save_failed_dev(dev_name(dev));
868 pm_dev_err(dev, state, " early", error);
871 mutex_lock(&dpm_list_mtx);
872 put_device(dev);
874 mutex_unlock(&dpm_list_mtx);
875 async_synchronize_full();
876 dpm_show_time(starttime, state, 0, "early");
877 trace_suspend_resume(TPS("dpm_resume_early"), state.event, false);
881 * dpm_resume_start - Execute "noirq" and "early" device callbacks.
882 * @state: PM transition of the system being carried out.
884 void dpm_resume_start(pm_message_t state)
886 dpm_resume_noirq(state);
887 dpm_resume_early(state);
889 EXPORT_SYMBOL_GPL(dpm_resume_start);
892 * device_resume - Execute "resume" callbacks for given device.
893 * @dev: Device to handle.
894 * @state: PM transition of the system being carried out.
895 * @async: If true, the device is being resumed asynchronously.
897 static int device_resume(struct device *dev, pm_message_t state, bool async)
899 pm_callback_t callback = NULL;
900 const char *info = NULL;
901 int error = 0;
902 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
904 TRACE_DEVICE(dev);
905 TRACE_RESUME(0);
907 if (dev->power.syscore)
908 goto Complete;
910 if (dev->power.direct_complete) {
911 /* Match the pm_runtime_disable() in __device_suspend(). */
912 pm_runtime_enable(dev);
913 goto Complete;
916 if (!dpm_wait_for_superior(dev, async))
917 goto Complete;
919 dpm_watchdog_set(&wd, dev);
920 device_lock(dev);
923 * This is a fib. But we'll allow new children to be added below
924 * a resumed device, even if the device hasn't been completed yet.
926 dev->power.is_prepared = false;
928 if (!dev->power.is_suspended)
929 goto Unlock;
931 if (dev->pm_domain) {
932 info = "power domain ";
933 callback = pm_op(&dev->pm_domain->ops, state);
934 goto Driver;
937 if (dev->type && dev->type->pm) {
938 info = "type ";
939 callback = pm_op(dev->type->pm, state);
940 goto Driver;
943 if (dev->class && dev->class->pm) {
944 info = "class ";
945 callback = pm_op(dev->class->pm, state);
946 goto Driver;
949 if (dev->bus) {
950 if (dev->bus->pm) {
951 info = "bus ";
952 callback = pm_op(dev->bus->pm, state);
953 } else if (dev->bus->resume) {
954 info = "legacy bus ";
955 callback = dev->bus->resume;
956 goto End;
960 Driver:
961 if (!callback && dev->driver && dev->driver->pm) {
962 info = "driver ";
963 callback = pm_op(dev->driver->pm, state);
966 End:
967 error = dpm_run_callback(callback, dev, state, info);
968 dev->power.is_suspended = false;
970 Unlock:
971 device_unlock(dev);
972 dpm_watchdog_clear(&wd);
974 Complete:
975 complete_all(&dev->power.completion);
977 TRACE_RESUME(error);
979 return error;
982 static void async_resume(void *data, async_cookie_t cookie)
984 struct device *dev = (struct device *)data;
985 int error;
987 error = device_resume(dev, pm_transition, true);
988 if (error)
989 pm_dev_err(dev, pm_transition, " async", error);
990 put_device(dev);
994 * dpm_resume - Execute "resume" callbacks for non-sysdev devices.
995 * @state: PM transition of the system being carried out.
997 * Execute the appropriate "resume" callback for all devices whose status
998 * indicates that they are suspended.
1000 void dpm_resume(pm_message_t state)
1002 struct device *dev;
1003 ktime_t starttime = ktime_get();
1005 trace_suspend_resume(TPS("dpm_resume"), state.event, true);
1006 might_sleep();
1008 mutex_lock(&dpm_list_mtx);
1009 pm_transition = state;
1010 async_error = 0;
1012 list_for_each_entry(dev, &dpm_suspended_list, power.entry)
1013 dpm_async_fn(dev, async_resume);
1015 while (!list_empty(&dpm_suspended_list)) {
1016 dev = to_device(dpm_suspended_list.next);
1017 get_device(dev);
1018 if (!is_async(dev)) {
1019 int error;
1021 mutex_unlock(&dpm_list_mtx);
1023 error = device_resume(dev, state, false);
1024 if (error) {
1025 suspend_stats.failed_resume++;
1026 dpm_save_failed_step(SUSPEND_RESUME);
1027 dpm_save_failed_dev(dev_name(dev));
1028 pm_dev_err(dev, state, "", error);
1031 mutex_lock(&dpm_list_mtx);
1033 if (!list_empty(&dev->power.entry))
1034 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1035 put_device(dev);
1037 mutex_unlock(&dpm_list_mtx);
1038 async_synchronize_full();
1039 dpm_show_time(starttime, state, 0, NULL);
1041 cpufreq_resume();
1042 devfreq_resume();
1043 trace_suspend_resume(TPS("dpm_resume"), state.event, false);
1047 * device_complete - Complete a PM transition for given device.
1048 * @dev: Device to handle.
1049 * @state: PM transition of the system being carried out.
1051 static void device_complete(struct device *dev, pm_message_t state)
1053 void (*callback)(struct device *) = NULL;
1054 const char *info = NULL;
1056 if (dev->power.syscore)
1057 return;
1059 device_lock(dev);
1061 if (dev->pm_domain) {
1062 info = "completing power domain ";
1063 callback = dev->pm_domain->ops.complete;
1064 } else if (dev->type && dev->type->pm) {
1065 info = "completing type ";
1066 callback = dev->type->pm->complete;
1067 } else if (dev->class && dev->class->pm) {
1068 info = "completing class ";
1069 callback = dev->class->pm->complete;
1070 } else if (dev->bus && dev->bus->pm) {
1071 info = "completing bus ";
1072 callback = dev->bus->pm->complete;
1075 if (!callback && dev->driver && dev->driver->pm) {
1076 info = "completing driver ";
1077 callback = dev->driver->pm->complete;
1080 if (callback) {
1081 pm_dev_dbg(dev, state, info);
1082 callback(dev);
1085 device_unlock(dev);
1087 pm_runtime_put(dev);
1091 * dpm_complete - Complete a PM transition for all non-sysdev devices.
1092 * @state: PM transition of the system being carried out.
1094 * Execute the ->complete() callbacks for all devices whose PM status is not
1095 * DPM_ON (this allows new devices to be registered).
1097 void dpm_complete(pm_message_t state)
1099 struct list_head list;
1101 trace_suspend_resume(TPS("dpm_complete"), state.event, true);
1102 might_sleep();
1104 INIT_LIST_HEAD(&list);
1105 mutex_lock(&dpm_list_mtx);
1106 while (!list_empty(&dpm_prepared_list)) {
1107 struct device *dev = to_device(dpm_prepared_list.prev);
1109 get_device(dev);
1110 dev->power.is_prepared = false;
1111 list_move(&dev->power.entry, &list);
1112 mutex_unlock(&dpm_list_mtx);
1114 trace_device_pm_callback_start(dev, "", state.event);
1115 device_complete(dev, state);
1116 trace_device_pm_callback_end(dev, 0);
1118 mutex_lock(&dpm_list_mtx);
1119 put_device(dev);
1121 list_splice(&list, &dpm_list);
1122 mutex_unlock(&dpm_list_mtx);
1124 /* Allow device probing and trigger re-probing of deferred devices */
1125 device_unblock_probing();
1126 trace_suspend_resume(TPS("dpm_complete"), state.event, false);
1130 * dpm_resume_end - Execute "resume" callbacks and complete system transition.
1131 * @state: PM transition of the system being carried out.
1133 * Execute "resume" callbacks for all devices and complete the PM transition of
1134 * the system.
1136 void dpm_resume_end(pm_message_t state)
1138 dpm_resume(state);
1139 dpm_complete(state);
1141 EXPORT_SYMBOL_GPL(dpm_resume_end);
1144 /*------------------------- Suspend routines -------------------------*/
1147 * resume_event - Return a "resume" message for given "suspend" sleep state.
1148 * @sleep_state: PM message representing a sleep state.
1150 * Return a PM message representing the resume event corresponding to given
1151 * sleep state.
1153 static pm_message_t resume_event(pm_message_t sleep_state)
1155 switch (sleep_state.event) {
1156 case PM_EVENT_SUSPEND:
1157 return PMSG_RESUME;
1158 case PM_EVENT_FREEZE:
1159 case PM_EVENT_QUIESCE:
1160 return PMSG_RECOVER;
1161 case PM_EVENT_HIBERNATE:
1162 return PMSG_RESTORE;
1164 return PMSG_ON;
1167 static void dpm_superior_set_must_resume(struct device *dev)
1169 struct device_link *link;
1170 int idx;
1172 if (dev->parent)
1173 dev->parent->power.must_resume = true;
1175 idx = device_links_read_lock();
1177 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node)
1178 link->supplier->power.must_resume = true;
1180 device_links_read_unlock(idx);
1184 * __device_suspend_noirq - Execute a "noirq suspend" callback for given device.
1185 * @dev: Device to handle.
1186 * @state: PM transition of the system being carried out.
1187 * @async: If true, the device is being suspended asynchronously.
1189 * The driver of @dev will not receive interrupts while this function is being
1190 * executed.
1192 static int __device_suspend_noirq(struct device *dev, pm_message_t state, bool async)
1194 pm_callback_t callback = NULL;
1195 const char *info = NULL;
1196 int error = 0;
1198 TRACE_DEVICE(dev);
1199 TRACE_SUSPEND(0);
1201 dpm_wait_for_subordinate(dev, async);
1203 if (async_error)
1204 goto Complete;
1206 if (dev->power.syscore || dev->power.direct_complete)
1207 goto Complete;
1209 if (dev->pm_domain) {
1210 info = "noirq power domain ";
1211 callback = pm_noirq_op(&dev->pm_domain->ops, state);
1212 } else if (dev->type && dev->type->pm) {
1213 info = "noirq type ";
1214 callback = pm_noirq_op(dev->type->pm, state);
1215 } else if (dev->class && dev->class->pm) {
1216 info = "noirq class ";
1217 callback = pm_noirq_op(dev->class->pm, state);
1218 } else if (dev->bus && dev->bus->pm) {
1219 info = "noirq bus ";
1220 callback = pm_noirq_op(dev->bus->pm, state);
1222 if (callback)
1223 goto Run;
1225 if (dev_pm_skip_suspend(dev))
1226 goto Skip;
1228 if (dev->driver && dev->driver->pm) {
1229 info = "noirq driver ";
1230 callback = pm_noirq_op(dev->driver->pm, state);
1233 Run:
1234 error = dpm_run_callback(callback, dev, state, info);
1235 if (error) {
1236 async_error = error;
1237 goto Complete;
1240 Skip:
1241 dev->power.is_noirq_suspended = true;
1244 * Skipping the resume of devices that were in use right before the
1245 * system suspend (as indicated by their PM-runtime usage counters)
1246 * would be suboptimal. Also resume them if doing that is not allowed
1247 * to be skipped.
1249 if (atomic_read(&dev->power.usage_count) > 1 ||
1250 !(dev_pm_test_driver_flags(dev, DPM_FLAG_MAY_SKIP_RESUME) &&
1251 dev->power.may_skip_resume))
1252 dev->power.must_resume = true;
1254 if (dev->power.must_resume)
1255 dpm_superior_set_must_resume(dev);
1257 Complete:
1258 complete_all(&dev->power.completion);
1259 TRACE_SUSPEND(error);
1260 return error;
1263 static void async_suspend_noirq(void *data, async_cookie_t cookie)
1265 struct device *dev = (struct device *)data;
1266 int error;
1268 error = __device_suspend_noirq(dev, pm_transition, true);
1269 if (error) {
1270 dpm_save_failed_dev(dev_name(dev));
1271 pm_dev_err(dev, pm_transition, " async", error);
1274 put_device(dev);
1277 static int device_suspend_noirq(struct device *dev)
1279 if (dpm_async_fn(dev, async_suspend_noirq))
1280 return 0;
1282 return __device_suspend_noirq(dev, pm_transition, false);
1285 static int dpm_noirq_suspend_devices(pm_message_t state)
1287 ktime_t starttime = ktime_get();
1288 int error = 0;
1290 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, true);
1291 mutex_lock(&dpm_list_mtx);
1292 pm_transition = state;
1293 async_error = 0;
1295 while (!list_empty(&dpm_late_early_list)) {
1296 struct device *dev = to_device(dpm_late_early_list.prev);
1298 get_device(dev);
1299 mutex_unlock(&dpm_list_mtx);
1301 error = device_suspend_noirq(dev);
1303 mutex_lock(&dpm_list_mtx);
1304 if (error) {
1305 pm_dev_err(dev, state, " noirq", error);
1306 dpm_save_failed_dev(dev_name(dev));
1307 put_device(dev);
1308 break;
1310 if (!list_empty(&dev->power.entry))
1311 list_move(&dev->power.entry, &dpm_noirq_list);
1312 put_device(dev);
1314 if (async_error)
1315 break;
1317 mutex_unlock(&dpm_list_mtx);
1318 async_synchronize_full();
1319 if (!error)
1320 error = async_error;
1322 if (error) {
1323 suspend_stats.failed_suspend_noirq++;
1324 dpm_save_failed_step(SUSPEND_SUSPEND_NOIRQ);
1326 dpm_show_time(starttime, state, error, "noirq");
1327 trace_suspend_resume(TPS("dpm_suspend_noirq"), state.event, false);
1328 return error;
1332 * dpm_suspend_noirq - Execute "noirq suspend" callbacks for all devices.
1333 * @state: PM transition of the system being carried out.
1335 * Prevent device drivers' interrupt handlers from being called and invoke
1336 * "noirq" suspend callbacks for all non-sysdev devices.
1338 int dpm_suspend_noirq(pm_message_t state)
1340 int ret;
1342 cpuidle_pause();
1344 device_wakeup_arm_wake_irqs();
1345 suspend_device_irqs();
1347 ret = dpm_noirq_suspend_devices(state);
1348 if (ret)
1349 dpm_resume_noirq(resume_event(state));
1351 return ret;
1354 static void dpm_propagate_wakeup_to_parent(struct device *dev)
1356 struct device *parent = dev->parent;
1358 if (!parent)
1359 return;
1361 spin_lock_irq(&parent->power.lock);
1363 if (dev->power.wakeup_path && !parent->power.ignore_children)
1364 parent->power.wakeup_path = true;
1366 spin_unlock_irq(&parent->power.lock);
1370 * __device_suspend_late - Execute a "late suspend" callback for given device.
1371 * @dev: Device to handle.
1372 * @state: PM transition of the system being carried out.
1373 * @async: If true, the device is being suspended asynchronously.
1375 * Runtime PM is disabled for @dev while this function is being executed.
1377 static int __device_suspend_late(struct device *dev, pm_message_t state, bool async)
1379 pm_callback_t callback = NULL;
1380 const char *info = NULL;
1381 int error = 0;
1383 TRACE_DEVICE(dev);
1384 TRACE_SUSPEND(0);
1386 __pm_runtime_disable(dev, false);
1388 dpm_wait_for_subordinate(dev, async);
1390 if (async_error)
1391 goto Complete;
1393 if (pm_wakeup_pending()) {
1394 async_error = -EBUSY;
1395 goto Complete;
1398 if (dev->power.syscore || dev->power.direct_complete)
1399 goto Complete;
1401 if (dev->pm_domain) {
1402 info = "late power domain ";
1403 callback = pm_late_early_op(&dev->pm_domain->ops, state);
1404 } else if (dev->type && dev->type->pm) {
1405 info = "late type ";
1406 callback = pm_late_early_op(dev->type->pm, state);
1407 } else if (dev->class && dev->class->pm) {
1408 info = "late class ";
1409 callback = pm_late_early_op(dev->class->pm, state);
1410 } else if (dev->bus && dev->bus->pm) {
1411 info = "late bus ";
1412 callback = pm_late_early_op(dev->bus->pm, state);
1414 if (callback)
1415 goto Run;
1417 if (dev_pm_skip_suspend(dev))
1418 goto Skip;
1420 if (dev->driver && dev->driver->pm) {
1421 info = "late driver ";
1422 callback = pm_late_early_op(dev->driver->pm, state);
1425 Run:
1426 error = dpm_run_callback(callback, dev, state, info);
1427 if (error) {
1428 async_error = error;
1429 goto Complete;
1431 dpm_propagate_wakeup_to_parent(dev);
1433 Skip:
1434 dev->power.is_late_suspended = true;
1436 Complete:
1437 TRACE_SUSPEND(error);
1438 complete_all(&dev->power.completion);
1439 return error;
1442 static void async_suspend_late(void *data, async_cookie_t cookie)
1444 struct device *dev = (struct device *)data;
1445 int error;
1447 error = __device_suspend_late(dev, pm_transition, true);
1448 if (error) {
1449 dpm_save_failed_dev(dev_name(dev));
1450 pm_dev_err(dev, pm_transition, " async", error);
1452 put_device(dev);
1455 static int device_suspend_late(struct device *dev)
1457 if (dpm_async_fn(dev, async_suspend_late))
1458 return 0;
1460 return __device_suspend_late(dev, pm_transition, false);
1464 * dpm_suspend_late - Execute "late suspend" callbacks for all devices.
1465 * @state: PM transition of the system being carried out.
1467 int dpm_suspend_late(pm_message_t state)
1469 ktime_t starttime = ktime_get();
1470 int error = 0;
1472 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, true);
1473 mutex_lock(&dpm_list_mtx);
1474 pm_transition = state;
1475 async_error = 0;
1477 while (!list_empty(&dpm_suspended_list)) {
1478 struct device *dev = to_device(dpm_suspended_list.prev);
1480 get_device(dev);
1481 mutex_unlock(&dpm_list_mtx);
1483 error = device_suspend_late(dev);
1485 mutex_lock(&dpm_list_mtx);
1486 if (!list_empty(&dev->power.entry))
1487 list_move(&dev->power.entry, &dpm_late_early_list);
1489 if (error) {
1490 pm_dev_err(dev, state, " late", error);
1491 dpm_save_failed_dev(dev_name(dev));
1492 put_device(dev);
1493 break;
1495 put_device(dev);
1497 if (async_error)
1498 break;
1500 mutex_unlock(&dpm_list_mtx);
1501 async_synchronize_full();
1502 if (!error)
1503 error = async_error;
1504 if (error) {
1505 suspend_stats.failed_suspend_late++;
1506 dpm_save_failed_step(SUSPEND_SUSPEND_LATE);
1507 dpm_resume_early(resume_event(state));
1509 dpm_show_time(starttime, state, error, "late");
1510 trace_suspend_resume(TPS("dpm_suspend_late"), state.event, false);
1511 return error;
1515 * dpm_suspend_end - Execute "late" and "noirq" device suspend callbacks.
1516 * @state: PM transition of the system being carried out.
1518 int dpm_suspend_end(pm_message_t state)
1520 ktime_t starttime = ktime_get();
1521 int error;
1523 error = dpm_suspend_late(state);
1524 if (error)
1525 goto out;
1527 error = dpm_suspend_noirq(state);
1528 if (error)
1529 dpm_resume_early(resume_event(state));
1531 out:
1532 dpm_show_time(starttime, state, error, "end");
1533 return error;
1535 EXPORT_SYMBOL_GPL(dpm_suspend_end);
1538 * legacy_suspend - Execute a legacy (bus or class) suspend callback for device.
1539 * @dev: Device to suspend.
1540 * @state: PM transition of the system being carried out.
1541 * @cb: Suspend callback to execute.
1542 * @info: string description of caller.
1544 static int legacy_suspend(struct device *dev, pm_message_t state,
1545 int (*cb)(struct device *dev, pm_message_t state),
1546 const char *info)
1548 int error;
1549 ktime_t calltime;
1551 calltime = initcall_debug_start(dev, cb);
1553 trace_device_pm_callback_start(dev, info, state.event);
1554 error = cb(dev, state);
1555 trace_device_pm_callback_end(dev, error);
1556 suspend_report_result(cb, error);
1558 initcall_debug_report(dev, calltime, cb, error);
1560 return error;
1563 static void dpm_clear_superiors_direct_complete(struct device *dev)
1565 struct device_link *link;
1566 int idx;
1568 if (dev->parent) {
1569 spin_lock_irq(&dev->parent->power.lock);
1570 dev->parent->power.direct_complete = false;
1571 spin_unlock_irq(&dev->parent->power.lock);
1574 idx = device_links_read_lock();
1576 list_for_each_entry_rcu_locked(link, &dev->links.suppliers, c_node) {
1577 spin_lock_irq(&link->supplier->power.lock);
1578 link->supplier->power.direct_complete = false;
1579 spin_unlock_irq(&link->supplier->power.lock);
1582 device_links_read_unlock(idx);
1586 * __device_suspend - Execute "suspend" callbacks for given device.
1587 * @dev: Device to handle.
1588 * @state: PM transition of the system being carried out.
1589 * @async: If true, the device is being suspended asynchronously.
1591 static int __device_suspend(struct device *dev, pm_message_t state, bool async)
1593 pm_callback_t callback = NULL;
1594 const char *info = NULL;
1595 int error = 0;
1596 DECLARE_DPM_WATCHDOG_ON_STACK(wd);
1598 TRACE_DEVICE(dev);
1599 TRACE_SUSPEND(0);
1601 dpm_wait_for_subordinate(dev, async);
1603 if (async_error) {
1604 dev->power.direct_complete = false;
1605 goto Complete;
1609 * Wait for possible runtime PM transitions of the device in progress
1610 * to complete and if there's a runtime resume request pending for it,
1611 * resume it before proceeding with invoking the system-wide suspend
1612 * callbacks for it.
1614 * If the system-wide suspend callbacks below change the configuration
1615 * of the device, they must disable runtime PM for it or otherwise
1616 * ensure that its runtime-resume callbacks will not be confused by that
1617 * change in case they are invoked going forward.
1619 pm_runtime_barrier(dev);
1621 if (pm_wakeup_pending()) {
1622 dev->power.direct_complete = false;
1623 async_error = -EBUSY;
1624 goto Complete;
1627 if (dev->power.syscore)
1628 goto Complete;
1630 /* Avoid direct_complete to let wakeup_path propagate. */
1631 if (device_may_wakeup(dev) || dev->power.wakeup_path)
1632 dev->power.direct_complete = false;
1634 if (dev->power.direct_complete) {
1635 if (pm_runtime_status_suspended(dev)) {
1636 pm_runtime_disable(dev);
1637 if (pm_runtime_status_suspended(dev)) {
1638 pm_dev_dbg(dev, state, "direct-complete ");
1639 goto Complete;
1642 pm_runtime_enable(dev);
1644 dev->power.direct_complete = false;
1647 dev->power.may_skip_resume = true;
1648 dev->power.must_resume = false;
1650 dpm_watchdog_set(&wd, dev);
1651 device_lock(dev);
1653 if (dev->pm_domain) {
1654 info = "power domain ";
1655 callback = pm_op(&dev->pm_domain->ops, state);
1656 goto Run;
1659 if (dev->type && dev->type->pm) {
1660 info = "type ";
1661 callback = pm_op(dev->type->pm, state);
1662 goto Run;
1665 if (dev->class && dev->class->pm) {
1666 info = "class ";
1667 callback = pm_op(dev->class->pm, state);
1668 goto Run;
1671 if (dev->bus) {
1672 if (dev->bus->pm) {
1673 info = "bus ";
1674 callback = pm_op(dev->bus->pm, state);
1675 } else if (dev->bus->suspend) {
1676 pm_dev_dbg(dev, state, "legacy bus ");
1677 error = legacy_suspend(dev, state, dev->bus->suspend,
1678 "legacy bus ");
1679 goto End;
1683 Run:
1684 if (!callback && dev->driver && dev->driver->pm) {
1685 info = "driver ";
1686 callback = pm_op(dev->driver->pm, state);
1689 error = dpm_run_callback(callback, dev, state, info);
1691 End:
1692 if (!error) {
1693 dev->power.is_suspended = true;
1694 if (device_may_wakeup(dev))
1695 dev->power.wakeup_path = true;
1697 dpm_propagate_wakeup_to_parent(dev);
1698 dpm_clear_superiors_direct_complete(dev);
1701 device_unlock(dev);
1702 dpm_watchdog_clear(&wd);
1704 Complete:
1705 if (error)
1706 async_error = error;
1708 complete_all(&dev->power.completion);
1709 TRACE_SUSPEND(error);
1710 return error;
1713 static void async_suspend(void *data, async_cookie_t cookie)
1715 struct device *dev = (struct device *)data;
1716 int error;
1718 error = __device_suspend(dev, pm_transition, true);
1719 if (error) {
1720 dpm_save_failed_dev(dev_name(dev));
1721 pm_dev_err(dev, pm_transition, " async", error);
1724 put_device(dev);
1727 static int device_suspend(struct device *dev)
1729 if (dpm_async_fn(dev, async_suspend))
1730 return 0;
1732 return __device_suspend(dev, pm_transition, false);
1736 * dpm_suspend - Execute "suspend" callbacks for all non-sysdev devices.
1737 * @state: PM transition of the system being carried out.
1739 int dpm_suspend(pm_message_t state)
1741 ktime_t starttime = ktime_get();
1742 int error = 0;
1744 trace_suspend_resume(TPS("dpm_suspend"), state.event, true);
1745 might_sleep();
1747 devfreq_suspend();
1748 cpufreq_suspend();
1750 mutex_lock(&dpm_list_mtx);
1751 pm_transition = state;
1752 async_error = 0;
1753 while (!list_empty(&dpm_prepared_list)) {
1754 struct device *dev = to_device(dpm_prepared_list.prev);
1756 get_device(dev);
1757 mutex_unlock(&dpm_list_mtx);
1759 error = device_suspend(dev);
1761 mutex_lock(&dpm_list_mtx);
1762 if (error) {
1763 pm_dev_err(dev, state, "", error);
1764 dpm_save_failed_dev(dev_name(dev));
1765 put_device(dev);
1766 break;
1768 if (!list_empty(&dev->power.entry))
1769 list_move(&dev->power.entry, &dpm_suspended_list);
1770 put_device(dev);
1771 if (async_error)
1772 break;
1774 mutex_unlock(&dpm_list_mtx);
1775 async_synchronize_full();
1776 if (!error)
1777 error = async_error;
1778 if (error) {
1779 suspend_stats.failed_suspend++;
1780 dpm_save_failed_step(SUSPEND_SUSPEND);
1782 dpm_show_time(starttime, state, error, NULL);
1783 trace_suspend_resume(TPS("dpm_suspend"), state.event, false);
1784 return error;
1788 * device_prepare - Prepare a device for system power transition.
1789 * @dev: Device to handle.
1790 * @state: PM transition of the system being carried out.
1792 * Execute the ->prepare() callback(s) for given device. No new children of the
1793 * device may be registered after this function has returned.
1795 static int device_prepare(struct device *dev, pm_message_t state)
1797 int (*callback)(struct device *) = NULL;
1798 int ret = 0;
1800 if (dev->power.syscore)
1801 return 0;
1804 * If a device's parent goes into runtime suspend at the wrong time,
1805 * it won't be possible to resume the device. To prevent this we
1806 * block runtime suspend here, during the prepare phase, and allow
1807 * it again during the complete phase.
1809 pm_runtime_get_noresume(dev);
1811 device_lock(dev);
1813 dev->power.wakeup_path = false;
1815 if (dev->power.no_pm_callbacks)
1816 goto unlock;
1818 if (dev->pm_domain)
1819 callback = dev->pm_domain->ops.prepare;
1820 else if (dev->type && dev->type->pm)
1821 callback = dev->type->pm->prepare;
1822 else if (dev->class && dev->class->pm)
1823 callback = dev->class->pm->prepare;
1824 else if (dev->bus && dev->bus->pm)
1825 callback = dev->bus->pm->prepare;
1827 if (!callback && dev->driver && dev->driver->pm)
1828 callback = dev->driver->pm->prepare;
1830 if (callback)
1831 ret = callback(dev);
1833 unlock:
1834 device_unlock(dev);
1836 if (ret < 0) {
1837 suspend_report_result(callback, ret);
1838 pm_runtime_put(dev);
1839 return ret;
1842 * A positive return value from ->prepare() means "this device appears
1843 * to be runtime-suspended and its state is fine, so if it really is
1844 * runtime-suspended, you can leave it in that state provided that you
1845 * will do the same thing with all of its descendants". This only
1846 * applies to suspend transitions, however.
1848 spin_lock_irq(&dev->power.lock);
1849 dev->power.direct_complete = state.event == PM_EVENT_SUSPEND &&
1850 (ret > 0 || dev->power.no_pm_callbacks) &&
1851 !dev_pm_test_driver_flags(dev, DPM_FLAG_NO_DIRECT_COMPLETE);
1852 spin_unlock_irq(&dev->power.lock);
1853 return 0;
1857 * dpm_prepare - Prepare all non-sysdev devices for a system PM transition.
1858 * @state: PM transition of the system being carried out.
1860 * Execute the ->prepare() callback(s) for all devices.
1862 int dpm_prepare(pm_message_t state)
1864 int error = 0;
1866 trace_suspend_resume(TPS("dpm_prepare"), state.event, true);
1867 might_sleep();
1870 * Give a chance for the known devices to complete their probes, before
1871 * disable probing of devices. This sync point is important at least
1872 * at boot time + hibernation restore.
1874 wait_for_device_probe();
1876 * It is unsafe if probing of devices will happen during suspend or
1877 * hibernation and system behavior will be unpredictable in this case.
1878 * So, let's prohibit device's probing here and defer their probes
1879 * instead. The normal behavior will be restored in dpm_complete().
1881 device_block_probing();
1883 mutex_lock(&dpm_list_mtx);
1884 while (!list_empty(&dpm_list)) {
1885 struct device *dev = to_device(dpm_list.next);
1887 get_device(dev);
1888 mutex_unlock(&dpm_list_mtx);
1890 trace_device_pm_callback_start(dev, "", state.event);
1891 error = device_prepare(dev, state);
1892 trace_device_pm_callback_end(dev, error);
1894 mutex_lock(&dpm_list_mtx);
1895 if (error) {
1896 if (error == -EAGAIN) {
1897 put_device(dev);
1898 error = 0;
1899 continue;
1901 pr_info("Device %s not prepared for power transition: code %d\n",
1902 dev_name(dev), error);
1903 put_device(dev);
1904 break;
1906 dev->power.is_prepared = true;
1907 if (!list_empty(&dev->power.entry))
1908 list_move_tail(&dev->power.entry, &dpm_prepared_list);
1909 put_device(dev);
1911 mutex_unlock(&dpm_list_mtx);
1912 trace_suspend_resume(TPS("dpm_prepare"), state.event, false);
1913 return error;
1917 * dpm_suspend_start - Prepare devices for PM transition and suspend them.
1918 * @state: PM transition of the system being carried out.
1920 * Prepare all non-sysdev devices for system PM transition and execute "suspend"
1921 * callbacks for them.
1923 int dpm_suspend_start(pm_message_t state)
1925 ktime_t starttime = ktime_get();
1926 int error;
1928 error = dpm_prepare(state);
1929 if (error) {
1930 suspend_stats.failed_prepare++;
1931 dpm_save_failed_step(SUSPEND_PREPARE);
1932 } else
1933 error = dpm_suspend(state);
1934 dpm_show_time(starttime, state, error, "start");
1935 return error;
1937 EXPORT_SYMBOL_GPL(dpm_suspend_start);
1939 void __suspend_report_result(const char *function, void *fn, int ret)
1941 if (ret)
1942 pr_err("%s(): %pS returns %d\n", function, fn, ret);
1944 EXPORT_SYMBOL_GPL(__suspend_report_result);
1947 * device_pm_wait_for_dev - Wait for suspend/resume of a device to complete.
1948 * @subordinate: Device that needs to wait for @dev.
1949 * @dev: Device to wait for.
1951 int device_pm_wait_for_dev(struct device *subordinate, struct device *dev)
1953 dpm_wait(dev, subordinate->power.async_suspend);
1954 return async_error;
1956 EXPORT_SYMBOL_GPL(device_pm_wait_for_dev);
1959 * dpm_for_each_dev - device iterator.
1960 * @data: data for the callback.
1961 * @fn: function to be called for each device.
1963 * Iterate over devices in dpm_list, and call @fn for each device,
1964 * passing it @data.
1966 void dpm_for_each_dev(void *data, void (*fn)(struct device *, void *))
1968 struct device *dev;
1970 if (!fn)
1971 return;
1973 device_pm_lock();
1974 list_for_each_entry(dev, &dpm_list, power.entry)
1975 fn(dev, data);
1976 device_pm_unlock();
1978 EXPORT_SYMBOL_GPL(dpm_for_each_dev);
1980 static bool pm_ops_is_empty(const struct dev_pm_ops *ops)
1982 if (!ops)
1983 return true;
1985 return !ops->prepare &&
1986 !ops->suspend &&
1987 !ops->suspend_late &&
1988 !ops->suspend_noirq &&
1989 !ops->resume_noirq &&
1990 !ops->resume_early &&
1991 !ops->resume &&
1992 !ops->complete;
1995 void device_pm_check_callbacks(struct device *dev)
1997 spin_lock_irq(&dev->power.lock);
1998 dev->power.no_pm_callbacks =
1999 (!dev->bus || (pm_ops_is_empty(dev->bus->pm) &&
2000 !dev->bus->suspend && !dev->bus->resume)) &&
2001 (!dev->class || pm_ops_is_empty(dev->class->pm)) &&
2002 (!dev->type || pm_ops_is_empty(dev->type->pm)) &&
2003 (!dev->pm_domain || pm_ops_is_empty(&dev->pm_domain->ops)) &&
2004 (!dev->driver || (pm_ops_is_empty(dev->driver->pm) &&
2005 !dev->driver->suspend && !dev->driver->resume));
2006 spin_unlock_irq(&dev->power.lock);
2009 bool dev_pm_skip_suspend(struct device *dev)
2011 return dev_pm_test_driver_flags(dev, DPM_FLAG_SMART_SUSPEND) &&
2012 pm_runtime_status_suspended(dev);