Linux 5.9.7
[linux/fpc-iii.git] / drivers / crypto / picoxcell_crypto.c
blobfb34bf92861d17f1dd99cd300b7ed4fbd5598da1
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) 2010-2011 Picochip Ltd., Jamie Iles
4 */
5 #include <crypto/internal/aead.h>
6 #include <crypto/aes.h>
7 #include <crypto/algapi.h>
8 #include <crypto/authenc.h>
9 #include <crypto/internal/des.h>
10 #include <crypto/md5.h>
11 #include <crypto/sha.h>
12 #include <crypto/internal/skcipher.h>
13 #include <linux/clk.h>
14 #include <linux/crypto.h>
15 #include <linux/delay.h>
16 #include <linux/dma-mapping.h>
17 #include <linux/dmapool.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/list.h>
23 #include <linux/module.h>
24 #include <linux/of.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/scatterlist.h>
29 #include <linux/sched.h>
30 #include <linux/sizes.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
34 #include "picoxcell_crypto_regs.h"
37 * The threshold for the number of entries in the CMD FIFO available before
38 * the CMD0_CNT interrupt is raised. Increasing this value will reduce the
39 * number of interrupts raised to the CPU.
41 #define CMD0_IRQ_THRESHOLD 1
44 * The timeout period (in jiffies) for a PDU. When the the number of PDUs in
45 * flight is greater than the STAT_IRQ_THRESHOLD or 0 the timer is disabled.
46 * When there are packets in flight but lower than the threshold, we enable
47 * the timer and at expiry, attempt to remove any processed packets from the
48 * queue and if there are still packets left, schedule the timer again.
50 #define PACKET_TIMEOUT 1
52 /* The priority to register each algorithm with. */
53 #define SPACC_CRYPTO_ALG_PRIORITY 10000
55 #define SPACC_CRYPTO_KASUMI_F8_KEY_LEN 16
56 #define SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ 64
57 #define SPACC_CRYPTO_IPSEC_HASH_PG_SZ 64
58 #define SPACC_CRYPTO_IPSEC_MAX_CTXS 32
59 #define SPACC_CRYPTO_IPSEC_FIFO_SZ 32
60 #define SPACC_CRYPTO_L2_CIPHER_PG_SZ 64
61 #define SPACC_CRYPTO_L2_HASH_PG_SZ 64
62 #define SPACC_CRYPTO_L2_MAX_CTXS 128
63 #define SPACC_CRYPTO_L2_FIFO_SZ 128
65 #define MAX_DDT_LEN 16
67 /* DDT format. This must match the hardware DDT format exactly. */
68 struct spacc_ddt {
69 dma_addr_t p;
70 u32 len;
74 * Asynchronous crypto request structure.
76 * This structure defines a request that is either queued for processing or
77 * being processed.
79 struct spacc_req {
80 struct list_head list;
81 struct spacc_engine *engine;
82 struct crypto_async_request *req;
83 int result;
84 bool is_encrypt;
85 unsigned ctx_id;
86 dma_addr_t src_addr, dst_addr;
87 struct spacc_ddt *src_ddt, *dst_ddt;
88 void (*complete)(struct spacc_req *req);
89 struct skcipher_request fallback_req; // keep at the end
92 struct spacc_aead {
93 unsigned long ctrl_default;
94 unsigned long type;
95 struct aead_alg alg;
96 struct spacc_engine *engine;
97 struct list_head entry;
98 int key_offs;
99 int iv_offs;
102 struct spacc_engine {
103 void __iomem *regs;
104 struct list_head pending;
105 int next_ctx;
106 spinlock_t hw_lock;
107 int in_flight;
108 struct list_head completed;
109 struct list_head in_progress;
110 struct tasklet_struct complete;
111 unsigned long fifo_sz;
112 void __iomem *cipher_ctx_base;
113 void __iomem *hash_key_base;
114 struct spacc_alg *algs;
115 unsigned num_algs;
116 struct list_head registered_algs;
117 struct spacc_aead *aeads;
118 unsigned num_aeads;
119 struct list_head registered_aeads;
120 size_t cipher_pg_sz;
121 size_t hash_pg_sz;
122 const char *name;
123 struct clk *clk;
124 struct device *dev;
125 unsigned max_ctxs;
126 struct timer_list packet_timeout;
127 unsigned stat_irq_thresh;
128 struct dma_pool *req_pool;
131 /* Algorithm type mask. */
132 #define SPACC_CRYPTO_ALG_MASK 0x7
134 /* SPACC definition of a crypto algorithm. */
135 struct spacc_alg {
136 unsigned long ctrl_default;
137 unsigned long type;
138 struct skcipher_alg alg;
139 struct spacc_engine *engine;
140 struct list_head entry;
141 int key_offs;
142 int iv_offs;
145 /* Generic context structure for any algorithm type. */
146 struct spacc_generic_ctx {
147 struct spacc_engine *engine;
148 int flags;
149 int key_offs;
150 int iv_offs;
153 /* Block cipher context. */
154 struct spacc_ablk_ctx {
155 struct spacc_generic_ctx generic;
156 u8 key[AES_MAX_KEY_SIZE];
157 u8 key_len;
159 * The fallback cipher. If the operation can't be done in hardware,
160 * fallback to a software version.
162 struct crypto_skcipher *sw_cipher;
165 /* AEAD cipher context. */
166 struct spacc_aead_ctx {
167 struct spacc_generic_ctx generic;
168 u8 cipher_key[AES_MAX_KEY_SIZE];
169 u8 hash_ctx[SPACC_CRYPTO_IPSEC_HASH_PG_SZ];
170 u8 cipher_key_len;
171 u8 hash_key_len;
172 struct crypto_aead *sw_cipher;
175 static int spacc_ablk_submit(struct spacc_req *req);
177 static inline struct spacc_alg *to_spacc_skcipher(struct skcipher_alg *alg)
179 return alg ? container_of(alg, struct spacc_alg, alg) : NULL;
182 static inline struct spacc_aead *to_spacc_aead(struct aead_alg *alg)
184 return container_of(alg, struct spacc_aead, alg);
187 static inline int spacc_fifo_cmd_full(struct spacc_engine *engine)
189 u32 fifo_stat = readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET);
191 return fifo_stat & SPA_FIFO_CMD_FULL;
195 * Given a cipher context, and a context number, get the base address of the
196 * context page.
198 * Returns the address of the context page where the key/context may
199 * be written.
201 static inline void __iomem *spacc_ctx_page_addr(struct spacc_generic_ctx *ctx,
202 unsigned indx,
203 bool is_cipher_ctx)
205 return is_cipher_ctx ? ctx->engine->cipher_ctx_base +
206 (indx * ctx->engine->cipher_pg_sz) :
207 ctx->engine->hash_key_base + (indx * ctx->engine->hash_pg_sz);
210 /* The context pages can only be written with 32-bit accesses. */
211 static inline void memcpy_toio32(u32 __iomem *dst, const void *src,
212 unsigned count)
214 const u32 *src32 = (const u32 *) src;
216 while (count--)
217 writel(*src32++, dst++);
220 static void spacc_cipher_write_ctx(struct spacc_generic_ctx *ctx,
221 void __iomem *page_addr, const u8 *key,
222 size_t key_len, const u8 *iv, size_t iv_len)
224 void __iomem *key_ptr = page_addr + ctx->key_offs;
225 void __iomem *iv_ptr = page_addr + ctx->iv_offs;
227 memcpy_toio32(key_ptr, key, key_len / 4);
228 memcpy_toio32(iv_ptr, iv, iv_len / 4);
232 * Load a context into the engines context memory.
234 * Returns the index of the context page where the context was loaded.
236 static unsigned spacc_load_ctx(struct spacc_generic_ctx *ctx,
237 const u8 *ciph_key, size_t ciph_len,
238 const u8 *iv, size_t ivlen, const u8 *hash_key,
239 size_t hash_len)
241 unsigned indx = ctx->engine->next_ctx++;
242 void __iomem *ciph_page_addr, *hash_page_addr;
244 ciph_page_addr = spacc_ctx_page_addr(ctx, indx, 1);
245 hash_page_addr = spacc_ctx_page_addr(ctx, indx, 0);
247 ctx->engine->next_ctx &= ctx->engine->fifo_sz - 1;
248 spacc_cipher_write_ctx(ctx, ciph_page_addr, ciph_key, ciph_len, iv,
249 ivlen);
250 writel(ciph_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET) |
251 (1 << SPA_KEY_SZ_CIPHER_OFFSET),
252 ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
254 if (hash_key) {
255 memcpy_toio32(hash_page_addr, hash_key, hash_len / 4);
256 writel(hash_len | (indx << SPA_KEY_SZ_CTX_INDEX_OFFSET),
257 ctx->engine->regs + SPA_KEY_SZ_REG_OFFSET);
260 return indx;
263 static inline void ddt_set(struct spacc_ddt *ddt, dma_addr_t phys, size_t len)
265 ddt->p = phys;
266 ddt->len = len;
270 * Take a crypto request and scatterlists for the data and turn them into DDTs
271 * for passing to the crypto engines. This also DMA maps the data so that the
272 * crypto engines can DMA to/from them.
274 static struct spacc_ddt *spacc_sg_to_ddt(struct spacc_engine *engine,
275 struct scatterlist *payload,
276 unsigned nbytes,
277 enum dma_data_direction dir,
278 dma_addr_t *ddt_phys)
280 unsigned mapped_ents;
281 struct scatterlist *cur;
282 struct spacc_ddt *ddt;
283 int i;
284 int nents;
286 nents = sg_nents_for_len(payload, nbytes);
287 if (nents < 0) {
288 dev_err(engine->dev, "Invalid numbers of SG.\n");
289 return NULL;
291 mapped_ents = dma_map_sg(engine->dev, payload, nents, dir);
293 if (mapped_ents + 1 > MAX_DDT_LEN)
294 goto out;
296 ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, ddt_phys);
297 if (!ddt)
298 goto out;
300 for_each_sg(payload, cur, mapped_ents, i)
301 ddt_set(&ddt[i], sg_dma_address(cur), sg_dma_len(cur));
302 ddt_set(&ddt[mapped_ents], 0, 0);
304 return ddt;
306 out:
307 dma_unmap_sg(engine->dev, payload, nents, dir);
308 return NULL;
311 static int spacc_aead_make_ddts(struct aead_request *areq)
313 struct crypto_aead *aead = crypto_aead_reqtfm(areq);
314 struct spacc_req *req = aead_request_ctx(areq);
315 struct spacc_engine *engine = req->engine;
316 struct spacc_ddt *src_ddt, *dst_ddt;
317 unsigned total;
318 int src_nents, dst_nents;
319 struct scatterlist *cur;
320 int i, dst_ents, src_ents;
322 total = areq->assoclen + areq->cryptlen;
323 if (req->is_encrypt)
324 total += crypto_aead_authsize(aead);
326 src_nents = sg_nents_for_len(areq->src, total);
327 if (src_nents < 0) {
328 dev_err(engine->dev, "Invalid numbers of src SG.\n");
329 return src_nents;
331 if (src_nents + 1 > MAX_DDT_LEN)
332 return -E2BIG;
334 dst_nents = 0;
335 if (areq->src != areq->dst) {
336 dst_nents = sg_nents_for_len(areq->dst, total);
337 if (dst_nents < 0) {
338 dev_err(engine->dev, "Invalid numbers of dst SG.\n");
339 return dst_nents;
341 if (src_nents + 1 > MAX_DDT_LEN)
342 return -E2BIG;
345 src_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->src_addr);
346 if (!src_ddt)
347 goto err;
349 dst_ddt = dma_pool_alloc(engine->req_pool, GFP_ATOMIC, &req->dst_addr);
350 if (!dst_ddt)
351 goto err_free_src;
353 req->src_ddt = src_ddt;
354 req->dst_ddt = dst_ddt;
356 if (dst_nents) {
357 src_ents = dma_map_sg(engine->dev, areq->src, src_nents,
358 DMA_TO_DEVICE);
359 if (!src_ents)
360 goto err_free_dst;
362 dst_ents = dma_map_sg(engine->dev, areq->dst, dst_nents,
363 DMA_FROM_DEVICE);
365 if (!dst_ents) {
366 dma_unmap_sg(engine->dev, areq->src, src_nents,
367 DMA_TO_DEVICE);
368 goto err_free_dst;
370 } else {
371 src_ents = dma_map_sg(engine->dev, areq->src, src_nents,
372 DMA_BIDIRECTIONAL);
373 if (!src_ents)
374 goto err_free_dst;
375 dst_ents = src_ents;
379 * Now map in the payload for the source and destination and terminate
380 * with the NULL pointers.
382 for_each_sg(areq->src, cur, src_ents, i)
383 ddt_set(src_ddt++, sg_dma_address(cur), sg_dma_len(cur));
385 /* For decryption we need to skip the associated data. */
386 total = req->is_encrypt ? 0 : areq->assoclen;
387 for_each_sg(areq->dst, cur, dst_ents, i) {
388 unsigned len = sg_dma_len(cur);
390 if (len <= total) {
391 total -= len;
392 continue;
395 ddt_set(dst_ddt++, sg_dma_address(cur) + total, len - total);
398 ddt_set(src_ddt, 0, 0);
399 ddt_set(dst_ddt, 0, 0);
401 return 0;
403 err_free_dst:
404 dma_pool_free(engine->req_pool, dst_ddt, req->dst_addr);
405 err_free_src:
406 dma_pool_free(engine->req_pool, src_ddt, req->src_addr);
407 err:
408 return -ENOMEM;
411 static void spacc_aead_free_ddts(struct spacc_req *req)
413 struct aead_request *areq = container_of(req->req, struct aead_request,
414 base);
415 struct crypto_aead *aead = crypto_aead_reqtfm(areq);
416 unsigned total = areq->assoclen + areq->cryptlen +
417 (req->is_encrypt ? crypto_aead_authsize(aead) : 0);
418 struct spacc_aead_ctx *aead_ctx = crypto_aead_ctx(aead);
419 struct spacc_engine *engine = aead_ctx->generic.engine;
420 int nents = sg_nents_for_len(areq->src, total);
422 /* sg_nents_for_len should not fail since it works when mapping sg */
423 if (unlikely(nents < 0)) {
424 dev_err(engine->dev, "Invalid numbers of src SG.\n");
425 return;
428 if (areq->src != areq->dst) {
429 dma_unmap_sg(engine->dev, areq->src, nents, DMA_TO_DEVICE);
430 nents = sg_nents_for_len(areq->dst, total);
431 if (unlikely(nents < 0)) {
432 dev_err(engine->dev, "Invalid numbers of dst SG.\n");
433 return;
435 dma_unmap_sg(engine->dev, areq->dst, nents, DMA_FROM_DEVICE);
436 } else
437 dma_unmap_sg(engine->dev, areq->src, nents, DMA_BIDIRECTIONAL);
439 dma_pool_free(engine->req_pool, req->src_ddt, req->src_addr);
440 dma_pool_free(engine->req_pool, req->dst_ddt, req->dst_addr);
443 static void spacc_free_ddt(struct spacc_req *req, struct spacc_ddt *ddt,
444 dma_addr_t ddt_addr, struct scatterlist *payload,
445 unsigned nbytes, enum dma_data_direction dir)
447 int nents = sg_nents_for_len(payload, nbytes);
449 if (nents < 0) {
450 dev_err(req->engine->dev, "Invalid numbers of SG.\n");
451 return;
454 dma_unmap_sg(req->engine->dev, payload, nents, dir);
455 dma_pool_free(req->engine->req_pool, ddt, ddt_addr);
458 static int spacc_aead_setkey(struct crypto_aead *tfm, const u8 *key,
459 unsigned int keylen)
461 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
462 struct crypto_authenc_keys keys;
463 int err;
465 crypto_aead_clear_flags(ctx->sw_cipher, CRYPTO_TFM_REQ_MASK);
466 crypto_aead_set_flags(ctx->sw_cipher, crypto_aead_get_flags(tfm) &
467 CRYPTO_TFM_REQ_MASK);
468 err = crypto_aead_setkey(ctx->sw_cipher, key, keylen);
469 if (err)
470 return err;
472 if (crypto_authenc_extractkeys(&keys, key, keylen) != 0)
473 goto badkey;
475 if (keys.enckeylen > AES_MAX_KEY_SIZE)
476 goto badkey;
478 if (keys.authkeylen > sizeof(ctx->hash_ctx))
479 goto badkey;
481 memcpy(ctx->cipher_key, keys.enckey, keys.enckeylen);
482 ctx->cipher_key_len = keys.enckeylen;
484 memcpy(ctx->hash_ctx, keys.authkey, keys.authkeylen);
485 ctx->hash_key_len = keys.authkeylen;
487 memzero_explicit(&keys, sizeof(keys));
488 return 0;
490 badkey:
491 memzero_explicit(&keys, sizeof(keys));
492 return -EINVAL;
495 static int spacc_aead_setauthsize(struct crypto_aead *tfm,
496 unsigned int authsize)
498 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(crypto_aead_tfm(tfm));
500 return crypto_aead_setauthsize(ctx->sw_cipher, authsize);
504 * Check if an AEAD request requires a fallback operation. Some requests can't
505 * be completed in hardware because the hardware may not support certain key
506 * sizes. In these cases we need to complete the request in software.
508 static int spacc_aead_need_fallback(struct aead_request *aead_req)
510 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
511 struct aead_alg *alg = crypto_aead_alg(aead);
512 struct spacc_aead *spacc_alg = to_spacc_aead(alg);
513 struct spacc_aead_ctx *ctx = crypto_aead_ctx(aead);
516 * If we have a non-supported key-length, then we need to do a
517 * software fallback.
519 if ((spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
520 SPA_CTRL_CIPH_ALG_AES &&
521 ctx->cipher_key_len != AES_KEYSIZE_128 &&
522 ctx->cipher_key_len != AES_KEYSIZE_256)
523 return 1;
525 return 0;
528 static int spacc_aead_do_fallback(struct aead_request *req, unsigned alg_type,
529 bool is_encrypt)
531 struct crypto_tfm *old_tfm = crypto_aead_tfm(crypto_aead_reqtfm(req));
532 struct spacc_aead_ctx *ctx = crypto_tfm_ctx(old_tfm);
533 struct aead_request *subreq = aead_request_ctx(req);
535 aead_request_set_tfm(subreq, ctx->sw_cipher);
536 aead_request_set_callback(subreq, req->base.flags,
537 req->base.complete, req->base.data);
538 aead_request_set_crypt(subreq, req->src, req->dst, req->cryptlen,
539 req->iv);
540 aead_request_set_ad(subreq, req->assoclen);
542 return is_encrypt ? crypto_aead_encrypt(subreq) :
543 crypto_aead_decrypt(subreq);
546 static void spacc_aead_complete(struct spacc_req *req)
548 spacc_aead_free_ddts(req);
549 req->req->complete(req->req, req->result);
552 static int spacc_aead_submit(struct spacc_req *req)
554 struct aead_request *aead_req =
555 container_of(req->req, struct aead_request, base);
556 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
557 unsigned int authsize = crypto_aead_authsize(aead);
558 struct spacc_aead_ctx *ctx = crypto_aead_ctx(aead);
559 struct aead_alg *alg = crypto_aead_alg(aead);
560 struct spacc_aead *spacc_alg = to_spacc_aead(alg);
561 struct spacc_engine *engine = ctx->generic.engine;
562 u32 ctrl, proc_len, assoc_len;
564 req->result = -EINPROGRESS;
565 req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->cipher_key,
566 ctx->cipher_key_len, aead_req->iv, crypto_aead_ivsize(aead),
567 ctx->hash_ctx, ctx->hash_key_len);
569 /* Set the source and destination DDT pointers. */
570 writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
571 writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
572 writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
574 assoc_len = aead_req->assoclen;
575 proc_len = aead_req->cryptlen + assoc_len;
578 * If we are decrypting, we need to take the length of the ICV out of
579 * the processing length.
581 if (!req->is_encrypt)
582 proc_len -= authsize;
584 writel(proc_len, engine->regs + SPA_PROC_LEN_REG_OFFSET);
585 writel(assoc_len, engine->regs + SPA_AAD_LEN_REG_OFFSET);
586 writel(authsize, engine->regs + SPA_ICV_LEN_REG_OFFSET);
587 writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
588 writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
590 ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
591 (1 << SPA_CTRL_ICV_APPEND);
592 if (req->is_encrypt)
593 ctrl |= (1 << SPA_CTRL_ENCRYPT_IDX) | (1 << SPA_CTRL_AAD_COPY);
594 else
595 ctrl |= (1 << SPA_CTRL_KEY_EXP);
597 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
599 writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
601 return -EINPROGRESS;
604 static int spacc_req_submit(struct spacc_req *req);
606 static void spacc_push(struct spacc_engine *engine)
608 struct spacc_req *req;
610 while (!list_empty(&engine->pending) &&
611 engine->in_flight + 1 <= engine->fifo_sz) {
613 ++engine->in_flight;
614 req = list_first_entry(&engine->pending, struct spacc_req,
615 list);
616 list_move_tail(&req->list, &engine->in_progress);
618 req->result = spacc_req_submit(req);
623 * Setup an AEAD request for processing. This will configure the engine, load
624 * the context and then start the packet processing.
626 static int spacc_aead_setup(struct aead_request *req,
627 unsigned alg_type, bool is_encrypt)
629 struct crypto_aead *aead = crypto_aead_reqtfm(req);
630 struct aead_alg *alg = crypto_aead_alg(aead);
631 struct spacc_engine *engine = to_spacc_aead(alg)->engine;
632 struct spacc_req *dev_req = aead_request_ctx(req);
633 int err;
634 unsigned long flags;
636 dev_req->req = &req->base;
637 dev_req->is_encrypt = is_encrypt;
638 dev_req->result = -EBUSY;
639 dev_req->engine = engine;
640 dev_req->complete = spacc_aead_complete;
642 if (unlikely(spacc_aead_need_fallback(req) ||
643 ((err = spacc_aead_make_ddts(req)) == -E2BIG)))
644 return spacc_aead_do_fallback(req, alg_type, is_encrypt);
646 if (err)
647 goto out;
649 err = -EINPROGRESS;
650 spin_lock_irqsave(&engine->hw_lock, flags);
651 if (unlikely(spacc_fifo_cmd_full(engine)) ||
652 engine->in_flight + 1 > engine->fifo_sz) {
653 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
654 err = -EBUSY;
655 spin_unlock_irqrestore(&engine->hw_lock, flags);
656 goto out_free_ddts;
658 list_add_tail(&dev_req->list, &engine->pending);
659 } else {
660 list_add_tail(&dev_req->list, &engine->pending);
661 spacc_push(engine);
663 spin_unlock_irqrestore(&engine->hw_lock, flags);
665 goto out;
667 out_free_ddts:
668 spacc_aead_free_ddts(dev_req);
669 out:
670 return err;
673 static int spacc_aead_encrypt(struct aead_request *req)
675 struct crypto_aead *aead = crypto_aead_reqtfm(req);
676 struct spacc_aead *alg = to_spacc_aead(crypto_aead_alg(aead));
678 return spacc_aead_setup(req, alg->type, 1);
681 static int spacc_aead_decrypt(struct aead_request *req)
683 struct crypto_aead *aead = crypto_aead_reqtfm(req);
684 struct spacc_aead *alg = to_spacc_aead(crypto_aead_alg(aead));
686 return spacc_aead_setup(req, alg->type, 0);
690 * Initialise a new AEAD context. This is responsible for allocating the
691 * fallback cipher and initialising the context.
693 static int spacc_aead_cra_init(struct crypto_aead *tfm)
695 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
696 struct aead_alg *alg = crypto_aead_alg(tfm);
697 struct spacc_aead *spacc_alg = to_spacc_aead(alg);
698 struct spacc_engine *engine = spacc_alg->engine;
700 ctx->generic.flags = spacc_alg->type;
701 ctx->generic.engine = engine;
702 ctx->sw_cipher = crypto_alloc_aead(alg->base.cra_name, 0,
703 CRYPTO_ALG_NEED_FALLBACK);
704 if (IS_ERR(ctx->sw_cipher))
705 return PTR_ERR(ctx->sw_cipher);
706 ctx->generic.key_offs = spacc_alg->key_offs;
707 ctx->generic.iv_offs = spacc_alg->iv_offs;
709 crypto_aead_set_reqsize(
710 tfm,
711 max(sizeof(struct spacc_req),
712 sizeof(struct aead_request) +
713 crypto_aead_reqsize(ctx->sw_cipher)));
715 return 0;
719 * Destructor for an AEAD context. This is called when the transform is freed
720 * and must free the fallback cipher.
722 static void spacc_aead_cra_exit(struct crypto_aead *tfm)
724 struct spacc_aead_ctx *ctx = crypto_aead_ctx(tfm);
726 crypto_free_aead(ctx->sw_cipher);
730 * Set the DES key for a block cipher transform. This also performs weak key
731 * checking if the transform has requested it.
733 static int spacc_des_setkey(struct crypto_skcipher *cipher, const u8 *key,
734 unsigned int len)
736 struct spacc_ablk_ctx *ctx = crypto_skcipher_ctx(cipher);
737 int err;
739 err = verify_skcipher_des_key(cipher, key);
740 if (err)
741 return err;
743 memcpy(ctx->key, key, len);
744 ctx->key_len = len;
746 return 0;
750 * Set the 3DES key for a block cipher transform. This also performs weak key
751 * checking if the transform has requested it.
753 static int spacc_des3_setkey(struct crypto_skcipher *cipher, const u8 *key,
754 unsigned int len)
756 struct spacc_ablk_ctx *ctx = crypto_skcipher_ctx(cipher);
757 int err;
759 err = verify_skcipher_des3_key(cipher, key);
760 if (err)
761 return err;
763 memcpy(ctx->key, key, len);
764 ctx->key_len = len;
766 return 0;
770 * Set the key for an AES block cipher. Some key lengths are not supported in
771 * hardware so this must also check whether a fallback is needed.
773 static int spacc_aes_setkey(struct crypto_skcipher *cipher, const u8 *key,
774 unsigned int len)
776 struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
777 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
778 int err = 0;
780 if (len > AES_MAX_KEY_SIZE)
781 return -EINVAL;
784 * IPSec engine only supports 128 and 256 bit AES keys. If we get a
785 * request for any other size (192 bits) then we need to do a software
786 * fallback.
788 if (len != AES_KEYSIZE_128 && len != AES_KEYSIZE_256) {
789 if (!ctx->sw_cipher)
790 return -EINVAL;
793 * Set the fallback transform to use the same request flags as
794 * the hardware transform.
796 crypto_skcipher_clear_flags(ctx->sw_cipher,
797 CRYPTO_TFM_REQ_MASK);
798 crypto_skcipher_set_flags(ctx->sw_cipher,
799 cipher->base.crt_flags &
800 CRYPTO_TFM_REQ_MASK);
802 err = crypto_skcipher_setkey(ctx->sw_cipher, key, len);
803 if (err)
804 goto sw_setkey_failed;
807 memcpy(ctx->key, key, len);
808 ctx->key_len = len;
810 sw_setkey_failed:
811 return err;
814 static int spacc_kasumi_f8_setkey(struct crypto_skcipher *cipher,
815 const u8 *key, unsigned int len)
817 struct crypto_tfm *tfm = crypto_skcipher_tfm(cipher);
818 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(tfm);
819 int err = 0;
821 if (len > AES_MAX_KEY_SIZE) {
822 err = -EINVAL;
823 goto out;
826 memcpy(ctx->key, key, len);
827 ctx->key_len = len;
829 out:
830 return err;
833 static int spacc_ablk_need_fallback(struct spacc_req *req)
835 struct skcipher_request *ablk_req = skcipher_request_cast(req->req);
836 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(ablk_req);
837 struct spacc_alg *spacc_alg = to_spacc_skcipher(crypto_skcipher_alg(tfm));
838 struct spacc_ablk_ctx *ctx;
840 ctx = crypto_skcipher_ctx(tfm);
842 return (spacc_alg->ctrl_default & SPACC_CRYPTO_ALG_MASK) ==
843 SPA_CTRL_CIPH_ALG_AES &&
844 ctx->key_len != AES_KEYSIZE_128 &&
845 ctx->key_len != AES_KEYSIZE_256;
848 static void spacc_ablk_complete(struct spacc_req *req)
850 struct skcipher_request *ablk_req = skcipher_request_cast(req->req);
852 if (ablk_req->src != ablk_req->dst) {
853 spacc_free_ddt(req, req->src_ddt, req->src_addr, ablk_req->src,
854 ablk_req->cryptlen, DMA_TO_DEVICE);
855 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
856 ablk_req->cryptlen, DMA_FROM_DEVICE);
857 } else
858 spacc_free_ddt(req, req->dst_ddt, req->dst_addr, ablk_req->dst,
859 ablk_req->cryptlen, DMA_BIDIRECTIONAL);
861 req->req->complete(req->req, req->result);
864 static int spacc_ablk_submit(struct spacc_req *req)
866 struct skcipher_request *ablk_req = skcipher_request_cast(req->req);
867 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(ablk_req);
868 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
869 struct spacc_alg *spacc_alg = to_spacc_skcipher(alg);
870 struct spacc_ablk_ctx *ctx = crypto_skcipher_ctx(tfm);
871 struct spacc_engine *engine = ctx->generic.engine;
872 u32 ctrl;
874 req->ctx_id = spacc_load_ctx(&ctx->generic, ctx->key,
875 ctx->key_len, ablk_req->iv, alg->ivsize,
876 NULL, 0);
878 writel(req->src_addr, engine->regs + SPA_SRC_PTR_REG_OFFSET);
879 writel(req->dst_addr, engine->regs + SPA_DST_PTR_REG_OFFSET);
880 writel(0, engine->regs + SPA_OFFSET_REG_OFFSET);
882 writel(ablk_req->cryptlen, engine->regs + SPA_PROC_LEN_REG_OFFSET);
883 writel(0, engine->regs + SPA_ICV_OFFSET_REG_OFFSET);
884 writel(0, engine->regs + SPA_AUX_INFO_REG_OFFSET);
885 writel(0, engine->regs + SPA_AAD_LEN_REG_OFFSET);
887 ctrl = spacc_alg->ctrl_default | (req->ctx_id << SPA_CTRL_CTX_IDX) |
888 (req->is_encrypt ? (1 << SPA_CTRL_ENCRYPT_IDX) :
889 (1 << SPA_CTRL_KEY_EXP));
891 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
893 writel(ctrl, engine->regs + SPA_CTRL_REG_OFFSET);
895 return -EINPROGRESS;
898 static int spacc_ablk_do_fallback(struct skcipher_request *req,
899 unsigned alg_type, bool is_encrypt)
901 struct crypto_tfm *old_tfm =
902 crypto_skcipher_tfm(crypto_skcipher_reqtfm(req));
903 struct spacc_ablk_ctx *ctx = crypto_tfm_ctx(old_tfm);
904 struct spacc_req *dev_req = skcipher_request_ctx(req);
905 int err;
908 * Change the request to use the software fallback transform, and once
909 * the ciphering has completed, put the old transform back into the
910 * request.
912 skcipher_request_set_tfm(&dev_req->fallback_req, ctx->sw_cipher);
913 skcipher_request_set_callback(&dev_req->fallback_req, req->base.flags,
914 req->base.complete, req->base.data);
915 skcipher_request_set_crypt(&dev_req->fallback_req, req->src, req->dst,
916 req->cryptlen, req->iv);
917 err = is_encrypt ? crypto_skcipher_encrypt(&dev_req->fallback_req) :
918 crypto_skcipher_decrypt(&dev_req->fallback_req);
920 return err;
923 static int spacc_ablk_setup(struct skcipher_request *req, unsigned alg_type,
924 bool is_encrypt)
926 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
927 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
928 struct spacc_engine *engine = to_spacc_skcipher(alg)->engine;
929 struct spacc_req *dev_req = skcipher_request_ctx(req);
930 unsigned long flags;
931 int err = -ENOMEM;
933 dev_req->req = &req->base;
934 dev_req->is_encrypt = is_encrypt;
935 dev_req->engine = engine;
936 dev_req->complete = spacc_ablk_complete;
937 dev_req->result = -EINPROGRESS;
939 if (unlikely(spacc_ablk_need_fallback(dev_req)))
940 return spacc_ablk_do_fallback(req, alg_type, is_encrypt);
943 * Create the DDT's for the engine. If we share the same source and
944 * destination then we can optimize by reusing the DDT's.
946 if (req->src != req->dst) {
947 dev_req->src_ddt = spacc_sg_to_ddt(engine, req->src,
948 req->cryptlen, DMA_TO_DEVICE, &dev_req->src_addr);
949 if (!dev_req->src_ddt)
950 goto out;
952 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
953 req->cryptlen, DMA_FROM_DEVICE, &dev_req->dst_addr);
954 if (!dev_req->dst_ddt)
955 goto out_free_src;
956 } else {
957 dev_req->dst_ddt = spacc_sg_to_ddt(engine, req->dst,
958 req->cryptlen, DMA_BIDIRECTIONAL, &dev_req->dst_addr);
959 if (!dev_req->dst_ddt)
960 goto out;
962 dev_req->src_ddt = NULL;
963 dev_req->src_addr = dev_req->dst_addr;
966 err = -EINPROGRESS;
967 spin_lock_irqsave(&engine->hw_lock, flags);
969 * Check if the engine will accept the operation now. If it won't then
970 * we either stick it on the end of a pending list if we can backlog,
971 * or bailout with an error if not.
973 if (unlikely(spacc_fifo_cmd_full(engine)) ||
974 engine->in_flight + 1 > engine->fifo_sz) {
975 if (!(req->base.flags & CRYPTO_TFM_REQ_MAY_BACKLOG)) {
976 err = -EBUSY;
977 spin_unlock_irqrestore(&engine->hw_lock, flags);
978 goto out_free_ddts;
980 list_add_tail(&dev_req->list, &engine->pending);
981 } else {
982 list_add_tail(&dev_req->list, &engine->pending);
983 spacc_push(engine);
985 spin_unlock_irqrestore(&engine->hw_lock, flags);
987 goto out;
989 out_free_ddts:
990 spacc_free_ddt(dev_req, dev_req->dst_ddt, dev_req->dst_addr, req->dst,
991 req->cryptlen, req->src == req->dst ?
992 DMA_BIDIRECTIONAL : DMA_FROM_DEVICE);
993 out_free_src:
994 if (req->src != req->dst)
995 spacc_free_ddt(dev_req, dev_req->src_ddt, dev_req->src_addr,
996 req->src, req->cryptlen, DMA_TO_DEVICE);
997 out:
998 return err;
1001 static int spacc_ablk_init_tfm(struct crypto_skcipher *tfm)
1003 struct spacc_ablk_ctx *ctx = crypto_skcipher_ctx(tfm);
1004 struct skcipher_alg *alg = crypto_skcipher_alg(tfm);
1005 struct spacc_alg *spacc_alg = to_spacc_skcipher(alg);
1006 struct spacc_engine *engine = spacc_alg->engine;
1008 ctx->generic.flags = spacc_alg->type;
1009 ctx->generic.engine = engine;
1010 if (alg->base.cra_flags & CRYPTO_ALG_NEED_FALLBACK) {
1011 ctx->sw_cipher = crypto_alloc_skcipher(alg->base.cra_name, 0,
1012 CRYPTO_ALG_NEED_FALLBACK);
1013 if (IS_ERR(ctx->sw_cipher)) {
1014 dev_warn(engine->dev, "failed to allocate fallback for %s\n",
1015 alg->base.cra_name);
1016 return PTR_ERR(ctx->sw_cipher);
1018 crypto_skcipher_set_reqsize(tfm, sizeof(struct spacc_req) +
1019 crypto_skcipher_reqsize(ctx->sw_cipher));
1020 } else {
1021 /* take the size without the fallback skcipher_request at the end */
1022 crypto_skcipher_set_reqsize(tfm, offsetof(struct spacc_req,
1023 fallback_req));
1026 ctx->generic.key_offs = spacc_alg->key_offs;
1027 ctx->generic.iv_offs = spacc_alg->iv_offs;
1029 return 0;
1032 static void spacc_ablk_exit_tfm(struct crypto_skcipher *tfm)
1034 struct spacc_ablk_ctx *ctx = crypto_skcipher_ctx(tfm);
1036 crypto_free_skcipher(ctx->sw_cipher);
1039 static int spacc_ablk_encrypt(struct skcipher_request *req)
1041 struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req);
1042 struct skcipher_alg *alg = crypto_skcipher_alg(cipher);
1043 struct spacc_alg *spacc_alg = to_spacc_skcipher(alg);
1045 return spacc_ablk_setup(req, spacc_alg->type, 1);
1048 static int spacc_ablk_decrypt(struct skcipher_request *req)
1050 struct crypto_skcipher *cipher = crypto_skcipher_reqtfm(req);
1051 struct skcipher_alg *alg = crypto_skcipher_alg(cipher);
1052 struct spacc_alg *spacc_alg = to_spacc_skcipher(alg);
1054 return spacc_ablk_setup(req, spacc_alg->type, 0);
1057 static inline int spacc_fifo_stat_empty(struct spacc_engine *engine)
1059 return readl(engine->regs + SPA_FIFO_STAT_REG_OFFSET) &
1060 SPA_FIFO_STAT_EMPTY;
1063 static void spacc_process_done(struct spacc_engine *engine)
1065 struct spacc_req *req;
1066 unsigned long flags;
1068 spin_lock_irqsave(&engine->hw_lock, flags);
1070 while (!spacc_fifo_stat_empty(engine)) {
1071 req = list_first_entry(&engine->in_progress, struct spacc_req,
1072 list);
1073 list_move_tail(&req->list, &engine->completed);
1074 --engine->in_flight;
1076 /* POP the status register. */
1077 writel(~0, engine->regs + SPA_STAT_POP_REG_OFFSET);
1078 req->result = (readl(engine->regs + SPA_STATUS_REG_OFFSET) &
1079 SPA_STATUS_RES_CODE_MASK) >> SPA_STATUS_RES_CODE_OFFSET;
1082 * Convert the SPAcc error status into the standard POSIX error
1083 * codes.
1085 if (unlikely(req->result)) {
1086 switch (req->result) {
1087 case SPA_STATUS_ICV_FAIL:
1088 req->result = -EBADMSG;
1089 break;
1091 case SPA_STATUS_MEMORY_ERROR:
1092 dev_warn(engine->dev,
1093 "memory error triggered\n");
1094 req->result = -EFAULT;
1095 break;
1097 case SPA_STATUS_BLOCK_ERROR:
1098 dev_warn(engine->dev,
1099 "block error triggered\n");
1100 req->result = -EIO;
1101 break;
1106 tasklet_schedule(&engine->complete);
1108 spin_unlock_irqrestore(&engine->hw_lock, flags);
1111 static irqreturn_t spacc_spacc_irq(int irq, void *dev)
1113 struct spacc_engine *engine = (struct spacc_engine *)dev;
1114 u32 spacc_irq_stat = readl(engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1116 writel(spacc_irq_stat, engine->regs + SPA_IRQ_STAT_REG_OFFSET);
1117 spacc_process_done(engine);
1119 return IRQ_HANDLED;
1122 static void spacc_packet_timeout(struct timer_list *t)
1124 struct spacc_engine *engine = from_timer(engine, t, packet_timeout);
1126 spacc_process_done(engine);
1129 static int spacc_req_submit(struct spacc_req *req)
1131 struct crypto_alg *alg = req->req->tfm->__crt_alg;
1133 if (CRYPTO_ALG_TYPE_AEAD == (CRYPTO_ALG_TYPE_MASK & alg->cra_flags))
1134 return spacc_aead_submit(req);
1135 else
1136 return spacc_ablk_submit(req);
1139 static void spacc_spacc_complete(unsigned long data)
1141 struct spacc_engine *engine = (struct spacc_engine *)data;
1142 struct spacc_req *req, *tmp;
1143 unsigned long flags;
1144 LIST_HEAD(completed);
1146 spin_lock_irqsave(&engine->hw_lock, flags);
1148 list_splice_init(&engine->completed, &completed);
1149 spacc_push(engine);
1150 if (engine->in_flight)
1151 mod_timer(&engine->packet_timeout, jiffies + PACKET_TIMEOUT);
1153 spin_unlock_irqrestore(&engine->hw_lock, flags);
1155 list_for_each_entry_safe(req, tmp, &completed, list) {
1156 list_del(&req->list);
1157 req->complete(req);
1161 #ifdef CONFIG_PM
1162 static int spacc_suspend(struct device *dev)
1164 struct spacc_engine *engine = dev_get_drvdata(dev);
1167 * We only support standby mode. All we have to do is gate the clock to
1168 * the spacc. The hardware will preserve state until we turn it back
1169 * on again.
1171 clk_disable(engine->clk);
1173 return 0;
1176 static int spacc_resume(struct device *dev)
1178 struct spacc_engine *engine = dev_get_drvdata(dev);
1180 return clk_enable(engine->clk);
1183 static const struct dev_pm_ops spacc_pm_ops = {
1184 .suspend = spacc_suspend,
1185 .resume = spacc_resume,
1187 #endif /* CONFIG_PM */
1189 static inline struct spacc_engine *spacc_dev_to_engine(struct device *dev)
1191 return dev ? dev_get_drvdata(dev) : NULL;
1194 static ssize_t spacc_stat_irq_thresh_show(struct device *dev,
1195 struct device_attribute *attr,
1196 char *buf)
1198 struct spacc_engine *engine = spacc_dev_to_engine(dev);
1200 return snprintf(buf, PAGE_SIZE, "%u\n", engine->stat_irq_thresh);
1203 static ssize_t spacc_stat_irq_thresh_store(struct device *dev,
1204 struct device_attribute *attr,
1205 const char *buf, size_t len)
1207 struct spacc_engine *engine = spacc_dev_to_engine(dev);
1208 unsigned long thresh;
1210 if (kstrtoul(buf, 0, &thresh))
1211 return -EINVAL;
1213 thresh = clamp(thresh, 1UL, engine->fifo_sz - 1);
1215 engine->stat_irq_thresh = thresh;
1216 writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1217 engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1219 return len;
1221 static DEVICE_ATTR(stat_irq_thresh, 0644, spacc_stat_irq_thresh_show,
1222 spacc_stat_irq_thresh_store);
1224 static struct spacc_alg ipsec_engine_algs[] = {
1226 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_CBC,
1227 .key_offs = 0,
1228 .iv_offs = AES_MAX_KEY_SIZE,
1229 .alg = {
1230 .base.cra_name = "cbc(aes)",
1231 .base.cra_driver_name = "cbc-aes-picoxcell",
1232 .base.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1233 .base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1234 CRYPTO_ALG_ASYNC |
1235 CRYPTO_ALG_ALLOCATES_MEMORY |
1236 CRYPTO_ALG_NEED_FALLBACK,
1237 .base.cra_blocksize = AES_BLOCK_SIZE,
1238 .base.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1239 .base.cra_module = THIS_MODULE,
1241 .setkey = spacc_aes_setkey,
1242 .encrypt = spacc_ablk_encrypt,
1243 .decrypt = spacc_ablk_decrypt,
1244 .min_keysize = AES_MIN_KEY_SIZE,
1245 .max_keysize = AES_MAX_KEY_SIZE,
1246 .ivsize = AES_BLOCK_SIZE,
1247 .init = spacc_ablk_init_tfm,
1248 .exit = spacc_ablk_exit_tfm,
1252 .key_offs = 0,
1253 .iv_offs = AES_MAX_KEY_SIZE,
1254 .ctrl_default = SPA_CTRL_CIPH_ALG_AES | SPA_CTRL_CIPH_MODE_ECB,
1255 .alg = {
1256 .base.cra_name = "ecb(aes)",
1257 .base.cra_driver_name = "ecb-aes-picoxcell",
1258 .base.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1259 .base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1260 CRYPTO_ALG_ASYNC |
1261 CRYPTO_ALG_ALLOCATES_MEMORY |
1262 CRYPTO_ALG_NEED_FALLBACK,
1263 .base.cra_blocksize = AES_BLOCK_SIZE,
1264 .base.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1265 .base.cra_module = THIS_MODULE,
1267 .setkey = spacc_aes_setkey,
1268 .encrypt = spacc_ablk_encrypt,
1269 .decrypt = spacc_ablk_decrypt,
1270 .min_keysize = AES_MIN_KEY_SIZE,
1271 .max_keysize = AES_MAX_KEY_SIZE,
1272 .init = spacc_ablk_init_tfm,
1273 .exit = spacc_ablk_exit_tfm,
1277 .key_offs = DES_BLOCK_SIZE,
1278 .iv_offs = 0,
1279 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1280 .alg = {
1281 .base.cra_name = "cbc(des)",
1282 .base.cra_driver_name = "cbc-des-picoxcell",
1283 .base.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1284 .base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1285 CRYPTO_ALG_ASYNC |
1286 CRYPTO_ALG_ALLOCATES_MEMORY,
1287 .base.cra_blocksize = DES_BLOCK_SIZE,
1288 .base.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1289 .base.cra_module = THIS_MODULE,
1291 .setkey = spacc_des_setkey,
1292 .encrypt = spacc_ablk_encrypt,
1293 .decrypt = spacc_ablk_decrypt,
1294 .min_keysize = DES_KEY_SIZE,
1295 .max_keysize = DES_KEY_SIZE,
1296 .ivsize = DES_BLOCK_SIZE,
1297 .init = spacc_ablk_init_tfm,
1298 .exit = spacc_ablk_exit_tfm,
1302 .key_offs = DES_BLOCK_SIZE,
1303 .iv_offs = 0,
1304 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1305 .alg = {
1306 .base.cra_name = "ecb(des)",
1307 .base.cra_driver_name = "ecb-des-picoxcell",
1308 .base.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1309 .base.cra_flags = CRYPTO_ALG_KERN_DRIVER_ONLY |
1310 CRYPTO_ALG_ASYNC |
1311 CRYPTO_ALG_ALLOCATES_MEMORY,
1312 .base.cra_blocksize = DES_BLOCK_SIZE,
1313 .base.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1314 .base.cra_module = THIS_MODULE,
1316 .setkey = spacc_des_setkey,
1317 .encrypt = spacc_ablk_encrypt,
1318 .decrypt = spacc_ablk_decrypt,
1319 .min_keysize = DES_KEY_SIZE,
1320 .max_keysize = DES_KEY_SIZE,
1321 .init = spacc_ablk_init_tfm,
1322 .exit = spacc_ablk_exit_tfm,
1326 .key_offs = DES_BLOCK_SIZE,
1327 .iv_offs = 0,
1328 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_CBC,
1329 .alg = {
1330 .base.cra_name = "cbc(des3_ede)",
1331 .base.cra_driver_name = "cbc-des3-ede-picoxcell",
1332 .base.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1333 .base.cra_flags = CRYPTO_ALG_ASYNC |
1334 CRYPTO_ALG_ALLOCATES_MEMORY |
1335 CRYPTO_ALG_KERN_DRIVER_ONLY,
1336 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1337 .base.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1338 .base.cra_module = THIS_MODULE,
1340 .setkey = spacc_des3_setkey,
1341 .encrypt = spacc_ablk_encrypt,
1342 .decrypt = spacc_ablk_decrypt,
1343 .min_keysize = DES3_EDE_KEY_SIZE,
1344 .max_keysize = DES3_EDE_KEY_SIZE,
1345 .ivsize = DES3_EDE_BLOCK_SIZE,
1346 .init = spacc_ablk_init_tfm,
1347 .exit = spacc_ablk_exit_tfm,
1351 .key_offs = DES_BLOCK_SIZE,
1352 .iv_offs = 0,
1353 .ctrl_default = SPA_CTRL_CIPH_ALG_DES | SPA_CTRL_CIPH_MODE_ECB,
1354 .alg = {
1355 .base.cra_name = "ecb(des3_ede)",
1356 .base.cra_driver_name = "ecb-des3-ede-picoxcell",
1357 .base.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1358 .base.cra_flags = CRYPTO_ALG_ASYNC |
1359 CRYPTO_ALG_ALLOCATES_MEMORY |
1360 CRYPTO_ALG_KERN_DRIVER_ONLY,
1361 .base.cra_blocksize = DES3_EDE_BLOCK_SIZE,
1362 .base.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1363 .base.cra_module = THIS_MODULE,
1365 .setkey = spacc_des3_setkey,
1366 .encrypt = spacc_ablk_encrypt,
1367 .decrypt = spacc_ablk_decrypt,
1368 .min_keysize = DES3_EDE_KEY_SIZE,
1369 .max_keysize = DES3_EDE_KEY_SIZE,
1370 .init = spacc_ablk_init_tfm,
1371 .exit = spacc_ablk_exit_tfm,
1376 static struct spacc_aead ipsec_engine_aeads[] = {
1378 .ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1379 SPA_CTRL_CIPH_MODE_CBC |
1380 SPA_CTRL_HASH_ALG_SHA |
1381 SPA_CTRL_HASH_MODE_HMAC,
1382 .key_offs = 0,
1383 .iv_offs = AES_MAX_KEY_SIZE,
1384 .alg = {
1385 .base = {
1386 .cra_name = "authenc(hmac(sha1),cbc(aes))",
1387 .cra_driver_name = "authenc-hmac-sha1-"
1388 "cbc-aes-picoxcell",
1389 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1390 .cra_flags = CRYPTO_ALG_ASYNC |
1391 CRYPTO_ALG_ALLOCATES_MEMORY |
1392 CRYPTO_ALG_NEED_FALLBACK |
1393 CRYPTO_ALG_KERN_DRIVER_ONLY,
1394 .cra_blocksize = AES_BLOCK_SIZE,
1395 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1396 .cra_module = THIS_MODULE,
1398 .setkey = spacc_aead_setkey,
1399 .setauthsize = spacc_aead_setauthsize,
1400 .encrypt = spacc_aead_encrypt,
1401 .decrypt = spacc_aead_decrypt,
1402 .ivsize = AES_BLOCK_SIZE,
1403 .maxauthsize = SHA1_DIGEST_SIZE,
1404 .init = spacc_aead_cra_init,
1405 .exit = spacc_aead_cra_exit,
1409 .ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1410 SPA_CTRL_CIPH_MODE_CBC |
1411 SPA_CTRL_HASH_ALG_SHA256 |
1412 SPA_CTRL_HASH_MODE_HMAC,
1413 .key_offs = 0,
1414 .iv_offs = AES_MAX_KEY_SIZE,
1415 .alg = {
1416 .base = {
1417 .cra_name = "authenc(hmac(sha256),cbc(aes))",
1418 .cra_driver_name = "authenc-hmac-sha256-"
1419 "cbc-aes-picoxcell",
1420 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1421 .cra_flags = CRYPTO_ALG_ASYNC |
1422 CRYPTO_ALG_ALLOCATES_MEMORY |
1423 CRYPTO_ALG_NEED_FALLBACK |
1424 CRYPTO_ALG_KERN_DRIVER_ONLY,
1425 .cra_blocksize = AES_BLOCK_SIZE,
1426 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1427 .cra_module = THIS_MODULE,
1429 .setkey = spacc_aead_setkey,
1430 .setauthsize = spacc_aead_setauthsize,
1431 .encrypt = spacc_aead_encrypt,
1432 .decrypt = spacc_aead_decrypt,
1433 .ivsize = AES_BLOCK_SIZE,
1434 .maxauthsize = SHA256_DIGEST_SIZE,
1435 .init = spacc_aead_cra_init,
1436 .exit = spacc_aead_cra_exit,
1440 .key_offs = 0,
1441 .iv_offs = AES_MAX_KEY_SIZE,
1442 .ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1443 SPA_CTRL_CIPH_MODE_CBC |
1444 SPA_CTRL_HASH_ALG_MD5 |
1445 SPA_CTRL_HASH_MODE_HMAC,
1446 .alg = {
1447 .base = {
1448 .cra_name = "authenc(hmac(md5),cbc(aes))",
1449 .cra_driver_name = "authenc-hmac-md5-"
1450 "cbc-aes-picoxcell",
1451 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1452 .cra_flags = CRYPTO_ALG_ASYNC |
1453 CRYPTO_ALG_ALLOCATES_MEMORY |
1454 CRYPTO_ALG_NEED_FALLBACK |
1455 CRYPTO_ALG_KERN_DRIVER_ONLY,
1456 .cra_blocksize = AES_BLOCK_SIZE,
1457 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1458 .cra_module = THIS_MODULE,
1460 .setkey = spacc_aead_setkey,
1461 .setauthsize = spacc_aead_setauthsize,
1462 .encrypt = spacc_aead_encrypt,
1463 .decrypt = spacc_aead_decrypt,
1464 .ivsize = AES_BLOCK_SIZE,
1465 .maxauthsize = MD5_DIGEST_SIZE,
1466 .init = spacc_aead_cra_init,
1467 .exit = spacc_aead_cra_exit,
1471 .key_offs = DES_BLOCK_SIZE,
1472 .iv_offs = 0,
1473 .ctrl_default = SPA_CTRL_CIPH_ALG_DES |
1474 SPA_CTRL_CIPH_MODE_CBC |
1475 SPA_CTRL_HASH_ALG_SHA |
1476 SPA_CTRL_HASH_MODE_HMAC,
1477 .alg = {
1478 .base = {
1479 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1480 .cra_driver_name = "authenc-hmac-sha1-"
1481 "cbc-3des-picoxcell",
1482 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1483 .cra_flags = CRYPTO_ALG_ASYNC |
1484 CRYPTO_ALG_ALLOCATES_MEMORY |
1485 CRYPTO_ALG_NEED_FALLBACK |
1486 CRYPTO_ALG_KERN_DRIVER_ONLY,
1487 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1488 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1489 .cra_module = THIS_MODULE,
1491 .setkey = spacc_aead_setkey,
1492 .setauthsize = spacc_aead_setauthsize,
1493 .encrypt = spacc_aead_encrypt,
1494 .decrypt = spacc_aead_decrypt,
1495 .ivsize = DES3_EDE_BLOCK_SIZE,
1496 .maxauthsize = SHA1_DIGEST_SIZE,
1497 .init = spacc_aead_cra_init,
1498 .exit = spacc_aead_cra_exit,
1502 .key_offs = DES_BLOCK_SIZE,
1503 .iv_offs = 0,
1504 .ctrl_default = SPA_CTRL_CIPH_ALG_AES |
1505 SPA_CTRL_CIPH_MODE_CBC |
1506 SPA_CTRL_HASH_ALG_SHA256 |
1507 SPA_CTRL_HASH_MODE_HMAC,
1508 .alg = {
1509 .base = {
1510 .cra_name = "authenc(hmac(sha256),"
1511 "cbc(des3_ede))",
1512 .cra_driver_name = "authenc-hmac-sha256-"
1513 "cbc-3des-picoxcell",
1514 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1515 .cra_flags = CRYPTO_ALG_ASYNC |
1516 CRYPTO_ALG_ALLOCATES_MEMORY |
1517 CRYPTO_ALG_NEED_FALLBACK |
1518 CRYPTO_ALG_KERN_DRIVER_ONLY,
1519 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1520 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1521 .cra_module = THIS_MODULE,
1523 .setkey = spacc_aead_setkey,
1524 .setauthsize = spacc_aead_setauthsize,
1525 .encrypt = spacc_aead_encrypt,
1526 .decrypt = spacc_aead_decrypt,
1527 .ivsize = DES3_EDE_BLOCK_SIZE,
1528 .maxauthsize = SHA256_DIGEST_SIZE,
1529 .init = spacc_aead_cra_init,
1530 .exit = spacc_aead_cra_exit,
1534 .key_offs = DES_BLOCK_SIZE,
1535 .iv_offs = 0,
1536 .ctrl_default = SPA_CTRL_CIPH_ALG_DES |
1537 SPA_CTRL_CIPH_MODE_CBC |
1538 SPA_CTRL_HASH_ALG_MD5 |
1539 SPA_CTRL_HASH_MODE_HMAC,
1540 .alg = {
1541 .base = {
1542 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1543 .cra_driver_name = "authenc-hmac-md5-"
1544 "cbc-3des-picoxcell",
1545 .cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1546 .cra_flags = CRYPTO_ALG_ASYNC |
1547 CRYPTO_ALG_ALLOCATES_MEMORY |
1548 CRYPTO_ALG_NEED_FALLBACK |
1549 CRYPTO_ALG_KERN_DRIVER_ONLY,
1550 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1551 .cra_ctxsize = sizeof(struct spacc_aead_ctx),
1552 .cra_module = THIS_MODULE,
1554 .setkey = spacc_aead_setkey,
1555 .setauthsize = spacc_aead_setauthsize,
1556 .encrypt = spacc_aead_encrypt,
1557 .decrypt = spacc_aead_decrypt,
1558 .ivsize = DES3_EDE_BLOCK_SIZE,
1559 .maxauthsize = MD5_DIGEST_SIZE,
1560 .init = spacc_aead_cra_init,
1561 .exit = spacc_aead_cra_exit,
1566 static struct spacc_alg l2_engine_algs[] = {
1568 .key_offs = 0,
1569 .iv_offs = SPACC_CRYPTO_KASUMI_F8_KEY_LEN,
1570 .ctrl_default = SPA_CTRL_CIPH_ALG_KASUMI |
1571 SPA_CTRL_CIPH_MODE_F8,
1572 .alg = {
1573 .base.cra_name = "f8(kasumi)",
1574 .base.cra_driver_name = "f8-kasumi-picoxcell",
1575 .base.cra_priority = SPACC_CRYPTO_ALG_PRIORITY,
1576 .base.cra_flags = CRYPTO_ALG_ASYNC |
1577 CRYPTO_ALG_ALLOCATES_MEMORY |
1578 CRYPTO_ALG_KERN_DRIVER_ONLY,
1579 .base.cra_blocksize = 8,
1580 .base.cra_ctxsize = sizeof(struct spacc_ablk_ctx),
1581 .base.cra_module = THIS_MODULE,
1583 .setkey = spacc_kasumi_f8_setkey,
1584 .encrypt = spacc_ablk_encrypt,
1585 .decrypt = spacc_ablk_decrypt,
1586 .min_keysize = 16,
1587 .max_keysize = 16,
1588 .ivsize = 8,
1589 .init = spacc_ablk_init_tfm,
1590 .exit = spacc_ablk_exit_tfm,
1595 #ifdef CONFIG_OF
1596 static const struct of_device_id spacc_of_id_table[] = {
1597 { .compatible = "picochip,spacc-ipsec" },
1598 { .compatible = "picochip,spacc-l2" },
1601 MODULE_DEVICE_TABLE(of, spacc_of_id_table);
1602 #endif /* CONFIG_OF */
1604 static void spacc_tasklet_kill(void *data)
1606 tasklet_kill(data);
1609 static int spacc_probe(struct platform_device *pdev)
1611 int i, err, ret;
1612 struct resource *irq;
1613 struct device_node *np = pdev->dev.of_node;
1614 struct spacc_engine *engine = devm_kzalloc(&pdev->dev, sizeof(*engine),
1615 GFP_KERNEL);
1616 if (!engine)
1617 return -ENOMEM;
1619 if (of_device_is_compatible(np, "picochip,spacc-ipsec")) {
1620 engine->max_ctxs = SPACC_CRYPTO_IPSEC_MAX_CTXS;
1621 engine->cipher_pg_sz = SPACC_CRYPTO_IPSEC_CIPHER_PG_SZ;
1622 engine->hash_pg_sz = SPACC_CRYPTO_IPSEC_HASH_PG_SZ;
1623 engine->fifo_sz = SPACC_CRYPTO_IPSEC_FIFO_SZ;
1624 engine->algs = ipsec_engine_algs;
1625 engine->num_algs = ARRAY_SIZE(ipsec_engine_algs);
1626 engine->aeads = ipsec_engine_aeads;
1627 engine->num_aeads = ARRAY_SIZE(ipsec_engine_aeads);
1628 } else if (of_device_is_compatible(np, "picochip,spacc-l2")) {
1629 engine->max_ctxs = SPACC_CRYPTO_L2_MAX_CTXS;
1630 engine->cipher_pg_sz = SPACC_CRYPTO_L2_CIPHER_PG_SZ;
1631 engine->hash_pg_sz = SPACC_CRYPTO_L2_HASH_PG_SZ;
1632 engine->fifo_sz = SPACC_CRYPTO_L2_FIFO_SZ;
1633 engine->algs = l2_engine_algs;
1634 engine->num_algs = ARRAY_SIZE(l2_engine_algs);
1635 } else {
1636 return -EINVAL;
1639 engine->name = dev_name(&pdev->dev);
1641 engine->regs = devm_platform_ioremap_resource(pdev, 0);
1642 if (IS_ERR(engine->regs))
1643 return PTR_ERR(engine->regs);
1645 irq = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1646 if (!irq) {
1647 dev_err(&pdev->dev, "no memory/irq resource for engine\n");
1648 return -ENXIO;
1651 tasklet_init(&engine->complete, spacc_spacc_complete,
1652 (unsigned long)engine);
1654 ret = devm_add_action(&pdev->dev, spacc_tasklet_kill,
1655 &engine->complete);
1656 if (ret)
1657 return ret;
1659 if (devm_request_irq(&pdev->dev, irq->start, spacc_spacc_irq, 0,
1660 engine->name, engine)) {
1661 dev_err(engine->dev, "failed to request IRQ\n");
1662 return -EBUSY;
1665 engine->dev = &pdev->dev;
1666 engine->cipher_ctx_base = engine->regs + SPA_CIPH_KEY_BASE_REG_OFFSET;
1667 engine->hash_key_base = engine->regs + SPA_HASH_KEY_BASE_REG_OFFSET;
1669 engine->req_pool = dmam_pool_create(engine->name, engine->dev,
1670 MAX_DDT_LEN * sizeof(struct spacc_ddt), 8, SZ_64K);
1671 if (!engine->req_pool)
1672 return -ENOMEM;
1674 spin_lock_init(&engine->hw_lock);
1676 engine->clk = clk_get(&pdev->dev, "ref");
1677 if (IS_ERR(engine->clk)) {
1678 dev_info(&pdev->dev, "clk unavailable\n");
1679 return PTR_ERR(engine->clk);
1682 if (clk_prepare_enable(engine->clk)) {
1683 dev_info(&pdev->dev, "unable to prepare/enable clk\n");
1684 ret = -EIO;
1685 goto err_clk_put;
1689 * Use an IRQ threshold of 50% as a default. This seems to be a
1690 * reasonable trade off of latency against throughput but can be
1691 * changed at runtime.
1693 engine->stat_irq_thresh = (engine->fifo_sz / 2);
1695 ret = device_create_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1696 if (ret)
1697 goto err_clk_disable;
1700 * Configure the interrupts. We only use the STAT_CNT interrupt as we
1701 * only submit a new packet for processing when we complete another in
1702 * the queue. This minimizes time spent in the interrupt handler.
1704 writel(engine->stat_irq_thresh << SPA_IRQ_CTRL_STAT_CNT_OFFSET,
1705 engine->regs + SPA_IRQ_CTRL_REG_OFFSET);
1706 writel(SPA_IRQ_EN_STAT_EN | SPA_IRQ_EN_GLBL_EN,
1707 engine->regs + SPA_IRQ_EN_REG_OFFSET);
1709 timer_setup(&engine->packet_timeout, spacc_packet_timeout, 0);
1711 INIT_LIST_HEAD(&engine->pending);
1712 INIT_LIST_HEAD(&engine->completed);
1713 INIT_LIST_HEAD(&engine->in_progress);
1714 engine->in_flight = 0;
1716 platform_set_drvdata(pdev, engine);
1718 ret = -EINVAL;
1719 INIT_LIST_HEAD(&engine->registered_algs);
1720 for (i = 0; i < engine->num_algs; ++i) {
1721 engine->algs[i].engine = engine;
1722 err = crypto_register_skcipher(&engine->algs[i].alg);
1723 if (!err) {
1724 list_add_tail(&engine->algs[i].entry,
1725 &engine->registered_algs);
1726 ret = 0;
1728 if (err)
1729 dev_err(engine->dev, "failed to register alg \"%s\"\n",
1730 engine->algs[i].alg.base.cra_name);
1731 else
1732 dev_dbg(engine->dev, "registered alg \"%s\"\n",
1733 engine->algs[i].alg.base.cra_name);
1736 INIT_LIST_HEAD(&engine->registered_aeads);
1737 for (i = 0; i < engine->num_aeads; ++i) {
1738 engine->aeads[i].engine = engine;
1739 err = crypto_register_aead(&engine->aeads[i].alg);
1740 if (!err) {
1741 list_add_tail(&engine->aeads[i].entry,
1742 &engine->registered_aeads);
1743 ret = 0;
1745 if (err)
1746 dev_err(engine->dev, "failed to register alg \"%s\"\n",
1747 engine->aeads[i].alg.base.cra_name);
1748 else
1749 dev_dbg(engine->dev, "registered alg \"%s\"\n",
1750 engine->aeads[i].alg.base.cra_name);
1753 if (!ret)
1754 return 0;
1756 del_timer_sync(&engine->packet_timeout);
1757 device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1758 err_clk_disable:
1759 clk_disable_unprepare(engine->clk);
1760 err_clk_put:
1761 clk_put(engine->clk);
1763 return ret;
1766 static int spacc_remove(struct platform_device *pdev)
1768 struct spacc_aead *aead, *an;
1769 struct spacc_alg *alg, *next;
1770 struct spacc_engine *engine = platform_get_drvdata(pdev);
1772 del_timer_sync(&engine->packet_timeout);
1773 device_remove_file(&pdev->dev, &dev_attr_stat_irq_thresh);
1775 list_for_each_entry_safe(aead, an, &engine->registered_aeads, entry) {
1776 list_del(&aead->entry);
1777 crypto_unregister_aead(&aead->alg);
1780 list_for_each_entry_safe(alg, next, &engine->registered_algs, entry) {
1781 list_del(&alg->entry);
1782 crypto_unregister_skcipher(&alg->alg);
1785 clk_disable_unprepare(engine->clk);
1786 clk_put(engine->clk);
1788 return 0;
1791 static struct platform_driver spacc_driver = {
1792 .probe = spacc_probe,
1793 .remove = spacc_remove,
1794 .driver = {
1795 .name = "picochip,spacc",
1796 #ifdef CONFIG_PM
1797 .pm = &spacc_pm_ops,
1798 #endif /* CONFIG_PM */
1799 .of_match_table = of_match_ptr(spacc_of_id_table),
1803 module_platform_driver(spacc_driver);
1805 MODULE_LICENSE("GPL");
1806 MODULE_AUTHOR("Jamie Iles");