1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
7 * This code implements the DMA subsystem. It provides a HW-neutral interface
8 * for other kernel code to use asynchronous memory copy capabilities,
9 * if present, and allows different HW DMA drivers to register as providing
12 * Due to the fact we are accelerating what is already a relatively fast
13 * operation, the code goes to great lengths to avoid additional overhead,
18 * The subsystem keeps a global list of dma_device structs it is protected by a
19 * mutex, dma_list_mutex.
21 * A subsystem can get access to a channel by calling dmaengine_get() followed
22 * by dma_find_channel(), or if it has need for an exclusive channel it can call
23 * dma_request_channel(). Once a channel is allocated a reference is taken
24 * against its corresponding driver to disable removal.
26 * Each device has a channels list, which runs unlocked but is never modified
27 * once the device is registered, it's just setup by the driver.
29 * See Documentation/driver-api/dmaengine for more details
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/platform_device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/init.h>
37 #include <linux/module.h>
39 #include <linux/device.h>
40 #include <linux/dmaengine.h>
41 #include <linux/hardirq.h>
42 #include <linux/spinlock.h>
43 #include <linux/percpu.h>
44 #include <linux/rcupdate.h>
45 #include <linux/mutex.h>
46 #include <linux/jiffies.h>
47 #include <linux/rculist.h>
48 #include <linux/idr.h>
49 #include <linux/slab.h>
50 #include <linux/acpi.h>
51 #include <linux/acpi_dma.h>
52 #include <linux/of_dma.h>
53 #include <linux/mempool.h>
54 #include <linux/numa.h>
56 #include "dmaengine.h"
58 static DEFINE_MUTEX(dma_list_mutex
);
59 static DEFINE_IDA(dma_ida
);
60 static LIST_HEAD(dma_device_list
);
61 static long dmaengine_ref_count
;
63 /* --- debugfs implementation --- */
64 #ifdef CONFIG_DEBUG_FS
65 #include <linux/debugfs.h>
67 static struct dentry
*rootdir
;
69 static void dmaengine_debug_register(struct dma_device
*dma_dev
)
71 dma_dev
->dbg_dev_root
= debugfs_create_dir(dev_name(dma_dev
->dev
),
73 if (IS_ERR(dma_dev
->dbg_dev_root
))
74 dma_dev
->dbg_dev_root
= NULL
;
77 static void dmaengine_debug_unregister(struct dma_device
*dma_dev
)
79 debugfs_remove_recursive(dma_dev
->dbg_dev_root
);
80 dma_dev
->dbg_dev_root
= NULL
;
83 static void dmaengine_dbg_summary_show(struct seq_file
*s
,
84 struct dma_device
*dma_dev
)
86 struct dma_chan
*chan
;
88 list_for_each_entry(chan
, &dma_dev
->channels
, device_node
) {
89 if (chan
->client_count
) {
90 seq_printf(s
, " %-13s| %s", dma_chan_name(chan
),
91 chan
->dbg_client_name
?: "in-use");
94 seq_printf(s
, " (via router: %s)\n",
95 dev_name(chan
->router
->dev
));
102 static int dmaengine_summary_show(struct seq_file
*s
, void *data
)
104 struct dma_device
*dma_dev
= NULL
;
106 mutex_lock(&dma_list_mutex
);
107 list_for_each_entry(dma_dev
, &dma_device_list
, global_node
) {
108 seq_printf(s
, "dma%d (%s): number of channels: %u\n",
109 dma_dev
->dev_id
, dev_name(dma_dev
->dev
),
112 if (dma_dev
->dbg_summary_show
)
113 dma_dev
->dbg_summary_show(s
, dma_dev
);
115 dmaengine_dbg_summary_show(s
, dma_dev
);
117 if (!list_is_last(&dma_dev
->global_node
, &dma_device_list
))
120 mutex_unlock(&dma_list_mutex
);
124 DEFINE_SHOW_ATTRIBUTE(dmaengine_summary
);
126 static void __init
dmaengine_debugfs_init(void)
128 rootdir
= debugfs_create_dir("dmaengine", NULL
);
130 /* /sys/kernel/debug/dmaengine/summary */
131 debugfs_create_file("summary", 0444, rootdir
, NULL
,
132 &dmaengine_summary_fops
);
135 static inline void dmaengine_debugfs_init(void) { }
136 static inline int dmaengine_debug_register(struct dma_device
*dma_dev
)
141 static inline void dmaengine_debug_unregister(struct dma_device
*dma_dev
) { }
142 #endif /* DEBUG_FS */
144 /* --- sysfs implementation --- */
146 #define DMA_SLAVE_NAME "slave"
149 * dev_to_dma_chan - convert a device pointer to its sysfs container object
152 * Must be called under dma_list_mutex.
154 static struct dma_chan
*dev_to_dma_chan(struct device
*dev
)
156 struct dma_chan_dev
*chan_dev
;
158 chan_dev
= container_of(dev
, typeof(*chan_dev
), device
);
159 return chan_dev
->chan
;
162 static ssize_t
memcpy_count_show(struct device
*dev
,
163 struct device_attribute
*attr
, char *buf
)
165 struct dma_chan
*chan
;
166 unsigned long count
= 0;
170 mutex_lock(&dma_list_mutex
);
171 chan
= dev_to_dma_chan(dev
);
173 for_each_possible_cpu(i
)
174 count
+= per_cpu_ptr(chan
->local
, i
)->memcpy_count
;
175 err
= sprintf(buf
, "%lu\n", count
);
178 mutex_unlock(&dma_list_mutex
);
182 static DEVICE_ATTR_RO(memcpy_count
);
184 static ssize_t
bytes_transferred_show(struct device
*dev
,
185 struct device_attribute
*attr
, char *buf
)
187 struct dma_chan
*chan
;
188 unsigned long count
= 0;
192 mutex_lock(&dma_list_mutex
);
193 chan
= dev_to_dma_chan(dev
);
195 for_each_possible_cpu(i
)
196 count
+= per_cpu_ptr(chan
->local
, i
)->bytes_transferred
;
197 err
= sprintf(buf
, "%lu\n", count
);
200 mutex_unlock(&dma_list_mutex
);
204 static DEVICE_ATTR_RO(bytes_transferred
);
206 static ssize_t
in_use_show(struct device
*dev
, struct device_attribute
*attr
,
209 struct dma_chan
*chan
;
212 mutex_lock(&dma_list_mutex
);
213 chan
= dev_to_dma_chan(dev
);
215 err
= sprintf(buf
, "%d\n", chan
->client_count
);
218 mutex_unlock(&dma_list_mutex
);
222 static DEVICE_ATTR_RO(in_use
);
224 static struct attribute
*dma_dev_attrs
[] = {
225 &dev_attr_memcpy_count
.attr
,
226 &dev_attr_bytes_transferred
.attr
,
227 &dev_attr_in_use
.attr
,
230 ATTRIBUTE_GROUPS(dma_dev
);
232 static void chan_dev_release(struct device
*dev
)
234 struct dma_chan_dev
*chan_dev
;
236 chan_dev
= container_of(dev
, typeof(*chan_dev
), device
);
240 static struct class dma_devclass
= {
242 .dev_groups
= dma_dev_groups
,
243 .dev_release
= chan_dev_release
,
246 /* --- client and device registration --- */
248 /* enable iteration over all operation types */
249 static dma_cap_mask_t dma_cap_mask_all
;
252 * struct dma_chan_tbl_ent - tracks channel allocations per core/operation
253 * @chan: associated channel for this entry
255 struct dma_chan_tbl_ent
{
256 struct dma_chan
*chan
;
259 /* percpu lookup table for memory-to-memory offload providers */
260 static struct dma_chan_tbl_ent __percpu
*channel_table
[DMA_TX_TYPE_END
];
262 static int __init
dma_channel_table_init(void)
264 enum dma_transaction_type cap
;
267 bitmap_fill(dma_cap_mask_all
.bits
, DMA_TX_TYPE_END
);
269 /* 'interrupt', 'private', and 'slave' are channel capabilities,
270 * but are not associated with an operation so they do not need
271 * an entry in the channel_table
273 clear_bit(DMA_INTERRUPT
, dma_cap_mask_all
.bits
);
274 clear_bit(DMA_PRIVATE
, dma_cap_mask_all
.bits
);
275 clear_bit(DMA_SLAVE
, dma_cap_mask_all
.bits
);
277 for_each_dma_cap_mask(cap
, dma_cap_mask_all
) {
278 channel_table
[cap
] = alloc_percpu(struct dma_chan_tbl_ent
);
279 if (!channel_table
[cap
]) {
286 pr_err("dmaengine dma_channel_table_init failure: %d\n", err
);
287 for_each_dma_cap_mask(cap
, dma_cap_mask_all
)
288 free_percpu(channel_table
[cap
]);
293 arch_initcall(dma_channel_table_init
);
296 * dma_chan_is_local - checks if the channel is in the same NUMA-node as the CPU
297 * @chan: DMA channel to test
298 * @cpu: CPU index which the channel should be close to
300 * Returns true if the channel is in the same NUMA-node as the CPU.
302 static bool dma_chan_is_local(struct dma_chan
*chan
, int cpu
)
304 int node
= dev_to_node(chan
->device
->dev
);
305 return node
== NUMA_NO_NODE
||
306 cpumask_test_cpu(cpu
, cpumask_of_node(node
));
310 * min_chan - finds the channel with min count and in the same NUMA-node as the CPU
311 * @cap: capability to match
312 * @cpu: CPU index which the channel should be close to
314 * If some channels are close to the given CPU, the one with the lowest
315 * reference count is returned. Otherwise, CPU is ignored and only the
316 * reference count is taken into account.
318 * Must be called under dma_list_mutex.
320 static struct dma_chan
*min_chan(enum dma_transaction_type cap
, int cpu
)
322 struct dma_device
*device
;
323 struct dma_chan
*chan
;
324 struct dma_chan
*min
= NULL
;
325 struct dma_chan
*localmin
= NULL
;
327 list_for_each_entry(device
, &dma_device_list
, global_node
) {
328 if (!dma_has_cap(cap
, device
->cap_mask
) ||
329 dma_has_cap(DMA_PRIVATE
, device
->cap_mask
))
331 list_for_each_entry(chan
, &device
->channels
, device_node
) {
332 if (!chan
->client_count
)
334 if (!min
|| chan
->table_count
< min
->table_count
)
337 if (dma_chan_is_local(chan
, cpu
))
339 chan
->table_count
< localmin
->table_count
)
344 chan
= localmin
? localmin
: min
;
353 * dma_channel_rebalance - redistribute the available channels
355 * Optimize for CPU isolation (each CPU gets a dedicated channel for an
356 * operation type) in the SMP case, and operation isolation (avoid
357 * multi-tasking channels) in the non-SMP case.
359 * Must be called under dma_list_mutex.
361 static void dma_channel_rebalance(void)
363 struct dma_chan
*chan
;
364 struct dma_device
*device
;
368 /* undo the last distribution */
369 for_each_dma_cap_mask(cap
, dma_cap_mask_all
)
370 for_each_possible_cpu(cpu
)
371 per_cpu_ptr(channel_table
[cap
], cpu
)->chan
= NULL
;
373 list_for_each_entry(device
, &dma_device_list
, global_node
) {
374 if (dma_has_cap(DMA_PRIVATE
, device
->cap_mask
))
376 list_for_each_entry(chan
, &device
->channels
, device_node
)
377 chan
->table_count
= 0;
380 /* don't populate the channel_table if no clients are available */
381 if (!dmaengine_ref_count
)
384 /* redistribute available channels */
385 for_each_dma_cap_mask(cap
, dma_cap_mask_all
)
386 for_each_online_cpu(cpu
) {
387 chan
= min_chan(cap
, cpu
);
388 per_cpu_ptr(channel_table
[cap
], cpu
)->chan
= chan
;
392 static int dma_device_satisfies_mask(struct dma_device
*device
,
393 const dma_cap_mask_t
*want
)
397 bitmap_and(has
.bits
, want
->bits
, device
->cap_mask
.bits
,
399 return bitmap_equal(want
->bits
, has
.bits
, DMA_TX_TYPE_END
);
402 static struct module
*dma_chan_to_owner(struct dma_chan
*chan
)
404 return chan
->device
->owner
;
408 * balance_ref_count - catch up the channel reference count
409 * @chan: channel to balance ->client_count versus dmaengine_ref_count
411 * Must be called under dma_list_mutex.
413 static void balance_ref_count(struct dma_chan
*chan
)
415 struct module
*owner
= dma_chan_to_owner(chan
);
417 while (chan
->client_count
< dmaengine_ref_count
) {
419 chan
->client_count
++;
423 static void dma_device_release(struct kref
*ref
)
425 struct dma_device
*device
= container_of(ref
, struct dma_device
, ref
);
427 list_del_rcu(&device
->global_node
);
428 dma_channel_rebalance();
430 if (device
->device_release
)
431 device
->device_release(device
);
434 static void dma_device_put(struct dma_device
*device
)
436 lockdep_assert_held(&dma_list_mutex
);
437 kref_put(&device
->ref
, dma_device_release
);
441 * dma_chan_get - try to grab a DMA channel's parent driver module
442 * @chan: channel to grab
444 * Must be called under dma_list_mutex.
446 static int dma_chan_get(struct dma_chan
*chan
)
448 struct module
*owner
= dma_chan_to_owner(chan
);
451 /* The channel is already in use, update client count */
452 if (chan
->client_count
) {
457 if (!try_module_get(owner
))
460 ret
= kref_get_unless_zero(&chan
->device
->ref
);
466 /* allocate upon first client reference */
467 if (chan
->device
->device_alloc_chan_resources
) {
468 ret
= chan
->device
->device_alloc_chan_resources(chan
);
473 if (!dma_has_cap(DMA_PRIVATE
, chan
->device
->cap_mask
))
474 balance_ref_count(chan
);
477 chan
->client_count
++;
481 dma_device_put(chan
->device
);
488 * dma_chan_put - drop a reference to a DMA channel's parent driver module
489 * @chan: channel to release
491 * Must be called under dma_list_mutex.
493 static void dma_chan_put(struct dma_chan
*chan
)
495 /* This channel is not in use, bail out */
496 if (!chan
->client_count
)
499 chan
->client_count
--;
501 /* This channel is not in use anymore, free it */
502 if (!chan
->client_count
&& chan
->device
->device_free_chan_resources
) {
503 /* Make sure all operations have completed */
504 dmaengine_synchronize(chan
);
505 chan
->device
->device_free_chan_resources(chan
);
508 /* If the channel is used via a DMA request router, free the mapping */
509 if (chan
->router
&& chan
->router
->route_free
) {
510 chan
->router
->route_free(chan
->router
->dev
, chan
->route_data
);
512 chan
->route_data
= NULL
;
515 dma_device_put(chan
->device
);
516 module_put(dma_chan_to_owner(chan
));
519 enum dma_status
dma_sync_wait(struct dma_chan
*chan
, dma_cookie_t cookie
)
521 enum dma_status status
;
522 unsigned long dma_sync_wait_timeout
= jiffies
+ msecs_to_jiffies(5000);
524 dma_async_issue_pending(chan
);
526 status
= dma_async_is_tx_complete(chan
, cookie
, NULL
, NULL
);
527 if (time_after_eq(jiffies
, dma_sync_wait_timeout
)) {
528 dev_err(chan
->device
->dev
, "%s: timeout!\n", __func__
);
531 if (status
!= DMA_IN_PROGRESS
)
538 EXPORT_SYMBOL(dma_sync_wait
);
541 * dma_find_channel - find a channel to carry out the operation
542 * @tx_type: transaction type
544 struct dma_chan
*dma_find_channel(enum dma_transaction_type tx_type
)
546 return this_cpu_read(channel_table
[tx_type
]->chan
);
548 EXPORT_SYMBOL(dma_find_channel
);
551 * dma_issue_pending_all - flush all pending operations across all channels
553 void dma_issue_pending_all(void)
555 struct dma_device
*device
;
556 struct dma_chan
*chan
;
559 list_for_each_entry_rcu(device
, &dma_device_list
, global_node
) {
560 if (dma_has_cap(DMA_PRIVATE
, device
->cap_mask
))
562 list_for_each_entry(chan
, &device
->channels
, device_node
)
563 if (chan
->client_count
)
564 device
->device_issue_pending(chan
);
568 EXPORT_SYMBOL(dma_issue_pending_all
);
570 int dma_get_slave_caps(struct dma_chan
*chan
, struct dma_slave_caps
*caps
)
572 struct dma_device
*device
;
577 device
= chan
->device
;
579 /* check if the channel supports slave transactions */
580 if (!(test_bit(DMA_SLAVE
, device
->cap_mask
.bits
) ||
581 test_bit(DMA_CYCLIC
, device
->cap_mask
.bits
)))
585 * Check whether it reports it uses the generic slave
586 * capabilities, if not, that means it doesn't support any
587 * kind of slave capabilities reporting.
589 if (!device
->directions
)
592 caps
->src_addr_widths
= device
->src_addr_widths
;
593 caps
->dst_addr_widths
= device
->dst_addr_widths
;
594 caps
->directions
= device
->directions
;
595 caps
->min_burst
= device
->min_burst
;
596 caps
->max_burst
= device
->max_burst
;
597 caps
->max_sg_burst
= device
->max_sg_burst
;
598 caps
->residue_granularity
= device
->residue_granularity
;
599 caps
->descriptor_reuse
= device
->descriptor_reuse
;
600 caps
->cmd_pause
= !!device
->device_pause
;
601 caps
->cmd_resume
= !!device
->device_resume
;
602 caps
->cmd_terminate
= !!device
->device_terminate_all
;
605 * DMA engine device might be configured with non-uniformly
606 * distributed slave capabilities per device channels. In this
607 * case the corresponding driver may provide the device_caps
608 * callback to override the generic capabilities with
609 * channel-specific ones.
611 if (device
->device_caps
)
612 device
->device_caps(chan
, caps
);
616 EXPORT_SYMBOL_GPL(dma_get_slave_caps
);
618 static struct dma_chan
*private_candidate(const dma_cap_mask_t
*mask
,
619 struct dma_device
*dev
,
620 dma_filter_fn fn
, void *fn_param
)
622 struct dma_chan
*chan
;
624 if (mask
&& !dma_device_satisfies_mask(dev
, mask
)) {
625 dev_dbg(dev
->dev
, "%s: wrong capabilities\n", __func__
);
628 /* devices with multiple channels need special handling as we need to
629 * ensure that all channels are either private or public.
631 if (dev
->chancnt
> 1 && !dma_has_cap(DMA_PRIVATE
, dev
->cap_mask
))
632 list_for_each_entry(chan
, &dev
->channels
, device_node
) {
633 /* some channels are already publicly allocated */
634 if (chan
->client_count
)
638 list_for_each_entry(chan
, &dev
->channels
, device_node
) {
639 if (chan
->client_count
) {
640 dev_dbg(dev
->dev
, "%s: %s busy\n",
641 __func__
, dma_chan_name(chan
));
644 if (fn
&& !fn(chan
, fn_param
)) {
645 dev_dbg(dev
->dev
, "%s: %s filter said false\n",
646 __func__
, dma_chan_name(chan
));
655 static struct dma_chan
*find_candidate(struct dma_device
*device
,
656 const dma_cap_mask_t
*mask
,
657 dma_filter_fn fn
, void *fn_param
)
659 struct dma_chan
*chan
= private_candidate(mask
, device
, fn
, fn_param
);
663 /* Found a suitable channel, try to grab, prep, and return it.
664 * We first set DMA_PRIVATE to disable balance_ref_count as this
665 * channel will not be published in the general-purpose
668 dma_cap_set(DMA_PRIVATE
, device
->cap_mask
);
669 device
->privatecnt
++;
670 err
= dma_chan_get(chan
);
673 if (err
== -ENODEV
) {
674 dev_dbg(device
->dev
, "%s: %s module removed\n",
675 __func__
, dma_chan_name(chan
));
676 list_del_rcu(&device
->global_node
);
679 "%s: failed to get %s: (%d)\n",
680 __func__
, dma_chan_name(chan
), err
);
682 if (--device
->privatecnt
== 0)
683 dma_cap_clear(DMA_PRIVATE
, device
->cap_mask
);
689 return chan
? chan
: ERR_PTR(-EPROBE_DEFER
);
693 * dma_get_slave_channel - try to get specific channel exclusively
694 * @chan: target channel
696 struct dma_chan
*dma_get_slave_channel(struct dma_chan
*chan
)
700 /* lock against __dma_request_channel */
701 mutex_lock(&dma_list_mutex
);
703 if (chan
->client_count
== 0) {
704 struct dma_device
*device
= chan
->device
;
706 dma_cap_set(DMA_PRIVATE
, device
->cap_mask
);
707 device
->privatecnt
++;
708 err
= dma_chan_get(chan
);
710 dev_dbg(chan
->device
->dev
,
711 "%s: failed to get %s: (%d)\n",
712 __func__
, dma_chan_name(chan
), err
);
714 if (--device
->privatecnt
== 0)
715 dma_cap_clear(DMA_PRIVATE
, device
->cap_mask
);
720 mutex_unlock(&dma_list_mutex
);
725 EXPORT_SYMBOL_GPL(dma_get_slave_channel
);
727 struct dma_chan
*dma_get_any_slave_channel(struct dma_device
*device
)
730 struct dma_chan
*chan
;
733 dma_cap_set(DMA_SLAVE
, mask
);
735 /* lock against __dma_request_channel */
736 mutex_lock(&dma_list_mutex
);
738 chan
= find_candidate(device
, &mask
, NULL
, NULL
);
740 mutex_unlock(&dma_list_mutex
);
742 return IS_ERR(chan
) ? NULL
: chan
;
744 EXPORT_SYMBOL_GPL(dma_get_any_slave_channel
);
747 * __dma_request_channel - try to allocate an exclusive channel
748 * @mask: capabilities that the channel must satisfy
749 * @fn: optional callback to disposition available channels
750 * @fn_param: opaque parameter to pass to dma_filter_fn()
751 * @np: device node to look for DMA channels
753 * Returns pointer to appropriate DMA channel on success or NULL.
755 struct dma_chan
*__dma_request_channel(const dma_cap_mask_t
*mask
,
756 dma_filter_fn fn
, void *fn_param
,
757 struct device_node
*np
)
759 struct dma_device
*device
, *_d
;
760 struct dma_chan
*chan
= NULL
;
763 mutex_lock(&dma_list_mutex
);
764 list_for_each_entry_safe(device
, _d
, &dma_device_list
, global_node
) {
765 /* Finds a DMA controller with matching device node */
766 if (np
&& device
->dev
->of_node
&& np
!= device
->dev
->of_node
)
769 chan
= find_candidate(device
, mask
, fn
, fn_param
);
775 mutex_unlock(&dma_list_mutex
);
777 pr_debug("%s: %s (%s)\n",
779 chan
? "success" : "fail",
780 chan
? dma_chan_name(chan
) : NULL
);
784 EXPORT_SYMBOL_GPL(__dma_request_channel
);
786 static const struct dma_slave_map
*dma_filter_match(struct dma_device
*device
,
792 if (!device
->filter
.mapcnt
)
795 for (i
= 0; i
< device
->filter
.mapcnt
; i
++) {
796 const struct dma_slave_map
*map
= &device
->filter
.map
[i
];
798 if (!strcmp(map
->devname
, dev_name(dev
)) &&
799 !strcmp(map
->slave
, name
))
807 * dma_request_chan - try to allocate an exclusive slave channel
808 * @dev: pointer to client device structure
809 * @name: slave channel name
811 * Returns pointer to appropriate DMA channel on success or an error pointer.
813 struct dma_chan
*dma_request_chan(struct device
*dev
, const char *name
)
815 struct dma_device
*d
, *_d
;
816 struct dma_chan
*chan
= NULL
;
818 /* If device-tree is present get slave info from here */
820 chan
= of_dma_request_slave_channel(dev
->of_node
, name
);
822 /* If device was enumerated by ACPI get slave info from here */
823 if (has_acpi_companion(dev
) && !chan
)
824 chan
= acpi_dma_request_slave_chan_by_name(dev
, name
);
826 if (PTR_ERR(chan
) == -EPROBE_DEFER
)
829 if (!IS_ERR_OR_NULL(chan
))
832 /* Try to find the channel via the DMA filter map(s) */
833 mutex_lock(&dma_list_mutex
);
834 list_for_each_entry_safe(d
, _d
, &dma_device_list
, global_node
) {
836 const struct dma_slave_map
*map
= dma_filter_match(d
, name
, dev
);
842 dma_cap_set(DMA_SLAVE
, mask
);
844 chan
= find_candidate(d
, &mask
, d
->filter
.fn
, map
->param
);
848 mutex_unlock(&dma_list_mutex
);
850 if (IS_ERR_OR_NULL(chan
))
851 return chan
? chan
: ERR_PTR(-EPROBE_DEFER
);
854 #ifdef CONFIG_DEBUG_FS
855 chan
->dbg_client_name
= kasprintf(GFP_KERNEL
, "%s:%s", dev_name(dev
),
859 chan
->name
= kasprintf(GFP_KERNEL
, "dma:%s", name
);
864 if (sysfs_create_link(&chan
->dev
->device
.kobj
, &dev
->kobj
,
866 dev_warn(dev
, "Cannot create DMA %s symlink\n", DMA_SLAVE_NAME
);
867 if (sysfs_create_link(&dev
->kobj
, &chan
->dev
->device
.kobj
, chan
->name
))
868 dev_warn(dev
, "Cannot create DMA %s symlink\n", chan
->name
);
872 EXPORT_SYMBOL_GPL(dma_request_chan
);
875 * dma_request_slave_channel - try to allocate an exclusive slave channel
876 * @dev: pointer to client device structure
877 * @name: slave channel name
879 * Returns pointer to appropriate DMA channel on success or NULL.
881 struct dma_chan
*dma_request_slave_channel(struct device
*dev
,
884 struct dma_chan
*ch
= dma_request_chan(dev
, name
);
890 EXPORT_SYMBOL_GPL(dma_request_slave_channel
);
893 * dma_request_chan_by_mask - allocate a channel satisfying certain capabilities
894 * @mask: capabilities that the channel must satisfy
896 * Returns pointer to appropriate DMA channel on success or an error pointer.
898 struct dma_chan
*dma_request_chan_by_mask(const dma_cap_mask_t
*mask
)
900 struct dma_chan
*chan
;
903 return ERR_PTR(-ENODEV
);
905 chan
= __dma_request_channel(mask
, NULL
, NULL
, NULL
);
907 mutex_lock(&dma_list_mutex
);
908 if (list_empty(&dma_device_list
))
909 chan
= ERR_PTR(-EPROBE_DEFER
);
911 chan
= ERR_PTR(-ENODEV
);
912 mutex_unlock(&dma_list_mutex
);
917 EXPORT_SYMBOL_GPL(dma_request_chan_by_mask
);
919 void dma_release_channel(struct dma_chan
*chan
)
921 mutex_lock(&dma_list_mutex
);
922 WARN_ONCE(chan
->client_count
!= 1,
923 "chan reference count %d != 1\n", chan
->client_count
);
925 /* drop PRIVATE cap enabled by __dma_request_channel() */
926 if (--chan
->device
->privatecnt
== 0)
927 dma_cap_clear(DMA_PRIVATE
, chan
->device
->cap_mask
);
930 sysfs_remove_link(&chan
->dev
->device
.kobj
, DMA_SLAVE_NAME
);
931 sysfs_remove_link(&chan
->slave
->kobj
, chan
->name
);
937 #ifdef CONFIG_DEBUG_FS
938 kfree(chan
->dbg_client_name
);
939 chan
->dbg_client_name
= NULL
;
941 mutex_unlock(&dma_list_mutex
);
943 EXPORT_SYMBOL_GPL(dma_release_channel
);
946 * dmaengine_get - register interest in dma_channels
948 void dmaengine_get(void)
950 struct dma_device
*device
, *_d
;
951 struct dma_chan
*chan
;
954 mutex_lock(&dma_list_mutex
);
955 dmaengine_ref_count
++;
957 /* try to grab channels */
958 list_for_each_entry_safe(device
, _d
, &dma_device_list
, global_node
) {
959 if (dma_has_cap(DMA_PRIVATE
, device
->cap_mask
))
961 list_for_each_entry(chan
, &device
->channels
, device_node
) {
962 err
= dma_chan_get(chan
);
963 if (err
== -ENODEV
) {
964 /* module removed before we could use it */
965 list_del_rcu(&device
->global_node
);
968 dev_dbg(chan
->device
->dev
,
969 "%s: failed to get %s: (%d)\n",
970 __func__
, dma_chan_name(chan
), err
);
974 /* if this is the first reference and there were channels
975 * waiting we need to rebalance to get those channels
976 * incorporated into the channel table
978 if (dmaengine_ref_count
== 1)
979 dma_channel_rebalance();
980 mutex_unlock(&dma_list_mutex
);
982 EXPORT_SYMBOL(dmaengine_get
);
985 * dmaengine_put - let DMA drivers be removed when ref_count == 0
987 void dmaengine_put(void)
989 struct dma_device
*device
, *_d
;
990 struct dma_chan
*chan
;
992 mutex_lock(&dma_list_mutex
);
993 dmaengine_ref_count
--;
994 BUG_ON(dmaengine_ref_count
< 0);
995 /* drop channel references */
996 list_for_each_entry_safe(device
, _d
, &dma_device_list
, global_node
) {
997 if (dma_has_cap(DMA_PRIVATE
, device
->cap_mask
))
999 list_for_each_entry(chan
, &device
->channels
, device_node
)
1002 mutex_unlock(&dma_list_mutex
);
1004 EXPORT_SYMBOL(dmaengine_put
);
1006 static bool device_has_all_tx_types(struct dma_device
*device
)
1008 /* A device that satisfies this test has channels that will never cause
1009 * an async_tx channel switch event as all possible operation types can
1012 #ifdef CONFIG_ASYNC_TX_DMA
1013 if (!dma_has_cap(DMA_INTERRUPT
, device
->cap_mask
))
1017 #if IS_ENABLED(CONFIG_ASYNC_MEMCPY)
1018 if (!dma_has_cap(DMA_MEMCPY
, device
->cap_mask
))
1022 #if IS_ENABLED(CONFIG_ASYNC_XOR)
1023 if (!dma_has_cap(DMA_XOR
, device
->cap_mask
))
1026 #ifndef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
1027 if (!dma_has_cap(DMA_XOR_VAL
, device
->cap_mask
))
1032 #if IS_ENABLED(CONFIG_ASYNC_PQ)
1033 if (!dma_has_cap(DMA_PQ
, device
->cap_mask
))
1036 #ifndef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
1037 if (!dma_has_cap(DMA_PQ_VAL
, device
->cap_mask
))
1045 static int get_dma_id(struct dma_device
*device
)
1047 int rc
= ida_alloc(&dma_ida
, GFP_KERNEL
);
1051 device
->dev_id
= rc
;
1055 static int __dma_async_device_channel_register(struct dma_device
*device
,
1056 struct dma_chan
*chan
)
1060 chan
->local
= alloc_percpu(typeof(*chan
->local
));
1063 chan
->dev
= kzalloc(sizeof(*chan
->dev
), GFP_KERNEL
);
1065 free_percpu(chan
->local
);
1071 * When the chan_id is a negative value, we are dynamically adding
1072 * the channel. Otherwise we are static enumerating.
1074 mutex_lock(&device
->chan_mutex
);
1075 chan
->chan_id
= ida_alloc(&device
->chan_ida
, GFP_KERNEL
);
1076 mutex_unlock(&device
->chan_mutex
);
1077 if (chan
->chan_id
< 0) {
1078 pr_err("%s: unable to alloc ida for chan: %d\n",
1079 __func__
, chan
->chan_id
);
1083 chan
->dev
->device
.class = &dma_devclass
;
1084 chan
->dev
->device
.parent
= device
->dev
;
1085 chan
->dev
->chan
= chan
;
1086 chan
->dev
->dev_id
= device
->dev_id
;
1087 dev_set_name(&chan
->dev
->device
, "dma%dchan%d",
1088 device
->dev_id
, chan
->chan_id
);
1089 rc
= device_register(&chan
->dev
->device
);
1092 chan
->client_count
= 0;
1098 mutex_lock(&device
->chan_mutex
);
1099 ida_free(&device
->chan_ida
, chan
->chan_id
);
1100 mutex_unlock(&device
->chan_mutex
);
1102 free_percpu(chan
->local
);
1107 int dma_async_device_channel_register(struct dma_device
*device
,
1108 struct dma_chan
*chan
)
1112 rc
= __dma_async_device_channel_register(device
, chan
);
1116 dma_channel_rebalance();
1119 EXPORT_SYMBOL_GPL(dma_async_device_channel_register
);
1121 static void __dma_async_device_channel_unregister(struct dma_device
*device
,
1122 struct dma_chan
*chan
)
1124 WARN_ONCE(!device
->device_release
&& chan
->client_count
,
1125 "%s called while %d clients hold a reference\n",
1126 __func__
, chan
->client_count
);
1127 mutex_lock(&dma_list_mutex
);
1128 list_del(&chan
->device_node
);
1130 chan
->dev
->chan
= NULL
;
1131 mutex_unlock(&dma_list_mutex
);
1132 mutex_lock(&device
->chan_mutex
);
1133 ida_free(&device
->chan_ida
, chan
->chan_id
);
1134 mutex_unlock(&device
->chan_mutex
);
1135 device_unregister(&chan
->dev
->device
);
1136 free_percpu(chan
->local
);
1139 void dma_async_device_channel_unregister(struct dma_device
*device
,
1140 struct dma_chan
*chan
)
1142 __dma_async_device_channel_unregister(device
, chan
);
1143 dma_channel_rebalance();
1145 EXPORT_SYMBOL_GPL(dma_async_device_channel_unregister
);
1148 * dma_async_device_register - registers DMA devices found
1149 * @device: pointer to &struct dma_device
1151 * After calling this routine the structure should not be freed except in the
1152 * device_release() callback which will be called after
1153 * dma_async_device_unregister() is called and no further references are taken.
1155 int dma_async_device_register(struct dma_device
*device
)
1158 struct dma_chan
* chan
;
1163 /* validate device routines */
1165 pr_err("DMAdevice must have dev\n");
1169 device
->owner
= device
->dev
->driver
->owner
;
1171 if (dma_has_cap(DMA_MEMCPY
, device
->cap_mask
) && !device
->device_prep_dma_memcpy
) {
1172 dev_err(device
->dev
,
1173 "Device claims capability %s, but op is not defined\n",
1178 if (dma_has_cap(DMA_XOR
, device
->cap_mask
) && !device
->device_prep_dma_xor
) {
1179 dev_err(device
->dev
,
1180 "Device claims capability %s, but op is not defined\n",
1185 if (dma_has_cap(DMA_XOR_VAL
, device
->cap_mask
) && !device
->device_prep_dma_xor_val
) {
1186 dev_err(device
->dev
,
1187 "Device claims capability %s, but op is not defined\n",
1192 if (dma_has_cap(DMA_PQ
, device
->cap_mask
) && !device
->device_prep_dma_pq
) {
1193 dev_err(device
->dev
,
1194 "Device claims capability %s, but op is not defined\n",
1199 if (dma_has_cap(DMA_PQ_VAL
, device
->cap_mask
) && !device
->device_prep_dma_pq_val
) {
1200 dev_err(device
->dev
,
1201 "Device claims capability %s, but op is not defined\n",
1206 if (dma_has_cap(DMA_MEMSET
, device
->cap_mask
) && !device
->device_prep_dma_memset
) {
1207 dev_err(device
->dev
,
1208 "Device claims capability %s, but op is not defined\n",
1213 if (dma_has_cap(DMA_INTERRUPT
, device
->cap_mask
) && !device
->device_prep_dma_interrupt
) {
1214 dev_err(device
->dev
,
1215 "Device claims capability %s, but op is not defined\n",
1220 if (dma_has_cap(DMA_CYCLIC
, device
->cap_mask
) && !device
->device_prep_dma_cyclic
) {
1221 dev_err(device
->dev
,
1222 "Device claims capability %s, but op is not defined\n",
1227 if (dma_has_cap(DMA_INTERLEAVE
, device
->cap_mask
) && !device
->device_prep_interleaved_dma
) {
1228 dev_err(device
->dev
,
1229 "Device claims capability %s, but op is not defined\n",
1235 if (!device
->device_tx_status
) {
1236 dev_err(device
->dev
, "Device tx_status is not defined\n");
1241 if (!device
->device_issue_pending
) {
1242 dev_err(device
->dev
, "Device issue_pending is not defined\n");
1246 if (!device
->device_release
)
1247 dev_dbg(device
->dev
,
1248 "WARN: Device release is not defined so it is not safe to unbind this driver while in use\n");
1250 kref_init(&device
->ref
);
1252 /* note: this only matters in the
1253 * CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH=n case
1255 if (device_has_all_tx_types(device
))
1256 dma_cap_set(DMA_ASYNC_TX
, device
->cap_mask
);
1258 rc
= get_dma_id(device
);
1262 mutex_init(&device
->chan_mutex
);
1263 ida_init(&device
->chan_ida
);
1265 /* represent channels in sysfs. Probably want devs too */
1266 list_for_each_entry(chan
, &device
->channels
, device_node
) {
1267 rc
= __dma_async_device_channel_register(device
, chan
);
1272 mutex_lock(&dma_list_mutex
);
1273 /* take references on public channels */
1274 if (dmaengine_ref_count
&& !dma_has_cap(DMA_PRIVATE
, device
->cap_mask
))
1275 list_for_each_entry(chan
, &device
->channels
, device_node
) {
1276 /* if clients are already waiting for channels we need
1277 * to take references on their behalf
1279 if (dma_chan_get(chan
) == -ENODEV
) {
1280 /* note we can only get here for the first
1281 * channel as the remaining channels are
1282 * guaranteed to get a reference
1285 mutex_unlock(&dma_list_mutex
);
1289 list_add_tail_rcu(&device
->global_node
, &dma_device_list
);
1290 if (dma_has_cap(DMA_PRIVATE
, device
->cap_mask
))
1291 device
->privatecnt
++; /* Always private */
1292 dma_channel_rebalance();
1293 mutex_unlock(&dma_list_mutex
);
1295 dmaengine_debug_register(device
);
1300 /* if we never registered a channel just release the idr */
1301 if (!device
->chancnt
) {
1302 ida_free(&dma_ida
, device
->dev_id
);
1306 list_for_each_entry(chan
, &device
->channels
, device_node
) {
1307 if (chan
->local
== NULL
)
1309 mutex_lock(&dma_list_mutex
);
1310 chan
->dev
->chan
= NULL
;
1311 mutex_unlock(&dma_list_mutex
);
1312 device_unregister(&chan
->dev
->device
);
1313 free_percpu(chan
->local
);
1317 EXPORT_SYMBOL(dma_async_device_register
);
1320 * dma_async_device_unregister - unregister a DMA device
1321 * @device: pointer to &struct dma_device
1323 * This routine is called by dma driver exit routines, dmaengine holds module
1324 * references to prevent it being called while channels are in use.
1326 void dma_async_device_unregister(struct dma_device
*device
)
1328 struct dma_chan
*chan
, *n
;
1330 dmaengine_debug_unregister(device
);
1332 list_for_each_entry_safe(chan
, n
, &device
->channels
, device_node
)
1333 __dma_async_device_channel_unregister(device
, chan
);
1335 mutex_lock(&dma_list_mutex
);
1337 * setting DMA_PRIVATE ensures the device being torn down will not
1338 * be used in the channel_table
1340 dma_cap_set(DMA_PRIVATE
, device
->cap_mask
);
1341 dma_channel_rebalance();
1342 ida_free(&dma_ida
, device
->dev_id
);
1343 dma_device_put(device
);
1344 mutex_unlock(&dma_list_mutex
);
1346 EXPORT_SYMBOL(dma_async_device_unregister
);
1348 static void dmam_device_release(struct device
*dev
, void *res
)
1350 struct dma_device
*device
;
1352 device
= *(struct dma_device
**)res
;
1353 dma_async_device_unregister(device
);
1357 * dmaenginem_async_device_register - registers DMA devices found
1358 * @device: pointer to &struct dma_device
1360 * The operation is managed and will be undone on driver detach.
1362 int dmaenginem_async_device_register(struct dma_device
*device
)
1367 p
= devres_alloc(dmam_device_release
, sizeof(void *), GFP_KERNEL
);
1371 ret
= dma_async_device_register(device
);
1373 *(struct dma_device
**)p
= device
;
1374 devres_add(device
->dev
, p
);
1381 EXPORT_SYMBOL(dmaenginem_async_device_register
);
1383 struct dmaengine_unmap_pool
{
1384 struct kmem_cache
*cache
;
1390 #define __UNMAP_POOL(x) { .size = x, .name = "dmaengine-unmap-" __stringify(x) }
1391 static struct dmaengine_unmap_pool unmap_pool
[] = {
1393 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1400 static struct dmaengine_unmap_pool
*__get_unmap_pool(int nr
)
1402 int order
= get_count_order(nr
);
1406 return &unmap_pool
[0];
1407 #if IS_ENABLED(CONFIG_DMA_ENGINE_RAID)
1409 return &unmap_pool
[1];
1411 return &unmap_pool
[2];
1413 return &unmap_pool
[3];
1421 static void dmaengine_unmap(struct kref
*kref
)
1423 struct dmaengine_unmap_data
*unmap
= container_of(kref
, typeof(*unmap
), kref
);
1424 struct device
*dev
= unmap
->dev
;
1427 cnt
= unmap
->to_cnt
;
1428 for (i
= 0; i
< cnt
; i
++)
1429 dma_unmap_page(dev
, unmap
->addr
[i
], unmap
->len
,
1431 cnt
+= unmap
->from_cnt
;
1432 for (; i
< cnt
; i
++)
1433 dma_unmap_page(dev
, unmap
->addr
[i
], unmap
->len
,
1435 cnt
+= unmap
->bidi_cnt
;
1436 for (; i
< cnt
; i
++) {
1437 if (unmap
->addr
[i
] == 0)
1439 dma_unmap_page(dev
, unmap
->addr
[i
], unmap
->len
,
1442 cnt
= unmap
->map_cnt
;
1443 mempool_free(unmap
, __get_unmap_pool(cnt
)->pool
);
1446 void dmaengine_unmap_put(struct dmaengine_unmap_data
*unmap
)
1449 kref_put(&unmap
->kref
, dmaengine_unmap
);
1451 EXPORT_SYMBOL_GPL(dmaengine_unmap_put
);
1453 static void dmaengine_destroy_unmap_pool(void)
1457 for (i
= 0; i
< ARRAY_SIZE(unmap_pool
); i
++) {
1458 struct dmaengine_unmap_pool
*p
= &unmap_pool
[i
];
1460 mempool_destroy(p
->pool
);
1462 kmem_cache_destroy(p
->cache
);
1467 static int __init
dmaengine_init_unmap_pool(void)
1471 for (i
= 0; i
< ARRAY_SIZE(unmap_pool
); i
++) {
1472 struct dmaengine_unmap_pool
*p
= &unmap_pool
[i
];
1475 size
= sizeof(struct dmaengine_unmap_data
) +
1476 sizeof(dma_addr_t
) * p
->size
;
1478 p
->cache
= kmem_cache_create(p
->name
, size
, 0,
1479 SLAB_HWCACHE_ALIGN
, NULL
);
1482 p
->pool
= mempool_create_slab_pool(1, p
->cache
);
1487 if (i
== ARRAY_SIZE(unmap_pool
))
1490 dmaengine_destroy_unmap_pool();
1494 struct dmaengine_unmap_data
*
1495 dmaengine_get_unmap_data(struct device
*dev
, int nr
, gfp_t flags
)
1497 struct dmaengine_unmap_data
*unmap
;
1499 unmap
= mempool_alloc(__get_unmap_pool(nr
)->pool
, flags
);
1503 memset(unmap
, 0, sizeof(*unmap
));
1504 kref_init(&unmap
->kref
);
1506 unmap
->map_cnt
= nr
;
1510 EXPORT_SYMBOL(dmaengine_get_unmap_data
);
1512 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor
*tx
,
1513 struct dma_chan
*chan
)
1516 #ifdef CONFIG_ASYNC_TX_ENABLE_CHANNEL_SWITCH
1517 spin_lock_init(&tx
->lock
);
1520 EXPORT_SYMBOL(dma_async_tx_descriptor_init
);
1522 static inline int desc_check_and_set_metadata_mode(
1523 struct dma_async_tx_descriptor
*desc
, enum dma_desc_metadata_mode mode
)
1525 /* Make sure that the metadata mode is not mixed */
1526 if (!desc
->desc_metadata_mode
) {
1527 if (dmaengine_is_metadata_mode_supported(desc
->chan
, mode
))
1528 desc
->desc_metadata_mode
= mode
;
1531 } else if (desc
->desc_metadata_mode
!= mode
) {
1538 int dmaengine_desc_attach_metadata(struct dma_async_tx_descriptor
*desc
,
1539 void *data
, size_t len
)
1546 ret
= desc_check_and_set_metadata_mode(desc
, DESC_METADATA_CLIENT
);
1550 if (!desc
->metadata_ops
|| !desc
->metadata_ops
->attach
)
1553 return desc
->metadata_ops
->attach(desc
, data
, len
);
1555 EXPORT_SYMBOL_GPL(dmaengine_desc_attach_metadata
);
1557 void *dmaengine_desc_get_metadata_ptr(struct dma_async_tx_descriptor
*desc
,
1558 size_t *payload_len
, size_t *max_len
)
1563 return ERR_PTR(-EINVAL
);
1565 ret
= desc_check_and_set_metadata_mode(desc
, DESC_METADATA_ENGINE
);
1567 return ERR_PTR(ret
);
1569 if (!desc
->metadata_ops
|| !desc
->metadata_ops
->get_ptr
)
1570 return ERR_PTR(-ENOTSUPP
);
1572 return desc
->metadata_ops
->get_ptr(desc
, payload_len
, max_len
);
1574 EXPORT_SYMBOL_GPL(dmaengine_desc_get_metadata_ptr
);
1576 int dmaengine_desc_set_metadata_len(struct dma_async_tx_descriptor
*desc
,
1584 ret
= desc_check_and_set_metadata_mode(desc
, DESC_METADATA_ENGINE
);
1588 if (!desc
->metadata_ops
|| !desc
->metadata_ops
->set_len
)
1591 return desc
->metadata_ops
->set_len(desc
, payload_len
);
1593 EXPORT_SYMBOL_GPL(dmaengine_desc_set_metadata_len
);
1596 * dma_wait_for_async_tx - spin wait for a transaction to complete
1597 * @tx: in-flight transaction to wait on
1600 dma_wait_for_async_tx(struct dma_async_tx_descriptor
*tx
)
1602 unsigned long dma_sync_wait_timeout
= jiffies
+ msecs_to_jiffies(5000);
1605 return DMA_COMPLETE
;
1607 while (tx
->cookie
== -EBUSY
) {
1608 if (time_after_eq(jiffies
, dma_sync_wait_timeout
)) {
1609 dev_err(tx
->chan
->device
->dev
,
1610 "%s timeout waiting for descriptor submission\n",
1616 return dma_sync_wait(tx
->chan
, tx
->cookie
);
1618 EXPORT_SYMBOL_GPL(dma_wait_for_async_tx
);
1621 * dma_run_dependencies - process dependent operations on the target channel
1622 * @tx: transaction with dependencies
1624 * Helper routine for DMA drivers to process (start) dependent operations
1625 * on their target channel.
1627 void dma_run_dependencies(struct dma_async_tx_descriptor
*tx
)
1629 struct dma_async_tx_descriptor
*dep
= txd_next(tx
);
1630 struct dma_async_tx_descriptor
*dep_next
;
1631 struct dma_chan
*chan
;
1636 /* we'll submit tx->next now, so clear the link */
1640 /* keep submitting up until a channel switch is detected
1641 * in that case we will be called again as a result of
1642 * processing the interrupt from async_tx_channel_switch
1644 for (; dep
; dep
= dep_next
) {
1646 txd_clear_parent(dep
);
1647 dep_next
= txd_next(dep
);
1648 if (dep_next
&& dep_next
->chan
== chan
)
1649 txd_clear_next(dep
); /* ->next will be submitted */
1651 dep_next
= NULL
; /* submit current dep and terminate */
1654 dep
->tx_submit(dep
);
1657 chan
->device
->device_issue_pending(chan
);
1659 EXPORT_SYMBOL_GPL(dma_run_dependencies
);
1661 static int __init
dma_bus_init(void)
1663 int err
= dmaengine_init_unmap_pool();
1668 err
= class_register(&dma_devclass
);
1670 dmaengine_debugfs_init();
1674 arch_initcall(dma_bus_init
);