2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
32 #define DM_MSG_PREFIX "core"
35 * Cookies are numeric values sent with CHANGE and REMOVE
36 * uevents while resuming, removing or renaming the device.
38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
39 #define DM_COOKIE_LENGTH 24
41 static const char *_name
= DM_NAME
;
43 static unsigned int major
= 0;
44 static unsigned int _major
= 0;
46 static DEFINE_IDR(_minor_idr
);
48 static DEFINE_SPINLOCK(_minor_lock
);
50 static void do_deferred_remove(struct work_struct
*w
);
52 static DECLARE_WORK(deferred_remove_work
, do_deferred_remove
);
54 static struct workqueue_struct
*deferred_remove_workqueue
;
56 atomic_t dm_global_event_nr
= ATOMIC_INIT(0);
57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq
);
59 void dm_issue_global_event(void)
61 atomic_inc(&dm_global_event_nr
);
62 wake_up(&dm_global_eventq
);
66 * One of these is allocated (on-stack) per original bio.
73 unsigned sector_count
;
77 * One of these is allocated per clone bio.
79 #define DM_TIO_MAGIC 7282014
84 unsigned target_bio_nr
;
91 * One of these is allocated per original bio.
92 * It contains the first clone used for that original.
94 #define DM_IO_MAGIC 5191977
97 struct mapped_device
*md
;
100 struct bio
*orig_bio
;
101 unsigned long start_time
;
102 spinlock_t endio_lock
;
103 struct dm_stats_aux stats_aux
;
104 /* last member of dm_target_io is 'struct bio' */
105 struct dm_target_io tio
;
108 void *dm_per_bio_data(struct bio
*bio
, size_t data_size
)
110 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
111 if (!tio
->inside_dm_io
)
112 return (char *)bio
- offsetof(struct dm_target_io
, clone
) - data_size
;
113 return (char *)bio
- offsetof(struct dm_target_io
, clone
) - offsetof(struct dm_io
, tio
) - data_size
;
115 EXPORT_SYMBOL_GPL(dm_per_bio_data
);
117 struct bio
*dm_bio_from_per_bio_data(void *data
, size_t data_size
)
119 struct dm_io
*io
= (struct dm_io
*)((char *)data
+ data_size
);
120 if (io
->magic
== DM_IO_MAGIC
)
121 return (struct bio
*)((char *)io
+ offsetof(struct dm_io
, tio
) + offsetof(struct dm_target_io
, clone
));
122 BUG_ON(io
->magic
!= DM_TIO_MAGIC
);
123 return (struct bio
*)((char *)io
+ offsetof(struct dm_target_io
, clone
));
125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data
);
127 unsigned dm_bio_get_target_bio_nr(const struct bio
*bio
)
129 return container_of(bio
, struct dm_target_io
, clone
)->target_bio_nr
;
131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr
);
133 #define MINOR_ALLOCED ((void *)-1)
136 * Bits for the md->flags field.
138 #define DMF_BLOCK_IO_FOR_SUSPEND 0
139 #define DMF_SUSPENDED 1
141 #define DMF_FREEING 3
142 #define DMF_DELETING 4
143 #define DMF_NOFLUSH_SUSPENDING 5
144 #define DMF_DEFERRED_REMOVE 6
145 #define DMF_SUSPENDED_INTERNALLY 7
146 #define DMF_POST_SUSPENDING 8
148 #define DM_NUMA_NODE NUMA_NO_NODE
149 static int dm_numa_node
= DM_NUMA_NODE
;
152 * For mempools pre-allocation at the table loading time.
154 struct dm_md_mempools
{
156 struct bio_set io_bs
;
159 struct table_device
{
160 struct list_head list
;
162 struct dm_dev dm_dev
;
166 * Bio-based DM's mempools' reserved IOs set by the user.
168 #define RESERVED_BIO_BASED_IOS 16
169 static unsigned reserved_bio_based_ios
= RESERVED_BIO_BASED_IOS
;
171 static int __dm_get_module_param_int(int *module_param
, int min
, int max
)
173 int param
= READ_ONCE(*module_param
);
174 int modified_param
= 0;
175 bool modified
= true;
178 modified_param
= min
;
179 else if (param
> max
)
180 modified_param
= max
;
185 (void)cmpxchg(module_param
, param
, modified_param
);
186 param
= modified_param
;
192 unsigned __dm_get_module_param(unsigned *module_param
,
193 unsigned def
, unsigned max
)
195 unsigned param
= READ_ONCE(*module_param
);
196 unsigned modified_param
= 0;
199 modified_param
= def
;
200 else if (param
> max
)
201 modified_param
= max
;
203 if (modified_param
) {
204 (void)cmpxchg(module_param
, param
, modified_param
);
205 param
= modified_param
;
211 unsigned dm_get_reserved_bio_based_ios(void)
213 return __dm_get_module_param(&reserved_bio_based_ios
,
214 RESERVED_BIO_BASED_IOS
, DM_RESERVED_MAX_IOS
);
216 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios
);
218 static unsigned dm_get_numa_node(void)
220 return __dm_get_module_param_int(&dm_numa_node
,
221 DM_NUMA_NODE
, num_online_nodes() - 1);
224 static int __init
local_init(void)
228 r
= dm_uevent_init();
232 deferred_remove_workqueue
= alloc_workqueue("kdmremove", WQ_UNBOUND
, 1);
233 if (!deferred_remove_workqueue
) {
235 goto out_uevent_exit
;
239 r
= register_blkdev(_major
, _name
);
241 goto out_free_workqueue
;
249 destroy_workqueue(deferred_remove_workqueue
);
256 static void local_exit(void)
258 flush_scheduled_work();
259 destroy_workqueue(deferred_remove_workqueue
);
261 unregister_blkdev(_major
, _name
);
266 DMINFO("cleaned up");
269 static int (*_inits
[])(void) __initdata
= {
280 static void (*_exits
[])(void) = {
291 static int __init
dm_init(void)
293 const int count
= ARRAY_SIZE(_inits
);
297 for (i
= 0; i
< count
; i
++) {
312 static void __exit
dm_exit(void)
314 int i
= ARRAY_SIZE(_exits
);
320 * Should be empty by this point.
322 idr_destroy(&_minor_idr
);
326 * Block device functions
328 int dm_deleting_md(struct mapped_device
*md
)
330 return test_bit(DMF_DELETING
, &md
->flags
);
333 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
335 struct mapped_device
*md
;
337 spin_lock(&_minor_lock
);
339 md
= bdev
->bd_disk
->private_data
;
343 if (test_bit(DMF_FREEING
, &md
->flags
) ||
344 dm_deleting_md(md
)) {
350 atomic_inc(&md
->open_count
);
352 spin_unlock(&_minor_lock
);
354 return md
? 0 : -ENXIO
;
357 static void dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
359 struct mapped_device
*md
;
361 spin_lock(&_minor_lock
);
363 md
= disk
->private_data
;
367 if (atomic_dec_and_test(&md
->open_count
) &&
368 (test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
)))
369 queue_work(deferred_remove_workqueue
, &deferred_remove_work
);
373 spin_unlock(&_minor_lock
);
376 int dm_open_count(struct mapped_device
*md
)
378 return atomic_read(&md
->open_count
);
382 * Guarantees nothing is using the device before it's deleted.
384 int dm_lock_for_deletion(struct mapped_device
*md
, bool mark_deferred
, bool only_deferred
)
388 spin_lock(&_minor_lock
);
390 if (dm_open_count(md
)) {
393 set_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
394 } else if (only_deferred
&& !test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
))
397 set_bit(DMF_DELETING
, &md
->flags
);
399 spin_unlock(&_minor_lock
);
404 int dm_cancel_deferred_remove(struct mapped_device
*md
)
408 spin_lock(&_minor_lock
);
410 if (test_bit(DMF_DELETING
, &md
->flags
))
413 clear_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
415 spin_unlock(&_minor_lock
);
420 static void do_deferred_remove(struct work_struct
*w
)
422 dm_deferred_remove();
425 sector_t
dm_get_size(struct mapped_device
*md
)
427 return get_capacity(md
->disk
);
430 struct request_queue
*dm_get_md_queue(struct mapped_device
*md
)
435 struct dm_stats
*dm_get_stats(struct mapped_device
*md
)
440 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
442 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
444 return dm_get_geometry(md
, geo
);
447 #ifdef CONFIG_BLK_DEV_ZONED
448 int dm_report_zones_cb(struct blk_zone
*zone
, unsigned int idx
, void *data
)
450 struct dm_report_zones_args
*args
= data
;
451 sector_t sector_diff
= args
->tgt
->begin
- args
->start
;
454 * Ignore zones beyond the target range.
456 if (zone
->start
>= args
->start
+ args
->tgt
->len
)
460 * Remap the start sector and write pointer position of the zone
461 * to match its position in the target range.
463 zone
->start
+= sector_diff
;
464 if (zone
->type
!= BLK_ZONE_TYPE_CONVENTIONAL
) {
465 if (zone
->cond
== BLK_ZONE_COND_FULL
)
466 zone
->wp
= zone
->start
+ zone
->len
;
467 else if (zone
->cond
== BLK_ZONE_COND_EMPTY
)
468 zone
->wp
= zone
->start
;
470 zone
->wp
+= sector_diff
;
473 args
->next_sector
= zone
->start
+ zone
->len
;
474 return args
->orig_cb(zone
, args
->zone_idx
++, args
->orig_data
);
476 EXPORT_SYMBOL_GPL(dm_report_zones_cb
);
478 static int dm_blk_report_zones(struct gendisk
*disk
, sector_t sector
,
479 unsigned int nr_zones
, report_zones_cb cb
, void *data
)
481 struct mapped_device
*md
= disk
->private_data
;
482 struct dm_table
*map
;
484 struct dm_report_zones_args args
= {
485 .next_sector
= sector
,
490 if (dm_suspended_md(md
))
493 map
= dm_get_live_table(md
, &srcu_idx
);
498 struct dm_target
*tgt
;
500 tgt
= dm_table_find_target(map
, args
.next_sector
);
501 if (WARN_ON_ONCE(!tgt
->type
->report_zones
)) {
507 ret
= tgt
->type
->report_zones(tgt
, &args
,
508 nr_zones
- args
.zone_idx
);
511 } while (args
.zone_idx
< nr_zones
&&
512 args
.next_sector
< get_capacity(disk
));
516 dm_put_live_table(md
, srcu_idx
);
520 #define dm_blk_report_zones NULL
521 #endif /* CONFIG_BLK_DEV_ZONED */
523 static int dm_prepare_ioctl(struct mapped_device
*md
, int *srcu_idx
,
524 struct block_device
**bdev
)
525 __acquires(md
->io_barrier
)
527 struct dm_target
*tgt
;
528 struct dm_table
*map
;
533 map
= dm_get_live_table(md
, srcu_idx
);
534 if (!map
|| !dm_table_get_size(map
))
537 /* We only support devices that have a single target */
538 if (dm_table_get_num_targets(map
) != 1)
541 tgt
= dm_table_get_target(map
, 0);
542 if (!tgt
->type
->prepare_ioctl
)
545 if (dm_suspended_md(md
))
548 r
= tgt
->type
->prepare_ioctl(tgt
, bdev
);
549 if (r
== -ENOTCONN
&& !fatal_signal_pending(current
)) {
550 dm_put_live_table(md
, *srcu_idx
);
558 static void dm_unprepare_ioctl(struct mapped_device
*md
, int srcu_idx
)
559 __releases(md
->io_barrier
)
561 dm_put_live_table(md
, srcu_idx
);
564 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
565 unsigned int cmd
, unsigned long arg
)
567 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
570 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
576 * Target determined this ioctl is being issued against a
577 * subset of the parent bdev; require extra privileges.
579 if (!capable(CAP_SYS_RAWIO
)) {
581 "%s: sending ioctl %x to DM device without required privilege.",
588 r
= __blkdev_driver_ioctl(bdev
, mode
, cmd
, arg
);
590 dm_unprepare_ioctl(md
, srcu_idx
);
594 static void start_io_acct(struct dm_io
*io
);
596 static struct dm_io
*alloc_io(struct mapped_device
*md
, struct bio
*bio
)
599 struct dm_target_io
*tio
;
602 clone
= bio_alloc_bioset(GFP_NOIO
, 0, &md
->io_bs
);
606 tio
= container_of(clone
, struct dm_target_io
, clone
);
607 tio
->inside_dm_io
= true;
610 io
= container_of(tio
, struct dm_io
, tio
);
611 io
->magic
= DM_IO_MAGIC
;
613 atomic_set(&io
->io_count
, 1);
616 spin_lock_init(&io
->endio_lock
);
623 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
625 bio_put(&io
->tio
.clone
);
628 static struct dm_target_io
*alloc_tio(struct clone_info
*ci
, struct dm_target
*ti
,
629 unsigned target_bio_nr
, gfp_t gfp_mask
)
631 struct dm_target_io
*tio
;
633 if (!ci
->io
->tio
.io
) {
634 /* the dm_target_io embedded in ci->io is available */
637 struct bio
*clone
= bio_alloc_bioset(gfp_mask
, 0, &ci
->io
->md
->bs
);
641 tio
= container_of(clone
, struct dm_target_io
, clone
);
642 tio
->inside_dm_io
= false;
645 tio
->magic
= DM_TIO_MAGIC
;
648 tio
->target_bio_nr
= target_bio_nr
;
653 static void free_tio(struct dm_target_io
*tio
)
655 if (tio
->inside_dm_io
)
657 bio_put(&tio
->clone
);
660 u64
dm_start_time_ns_from_clone(struct bio
*bio
)
662 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
663 struct dm_io
*io
= tio
->io
;
665 return jiffies_to_nsecs(io
->start_time
);
667 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone
);
669 static void start_io_acct(struct dm_io
*io
)
671 struct mapped_device
*md
= io
->md
;
672 struct bio
*bio
= io
->orig_bio
;
674 io
->start_time
= bio_start_io_acct(bio
);
675 if (unlikely(dm_stats_used(&md
->stats
)))
676 dm_stats_account_io(&md
->stats
, bio_data_dir(bio
),
677 bio
->bi_iter
.bi_sector
, bio_sectors(bio
),
678 false, 0, &io
->stats_aux
);
681 static void end_io_acct(struct dm_io
*io
)
683 struct mapped_device
*md
= io
->md
;
684 struct bio
*bio
= io
->orig_bio
;
685 unsigned long duration
= jiffies
- io
->start_time
;
687 bio_end_io_acct(bio
, io
->start_time
);
689 if (unlikely(dm_stats_used(&md
->stats
)))
690 dm_stats_account_io(&md
->stats
, bio_data_dir(bio
),
691 bio
->bi_iter
.bi_sector
, bio_sectors(bio
),
692 true, duration
, &io
->stats_aux
);
694 /* nudge anyone waiting on suspend queue */
695 if (unlikely(wq_has_sleeper(&md
->wait
)))
700 * Add the bio to the list of deferred io.
702 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
706 spin_lock_irqsave(&md
->deferred_lock
, flags
);
707 bio_list_add(&md
->deferred
, bio
);
708 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
709 queue_work(md
->wq
, &md
->work
);
713 * Everyone (including functions in this file), should use this
714 * function to access the md->map field, and make sure they call
715 * dm_put_live_table() when finished.
717 struct dm_table
*dm_get_live_table(struct mapped_device
*md
, int *srcu_idx
) __acquires(md
->io_barrier
)
719 *srcu_idx
= srcu_read_lock(&md
->io_barrier
);
721 return srcu_dereference(md
->map
, &md
->io_barrier
);
724 void dm_put_live_table(struct mapped_device
*md
, int srcu_idx
) __releases(md
->io_barrier
)
726 srcu_read_unlock(&md
->io_barrier
, srcu_idx
);
729 void dm_sync_table(struct mapped_device
*md
)
731 synchronize_srcu(&md
->io_barrier
);
732 synchronize_rcu_expedited();
736 * A fast alternative to dm_get_live_table/dm_put_live_table.
737 * The caller must not block between these two functions.
739 static struct dm_table
*dm_get_live_table_fast(struct mapped_device
*md
) __acquires(RCU
)
742 return rcu_dereference(md
->map
);
745 static void dm_put_live_table_fast(struct mapped_device
*md
) __releases(RCU
)
750 static char *_dm_claim_ptr
= "I belong to device-mapper";
753 * Open a table device so we can use it as a map destination.
755 static int open_table_device(struct table_device
*td
, dev_t dev
,
756 struct mapped_device
*md
)
758 struct block_device
*bdev
;
762 BUG_ON(td
->dm_dev
.bdev
);
764 bdev
= blkdev_get_by_dev(dev
, td
->dm_dev
.mode
| FMODE_EXCL
, _dm_claim_ptr
);
766 return PTR_ERR(bdev
);
768 r
= bd_link_disk_holder(bdev
, dm_disk(md
));
770 blkdev_put(bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
774 td
->dm_dev
.bdev
= bdev
;
775 td
->dm_dev
.dax_dev
= dax_get_by_host(bdev
->bd_disk
->disk_name
);
780 * Close a table device that we've been using.
782 static void close_table_device(struct table_device
*td
, struct mapped_device
*md
)
784 if (!td
->dm_dev
.bdev
)
787 bd_unlink_disk_holder(td
->dm_dev
.bdev
, dm_disk(md
));
788 blkdev_put(td
->dm_dev
.bdev
, td
->dm_dev
.mode
| FMODE_EXCL
);
789 put_dax(td
->dm_dev
.dax_dev
);
790 td
->dm_dev
.bdev
= NULL
;
791 td
->dm_dev
.dax_dev
= NULL
;
794 static struct table_device
*find_table_device(struct list_head
*l
, dev_t dev
,
797 struct table_device
*td
;
799 list_for_each_entry(td
, l
, list
)
800 if (td
->dm_dev
.bdev
->bd_dev
== dev
&& td
->dm_dev
.mode
== mode
)
806 int dm_get_table_device(struct mapped_device
*md
, dev_t dev
, fmode_t mode
,
807 struct dm_dev
**result
)
810 struct table_device
*td
;
812 mutex_lock(&md
->table_devices_lock
);
813 td
= find_table_device(&md
->table_devices
, dev
, mode
);
815 td
= kmalloc_node(sizeof(*td
), GFP_KERNEL
, md
->numa_node_id
);
817 mutex_unlock(&md
->table_devices_lock
);
821 td
->dm_dev
.mode
= mode
;
822 td
->dm_dev
.bdev
= NULL
;
824 if ((r
= open_table_device(td
, dev
, md
))) {
825 mutex_unlock(&md
->table_devices_lock
);
830 format_dev_t(td
->dm_dev
.name
, dev
);
832 refcount_set(&td
->count
, 1);
833 list_add(&td
->list
, &md
->table_devices
);
835 refcount_inc(&td
->count
);
837 mutex_unlock(&md
->table_devices_lock
);
839 *result
= &td
->dm_dev
;
842 EXPORT_SYMBOL_GPL(dm_get_table_device
);
844 void dm_put_table_device(struct mapped_device
*md
, struct dm_dev
*d
)
846 struct table_device
*td
= container_of(d
, struct table_device
, dm_dev
);
848 mutex_lock(&md
->table_devices_lock
);
849 if (refcount_dec_and_test(&td
->count
)) {
850 close_table_device(td
, md
);
854 mutex_unlock(&md
->table_devices_lock
);
856 EXPORT_SYMBOL(dm_put_table_device
);
858 static void free_table_devices(struct list_head
*devices
)
860 struct list_head
*tmp
, *next
;
862 list_for_each_safe(tmp
, next
, devices
) {
863 struct table_device
*td
= list_entry(tmp
, struct table_device
, list
);
865 DMWARN("dm_destroy: %s still exists with %d references",
866 td
->dm_dev
.name
, refcount_read(&td
->count
));
872 * Get the geometry associated with a dm device
874 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
882 * Set the geometry of a device.
884 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
886 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
888 if (geo
->start
> sz
) {
889 DMWARN("Start sector is beyond the geometry limits.");
898 static int __noflush_suspending(struct mapped_device
*md
)
900 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
904 * Decrements the number of outstanding ios that a bio has been
905 * cloned into, completing the original io if necc.
907 static void dec_pending(struct dm_io
*io
, blk_status_t error
)
910 blk_status_t io_error
;
912 struct mapped_device
*md
= io
->md
;
914 /* Push-back supersedes any I/O errors */
915 if (unlikely(error
)) {
916 spin_lock_irqsave(&io
->endio_lock
, flags
);
917 if (!(io
->status
== BLK_STS_DM_REQUEUE
&& __noflush_suspending(md
)))
919 spin_unlock_irqrestore(&io
->endio_lock
, flags
);
922 if (atomic_dec_and_test(&io
->io_count
)) {
923 if (io
->status
== BLK_STS_DM_REQUEUE
) {
925 * Target requested pushing back the I/O.
927 spin_lock_irqsave(&md
->deferred_lock
, flags
);
928 if (__noflush_suspending(md
))
929 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
930 bio_list_add_head(&md
->deferred
, io
->orig_bio
);
932 /* noflush suspend was interrupted. */
933 io
->status
= BLK_STS_IOERR
;
934 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
937 io_error
= io
->status
;
942 if (io_error
== BLK_STS_DM_REQUEUE
)
945 if ((bio
->bi_opf
& REQ_PREFLUSH
) && bio
->bi_iter
.bi_size
) {
947 * Preflush done for flush with data, reissue
948 * without REQ_PREFLUSH.
950 bio
->bi_opf
&= ~REQ_PREFLUSH
;
953 /* done with normal IO or empty flush */
955 bio
->bi_status
= io_error
;
961 void disable_discard(struct mapped_device
*md
)
963 struct queue_limits
*limits
= dm_get_queue_limits(md
);
965 /* device doesn't really support DISCARD, disable it */
966 limits
->max_discard_sectors
= 0;
967 blk_queue_flag_clear(QUEUE_FLAG_DISCARD
, md
->queue
);
970 void disable_write_same(struct mapped_device
*md
)
972 struct queue_limits
*limits
= dm_get_queue_limits(md
);
974 /* device doesn't really support WRITE SAME, disable it */
975 limits
->max_write_same_sectors
= 0;
978 void disable_write_zeroes(struct mapped_device
*md
)
980 struct queue_limits
*limits
= dm_get_queue_limits(md
);
982 /* device doesn't really support WRITE ZEROES, disable it */
983 limits
->max_write_zeroes_sectors
= 0;
986 static void clone_endio(struct bio
*bio
)
988 blk_status_t error
= bio
->bi_status
;
989 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
990 struct dm_io
*io
= tio
->io
;
991 struct mapped_device
*md
= tio
->io
->md
;
992 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
993 struct bio
*orig_bio
= io
->orig_bio
;
995 if (unlikely(error
== BLK_STS_TARGET
) && md
->type
!= DM_TYPE_NVME_BIO_BASED
) {
996 if (bio_op(bio
) == REQ_OP_DISCARD
&&
997 !bio
->bi_disk
->queue
->limits
.max_discard_sectors
)
999 else if (bio_op(bio
) == REQ_OP_WRITE_SAME
&&
1000 !bio
->bi_disk
->queue
->limits
.max_write_same_sectors
)
1001 disable_write_same(md
);
1002 else if (bio_op(bio
) == REQ_OP_WRITE_ZEROES
&&
1003 !bio
->bi_disk
->queue
->limits
.max_write_zeroes_sectors
)
1004 disable_write_zeroes(md
);
1008 * For zone-append bios get offset in zone of the written
1009 * sector and add that to the original bio sector pos.
1011 if (bio_op(orig_bio
) == REQ_OP_ZONE_APPEND
) {
1012 sector_t written_sector
= bio
->bi_iter
.bi_sector
;
1013 struct request_queue
*q
= orig_bio
->bi_disk
->queue
;
1014 u64 mask
= (u64
)blk_queue_zone_sectors(q
) - 1;
1016 orig_bio
->bi_iter
.bi_sector
+= written_sector
& mask
;
1020 int r
= endio(tio
->ti
, bio
, &error
);
1022 case DM_ENDIO_REQUEUE
:
1023 error
= BLK_STS_DM_REQUEUE
;
1027 case DM_ENDIO_INCOMPLETE
:
1028 /* The target will handle the io */
1031 DMWARN("unimplemented target endio return value: %d", r
);
1037 dec_pending(io
, error
);
1041 * Return maximum size of I/O possible at the supplied sector up to the current
1044 static sector_t
max_io_len_target_boundary(sector_t sector
, struct dm_target
*ti
)
1046 sector_t target_offset
= dm_target_offset(ti
, sector
);
1048 return ti
->len
- target_offset
;
1051 static sector_t
max_io_len(sector_t sector
, struct dm_target
*ti
)
1053 sector_t len
= max_io_len_target_boundary(sector
, ti
);
1054 sector_t offset
, max_len
;
1057 * Does the target need to split even further?
1059 if (ti
->max_io_len
) {
1060 offset
= dm_target_offset(ti
, sector
);
1061 if (unlikely(ti
->max_io_len
& (ti
->max_io_len
- 1)))
1062 max_len
= sector_div(offset
, ti
->max_io_len
);
1064 max_len
= offset
& (ti
->max_io_len
- 1);
1065 max_len
= ti
->max_io_len
- max_len
;
1074 int dm_set_target_max_io_len(struct dm_target
*ti
, sector_t len
)
1076 if (len
> UINT_MAX
) {
1077 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1078 (unsigned long long)len
, UINT_MAX
);
1079 ti
->error
= "Maximum size of target IO is too large";
1083 ti
->max_io_len
= (uint32_t) len
;
1087 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len
);
1089 static struct dm_target
*dm_dax_get_live_target(struct mapped_device
*md
,
1090 sector_t sector
, int *srcu_idx
)
1091 __acquires(md
->io_barrier
)
1093 struct dm_table
*map
;
1094 struct dm_target
*ti
;
1096 map
= dm_get_live_table(md
, srcu_idx
);
1100 ti
= dm_table_find_target(map
, sector
);
1107 static long dm_dax_direct_access(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1108 long nr_pages
, void **kaddr
, pfn_t
*pfn
)
1110 struct mapped_device
*md
= dax_get_private(dax_dev
);
1111 sector_t sector
= pgoff
* PAGE_SECTORS
;
1112 struct dm_target
*ti
;
1113 long len
, ret
= -EIO
;
1116 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1120 if (!ti
->type
->direct_access
)
1122 len
= max_io_len(sector
, ti
) / PAGE_SECTORS
;
1125 nr_pages
= min(len
, nr_pages
);
1126 ret
= ti
->type
->direct_access(ti
, pgoff
, nr_pages
, kaddr
, pfn
);
1129 dm_put_live_table(md
, srcu_idx
);
1134 static bool dm_dax_supported(struct dax_device
*dax_dev
, struct block_device
*bdev
,
1135 int blocksize
, sector_t start
, sector_t len
)
1137 struct mapped_device
*md
= dax_get_private(dax_dev
);
1138 struct dm_table
*map
;
1142 map
= dm_get_live_table(md
, &srcu_idx
);
1146 ret
= dm_table_supports_dax(map
, device_supports_dax
, &blocksize
);
1149 dm_put_live_table(md
, srcu_idx
);
1154 static size_t dm_dax_copy_from_iter(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1155 void *addr
, size_t bytes
, struct iov_iter
*i
)
1157 struct mapped_device
*md
= dax_get_private(dax_dev
);
1158 sector_t sector
= pgoff
* PAGE_SECTORS
;
1159 struct dm_target
*ti
;
1163 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1167 if (!ti
->type
->dax_copy_from_iter
) {
1168 ret
= copy_from_iter(addr
, bytes
, i
);
1171 ret
= ti
->type
->dax_copy_from_iter(ti
, pgoff
, addr
, bytes
, i
);
1173 dm_put_live_table(md
, srcu_idx
);
1178 static size_t dm_dax_copy_to_iter(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1179 void *addr
, size_t bytes
, struct iov_iter
*i
)
1181 struct mapped_device
*md
= dax_get_private(dax_dev
);
1182 sector_t sector
= pgoff
* PAGE_SECTORS
;
1183 struct dm_target
*ti
;
1187 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1191 if (!ti
->type
->dax_copy_to_iter
) {
1192 ret
= copy_to_iter(addr
, bytes
, i
);
1195 ret
= ti
->type
->dax_copy_to_iter(ti
, pgoff
, addr
, bytes
, i
);
1197 dm_put_live_table(md
, srcu_idx
);
1202 static int dm_dax_zero_page_range(struct dax_device
*dax_dev
, pgoff_t pgoff
,
1205 struct mapped_device
*md
= dax_get_private(dax_dev
);
1206 sector_t sector
= pgoff
* PAGE_SECTORS
;
1207 struct dm_target
*ti
;
1211 ti
= dm_dax_get_live_target(md
, sector
, &srcu_idx
);
1215 if (WARN_ON(!ti
->type
->dax_zero_page_range
)) {
1217 * ->zero_page_range() is mandatory dax operation. If we are
1218 * here, something is wrong.
1220 dm_put_live_table(md
, srcu_idx
);
1223 ret
= ti
->type
->dax_zero_page_range(ti
, pgoff
, nr_pages
);
1226 dm_put_live_table(md
, srcu_idx
);
1232 * A target may call dm_accept_partial_bio only from the map routine. It is
1233 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1234 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1236 * dm_accept_partial_bio informs the dm that the target only wants to process
1237 * additional n_sectors sectors of the bio and the rest of the data should be
1238 * sent in a next bio.
1240 * A diagram that explains the arithmetics:
1241 * +--------------------+---------------+-------+
1243 * +--------------------+---------------+-------+
1245 * <-------------- *tio->len_ptr --------------->
1246 * <------- bi_size ------->
1249 * Region 1 was already iterated over with bio_advance or similar function.
1250 * (it may be empty if the target doesn't use bio_advance)
1251 * Region 2 is the remaining bio size that the target wants to process.
1252 * (it may be empty if region 1 is non-empty, although there is no reason
1254 * The target requires that region 3 is to be sent in the next bio.
1256 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1257 * the partially processed part (the sum of regions 1+2) must be the same for all
1258 * copies of the bio.
1260 void dm_accept_partial_bio(struct bio
*bio
, unsigned n_sectors
)
1262 struct dm_target_io
*tio
= container_of(bio
, struct dm_target_io
, clone
);
1263 unsigned bi_size
= bio
->bi_iter
.bi_size
>> SECTOR_SHIFT
;
1264 BUG_ON(bio
->bi_opf
& REQ_PREFLUSH
);
1265 BUG_ON(bi_size
> *tio
->len_ptr
);
1266 BUG_ON(n_sectors
> bi_size
);
1267 *tio
->len_ptr
-= bi_size
- n_sectors
;
1268 bio
->bi_iter
.bi_size
= n_sectors
<< SECTOR_SHIFT
;
1270 EXPORT_SYMBOL_GPL(dm_accept_partial_bio
);
1272 static blk_qc_t
__map_bio(struct dm_target_io
*tio
)
1276 struct bio
*clone
= &tio
->clone
;
1277 struct dm_io
*io
= tio
->io
;
1278 struct dm_target
*ti
= tio
->ti
;
1279 blk_qc_t ret
= BLK_QC_T_NONE
;
1281 clone
->bi_end_io
= clone_endio
;
1284 * Map the clone. If r == 0 we don't need to do
1285 * anything, the target has assumed ownership of
1288 atomic_inc(&io
->io_count
);
1289 sector
= clone
->bi_iter
.bi_sector
;
1291 r
= ti
->type
->map(ti
, clone
);
1293 case DM_MAPIO_SUBMITTED
:
1295 case DM_MAPIO_REMAPPED
:
1296 /* the bio has been remapped so dispatch it */
1297 trace_block_bio_remap(clone
->bi_disk
->queue
, clone
,
1298 bio_dev(io
->orig_bio
), sector
);
1299 ret
= submit_bio_noacct(clone
);
1303 dec_pending(io
, BLK_STS_IOERR
);
1305 case DM_MAPIO_REQUEUE
:
1307 dec_pending(io
, BLK_STS_DM_REQUEUE
);
1310 DMWARN("unimplemented target map return value: %d", r
);
1317 static void bio_setup_sector(struct bio
*bio
, sector_t sector
, unsigned len
)
1319 bio
->bi_iter
.bi_sector
= sector
;
1320 bio
->bi_iter
.bi_size
= to_bytes(len
);
1324 * Creates a bio that consists of range of complete bvecs.
1326 static int clone_bio(struct dm_target_io
*tio
, struct bio
*bio
,
1327 sector_t sector
, unsigned len
)
1329 struct bio
*clone
= &tio
->clone
;
1331 __bio_clone_fast(clone
, bio
);
1333 bio_crypt_clone(clone
, bio
, GFP_NOIO
);
1335 if (bio_integrity(bio
)) {
1338 if (unlikely(!dm_target_has_integrity(tio
->ti
->type
) &&
1339 !dm_target_passes_integrity(tio
->ti
->type
))) {
1340 DMWARN("%s: the target %s doesn't support integrity data.",
1341 dm_device_name(tio
->io
->md
),
1342 tio
->ti
->type
->name
);
1346 r
= bio_integrity_clone(clone
, bio
, GFP_NOIO
);
1351 bio_advance(clone
, to_bytes(sector
- clone
->bi_iter
.bi_sector
));
1352 clone
->bi_iter
.bi_size
= to_bytes(len
);
1354 if (bio_integrity(bio
))
1355 bio_integrity_trim(clone
);
1360 static void alloc_multiple_bios(struct bio_list
*blist
, struct clone_info
*ci
,
1361 struct dm_target
*ti
, unsigned num_bios
)
1363 struct dm_target_io
*tio
;
1369 if (num_bios
== 1) {
1370 tio
= alloc_tio(ci
, ti
, 0, GFP_NOIO
);
1371 bio_list_add(blist
, &tio
->clone
);
1375 for (try = 0; try < 2; try++) {
1380 mutex_lock(&ci
->io
->md
->table_devices_lock
);
1381 for (bio_nr
= 0; bio_nr
< num_bios
; bio_nr
++) {
1382 tio
= alloc_tio(ci
, ti
, bio_nr
, try ? GFP_NOIO
: GFP_NOWAIT
);
1386 bio_list_add(blist
, &tio
->clone
);
1389 mutex_unlock(&ci
->io
->md
->table_devices_lock
);
1390 if (bio_nr
== num_bios
)
1393 while ((bio
= bio_list_pop(blist
))) {
1394 tio
= container_of(bio
, struct dm_target_io
, clone
);
1400 static blk_qc_t
__clone_and_map_simple_bio(struct clone_info
*ci
,
1401 struct dm_target_io
*tio
, unsigned *len
)
1403 struct bio
*clone
= &tio
->clone
;
1407 __bio_clone_fast(clone
, ci
->bio
);
1409 bio_setup_sector(clone
, ci
->sector
, *len
);
1411 return __map_bio(tio
);
1414 static void __send_duplicate_bios(struct clone_info
*ci
, struct dm_target
*ti
,
1415 unsigned num_bios
, unsigned *len
)
1417 struct bio_list blist
= BIO_EMPTY_LIST
;
1419 struct dm_target_io
*tio
;
1421 alloc_multiple_bios(&blist
, ci
, ti
, num_bios
);
1423 while ((bio
= bio_list_pop(&blist
))) {
1424 tio
= container_of(bio
, struct dm_target_io
, clone
);
1425 (void) __clone_and_map_simple_bio(ci
, tio
, len
);
1429 static int __send_empty_flush(struct clone_info
*ci
)
1431 unsigned target_nr
= 0;
1432 struct dm_target
*ti
;
1435 * Empty flush uses a statically initialized bio, as the base for
1436 * cloning. However, blkg association requires that a bdev is
1437 * associated with a gendisk, which doesn't happen until the bdev is
1438 * opened. So, blkg association is done at issue time of the flush
1439 * rather than when the device is created in alloc_dev().
1441 bio_set_dev(ci
->bio
, ci
->io
->md
->bdev
);
1443 BUG_ON(bio_has_data(ci
->bio
));
1444 while ((ti
= dm_table_get_target(ci
->map
, target_nr
++)))
1445 __send_duplicate_bios(ci
, ti
, ti
->num_flush_bios
, NULL
);
1449 static int __clone_and_map_data_bio(struct clone_info
*ci
, struct dm_target
*ti
,
1450 sector_t sector
, unsigned *len
)
1452 struct bio
*bio
= ci
->bio
;
1453 struct dm_target_io
*tio
;
1456 tio
= alloc_tio(ci
, ti
, 0, GFP_NOIO
);
1458 r
= clone_bio(tio
, bio
, sector
, *len
);
1463 (void) __map_bio(tio
);
1468 typedef unsigned (*get_num_bios_fn
)(struct dm_target
*ti
);
1470 static unsigned get_num_discard_bios(struct dm_target
*ti
)
1472 return ti
->num_discard_bios
;
1475 static unsigned get_num_secure_erase_bios(struct dm_target
*ti
)
1477 return ti
->num_secure_erase_bios
;
1480 static unsigned get_num_write_same_bios(struct dm_target
*ti
)
1482 return ti
->num_write_same_bios
;
1485 static unsigned get_num_write_zeroes_bios(struct dm_target
*ti
)
1487 return ti
->num_write_zeroes_bios
;
1490 static int __send_changing_extent_only(struct clone_info
*ci
, struct dm_target
*ti
,
1496 * Even though the device advertised support for this type of
1497 * request, that does not mean every target supports it, and
1498 * reconfiguration might also have changed that since the
1499 * check was performed.
1504 len
= min((sector_t
)ci
->sector_count
, max_io_len_target_boundary(ci
->sector
, ti
));
1506 __send_duplicate_bios(ci
, ti
, num_bios
, &len
);
1509 ci
->sector_count
-= len
;
1514 static int __send_discard(struct clone_info
*ci
, struct dm_target
*ti
)
1516 return __send_changing_extent_only(ci
, ti
, get_num_discard_bios(ti
));
1519 static int __send_secure_erase(struct clone_info
*ci
, struct dm_target
*ti
)
1521 return __send_changing_extent_only(ci
, ti
, get_num_secure_erase_bios(ti
));
1524 static int __send_write_same(struct clone_info
*ci
, struct dm_target
*ti
)
1526 return __send_changing_extent_only(ci
, ti
, get_num_write_same_bios(ti
));
1529 static int __send_write_zeroes(struct clone_info
*ci
, struct dm_target
*ti
)
1531 return __send_changing_extent_only(ci
, ti
, get_num_write_zeroes_bios(ti
));
1534 static bool is_abnormal_io(struct bio
*bio
)
1538 switch (bio_op(bio
)) {
1539 case REQ_OP_DISCARD
:
1540 case REQ_OP_SECURE_ERASE
:
1541 case REQ_OP_WRITE_SAME
:
1542 case REQ_OP_WRITE_ZEROES
:
1550 static bool __process_abnormal_io(struct clone_info
*ci
, struct dm_target
*ti
,
1553 struct bio
*bio
= ci
->bio
;
1555 if (bio_op(bio
) == REQ_OP_DISCARD
)
1556 *result
= __send_discard(ci
, ti
);
1557 else if (bio_op(bio
) == REQ_OP_SECURE_ERASE
)
1558 *result
= __send_secure_erase(ci
, ti
);
1559 else if (bio_op(bio
) == REQ_OP_WRITE_SAME
)
1560 *result
= __send_write_same(ci
, ti
);
1561 else if (bio_op(bio
) == REQ_OP_WRITE_ZEROES
)
1562 *result
= __send_write_zeroes(ci
, ti
);
1570 * Select the correct strategy for processing a non-flush bio.
1572 static int __split_and_process_non_flush(struct clone_info
*ci
)
1574 struct dm_target
*ti
;
1578 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
1582 if (__process_abnormal_io(ci
, ti
, &r
))
1585 len
= min_t(sector_t
, max_io_len(ci
->sector
, ti
), ci
->sector_count
);
1587 r
= __clone_and_map_data_bio(ci
, ti
, ci
->sector
, &len
);
1592 ci
->sector_count
-= len
;
1597 static void init_clone_info(struct clone_info
*ci
, struct mapped_device
*md
,
1598 struct dm_table
*map
, struct bio
*bio
)
1601 ci
->io
= alloc_io(md
, bio
);
1602 ci
->sector
= bio
->bi_iter
.bi_sector
;
1605 #define __dm_part_stat_sub(part, field, subnd) \
1606 (part_stat_get(part, field) -= (subnd))
1609 * Entry point to split a bio into clones and submit them to the targets.
1611 static blk_qc_t
__split_and_process_bio(struct mapped_device
*md
,
1612 struct dm_table
*map
, struct bio
*bio
)
1614 struct clone_info ci
;
1615 blk_qc_t ret
= BLK_QC_T_NONE
;
1618 init_clone_info(&ci
, md
, map
, bio
);
1620 if (bio
->bi_opf
& REQ_PREFLUSH
) {
1621 struct bio flush_bio
;
1624 * Use an on-stack bio for this, it's safe since we don't
1625 * need to reference it after submit. It's just used as
1626 * the basis for the clone(s).
1628 bio_init(&flush_bio
, NULL
, 0);
1629 flush_bio
.bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
| REQ_SYNC
;
1630 ci
.bio
= &flush_bio
;
1631 ci
.sector_count
= 0;
1632 error
= __send_empty_flush(&ci
);
1634 /* dec_pending submits any data associated with flush */
1635 } else if (op_is_zone_mgmt(bio_op(bio
))) {
1637 ci
.sector_count
= 0;
1638 error
= __split_and_process_non_flush(&ci
);
1641 ci
.sector_count
= bio_sectors(bio
);
1642 while (ci
.sector_count
&& !error
) {
1643 error
= __split_and_process_non_flush(&ci
);
1644 if (current
->bio_list
&& ci
.sector_count
&& !error
) {
1646 * Remainder must be passed to submit_bio_noacct()
1647 * so that it gets handled *after* bios already submitted
1648 * have been completely processed.
1649 * We take a clone of the original to store in
1650 * ci.io->orig_bio to be used by end_io_acct() and
1651 * for dec_pending to use for completion handling.
1653 struct bio
*b
= bio_split(bio
, bio_sectors(bio
) - ci
.sector_count
,
1654 GFP_NOIO
, &md
->queue
->bio_split
);
1655 ci
.io
->orig_bio
= b
;
1658 * Adjust IO stats for each split, otherwise upon queue
1659 * reentry there will be redundant IO accounting.
1660 * NOTE: this is a stop-gap fix, a proper fix involves
1661 * significant refactoring of DM core's bio splitting
1662 * (by eliminating DM's splitting and just using bio_split)
1665 __dm_part_stat_sub(&dm_disk(md
)->part0
,
1666 sectors
[op_stat_group(bio_op(bio
))], ci
.sector_count
);
1670 trace_block_split(md
->queue
, b
, bio
->bi_iter
.bi_sector
);
1671 ret
= submit_bio_noacct(bio
);
1677 /* drop the extra reference count */
1678 dec_pending(ci
.io
, errno_to_blk_status(error
));
1683 * Optimized variant of __split_and_process_bio that leverages the
1684 * fact that targets that use it do _not_ have a need to split bios.
1686 static blk_qc_t
__process_bio(struct mapped_device
*md
, struct dm_table
*map
,
1687 struct bio
*bio
, struct dm_target
*ti
)
1689 struct clone_info ci
;
1690 blk_qc_t ret
= BLK_QC_T_NONE
;
1693 init_clone_info(&ci
, md
, map
, bio
);
1695 if (bio
->bi_opf
& REQ_PREFLUSH
) {
1696 struct bio flush_bio
;
1699 * Use an on-stack bio for this, it's safe since we don't
1700 * need to reference it after submit. It's just used as
1701 * the basis for the clone(s).
1703 bio_init(&flush_bio
, NULL
, 0);
1704 flush_bio
.bi_opf
= REQ_OP_WRITE
| REQ_PREFLUSH
| REQ_SYNC
;
1705 ci
.bio
= &flush_bio
;
1706 ci
.sector_count
= 0;
1707 error
= __send_empty_flush(&ci
);
1709 /* dec_pending submits any data associated with flush */
1711 struct dm_target_io
*tio
;
1714 ci
.sector_count
= bio_sectors(bio
);
1715 if (__process_abnormal_io(&ci
, ti
, &error
))
1718 tio
= alloc_tio(&ci
, ti
, 0, GFP_NOIO
);
1719 ret
= __clone_and_map_simple_bio(&ci
, tio
, NULL
);
1722 /* drop the extra reference count */
1723 dec_pending(ci
.io
, errno_to_blk_status(error
));
1727 static blk_qc_t
dm_process_bio(struct mapped_device
*md
,
1728 struct dm_table
*map
, struct bio
*bio
)
1730 blk_qc_t ret
= BLK_QC_T_NONE
;
1731 struct dm_target
*ti
= md
->immutable_target
;
1733 if (unlikely(!map
)) {
1739 ti
= dm_table_find_target(map
, bio
->bi_iter
.bi_sector
);
1740 if (unlikely(!ti
)) {
1747 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1748 * otherwise associated queue_limits won't be imposed.
1750 if (is_abnormal_io(bio
))
1751 blk_queue_split(&bio
);
1753 if (dm_get_md_type(md
) == DM_TYPE_NVME_BIO_BASED
)
1754 return __process_bio(md
, map
, bio
, ti
);
1755 return __split_and_process_bio(md
, map
, bio
);
1758 static blk_qc_t
dm_submit_bio(struct bio
*bio
)
1760 struct mapped_device
*md
= bio
->bi_disk
->private_data
;
1761 blk_qc_t ret
= BLK_QC_T_NONE
;
1763 struct dm_table
*map
;
1765 map
= dm_get_live_table(md
, &srcu_idx
);
1767 /* if we're suspended, we have to queue this io for later */
1768 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
))) {
1769 dm_put_live_table(md
, srcu_idx
);
1771 if (!(bio
->bi_opf
& REQ_RAHEAD
))
1778 ret
= dm_process_bio(md
, map
, bio
);
1780 dm_put_live_table(md
, srcu_idx
);
1784 /*-----------------------------------------------------------------
1785 * An IDR is used to keep track of allocated minor numbers.
1786 *---------------------------------------------------------------*/
1787 static void free_minor(int minor
)
1789 spin_lock(&_minor_lock
);
1790 idr_remove(&_minor_idr
, minor
);
1791 spin_unlock(&_minor_lock
);
1795 * See if the device with a specific minor # is free.
1797 static int specific_minor(int minor
)
1801 if (minor
>= (1 << MINORBITS
))
1804 idr_preload(GFP_KERNEL
);
1805 spin_lock(&_minor_lock
);
1807 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, minor
, minor
+ 1, GFP_NOWAIT
);
1809 spin_unlock(&_minor_lock
);
1812 return r
== -ENOSPC
? -EBUSY
: r
;
1816 static int next_free_minor(int *minor
)
1820 idr_preload(GFP_KERNEL
);
1821 spin_lock(&_minor_lock
);
1823 r
= idr_alloc(&_minor_idr
, MINOR_ALLOCED
, 0, 1 << MINORBITS
, GFP_NOWAIT
);
1825 spin_unlock(&_minor_lock
);
1833 static const struct block_device_operations dm_blk_dops
;
1834 static const struct block_device_operations dm_rq_blk_dops
;
1835 static const struct dax_operations dm_dax_ops
;
1837 static void dm_wq_work(struct work_struct
*work
);
1839 static void cleanup_mapped_device(struct mapped_device
*md
)
1842 destroy_workqueue(md
->wq
);
1843 bioset_exit(&md
->bs
);
1844 bioset_exit(&md
->io_bs
);
1847 kill_dax(md
->dax_dev
);
1848 put_dax(md
->dax_dev
);
1853 spin_lock(&_minor_lock
);
1854 md
->disk
->private_data
= NULL
;
1855 spin_unlock(&_minor_lock
);
1856 del_gendisk(md
->disk
);
1861 blk_cleanup_queue(md
->queue
);
1863 cleanup_srcu_struct(&md
->io_barrier
);
1870 mutex_destroy(&md
->suspend_lock
);
1871 mutex_destroy(&md
->type_lock
);
1872 mutex_destroy(&md
->table_devices_lock
);
1874 dm_mq_cleanup_mapped_device(md
);
1878 * Allocate and initialise a blank device with a given minor.
1880 static struct mapped_device
*alloc_dev(int minor
)
1882 int r
, numa_node_id
= dm_get_numa_node();
1883 struct mapped_device
*md
;
1886 md
= kvzalloc_node(sizeof(*md
), GFP_KERNEL
, numa_node_id
);
1888 DMWARN("unable to allocate device, out of memory.");
1892 if (!try_module_get(THIS_MODULE
))
1893 goto bad_module_get
;
1895 /* get a minor number for the dev */
1896 if (minor
== DM_ANY_MINOR
)
1897 r
= next_free_minor(&minor
);
1899 r
= specific_minor(minor
);
1903 r
= init_srcu_struct(&md
->io_barrier
);
1905 goto bad_io_barrier
;
1907 md
->numa_node_id
= numa_node_id
;
1908 md
->init_tio_pdu
= false;
1909 md
->type
= DM_TYPE_NONE
;
1910 mutex_init(&md
->suspend_lock
);
1911 mutex_init(&md
->type_lock
);
1912 mutex_init(&md
->table_devices_lock
);
1913 spin_lock_init(&md
->deferred_lock
);
1914 atomic_set(&md
->holders
, 1);
1915 atomic_set(&md
->open_count
, 0);
1916 atomic_set(&md
->event_nr
, 0);
1917 atomic_set(&md
->uevent_seq
, 0);
1918 INIT_LIST_HEAD(&md
->uevent_list
);
1919 INIT_LIST_HEAD(&md
->table_devices
);
1920 spin_lock_init(&md
->uevent_lock
);
1923 * default to bio-based until DM table is loaded and md->type
1924 * established. If request-based table is loaded: blk-mq will
1925 * override accordingly.
1927 md
->queue
= blk_alloc_queue(numa_node_id
);
1931 md
->disk
= alloc_disk_node(1, md
->numa_node_id
);
1935 init_waitqueue_head(&md
->wait
);
1936 INIT_WORK(&md
->work
, dm_wq_work
);
1937 init_waitqueue_head(&md
->eventq
);
1938 init_completion(&md
->kobj_holder
.completion
);
1940 md
->disk
->major
= _major
;
1941 md
->disk
->first_minor
= minor
;
1942 md
->disk
->fops
= &dm_blk_dops
;
1943 md
->disk
->queue
= md
->queue
;
1944 md
->disk
->private_data
= md
;
1945 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1947 if (IS_ENABLED(CONFIG_DAX_DRIVER
)) {
1948 md
->dax_dev
= alloc_dax(md
, md
->disk
->disk_name
,
1950 if (IS_ERR(md
->dax_dev
))
1954 add_disk_no_queue_reg(md
->disk
);
1955 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1957 md
->wq
= alloc_workqueue("kdmflush", WQ_MEM_RECLAIM
, 0);
1961 md
->bdev
= bdget_disk(md
->disk
, 0);
1965 dm_stats_init(&md
->stats
);
1967 /* Populate the mapping, nobody knows we exist yet */
1968 spin_lock(&_minor_lock
);
1969 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1970 spin_unlock(&_minor_lock
);
1972 BUG_ON(old_md
!= MINOR_ALLOCED
);
1977 cleanup_mapped_device(md
);
1981 module_put(THIS_MODULE
);
1987 static void unlock_fs(struct mapped_device
*md
);
1989 static void free_dev(struct mapped_device
*md
)
1991 int minor
= MINOR(disk_devt(md
->disk
));
1995 cleanup_mapped_device(md
);
1997 free_table_devices(&md
->table_devices
);
1998 dm_stats_cleanup(&md
->stats
);
2001 module_put(THIS_MODULE
);
2005 static int __bind_mempools(struct mapped_device
*md
, struct dm_table
*t
)
2007 struct dm_md_mempools
*p
= dm_table_get_md_mempools(t
);
2010 if (dm_table_bio_based(t
)) {
2012 * The md may already have mempools that need changing.
2013 * If so, reload bioset because front_pad may have changed
2014 * because a different table was loaded.
2016 bioset_exit(&md
->bs
);
2017 bioset_exit(&md
->io_bs
);
2019 } else if (bioset_initialized(&md
->bs
)) {
2021 * There's no need to reload with request-based dm
2022 * because the size of front_pad doesn't change.
2023 * Note for future: If you are to reload bioset,
2024 * prep-ed requests in the queue may refer
2025 * to bio from the old bioset, so you must walk
2026 * through the queue to unprep.
2032 bioset_initialized(&md
->bs
) ||
2033 bioset_initialized(&md
->io_bs
));
2035 ret
= bioset_init_from_src(&md
->bs
, &p
->bs
);
2038 ret
= bioset_init_from_src(&md
->io_bs
, &p
->io_bs
);
2040 bioset_exit(&md
->bs
);
2042 /* mempool bind completed, no longer need any mempools in the table */
2043 dm_table_free_md_mempools(t
);
2048 * Bind a table to the device.
2050 static void event_callback(void *context
)
2052 unsigned long flags
;
2054 struct mapped_device
*md
= (struct mapped_device
*) context
;
2056 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2057 list_splice_init(&md
->uevent_list
, &uevents
);
2058 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2060 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
2062 atomic_inc(&md
->event_nr
);
2063 wake_up(&md
->eventq
);
2064 dm_issue_global_event();
2068 * Protected by md->suspend_lock obtained by dm_swap_table().
2070 static void __set_size(struct mapped_device
*md
, sector_t size
)
2072 lockdep_assert_held(&md
->suspend_lock
);
2074 set_capacity(md
->disk
, size
);
2076 i_size_write(md
->bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
2080 * Returns old map, which caller must destroy.
2082 static struct dm_table
*__bind(struct mapped_device
*md
, struct dm_table
*t
,
2083 struct queue_limits
*limits
)
2085 struct dm_table
*old_map
;
2086 struct request_queue
*q
= md
->queue
;
2087 bool request_based
= dm_table_request_based(t
);
2091 lockdep_assert_held(&md
->suspend_lock
);
2093 size
= dm_table_get_size(t
);
2096 * Wipe any geometry if the size of the table changed.
2098 if (size
!= dm_get_size(md
))
2099 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
2101 __set_size(md
, size
);
2103 dm_table_event_callback(t
, event_callback
, md
);
2106 * The queue hasn't been stopped yet, if the old table type wasn't
2107 * for request-based during suspension. So stop it to prevent
2108 * I/O mapping before resume.
2109 * This must be done before setting the queue restrictions,
2110 * because request-based dm may be run just after the setting.
2115 if (request_based
|| md
->type
== DM_TYPE_NVME_BIO_BASED
) {
2117 * Leverage the fact that request-based DM targets and
2118 * NVMe bio based targets are immutable singletons
2119 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2120 * and __process_bio.
2122 md
->immutable_target
= dm_table_get_immutable_target(t
);
2125 ret
= __bind_mempools(md
, t
);
2127 old_map
= ERR_PTR(ret
);
2131 old_map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2132 rcu_assign_pointer(md
->map
, (void *)t
);
2133 md
->immutable_target_type
= dm_table_get_immutable_target_type(t
);
2135 dm_table_set_restrictions(t
, q
, limits
);
2144 * Returns unbound table for the caller to free.
2146 static struct dm_table
*__unbind(struct mapped_device
*md
)
2148 struct dm_table
*map
= rcu_dereference_protected(md
->map
, 1);
2153 dm_table_event_callback(map
, NULL
, NULL
);
2154 RCU_INIT_POINTER(md
->map
, NULL
);
2161 * Constructor for a new device.
2163 int dm_create(int minor
, struct mapped_device
**result
)
2166 struct mapped_device
*md
;
2168 md
= alloc_dev(minor
);
2172 r
= dm_sysfs_init(md
);
2183 * Functions to manage md->type.
2184 * All are required to hold md->type_lock.
2186 void dm_lock_md_type(struct mapped_device
*md
)
2188 mutex_lock(&md
->type_lock
);
2191 void dm_unlock_md_type(struct mapped_device
*md
)
2193 mutex_unlock(&md
->type_lock
);
2196 void dm_set_md_type(struct mapped_device
*md
, enum dm_queue_mode type
)
2198 BUG_ON(!mutex_is_locked(&md
->type_lock
));
2202 enum dm_queue_mode
dm_get_md_type(struct mapped_device
*md
)
2207 struct target_type
*dm_get_immutable_target_type(struct mapped_device
*md
)
2209 return md
->immutable_target_type
;
2213 * The queue_limits are only valid as long as you have a reference
2216 struct queue_limits
*dm_get_queue_limits(struct mapped_device
*md
)
2218 BUG_ON(!atomic_read(&md
->holders
));
2219 return &md
->queue
->limits
;
2221 EXPORT_SYMBOL_GPL(dm_get_queue_limits
);
2224 * Setup the DM device's queue based on md's type
2226 int dm_setup_md_queue(struct mapped_device
*md
, struct dm_table
*t
)
2229 struct queue_limits limits
;
2230 enum dm_queue_mode type
= dm_get_md_type(md
);
2233 case DM_TYPE_REQUEST_BASED
:
2234 md
->disk
->fops
= &dm_rq_blk_dops
;
2235 r
= dm_mq_init_request_queue(md
, t
);
2237 DMERR("Cannot initialize queue for request-based dm mapped device");
2241 case DM_TYPE_BIO_BASED
:
2242 case DM_TYPE_DAX_BIO_BASED
:
2243 case DM_TYPE_NVME_BIO_BASED
:
2250 r
= dm_calculate_queue_limits(t
, &limits
);
2252 DMERR("Cannot calculate initial queue limits");
2255 dm_table_set_restrictions(t
, md
->queue
, &limits
);
2256 blk_register_queue(md
->disk
);
2261 struct mapped_device
*dm_get_md(dev_t dev
)
2263 struct mapped_device
*md
;
2264 unsigned minor
= MINOR(dev
);
2266 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
2269 spin_lock(&_minor_lock
);
2271 md
= idr_find(&_minor_idr
, minor
);
2272 if (!md
|| md
== MINOR_ALLOCED
|| (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
2273 test_bit(DMF_FREEING
, &md
->flags
) || dm_deleting_md(md
)) {
2279 spin_unlock(&_minor_lock
);
2283 EXPORT_SYMBOL_GPL(dm_get_md
);
2285 void *dm_get_mdptr(struct mapped_device
*md
)
2287 return md
->interface_ptr
;
2290 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
2292 md
->interface_ptr
= ptr
;
2295 void dm_get(struct mapped_device
*md
)
2297 atomic_inc(&md
->holders
);
2298 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
2301 int dm_hold(struct mapped_device
*md
)
2303 spin_lock(&_minor_lock
);
2304 if (test_bit(DMF_FREEING
, &md
->flags
)) {
2305 spin_unlock(&_minor_lock
);
2309 spin_unlock(&_minor_lock
);
2312 EXPORT_SYMBOL_GPL(dm_hold
);
2314 const char *dm_device_name(struct mapped_device
*md
)
2318 EXPORT_SYMBOL_GPL(dm_device_name
);
2320 static void __dm_destroy(struct mapped_device
*md
, bool wait
)
2322 struct dm_table
*map
;
2327 spin_lock(&_minor_lock
);
2328 idr_replace(&_minor_idr
, MINOR_ALLOCED
, MINOR(disk_devt(dm_disk(md
))));
2329 set_bit(DMF_FREEING
, &md
->flags
);
2330 spin_unlock(&_minor_lock
);
2332 blk_set_queue_dying(md
->queue
);
2335 * Take suspend_lock so that presuspend and postsuspend methods
2336 * do not race with internal suspend.
2338 mutex_lock(&md
->suspend_lock
);
2339 map
= dm_get_live_table(md
, &srcu_idx
);
2340 if (!dm_suspended_md(md
)) {
2341 dm_table_presuspend_targets(map
);
2342 set_bit(DMF_SUSPENDED
, &md
->flags
);
2343 set_bit(DMF_POST_SUSPENDING
, &md
->flags
);
2344 dm_table_postsuspend_targets(map
);
2346 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2347 dm_put_live_table(md
, srcu_idx
);
2348 mutex_unlock(&md
->suspend_lock
);
2351 * Rare, but there may be I/O requests still going to complete,
2352 * for example. Wait for all references to disappear.
2353 * No one should increment the reference count of the mapped_device,
2354 * after the mapped_device state becomes DMF_FREEING.
2357 while (atomic_read(&md
->holders
))
2359 else if (atomic_read(&md
->holders
))
2360 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2361 dm_device_name(md
), atomic_read(&md
->holders
));
2364 dm_table_destroy(__unbind(md
));
2368 void dm_destroy(struct mapped_device
*md
)
2370 __dm_destroy(md
, true);
2373 void dm_destroy_immediate(struct mapped_device
*md
)
2375 __dm_destroy(md
, false);
2378 void dm_put(struct mapped_device
*md
)
2380 atomic_dec(&md
->holders
);
2382 EXPORT_SYMBOL_GPL(dm_put
);
2384 static bool md_in_flight_bios(struct mapped_device
*md
)
2387 struct hd_struct
*part
= &dm_disk(md
)->part0
;
2390 for_each_possible_cpu(cpu
) {
2391 sum
+= part_stat_local_read_cpu(part
, in_flight
[0], cpu
);
2392 sum
+= part_stat_local_read_cpu(part
, in_flight
[1], cpu
);
2398 static int dm_wait_for_bios_completion(struct mapped_device
*md
, long task_state
)
2404 prepare_to_wait(&md
->wait
, &wait
, task_state
);
2406 if (!md_in_flight_bios(md
))
2409 if (signal_pending_state(task_state
, current
)) {
2416 finish_wait(&md
->wait
, &wait
);
2421 static int dm_wait_for_completion(struct mapped_device
*md
, long task_state
)
2425 if (!queue_is_mq(md
->queue
))
2426 return dm_wait_for_bios_completion(md
, task_state
);
2429 if (!blk_mq_queue_inflight(md
->queue
))
2432 if (signal_pending_state(task_state
, current
)) {
2444 * Process the deferred bios
2446 static void dm_wq_work(struct work_struct
*work
)
2448 struct mapped_device
*md
= container_of(work
, struct mapped_device
, work
);
2451 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
2452 spin_lock_irq(&md
->deferred_lock
);
2453 bio
= bio_list_pop(&md
->deferred
);
2454 spin_unlock_irq(&md
->deferred_lock
);
2459 submit_bio_noacct(bio
);
2463 static void dm_queue_flush(struct mapped_device
*md
)
2465 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2466 smp_mb__after_atomic();
2467 queue_work(md
->wq
, &md
->work
);
2471 * Swap in a new table, returning the old one for the caller to destroy.
2473 struct dm_table
*dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
2475 struct dm_table
*live_map
= NULL
, *map
= ERR_PTR(-EINVAL
);
2476 struct queue_limits limits
;
2479 mutex_lock(&md
->suspend_lock
);
2481 /* device must be suspended */
2482 if (!dm_suspended_md(md
))
2486 * If the new table has no data devices, retain the existing limits.
2487 * This helps multipath with queue_if_no_path if all paths disappear,
2488 * then new I/O is queued based on these limits, and then some paths
2491 if (dm_table_has_no_data_devices(table
)) {
2492 live_map
= dm_get_live_table_fast(md
);
2494 limits
= md
->queue
->limits
;
2495 dm_put_live_table_fast(md
);
2499 r
= dm_calculate_queue_limits(table
, &limits
);
2506 map
= __bind(md
, table
, &limits
);
2507 dm_issue_global_event();
2510 mutex_unlock(&md
->suspend_lock
);
2515 * Functions to lock and unlock any filesystem running on the
2518 static int lock_fs(struct mapped_device
*md
)
2522 WARN_ON(md
->frozen_sb
);
2524 md
->frozen_sb
= freeze_bdev(md
->bdev
);
2525 if (IS_ERR(md
->frozen_sb
)) {
2526 r
= PTR_ERR(md
->frozen_sb
);
2527 md
->frozen_sb
= NULL
;
2531 set_bit(DMF_FROZEN
, &md
->flags
);
2536 static void unlock_fs(struct mapped_device
*md
)
2538 if (!test_bit(DMF_FROZEN
, &md
->flags
))
2541 thaw_bdev(md
->bdev
, md
->frozen_sb
);
2542 md
->frozen_sb
= NULL
;
2543 clear_bit(DMF_FROZEN
, &md
->flags
);
2547 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2548 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2549 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2551 * If __dm_suspend returns 0, the device is completely quiescent
2552 * now. There is no request-processing activity. All new requests
2553 * are being added to md->deferred list.
2555 static int __dm_suspend(struct mapped_device
*md
, struct dm_table
*map
,
2556 unsigned suspend_flags
, long task_state
,
2557 int dmf_suspended_flag
)
2559 bool do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
;
2560 bool noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
;
2563 lockdep_assert_held(&md
->suspend_lock
);
2566 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2567 * This flag is cleared before dm_suspend returns.
2570 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2572 DMDEBUG("%s: suspending with flush", dm_device_name(md
));
2575 * This gets reverted if there's an error later and the targets
2576 * provide the .presuspend_undo hook.
2578 dm_table_presuspend_targets(map
);
2581 * Flush I/O to the device.
2582 * Any I/O submitted after lock_fs() may not be flushed.
2583 * noflush takes precedence over do_lockfs.
2584 * (lock_fs() flushes I/Os and waits for them to complete.)
2586 if (!noflush
&& do_lockfs
) {
2589 dm_table_presuspend_undo_targets(map
);
2595 * Here we must make sure that no processes are submitting requests
2596 * to target drivers i.e. no one may be executing
2597 * __split_and_process_bio. This is called from dm_request and
2600 * To get all processes out of __split_and_process_bio in dm_request,
2601 * we take the write lock. To prevent any process from reentering
2602 * __split_and_process_bio from dm_request and quiesce the thread
2603 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2604 * flush_workqueue(md->wq).
2606 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2608 synchronize_srcu(&md
->io_barrier
);
2611 * Stop md->queue before flushing md->wq in case request-based
2612 * dm defers requests to md->wq from md->queue.
2614 if (dm_request_based(md
))
2615 dm_stop_queue(md
->queue
);
2617 flush_workqueue(md
->wq
);
2620 * At this point no more requests are entering target request routines.
2621 * We call dm_wait_for_completion to wait for all existing requests
2624 r
= dm_wait_for_completion(md
, task_state
);
2626 set_bit(dmf_suspended_flag
, &md
->flags
);
2629 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
2631 synchronize_srcu(&md
->io_barrier
);
2633 /* were we interrupted ? */
2637 if (dm_request_based(md
))
2638 dm_start_queue(md
->queue
);
2641 dm_table_presuspend_undo_targets(map
);
2642 /* pushback list is already flushed, so skip flush */
2649 * We need to be able to change a mapping table under a mounted
2650 * filesystem. For example we might want to move some data in
2651 * the background. Before the table can be swapped with
2652 * dm_bind_table, dm_suspend must be called to flush any in
2653 * flight bios and ensure that any further io gets deferred.
2656 * Suspend mechanism in request-based dm.
2658 * 1. Flush all I/Os by lock_fs() if needed.
2659 * 2. Stop dispatching any I/O by stopping the request_queue.
2660 * 3. Wait for all in-flight I/Os to be completed or requeued.
2662 * To abort suspend, start the request_queue.
2664 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2666 struct dm_table
*map
= NULL
;
2670 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
2672 if (dm_suspended_md(md
)) {
2677 if (dm_suspended_internally_md(md
)) {
2678 /* already internally suspended, wait for internal resume */
2679 mutex_unlock(&md
->suspend_lock
);
2680 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
2686 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2688 r
= __dm_suspend(md
, map
, suspend_flags
, TASK_INTERRUPTIBLE
, DMF_SUSPENDED
);
2692 set_bit(DMF_POST_SUSPENDING
, &md
->flags
);
2693 dm_table_postsuspend_targets(map
);
2694 clear_bit(DMF_POST_SUSPENDING
, &md
->flags
);
2697 mutex_unlock(&md
->suspend_lock
);
2701 static int __dm_resume(struct mapped_device
*md
, struct dm_table
*map
)
2704 int r
= dm_table_resume_targets(map
);
2712 * Flushing deferred I/Os must be done after targets are resumed
2713 * so that mapping of targets can work correctly.
2714 * Request-based dm is queueing the deferred I/Os in its request_queue.
2716 if (dm_request_based(md
))
2717 dm_start_queue(md
->queue
);
2724 int dm_resume(struct mapped_device
*md
)
2727 struct dm_table
*map
= NULL
;
2731 mutex_lock_nested(&md
->suspend_lock
, SINGLE_DEPTH_NESTING
);
2733 if (!dm_suspended_md(md
))
2736 if (dm_suspended_internally_md(md
)) {
2737 /* already internally suspended, wait for internal resume */
2738 mutex_unlock(&md
->suspend_lock
);
2739 r
= wait_on_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
, TASK_INTERRUPTIBLE
);
2745 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2746 if (!map
|| !dm_table_get_size(map
))
2749 r
= __dm_resume(md
, map
);
2753 clear_bit(DMF_SUSPENDED
, &md
->flags
);
2755 mutex_unlock(&md
->suspend_lock
);
2761 * Internal suspend/resume works like userspace-driven suspend. It waits
2762 * until all bios finish and prevents issuing new bios to the target drivers.
2763 * It may be used only from the kernel.
2766 static void __dm_internal_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
2768 struct dm_table
*map
= NULL
;
2770 lockdep_assert_held(&md
->suspend_lock
);
2772 if (md
->internal_suspend_count
++)
2773 return; /* nested internal suspend */
2775 if (dm_suspended_md(md
)) {
2776 set_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2777 return; /* nest suspend */
2780 map
= rcu_dereference_protected(md
->map
, lockdep_is_held(&md
->suspend_lock
));
2783 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2784 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2785 * would require changing .presuspend to return an error -- avoid this
2786 * until there is a need for more elaborate variants of internal suspend.
2788 (void) __dm_suspend(md
, map
, suspend_flags
, TASK_UNINTERRUPTIBLE
,
2789 DMF_SUSPENDED_INTERNALLY
);
2791 set_bit(DMF_POST_SUSPENDING
, &md
->flags
);
2792 dm_table_postsuspend_targets(map
);
2793 clear_bit(DMF_POST_SUSPENDING
, &md
->flags
);
2796 static void __dm_internal_resume(struct mapped_device
*md
)
2798 BUG_ON(!md
->internal_suspend_count
);
2800 if (--md
->internal_suspend_count
)
2801 return; /* resume from nested internal suspend */
2803 if (dm_suspended_md(md
))
2804 goto done
; /* resume from nested suspend */
2807 * NOTE: existing callers don't need to call dm_table_resume_targets
2808 * (which may fail -- so best to avoid it for now by passing NULL map)
2810 (void) __dm_resume(md
, NULL
);
2813 clear_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2814 smp_mb__after_atomic();
2815 wake_up_bit(&md
->flags
, DMF_SUSPENDED_INTERNALLY
);
2818 void dm_internal_suspend_noflush(struct mapped_device
*md
)
2820 mutex_lock(&md
->suspend_lock
);
2821 __dm_internal_suspend(md
, DM_SUSPEND_NOFLUSH_FLAG
);
2822 mutex_unlock(&md
->suspend_lock
);
2824 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush
);
2826 void dm_internal_resume(struct mapped_device
*md
)
2828 mutex_lock(&md
->suspend_lock
);
2829 __dm_internal_resume(md
);
2830 mutex_unlock(&md
->suspend_lock
);
2832 EXPORT_SYMBOL_GPL(dm_internal_resume
);
2835 * Fast variants of internal suspend/resume hold md->suspend_lock,
2836 * which prevents interaction with userspace-driven suspend.
2839 void dm_internal_suspend_fast(struct mapped_device
*md
)
2841 mutex_lock(&md
->suspend_lock
);
2842 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
2845 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
2846 synchronize_srcu(&md
->io_barrier
);
2847 flush_workqueue(md
->wq
);
2848 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
2850 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast
);
2852 void dm_internal_resume_fast(struct mapped_device
*md
)
2854 if (dm_suspended_md(md
) || dm_suspended_internally_md(md
))
2860 mutex_unlock(&md
->suspend_lock
);
2862 EXPORT_SYMBOL_GPL(dm_internal_resume_fast
);
2864 /*-----------------------------------------------------------------
2865 * Event notification.
2866 *---------------------------------------------------------------*/
2867 int dm_kobject_uevent(struct mapped_device
*md
, enum kobject_action action
,
2872 char udev_cookie
[DM_COOKIE_LENGTH
];
2873 char *envp
[] = { udev_cookie
, NULL
};
2875 noio_flag
= memalloc_noio_save();
2878 r
= kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, action
);
2880 snprintf(udev_cookie
, DM_COOKIE_LENGTH
, "%s=%u",
2881 DM_COOKIE_ENV_VAR_NAME
, cookie
);
2882 r
= kobject_uevent_env(&disk_to_dev(md
->disk
)->kobj
,
2886 memalloc_noio_restore(noio_flag
);
2891 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
2893 return atomic_add_return(1, &md
->uevent_seq
);
2896 uint32_t dm_get_event_nr(struct mapped_device
*md
)
2898 return atomic_read(&md
->event_nr
);
2901 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
2903 return wait_event_interruptible(md
->eventq
,
2904 (event_nr
!= atomic_read(&md
->event_nr
)));
2907 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
2909 unsigned long flags
;
2911 spin_lock_irqsave(&md
->uevent_lock
, flags
);
2912 list_add(elist
, &md
->uevent_list
);
2913 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
2917 * The gendisk is only valid as long as you have a reference
2920 struct gendisk
*dm_disk(struct mapped_device
*md
)
2924 EXPORT_SYMBOL_GPL(dm_disk
);
2926 struct kobject
*dm_kobject(struct mapped_device
*md
)
2928 return &md
->kobj_holder
.kobj
;
2931 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
2933 struct mapped_device
*md
;
2935 md
= container_of(kobj
, struct mapped_device
, kobj_holder
.kobj
);
2937 spin_lock(&_minor_lock
);
2938 if (test_bit(DMF_FREEING
, &md
->flags
) || dm_deleting_md(md
)) {
2944 spin_unlock(&_minor_lock
);
2949 int dm_suspended_md(struct mapped_device
*md
)
2951 return test_bit(DMF_SUSPENDED
, &md
->flags
);
2954 static int dm_post_suspending_md(struct mapped_device
*md
)
2956 return test_bit(DMF_POST_SUSPENDING
, &md
->flags
);
2959 int dm_suspended_internally_md(struct mapped_device
*md
)
2961 return test_bit(DMF_SUSPENDED_INTERNALLY
, &md
->flags
);
2964 int dm_test_deferred_remove_flag(struct mapped_device
*md
)
2966 return test_bit(DMF_DEFERRED_REMOVE
, &md
->flags
);
2969 int dm_suspended(struct dm_target
*ti
)
2971 return dm_suspended_md(dm_table_get_md(ti
->table
));
2973 EXPORT_SYMBOL_GPL(dm_suspended
);
2975 int dm_post_suspending(struct dm_target
*ti
)
2977 return dm_post_suspending_md(dm_table_get_md(ti
->table
));
2979 EXPORT_SYMBOL_GPL(dm_post_suspending
);
2981 int dm_noflush_suspending(struct dm_target
*ti
)
2983 return __noflush_suspending(dm_table_get_md(ti
->table
));
2985 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
2987 struct dm_md_mempools
*dm_alloc_md_mempools(struct mapped_device
*md
, enum dm_queue_mode type
,
2988 unsigned integrity
, unsigned per_io_data_size
,
2989 unsigned min_pool_size
)
2991 struct dm_md_mempools
*pools
= kzalloc_node(sizeof(*pools
), GFP_KERNEL
, md
->numa_node_id
);
2992 unsigned int pool_size
= 0;
2993 unsigned int front_pad
, io_front_pad
;
3000 case DM_TYPE_BIO_BASED
:
3001 case DM_TYPE_DAX_BIO_BASED
:
3002 case DM_TYPE_NVME_BIO_BASED
:
3003 pool_size
= max(dm_get_reserved_bio_based_ios(), min_pool_size
);
3004 front_pad
= roundup(per_io_data_size
, __alignof__(struct dm_target_io
)) + offsetof(struct dm_target_io
, clone
);
3005 io_front_pad
= roundup(front_pad
, __alignof__(struct dm_io
)) + offsetof(struct dm_io
, tio
);
3006 ret
= bioset_init(&pools
->io_bs
, pool_size
, io_front_pad
, 0);
3009 if (integrity
&& bioset_integrity_create(&pools
->io_bs
, pool_size
))
3012 case DM_TYPE_REQUEST_BASED
:
3013 pool_size
= max(dm_get_reserved_rq_based_ios(), min_pool_size
);
3014 front_pad
= offsetof(struct dm_rq_clone_bio_info
, clone
);
3015 /* per_io_data_size is used for blk-mq pdu at queue allocation */
3021 ret
= bioset_init(&pools
->bs
, pool_size
, front_pad
, 0);
3025 if (integrity
&& bioset_integrity_create(&pools
->bs
, pool_size
))
3031 dm_free_md_mempools(pools
);
3036 void dm_free_md_mempools(struct dm_md_mempools
*pools
)
3041 bioset_exit(&pools
->bs
);
3042 bioset_exit(&pools
->io_bs
);
3054 static int dm_call_pr(struct block_device
*bdev
, iterate_devices_callout_fn fn
,
3057 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3058 struct dm_table
*table
;
3059 struct dm_target
*ti
;
3060 int ret
= -ENOTTY
, srcu_idx
;
3062 table
= dm_get_live_table(md
, &srcu_idx
);
3063 if (!table
|| !dm_table_get_size(table
))
3066 /* We only support devices that have a single target */
3067 if (dm_table_get_num_targets(table
) != 1)
3069 ti
= dm_table_get_target(table
, 0);
3072 if (!ti
->type
->iterate_devices
)
3075 ret
= ti
->type
->iterate_devices(ti
, fn
, data
);
3077 dm_put_live_table(md
, srcu_idx
);
3082 * For register / unregister we need to manually call out to every path.
3084 static int __dm_pr_register(struct dm_target
*ti
, struct dm_dev
*dev
,
3085 sector_t start
, sector_t len
, void *data
)
3087 struct dm_pr
*pr
= data
;
3088 const struct pr_ops
*ops
= dev
->bdev
->bd_disk
->fops
->pr_ops
;
3090 if (!ops
|| !ops
->pr_register
)
3092 return ops
->pr_register(dev
->bdev
, pr
->old_key
, pr
->new_key
, pr
->flags
);
3095 static int dm_pr_register(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
3106 ret
= dm_call_pr(bdev
, __dm_pr_register
, &pr
);
3107 if (ret
&& new_key
) {
3108 /* unregister all paths if we failed to register any path */
3109 pr
.old_key
= new_key
;
3112 pr
.fail_early
= false;
3113 dm_call_pr(bdev
, __dm_pr_register
, &pr
);
3119 static int dm_pr_reserve(struct block_device
*bdev
, u64 key
, enum pr_type type
,
3122 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3123 const struct pr_ops
*ops
;
3126 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3130 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3131 if (ops
&& ops
->pr_reserve
)
3132 r
= ops
->pr_reserve(bdev
, key
, type
, flags
);
3136 dm_unprepare_ioctl(md
, srcu_idx
);
3140 static int dm_pr_release(struct block_device
*bdev
, u64 key
, enum pr_type type
)
3142 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3143 const struct pr_ops
*ops
;
3146 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3150 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3151 if (ops
&& ops
->pr_release
)
3152 r
= ops
->pr_release(bdev
, key
, type
);
3156 dm_unprepare_ioctl(md
, srcu_idx
);
3160 static int dm_pr_preempt(struct block_device
*bdev
, u64 old_key
, u64 new_key
,
3161 enum pr_type type
, bool abort
)
3163 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3164 const struct pr_ops
*ops
;
3167 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3171 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3172 if (ops
&& ops
->pr_preempt
)
3173 r
= ops
->pr_preempt(bdev
, old_key
, new_key
, type
, abort
);
3177 dm_unprepare_ioctl(md
, srcu_idx
);
3181 static int dm_pr_clear(struct block_device
*bdev
, u64 key
)
3183 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
3184 const struct pr_ops
*ops
;
3187 r
= dm_prepare_ioctl(md
, &srcu_idx
, &bdev
);
3191 ops
= bdev
->bd_disk
->fops
->pr_ops
;
3192 if (ops
&& ops
->pr_clear
)
3193 r
= ops
->pr_clear(bdev
, key
);
3197 dm_unprepare_ioctl(md
, srcu_idx
);
3201 static const struct pr_ops dm_pr_ops
= {
3202 .pr_register
= dm_pr_register
,
3203 .pr_reserve
= dm_pr_reserve
,
3204 .pr_release
= dm_pr_release
,
3205 .pr_preempt
= dm_pr_preempt
,
3206 .pr_clear
= dm_pr_clear
,
3209 static const struct block_device_operations dm_blk_dops
= {
3210 .submit_bio
= dm_submit_bio
,
3211 .open
= dm_blk_open
,
3212 .release
= dm_blk_close
,
3213 .ioctl
= dm_blk_ioctl
,
3214 .getgeo
= dm_blk_getgeo
,
3215 .report_zones
= dm_blk_report_zones
,
3216 .pr_ops
= &dm_pr_ops
,
3217 .owner
= THIS_MODULE
3220 static const struct block_device_operations dm_rq_blk_dops
= {
3221 .open
= dm_blk_open
,
3222 .release
= dm_blk_close
,
3223 .ioctl
= dm_blk_ioctl
,
3224 .getgeo
= dm_blk_getgeo
,
3225 .pr_ops
= &dm_pr_ops
,
3226 .owner
= THIS_MODULE
3229 static const struct dax_operations dm_dax_ops
= {
3230 .direct_access
= dm_dax_direct_access
,
3231 .dax_supported
= dm_dax_supported
,
3232 .copy_from_iter
= dm_dax_copy_from_iter
,
3233 .copy_to_iter
= dm_dax_copy_to_iter
,
3234 .zero_page_range
= dm_dax_zero_page_range
,
3240 module_init(dm_init
);
3241 module_exit(dm_exit
);
3243 module_param(major
, uint
, 0);
3244 MODULE_PARM_DESC(major
, "The major number of the device mapper");
3246 module_param(reserved_bio_based_ios
, uint
, S_IRUGO
| S_IWUSR
);
3247 MODULE_PARM_DESC(reserved_bio_based_ios
, "Reserved IOs in bio-based mempools");
3249 module_param(dm_numa_node
, int, S_IRUGO
| S_IWUSR
);
3250 MODULE_PARM_DESC(dm_numa_node
, "NUMA node for DM device memory allocations");
3252 MODULE_DESCRIPTION(DM_NAME
" driver");
3253 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3254 MODULE_LICENSE("GPL");