Linux 5.9.7
[linux/fpc-iii.git] / drivers / md / dm.c
blob9b005e144014f0a234ae9e398a7d8bf6e384fbb3
1 /*
2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm-core.h"
9 #include "dm-rq.h"
10 #include "dm-uevent.h"
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/mutex.h>
15 #include <linux/sched/mm.h>
16 #include <linux/sched/signal.h>
17 #include <linux/blkpg.h>
18 #include <linux/bio.h>
19 #include <linux/mempool.h>
20 #include <linux/dax.h>
21 #include <linux/slab.h>
22 #include <linux/idr.h>
23 #include <linux/uio.h>
24 #include <linux/hdreg.h>
25 #include <linux/delay.h>
26 #include <linux/wait.h>
27 #include <linux/pr.h>
28 #include <linux/refcount.h>
29 #include <linux/part_stat.h>
30 #include <linux/blk-crypto.h>
32 #define DM_MSG_PREFIX "core"
35 * Cookies are numeric values sent with CHANGE and REMOVE
36 * uevents while resuming, removing or renaming the device.
38 #define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
39 #define DM_COOKIE_LENGTH 24
41 static const char *_name = DM_NAME;
43 static unsigned int major = 0;
44 static unsigned int _major = 0;
46 static DEFINE_IDR(_minor_idr);
48 static DEFINE_SPINLOCK(_minor_lock);
50 static void do_deferred_remove(struct work_struct *w);
52 static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
54 static struct workqueue_struct *deferred_remove_workqueue;
56 atomic_t dm_global_event_nr = ATOMIC_INIT(0);
57 DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
59 void dm_issue_global_event(void)
61 atomic_inc(&dm_global_event_nr);
62 wake_up(&dm_global_eventq);
66 * One of these is allocated (on-stack) per original bio.
68 struct clone_info {
69 struct dm_table *map;
70 struct bio *bio;
71 struct dm_io *io;
72 sector_t sector;
73 unsigned sector_count;
77 * One of these is allocated per clone bio.
79 #define DM_TIO_MAGIC 7282014
80 struct dm_target_io {
81 unsigned magic;
82 struct dm_io *io;
83 struct dm_target *ti;
84 unsigned target_bio_nr;
85 unsigned *len_ptr;
86 bool inside_dm_io;
87 struct bio clone;
91 * One of these is allocated per original bio.
92 * It contains the first clone used for that original.
94 #define DM_IO_MAGIC 5191977
95 struct dm_io {
96 unsigned magic;
97 struct mapped_device *md;
98 blk_status_t status;
99 atomic_t io_count;
100 struct bio *orig_bio;
101 unsigned long start_time;
102 spinlock_t endio_lock;
103 struct dm_stats_aux stats_aux;
104 /* last member of dm_target_io is 'struct bio' */
105 struct dm_target_io tio;
108 void *dm_per_bio_data(struct bio *bio, size_t data_size)
110 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
111 if (!tio->inside_dm_io)
112 return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
113 return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
115 EXPORT_SYMBOL_GPL(dm_per_bio_data);
117 struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
119 struct dm_io *io = (struct dm_io *)((char *)data + data_size);
120 if (io->magic == DM_IO_MAGIC)
121 return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
122 BUG_ON(io->magic != DM_TIO_MAGIC);
123 return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
125 EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
127 unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
129 return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
131 EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
133 #define MINOR_ALLOCED ((void *)-1)
136 * Bits for the md->flags field.
138 #define DMF_BLOCK_IO_FOR_SUSPEND 0
139 #define DMF_SUSPENDED 1
140 #define DMF_FROZEN 2
141 #define DMF_FREEING 3
142 #define DMF_DELETING 4
143 #define DMF_NOFLUSH_SUSPENDING 5
144 #define DMF_DEFERRED_REMOVE 6
145 #define DMF_SUSPENDED_INTERNALLY 7
146 #define DMF_POST_SUSPENDING 8
148 #define DM_NUMA_NODE NUMA_NO_NODE
149 static int dm_numa_node = DM_NUMA_NODE;
152 * For mempools pre-allocation at the table loading time.
154 struct dm_md_mempools {
155 struct bio_set bs;
156 struct bio_set io_bs;
159 struct table_device {
160 struct list_head list;
161 refcount_t count;
162 struct dm_dev dm_dev;
166 * Bio-based DM's mempools' reserved IOs set by the user.
168 #define RESERVED_BIO_BASED_IOS 16
169 static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
171 static int __dm_get_module_param_int(int *module_param, int min, int max)
173 int param = READ_ONCE(*module_param);
174 int modified_param = 0;
175 bool modified = true;
177 if (param < min)
178 modified_param = min;
179 else if (param > max)
180 modified_param = max;
181 else
182 modified = false;
184 if (modified) {
185 (void)cmpxchg(module_param, param, modified_param);
186 param = modified_param;
189 return param;
192 unsigned __dm_get_module_param(unsigned *module_param,
193 unsigned def, unsigned max)
195 unsigned param = READ_ONCE(*module_param);
196 unsigned modified_param = 0;
198 if (!param)
199 modified_param = def;
200 else if (param > max)
201 modified_param = max;
203 if (modified_param) {
204 (void)cmpxchg(module_param, param, modified_param);
205 param = modified_param;
208 return param;
211 unsigned dm_get_reserved_bio_based_ios(void)
213 return __dm_get_module_param(&reserved_bio_based_ios,
214 RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
216 EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
218 static unsigned dm_get_numa_node(void)
220 return __dm_get_module_param_int(&dm_numa_node,
221 DM_NUMA_NODE, num_online_nodes() - 1);
224 static int __init local_init(void)
226 int r;
228 r = dm_uevent_init();
229 if (r)
230 return r;
232 deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
233 if (!deferred_remove_workqueue) {
234 r = -ENOMEM;
235 goto out_uevent_exit;
238 _major = major;
239 r = register_blkdev(_major, _name);
240 if (r < 0)
241 goto out_free_workqueue;
243 if (!_major)
244 _major = r;
246 return 0;
248 out_free_workqueue:
249 destroy_workqueue(deferred_remove_workqueue);
250 out_uevent_exit:
251 dm_uevent_exit();
253 return r;
256 static void local_exit(void)
258 flush_scheduled_work();
259 destroy_workqueue(deferred_remove_workqueue);
261 unregister_blkdev(_major, _name);
262 dm_uevent_exit();
264 _major = 0;
266 DMINFO("cleaned up");
269 static int (*_inits[])(void) __initdata = {
270 local_init,
271 dm_target_init,
272 dm_linear_init,
273 dm_stripe_init,
274 dm_io_init,
275 dm_kcopyd_init,
276 dm_interface_init,
277 dm_statistics_init,
280 static void (*_exits[])(void) = {
281 local_exit,
282 dm_target_exit,
283 dm_linear_exit,
284 dm_stripe_exit,
285 dm_io_exit,
286 dm_kcopyd_exit,
287 dm_interface_exit,
288 dm_statistics_exit,
291 static int __init dm_init(void)
293 const int count = ARRAY_SIZE(_inits);
295 int r, i;
297 for (i = 0; i < count; i++) {
298 r = _inits[i]();
299 if (r)
300 goto bad;
303 return 0;
305 bad:
306 while (i--)
307 _exits[i]();
309 return r;
312 static void __exit dm_exit(void)
314 int i = ARRAY_SIZE(_exits);
316 while (i--)
317 _exits[i]();
320 * Should be empty by this point.
322 idr_destroy(&_minor_idr);
326 * Block device functions
328 int dm_deleting_md(struct mapped_device *md)
330 return test_bit(DMF_DELETING, &md->flags);
333 static int dm_blk_open(struct block_device *bdev, fmode_t mode)
335 struct mapped_device *md;
337 spin_lock(&_minor_lock);
339 md = bdev->bd_disk->private_data;
340 if (!md)
341 goto out;
343 if (test_bit(DMF_FREEING, &md->flags) ||
344 dm_deleting_md(md)) {
345 md = NULL;
346 goto out;
349 dm_get(md);
350 atomic_inc(&md->open_count);
351 out:
352 spin_unlock(&_minor_lock);
354 return md ? 0 : -ENXIO;
357 static void dm_blk_close(struct gendisk *disk, fmode_t mode)
359 struct mapped_device *md;
361 spin_lock(&_minor_lock);
363 md = disk->private_data;
364 if (WARN_ON(!md))
365 goto out;
367 if (atomic_dec_and_test(&md->open_count) &&
368 (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
369 queue_work(deferred_remove_workqueue, &deferred_remove_work);
371 dm_put(md);
372 out:
373 spin_unlock(&_minor_lock);
376 int dm_open_count(struct mapped_device *md)
378 return atomic_read(&md->open_count);
382 * Guarantees nothing is using the device before it's deleted.
384 int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
386 int r = 0;
388 spin_lock(&_minor_lock);
390 if (dm_open_count(md)) {
391 r = -EBUSY;
392 if (mark_deferred)
393 set_bit(DMF_DEFERRED_REMOVE, &md->flags);
394 } else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
395 r = -EEXIST;
396 else
397 set_bit(DMF_DELETING, &md->flags);
399 spin_unlock(&_minor_lock);
401 return r;
404 int dm_cancel_deferred_remove(struct mapped_device *md)
406 int r = 0;
408 spin_lock(&_minor_lock);
410 if (test_bit(DMF_DELETING, &md->flags))
411 r = -EBUSY;
412 else
413 clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
415 spin_unlock(&_minor_lock);
417 return r;
420 static void do_deferred_remove(struct work_struct *w)
422 dm_deferred_remove();
425 sector_t dm_get_size(struct mapped_device *md)
427 return get_capacity(md->disk);
430 struct request_queue *dm_get_md_queue(struct mapped_device *md)
432 return md->queue;
435 struct dm_stats *dm_get_stats(struct mapped_device *md)
437 return &md->stats;
440 static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
442 struct mapped_device *md = bdev->bd_disk->private_data;
444 return dm_get_geometry(md, geo);
447 #ifdef CONFIG_BLK_DEV_ZONED
448 int dm_report_zones_cb(struct blk_zone *zone, unsigned int idx, void *data)
450 struct dm_report_zones_args *args = data;
451 sector_t sector_diff = args->tgt->begin - args->start;
454 * Ignore zones beyond the target range.
456 if (zone->start >= args->start + args->tgt->len)
457 return 0;
460 * Remap the start sector and write pointer position of the zone
461 * to match its position in the target range.
463 zone->start += sector_diff;
464 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) {
465 if (zone->cond == BLK_ZONE_COND_FULL)
466 zone->wp = zone->start + zone->len;
467 else if (zone->cond == BLK_ZONE_COND_EMPTY)
468 zone->wp = zone->start;
469 else
470 zone->wp += sector_diff;
473 args->next_sector = zone->start + zone->len;
474 return args->orig_cb(zone, args->zone_idx++, args->orig_data);
476 EXPORT_SYMBOL_GPL(dm_report_zones_cb);
478 static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
479 unsigned int nr_zones, report_zones_cb cb, void *data)
481 struct mapped_device *md = disk->private_data;
482 struct dm_table *map;
483 int srcu_idx, ret;
484 struct dm_report_zones_args args = {
485 .next_sector = sector,
486 .orig_data = data,
487 .orig_cb = cb,
490 if (dm_suspended_md(md))
491 return -EAGAIN;
493 map = dm_get_live_table(md, &srcu_idx);
494 if (!map)
495 return -EIO;
497 do {
498 struct dm_target *tgt;
500 tgt = dm_table_find_target(map, args.next_sector);
501 if (WARN_ON_ONCE(!tgt->type->report_zones)) {
502 ret = -EIO;
503 goto out;
506 args.tgt = tgt;
507 ret = tgt->type->report_zones(tgt, &args,
508 nr_zones - args.zone_idx);
509 if (ret < 0)
510 goto out;
511 } while (args.zone_idx < nr_zones &&
512 args.next_sector < get_capacity(disk));
514 ret = args.zone_idx;
515 out:
516 dm_put_live_table(md, srcu_idx);
517 return ret;
519 #else
520 #define dm_blk_report_zones NULL
521 #endif /* CONFIG_BLK_DEV_ZONED */
523 static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
524 struct block_device **bdev)
525 __acquires(md->io_barrier)
527 struct dm_target *tgt;
528 struct dm_table *map;
529 int r;
531 retry:
532 r = -ENOTTY;
533 map = dm_get_live_table(md, srcu_idx);
534 if (!map || !dm_table_get_size(map))
535 return r;
537 /* We only support devices that have a single target */
538 if (dm_table_get_num_targets(map) != 1)
539 return r;
541 tgt = dm_table_get_target(map, 0);
542 if (!tgt->type->prepare_ioctl)
543 return r;
545 if (dm_suspended_md(md))
546 return -EAGAIN;
548 r = tgt->type->prepare_ioctl(tgt, bdev);
549 if (r == -ENOTCONN && !fatal_signal_pending(current)) {
550 dm_put_live_table(md, *srcu_idx);
551 msleep(10);
552 goto retry;
555 return r;
558 static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
559 __releases(md->io_barrier)
561 dm_put_live_table(md, srcu_idx);
564 static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
565 unsigned int cmd, unsigned long arg)
567 struct mapped_device *md = bdev->bd_disk->private_data;
568 int r, srcu_idx;
570 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
571 if (r < 0)
572 goto out;
574 if (r > 0) {
576 * Target determined this ioctl is being issued against a
577 * subset of the parent bdev; require extra privileges.
579 if (!capable(CAP_SYS_RAWIO)) {
580 DMWARN_LIMIT(
581 "%s: sending ioctl %x to DM device without required privilege.",
582 current->comm, cmd);
583 r = -ENOIOCTLCMD;
584 goto out;
588 r = __blkdev_driver_ioctl(bdev, mode, cmd, arg);
589 out:
590 dm_unprepare_ioctl(md, srcu_idx);
591 return r;
594 static void start_io_acct(struct dm_io *io);
596 static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
598 struct dm_io *io;
599 struct dm_target_io *tio;
600 struct bio *clone;
602 clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
603 if (!clone)
604 return NULL;
606 tio = container_of(clone, struct dm_target_io, clone);
607 tio->inside_dm_io = true;
608 tio->io = NULL;
610 io = container_of(tio, struct dm_io, tio);
611 io->magic = DM_IO_MAGIC;
612 io->status = 0;
613 atomic_set(&io->io_count, 1);
614 io->orig_bio = bio;
615 io->md = md;
616 spin_lock_init(&io->endio_lock);
618 start_io_acct(io);
620 return io;
623 static void free_io(struct mapped_device *md, struct dm_io *io)
625 bio_put(&io->tio.clone);
628 static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
629 unsigned target_bio_nr, gfp_t gfp_mask)
631 struct dm_target_io *tio;
633 if (!ci->io->tio.io) {
634 /* the dm_target_io embedded in ci->io is available */
635 tio = &ci->io->tio;
636 } else {
637 struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
638 if (!clone)
639 return NULL;
641 tio = container_of(clone, struct dm_target_io, clone);
642 tio->inside_dm_io = false;
645 tio->magic = DM_TIO_MAGIC;
646 tio->io = ci->io;
647 tio->ti = ti;
648 tio->target_bio_nr = target_bio_nr;
650 return tio;
653 static void free_tio(struct dm_target_io *tio)
655 if (tio->inside_dm_io)
656 return;
657 bio_put(&tio->clone);
660 u64 dm_start_time_ns_from_clone(struct bio *bio)
662 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
663 struct dm_io *io = tio->io;
665 return jiffies_to_nsecs(io->start_time);
667 EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
669 static void start_io_acct(struct dm_io *io)
671 struct mapped_device *md = io->md;
672 struct bio *bio = io->orig_bio;
674 io->start_time = bio_start_io_acct(bio);
675 if (unlikely(dm_stats_used(&md->stats)))
676 dm_stats_account_io(&md->stats, bio_data_dir(bio),
677 bio->bi_iter.bi_sector, bio_sectors(bio),
678 false, 0, &io->stats_aux);
681 static void end_io_acct(struct dm_io *io)
683 struct mapped_device *md = io->md;
684 struct bio *bio = io->orig_bio;
685 unsigned long duration = jiffies - io->start_time;
687 bio_end_io_acct(bio, io->start_time);
689 if (unlikely(dm_stats_used(&md->stats)))
690 dm_stats_account_io(&md->stats, bio_data_dir(bio),
691 bio->bi_iter.bi_sector, bio_sectors(bio),
692 true, duration, &io->stats_aux);
694 /* nudge anyone waiting on suspend queue */
695 if (unlikely(wq_has_sleeper(&md->wait)))
696 wake_up(&md->wait);
700 * Add the bio to the list of deferred io.
702 static void queue_io(struct mapped_device *md, struct bio *bio)
704 unsigned long flags;
706 spin_lock_irqsave(&md->deferred_lock, flags);
707 bio_list_add(&md->deferred, bio);
708 spin_unlock_irqrestore(&md->deferred_lock, flags);
709 queue_work(md->wq, &md->work);
713 * Everyone (including functions in this file), should use this
714 * function to access the md->map field, and make sure they call
715 * dm_put_live_table() when finished.
717 struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
719 *srcu_idx = srcu_read_lock(&md->io_barrier);
721 return srcu_dereference(md->map, &md->io_barrier);
724 void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
726 srcu_read_unlock(&md->io_barrier, srcu_idx);
729 void dm_sync_table(struct mapped_device *md)
731 synchronize_srcu(&md->io_barrier);
732 synchronize_rcu_expedited();
736 * A fast alternative to dm_get_live_table/dm_put_live_table.
737 * The caller must not block between these two functions.
739 static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
741 rcu_read_lock();
742 return rcu_dereference(md->map);
745 static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
747 rcu_read_unlock();
750 static char *_dm_claim_ptr = "I belong to device-mapper";
753 * Open a table device so we can use it as a map destination.
755 static int open_table_device(struct table_device *td, dev_t dev,
756 struct mapped_device *md)
758 struct block_device *bdev;
760 int r;
762 BUG_ON(td->dm_dev.bdev);
764 bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
765 if (IS_ERR(bdev))
766 return PTR_ERR(bdev);
768 r = bd_link_disk_holder(bdev, dm_disk(md));
769 if (r) {
770 blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
771 return r;
774 td->dm_dev.bdev = bdev;
775 td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
776 return 0;
780 * Close a table device that we've been using.
782 static void close_table_device(struct table_device *td, struct mapped_device *md)
784 if (!td->dm_dev.bdev)
785 return;
787 bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
788 blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
789 put_dax(td->dm_dev.dax_dev);
790 td->dm_dev.bdev = NULL;
791 td->dm_dev.dax_dev = NULL;
794 static struct table_device *find_table_device(struct list_head *l, dev_t dev,
795 fmode_t mode)
797 struct table_device *td;
799 list_for_each_entry(td, l, list)
800 if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
801 return td;
803 return NULL;
806 int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
807 struct dm_dev **result)
809 int r;
810 struct table_device *td;
812 mutex_lock(&md->table_devices_lock);
813 td = find_table_device(&md->table_devices, dev, mode);
814 if (!td) {
815 td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
816 if (!td) {
817 mutex_unlock(&md->table_devices_lock);
818 return -ENOMEM;
821 td->dm_dev.mode = mode;
822 td->dm_dev.bdev = NULL;
824 if ((r = open_table_device(td, dev, md))) {
825 mutex_unlock(&md->table_devices_lock);
826 kfree(td);
827 return r;
830 format_dev_t(td->dm_dev.name, dev);
832 refcount_set(&td->count, 1);
833 list_add(&td->list, &md->table_devices);
834 } else {
835 refcount_inc(&td->count);
837 mutex_unlock(&md->table_devices_lock);
839 *result = &td->dm_dev;
840 return 0;
842 EXPORT_SYMBOL_GPL(dm_get_table_device);
844 void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
846 struct table_device *td = container_of(d, struct table_device, dm_dev);
848 mutex_lock(&md->table_devices_lock);
849 if (refcount_dec_and_test(&td->count)) {
850 close_table_device(td, md);
851 list_del(&td->list);
852 kfree(td);
854 mutex_unlock(&md->table_devices_lock);
856 EXPORT_SYMBOL(dm_put_table_device);
858 static void free_table_devices(struct list_head *devices)
860 struct list_head *tmp, *next;
862 list_for_each_safe(tmp, next, devices) {
863 struct table_device *td = list_entry(tmp, struct table_device, list);
865 DMWARN("dm_destroy: %s still exists with %d references",
866 td->dm_dev.name, refcount_read(&td->count));
867 kfree(td);
872 * Get the geometry associated with a dm device
874 int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
876 *geo = md->geometry;
878 return 0;
882 * Set the geometry of a device.
884 int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
886 sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
888 if (geo->start > sz) {
889 DMWARN("Start sector is beyond the geometry limits.");
890 return -EINVAL;
893 md->geometry = *geo;
895 return 0;
898 static int __noflush_suspending(struct mapped_device *md)
900 return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
904 * Decrements the number of outstanding ios that a bio has been
905 * cloned into, completing the original io if necc.
907 static void dec_pending(struct dm_io *io, blk_status_t error)
909 unsigned long flags;
910 blk_status_t io_error;
911 struct bio *bio;
912 struct mapped_device *md = io->md;
914 /* Push-back supersedes any I/O errors */
915 if (unlikely(error)) {
916 spin_lock_irqsave(&io->endio_lock, flags);
917 if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
918 io->status = error;
919 spin_unlock_irqrestore(&io->endio_lock, flags);
922 if (atomic_dec_and_test(&io->io_count)) {
923 if (io->status == BLK_STS_DM_REQUEUE) {
925 * Target requested pushing back the I/O.
927 spin_lock_irqsave(&md->deferred_lock, flags);
928 if (__noflush_suspending(md))
929 /* NOTE early return due to BLK_STS_DM_REQUEUE below */
930 bio_list_add_head(&md->deferred, io->orig_bio);
931 else
932 /* noflush suspend was interrupted. */
933 io->status = BLK_STS_IOERR;
934 spin_unlock_irqrestore(&md->deferred_lock, flags);
937 io_error = io->status;
938 bio = io->orig_bio;
939 end_io_acct(io);
940 free_io(md, io);
942 if (io_error == BLK_STS_DM_REQUEUE)
943 return;
945 if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
947 * Preflush done for flush with data, reissue
948 * without REQ_PREFLUSH.
950 bio->bi_opf &= ~REQ_PREFLUSH;
951 queue_io(md, bio);
952 } else {
953 /* done with normal IO or empty flush */
954 if (io_error)
955 bio->bi_status = io_error;
956 bio_endio(bio);
961 void disable_discard(struct mapped_device *md)
963 struct queue_limits *limits = dm_get_queue_limits(md);
965 /* device doesn't really support DISCARD, disable it */
966 limits->max_discard_sectors = 0;
967 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
970 void disable_write_same(struct mapped_device *md)
972 struct queue_limits *limits = dm_get_queue_limits(md);
974 /* device doesn't really support WRITE SAME, disable it */
975 limits->max_write_same_sectors = 0;
978 void disable_write_zeroes(struct mapped_device *md)
980 struct queue_limits *limits = dm_get_queue_limits(md);
982 /* device doesn't really support WRITE ZEROES, disable it */
983 limits->max_write_zeroes_sectors = 0;
986 static void clone_endio(struct bio *bio)
988 blk_status_t error = bio->bi_status;
989 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
990 struct dm_io *io = tio->io;
991 struct mapped_device *md = tio->io->md;
992 dm_endio_fn endio = tio->ti->type->end_io;
993 struct bio *orig_bio = io->orig_bio;
995 if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
996 if (bio_op(bio) == REQ_OP_DISCARD &&
997 !bio->bi_disk->queue->limits.max_discard_sectors)
998 disable_discard(md);
999 else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
1000 !bio->bi_disk->queue->limits.max_write_same_sectors)
1001 disable_write_same(md);
1002 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1003 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
1004 disable_write_zeroes(md);
1008 * For zone-append bios get offset in zone of the written
1009 * sector and add that to the original bio sector pos.
1011 if (bio_op(orig_bio) == REQ_OP_ZONE_APPEND) {
1012 sector_t written_sector = bio->bi_iter.bi_sector;
1013 struct request_queue *q = orig_bio->bi_disk->queue;
1014 u64 mask = (u64)blk_queue_zone_sectors(q) - 1;
1016 orig_bio->bi_iter.bi_sector += written_sector & mask;
1019 if (endio) {
1020 int r = endio(tio->ti, bio, &error);
1021 switch (r) {
1022 case DM_ENDIO_REQUEUE:
1023 error = BLK_STS_DM_REQUEUE;
1024 fallthrough;
1025 case DM_ENDIO_DONE:
1026 break;
1027 case DM_ENDIO_INCOMPLETE:
1028 /* The target will handle the io */
1029 return;
1030 default:
1031 DMWARN("unimplemented target endio return value: %d", r);
1032 BUG();
1036 free_tio(tio);
1037 dec_pending(io, error);
1041 * Return maximum size of I/O possible at the supplied sector up to the current
1042 * target boundary.
1044 static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1046 sector_t target_offset = dm_target_offset(ti, sector);
1048 return ti->len - target_offset;
1051 static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1053 sector_t len = max_io_len_target_boundary(sector, ti);
1054 sector_t offset, max_len;
1057 * Does the target need to split even further?
1059 if (ti->max_io_len) {
1060 offset = dm_target_offset(ti, sector);
1061 if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1062 max_len = sector_div(offset, ti->max_io_len);
1063 else
1064 max_len = offset & (ti->max_io_len - 1);
1065 max_len = ti->max_io_len - max_len;
1067 if (len > max_len)
1068 len = max_len;
1071 return len;
1074 int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1076 if (len > UINT_MAX) {
1077 DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1078 (unsigned long long)len, UINT_MAX);
1079 ti->error = "Maximum size of target IO is too large";
1080 return -EINVAL;
1083 ti->max_io_len = (uint32_t) len;
1085 return 0;
1087 EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1089 static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1090 sector_t sector, int *srcu_idx)
1091 __acquires(md->io_barrier)
1093 struct dm_table *map;
1094 struct dm_target *ti;
1096 map = dm_get_live_table(md, srcu_idx);
1097 if (!map)
1098 return NULL;
1100 ti = dm_table_find_target(map, sector);
1101 if (!ti)
1102 return NULL;
1104 return ti;
1107 static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1108 long nr_pages, void **kaddr, pfn_t *pfn)
1110 struct mapped_device *md = dax_get_private(dax_dev);
1111 sector_t sector = pgoff * PAGE_SECTORS;
1112 struct dm_target *ti;
1113 long len, ret = -EIO;
1114 int srcu_idx;
1116 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1118 if (!ti)
1119 goto out;
1120 if (!ti->type->direct_access)
1121 goto out;
1122 len = max_io_len(sector, ti) / PAGE_SECTORS;
1123 if (len < 1)
1124 goto out;
1125 nr_pages = min(len, nr_pages);
1126 ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1128 out:
1129 dm_put_live_table(md, srcu_idx);
1131 return ret;
1134 static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1135 int blocksize, sector_t start, sector_t len)
1137 struct mapped_device *md = dax_get_private(dax_dev);
1138 struct dm_table *map;
1139 bool ret = false;
1140 int srcu_idx;
1142 map = dm_get_live_table(md, &srcu_idx);
1143 if (!map)
1144 goto out;
1146 ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1148 out:
1149 dm_put_live_table(md, srcu_idx);
1151 return ret;
1154 static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1155 void *addr, size_t bytes, struct iov_iter *i)
1157 struct mapped_device *md = dax_get_private(dax_dev);
1158 sector_t sector = pgoff * PAGE_SECTORS;
1159 struct dm_target *ti;
1160 long ret = 0;
1161 int srcu_idx;
1163 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1165 if (!ti)
1166 goto out;
1167 if (!ti->type->dax_copy_from_iter) {
1168 ret = copy_from_iter(addr, bytes, i);
1169 goto out;
1171 ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1172 out:
1173 dm_put_live_table(md, srcu_idx);
1175 return ret;
1178 static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1179 void *addr, size_t bytes, struct iov_iter *i)
1181 struct mapped_device *md = dax_get_private(dax_dev);
1182 sector_t sector = pgoff * PAGE_SECTORS;
1183 struct dm_target *ti;
1184 long ret = 0;
1185 int srcu_idx;
1187 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1189 if (!ti)
1190 goto out;
1191 if (!ti->type->dax_copy_to_iter) {
1192 ret = copy_to_iter(addr, bytes, i);
1193 goto out;
1195 ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1196 out:
1197 dm_put_live_table(md, srcu_idx);
1199 return ret;
1202 static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1203 size_t nr_pages)
1205 struct mapped_device *md = dax_get_private(dax_dev);
1206 sector_t sector = pgoff * PAGE_SECTORS;
1207 struct dm_target *ti;
1208 int ret = -EIO;
1209 int srcu_idx;
1211 ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1213 if (!ti)
1214 goto out;
1215 if (WARN_ON(!ti->type->dax_zero_page_range)) {
1217 * ->zero_page_range() is mandatory dax operation. If we are
1218 * here, something is wrong.
1220 dm_put_live_table(md, srcu_idx);
1221 goto out;
1223 ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1225 out:
1226 dm_put_live_table(md, srcu_idx);
1228 return ret;
1232 * A target may call dm_accept_partial_bio only from the map routine. It is
1233 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_RESET,
1234 * REQ_OP_ZONE_OPEN, REQ_OP_ZONE_CLOSE and REQ_OP_ZONE_FINISH.
1236 * dm_accept_partial_bio informs the dm that the target only wants to process
1237 * additional n_sectors sectors of the bio and the rest of the data should be
1238 * sent in a next bio.
1240 * A diagram that explains the arithmetics:
1241 * +--------------------+---------------+-------+
1242 * | 1 | 2 | 3 |
1243 * +--------------------+---------------+-------+
1245 * <-------------- *tio->len_ptr --------------->
1246 * <------- bi_size ------->
1247 * <-- n_sectors -->
1249 * Region 1 was already iterated over with bio_advance or similar function.
1250 * (it may be empty if the target doesn't use bio_advance)
1251 * Region 2 is the remaining bio size that the target wants to process.
1252 * (it may be empty if region 1 is non-empty, although there is no reason
1253 * to make it empty)
1254 * The target requires that region 3 is to be sent in the next bio.
1256 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1257 * the partially processed part (the sum of regions 1+2) must be the same for all
1258 * copies of the bio.
1260 void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1262 struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1263 unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1264 BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1265 BUG_ON(bi_size > *tio->len_ptr);
1266 BUG_ON(n_sectors > bi_size);
1267 *tio->len_ptr -= bi_size - n_sectors;
1268 bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1270 EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1272 static blk_qc_t __map_bio(struct dm_target_io *tio)
1274 int r;
1275 sector_t sector;
1276 struct bio *clone = &tio->clone;
1277 struct dm_io *io = tio->io;
1278 struct dm_target *ti = tio->ti;
1279 blk_qc_t ret = BLK_QC_T_NONE;
1281 clone->bi_end_io = clone_endio;
1284 * Map the clone. If r == 0 we don't need to do
1285 * anything, the target has assumed ownership of
1286 * this io.
1288 atomic_inc(&io->io_count);
1289 sector = clone->bi_iter.bi_sector;
1291 r = ti->type->map(ti, clone);
1292 switch (r) {
1293 case DM_MAPIO_SUBMITTED:
1294 break;
1295 case DM_MAPIO_REMAPPED:
1296 /* the bio has been remapped so dispatch it */
1297 trace_block_bio_remap(clone->bi_disk->queue, clone,
1298 bio_dev(io->orig_bio), sector);
1299 ret = submit_bio_noacct(clone);
1300 break;
1301 case DM_MAPIO_KILL:
1302 free_tio(tio);
1303 dec_pending(io, BLK_STS_IOERR);
1304 break;
1305 case DM_MAPIO_REQUEUE:
1306 free_tio(tio);
1307 dec_pending(io, BLK_STS_DM_REQUEUE);
1308 break;
1309 default:
1310 DMWARN("unimplemented target map return value: %d", r);
1311 BUG();
1314 return ret;
1317 static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1319 bio->bi_iter.bi_sector = sector;
1320 bio->bi_iter.bi_size = to_bytes(len);
1324 * Creates a bio that consists of range of complete bvecs.
1326 static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1327 sector_t sector, unsigned len)
1329 struct bio *clone = &tio->clone;
1331 __bio_clone_fast(clone, bio);
1333 bio_crypt_clone(clone, bio, GFP_NOIO);
1335 if (bio_integrity(bio)) {
1336 int r;
1338 if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1339 !dm_target_passes_integrity(tio->ti->type))) {
1340 DMWARN("%s: the target %s doesn't support integrity data.",
1341 dm_device_name(tio->io->md),
1342 tio->ti->type->name);
1343 return -EIO;
1346 r = bio_integrity_clone(clone, bio, GFP_NOIO);
1347 if (r < 0)
1348 return r;
1351 bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1352 clone->bi_iter.bi_size = to_bytes(len);
1354 if (bio_integrity(bio))
1355 bio_integrity_trim(clone);
1357 return 0;
1360 static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1361 struct dm_target *ti, unsigned num_bios)
1363 struct dm_target_io *tio;
1364 int try;
1366 if (!num_bios)
1367 return;
1369 if (num_bios == 1) {
1370 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1371 bio_list_add(blist, &tio->clone);
1372 return;
1375 for (try = 0; try < 2; try++) {
1376 int bio_nr;
1377 struct bio *bio;
1379 if (try)
1380 mutex_lock(&ci->io->md->table_devices_lock);
1381 for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1382 tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1383 if (!tio)
1384 break;
1386 bio_list_add(blist, &tio->clone);
1388 if (try)
1389 mutex_unlock(&ci->io->md->table_devices_lock);
1390 if (bio_nr == num_bios)
1391 return;
1393 while ((bio = bio_list_pop(blist))) {
1394 tio = container_of(bio, struct dm_target_io, clone);
1395 free_tio(tio);
1400 static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1401 struct dm_target_io *tio, unsigned *len)
1403 struct bio *clone = &tio->clone;
1405 tio->len_ptr = len;
1407 __bio_clone_fast(clone, ci->bio);
1408 if (len)
1409 bio_setup_sector(clone, ci->sector, *len);
1411 return __map_bio(tio);
1414 static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1415 unsigned num_bios, unsigned *len)
1417 struct bio_list blist = BIO_EMPTY_LIST;
1418 struct bio *bio;
1419 struct dm_target_io *tio;
1421 alloc_multiple_bios(&blist, ci, ti, num_bios);
1423 while ((bio = bio_list_pop(&blist))) {
1424 tio = container_of(bio, struct dm_target_io, clone);
1425 (void) __clone_and_map_simple_bio(ci, tio, len);
1429 static int __send_empty_flush(struct clone_info *ci)
1431 unsigned target_nr = 0;
1432 struct dm_target *ti;
1435 * Empty flush uses a statically initialized bio, as the base for
1436 * cloning. However, blkg association requires that a bdev is
1437 * associated with a gendisk, which doesn't happen until the bdev is
1438 * opened. So, blkg association is done at issue time of the flush
1439 * rather than when the device is created in alloc_dev().
1441 bio_set_dev(ci->bio, ci->io->md->bdev);
1443 BUG_ON(bio_has_data(ci->bio));
1444 while ((ti = dm_table_get_target(ci->map, target_nr++)))
1445 __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1446 return 0;
1449 static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1450 sector_t sector, unsigned *len)
1452 struct bio *bio = ci->bio;
1453 struct dm_target_io *tio;
1454 int r;
1456 tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1457 tio->len_ptr = len;
1458 r = clone_bio(tio, bio, sector, *len);
1459 if (r < 0) {
1460 free_tio(tio);
1461 return r;
1463 (void) __map_bio(tio);
1465 return 0;
1468 typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1470 static unsigned get_num_discard_bios(struct dm_target *ti)
1472 return ti->num_discard_bios;
1475 static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1477 return ti->num_secure_erase_bios;
1480 static unsigned get_num_write_same_bios(struct dm_target *ti)
1482 return ti->num_write_same_bios;
1485 static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
1487 return ti->num_write_zeroes_bios;
1490 static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1491 unsigned num_bios)
1493 unsigned len;
1496 * Even though the device advertised support for this type of
1497 * request, that does not mean every target supports it, and
1498 * reconfiguration might also have changed that since the
1499 * check was performed.
1501 if (!num_bios)
1502 return -EOPNOTSUPP;
1504 len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1506 __send_duplicate_bios(ci, ti, num_bios, &len);
1508 ci->sector += len;
1509 ci->sector_count -= len;
1511 return 0;
1514 static int __send_discard(struct clone_info *ci, struct dm_target *ti)
1516 return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1519 static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1521 return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1524 static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1526 return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1529 static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1531 return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1534 static bool is_abnormal_io(struct bio *bio)
1536 bool r = false;
1538 switch (bio_op(bio)) {
1539 case REQ_OP_DISCARD:
1540 case REQ_OP_SECURE_ERASE:
1541 case REQ_OP_WRITE_SAME:
1542 case REQ_OP_WRITE_ZEROES:
1543 r = true;
1544 break;
1547 return r;
1550 static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1551 int *result)
1553 struct bio *bio = ci->bio;
1555 if (bio_op(bio) == REQ_OP_DISCARD)
1556 *result = __send_discard(ci, ti);
1557 else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1558 *result = __send_secure_erase(ci, ti);
1559 else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1560 *result = __send_write_same(ci, ti);
1561 else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1562 *result = __send_write_zeroes(ci, ti);
1563 else
1564 return false;
1566 return true;
1570 * Select the correct strategy for processing a non-flush bio.
1572 static int __split_and_process_non_flush(struct clone_info *ci)
1574 struct dm_target *ti;
1575 unsigned len;
1576 int r;
1578 ti = dm_table_find_target(ci->map, ci->sector);
1579 if (!ti)
1580 return -EIO;
1582 if (__process_abnormal_io(ci, ti, &r))
1583 return r;
1585 len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
1587 r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1588 if (r < 0)
1589 return r;
1591 ci->sector += len;
1592 ci->sector_count -= len;
1594 return 0;
1597 static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1598 struct dm_table *map, struct bio *bio)
1600 ci->map = map;
1601 ci->io = alloc_io(md, bio);
1602 ci->sector = bio->bi_iter.bi_sector;
1605 #define __dm_part_stat_sub(part, field, subnd) \
1606 (part_stat_get(part, field) -= (subnd))
1609 * Entry point to split a bio into clones and submit them to the targets.
1611 static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1612 struct dm_table *map, struct bio *bio)
1614 struct clone_info ci;
1615 blk_qc_t ret = BLK_QC_T_NONE;
1616 int error = 0;
1618 init_clone_info(&ci, md, map, bio);
1620 if (bio->bi_opf & REQ_PREFLUSH) {
1621 struct bio flush_bio;
1624 * Use an on-stack bio for this, it's safe since we don't
1625 * need to reference it after submit. It's just used as
1626 * the basis for the clone(s).
1628 bio_init(&flush_bio, NULL, 0);
1629 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1630 ci.bio = &flush_bio;
1631 ci.sector_count = 0;
1632 error = __send_empty_flush(&ci);
1633 bio_uninit(ci.bio);
1634 /* dec_pending submits any data associated with flush */
1635 } else if (op_is_zone_mgmt(bio_op(bio))) {
1636 ci.bio = bio;
1637 ci.sector_count = 0;
1638 error = __split_and_process_non_flush(&ci);
1639 } else {
1640 ci.bio = bio;
1641 ci.sector_count = bio_sectors(bio);
1642 while (ci.sector_count && !error) {
1643 error = __split_and_process_non_flush(&ci);
1644 if (current->bio_list && ci.sector_count && !error) {
1646 * Remainder must be passed to submit_bio_noacct()
1647 * so that it gets handled *after* bios already submitted
1648 * have been completely processed.
1649 * We take a clone of the original to store in
1650 * ci.io->orig_bio to be used by end_io_acct() and
1651 * for dec_pending to use for completion handling.
1653 struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1654 GFP_NOIO, &md->queue->bio_split);
1655 ci.io->orig_bio = b;
1658 * Adjust IO stats for each split, otherwise upon queue
1659 * reentry there will be redundant IO accounting.
1660 * NOTE: this is a stop-gap fix, a proper fix involves
1661 * significant refactoring of DM core's bio splitting
1662 * (by eliminating DM's splitting and just using bio_split)
1664 part_stat_lock();
1665 __dm_part_stat_sub(&dm_disk(md)->part0,
1666 sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1667 part_stat_unlock();
1669 bio_chain(b, bio);
1670 trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1671 ret = submit_bio_noacct(bio);
1672 break;
1677 /* drop the extra reference count */
1678 dec_pending(ci.io, errno_to_blk_status(error));
1679 return ret;
1683 * Optimized variant of __split_and_process_bio that leverages the
1684 * fact that targets that use it do _not_ have a need to split bios.
1686 static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1687 struct bio *bio, struct dm_target *ti)
1689 struct clone_info ci;
1690 blk_qc_t ret = BLK_QC_T_NONE;
1691 int error = 0;
1693 init_clone_info(&ci, md, map, bio);
1695 if (bio->bi_opf & REQ_PREFLUSH) {
1696 struct bio flush_bio;
1699 * Use an on-stack bio for this, it's safe since we don't
1700 * need to reference it after submit. It's just used as
1701 * the basis for the clone(s).
1703 bio_init(&flush_bio, NULL, 0);
1704 flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1705 ci.bio = &flush_bio;
1706 ci.sector_count = 0;
1707 error = __send_empty_flush(&ci);
1708 bio_uninit(ci.bio);
1709 /* dec_pending submits any data associated with flush */
1710 } else {
1711 struct dm_target_io *tio;
1713 ci.bio = bio;
1714 ci.sector_count = bio_sectors(bio);
1715 if (__process_abnormal_io(&ci, ti, &error))
1716 goto out;
1718 tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1719 ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1721 out:
1722 /* drop the extra reference count */
1723 dec_pending(ci.io, errno_to_blk_status(error));
1724 return ret;
1727 static blk_qc_t dm_process_bio(struct mapped_device *md,
1728 struct dm_table *map, struct bio *bio)
1730 blk_qc_t ret = BLK_QC_T_NONE;
1731 struct dm_target *ti = md->immutable_target;
1733 if (unlikely(!map)) {
1734 bio_io_error(bio);
1735 return ret;
1738 if (!ti) {
1739 ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1740 if (unlikely(!ti)) {
1741 bio_io_error(bio);
1742 return ret;
1747 * Use blk_queue_split() for abnormal IO (e.g. discard, writesame, etc)
1748 * otherwise associated queue_limits won't be imposed.
1750 if (is_abnormal_io(bio))
1751 blk_queue_split(&bio);
1753 if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1754 return __process_bio(md, map, bio, ti);
1755 return __split_and_process_bio(md, map, bio);
1758 static blk_qc_t dm_submit_bio(struct bio *bio)
1760 struct mapped_device *md = bio->bi_disk->private_data;
1761 blk_qc_t ret = BLK_QC_T_NONE;
1762 int srcu_idx;
1763 struct dm_table *map;
1765 map = dm_get_live_table(md, &srcu_idx);
1767 /* if we're suspended, we have to queue this io for later */
1768 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1769 dm_put_live_table(md, srcu_idx);
1771 if (!(bio->bi_opf & REQ_RAHEAD))
1772 queue_io(md, bio);
1773 else
1774 bio_io_error(bio);
1775 return ret;
1778 ret = dm_process_bio(md, map, bio);
1780 dm_put_live_table(md, srcu_idx);
1781 return ret;
1784 /*-----------------------------------------------------------------
1785 * An IDR is used to keep track of allocated minor numbers.
1786 *---------------------------------------------------------------*/
1787 static void free_minor(int minor)
1789 spin_lock(&_minor_lock);
1790 idr_remove(&_minor_idr, minor);
1791 spin_unlock(&_minor_lock);
1795 * See if the device with a specific minor # is free.
1797 static int specific_minor(int minor)
1799 int r;
1801 if (minor >= (1 << MINORBITS))
1802 return -EINVAL;
1804 idr_preload(GFP_KERNEL);
1805 spin_lock(&_minor_lock);
1807 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1809 spin_unlock(&_minor_lock);
1810 idr_preload_end();
1811 if (r < 0)
1812 return r == -ENOSPC ? -EBUSY : r;
1813 return 0;
1816 static int next_free_minor(int *minor)
1818 int r;
1820 idr_preload(GFP_KERNEL);
1821 spin_lock(&_minor_lock);
1823 r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1825 spin_unlock(&_minor_lock);
1826 idr_preload_end();
1827 if (r < 0)
1828 return r;
1829 *minor = r;
1830 return 0;
1833 static const struct block_device_operations dm_blk_dops;
1834 static const struct block_device_operations dm_rq_blk_dops;
1835 static const struct dax_operations dm_dax_ops;
1837 static void dm_wq_work(struct work_struct *work);
1839 static void cleanup_mapped_device(struct mapped_device *md)
1841 if (md->wq)
1842 destroy_workqueue(md->wq);
1843 bioset_exit(&md->bs);
1844 bioset_exit(&md->io_bs);
1846 if (md->dax_dev) {
1847 kill_dax(md->dax_dev);
1848 put_dax(md->dax_dev);
1849 md->dax_dev = NULL;
1852 if (md->disk) {
1853 spin_lock(&_minor_lock);
1854 md->disk->private_data = NULL;
1855 spin_unlock(&_minor_lock);
1856 del_gendisk(md->disk);
1857 put_disk(md->disk);
1860 if (md->queue)
1861 blk_cleanup_queue(md->queue);
1863 cleanup_srcu_struct(&md->io_barrier);
1865 if (md->bdev) {
1866 bdput(md->bdev);
1867 md->bdev = NULL;
1870 mutex_destroy(&md->suspend_lock);
1871 mutex_destroy(&md->type_lock);
1872 mutex_destroy(&md->table_devices_lock);
1874 dm_mq_cleanup_mapped_device(md);
1878 * Allocate and initialise a blank device with a given minor.
1880 static struct mapped_device *alloc_dev(int minor)
1882 int r, numa_node_id = dm_get_numa_node();
1883 struct mapped_device *md;
1884 void *old_md;
1886 md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1887 if (!md) {
1888 DMWARN("unable to allocate device, out of memory.");
1889 return NULL;
1892 if (!try_module_get(THIS_MODULE))
1893 goto bad_module_get;
1895 /* get a minor number for the dev */
1896 if (minor == DM_ANY_MINOR)
1897 r = next_free_minor(&minor);
1898 else
1899 r = specific_minor(minor);
1900 if (r < 0)
1901 goto bad_minor;
1903 r = init_srcu_struct(&md->io_barrier);
1904 if (r < 0)
1905 goto bad_io_barrier;
1907 md->numa_node_id = numa_node_id;
1908 md->init_tio_pdu = false;
1909 md->type = DM_TYPE_NONE;
1910 mutex_init(&md->suspend_lock);
1911 mutex_init(&md->type_lock);
1912 mutex_init(&md->table_devices_lock);
1913 spin_lock_init(&md->deferred_lock);
1914 atomic_set(&md->holders, 1);
1915 atomic_set(&md->open_count, 0);
1916 atomic_set(&md->event_nr, 0);
1917 atomic_set(&md->uevent_seq, 0);
1918 INIT_LIST_HEAD(&md->uevent_list);
1919 INIT_LIST_HEAD(&md->table_devices);
1920 spin_lock_init(&md->uevent_lock);
1923 * default to bio-based until DM table is loaded and md->type
1924 * established. If request-based table is loaded: blk-mq will
1925 * override accordingly.
1927 md->queue = blk_alloc_queue(numa_node_id);
1928 if (!md->queue)
1929 goto bad;
1931 md->disk = alloc_disk_node(1, md->numa_node_id);
1932 if (!md->disk)
1933 goto bad;
1935 init_waitqueue_head(&md->wait);
1936 INIT_WORK(&md->work, dm_wq_work);
1937 init_waitqueue_head(&md->eventq);
1938 init_completion(&md->kobj_holder.completion);
1940 md->disk->major = _major;
1941 md->disk->first_minor = minor;
1942 md->disk->fops = &dm_blk_dops;
1943 md->disk->queue = md->queue;
1944 md->disk->private_data = md;
1945 sprintf(md->disk->disk_name, "dm-%d", minor);
1947 if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1948 md->dax_dev = alloc_dax(md, md->disk->disk_name,
1949 &dm_dax_ops, 0);
1950 if (IS_ERR(md->dax_dev))
1951 goto bad;
1954 add_disk_no_queue_reg(md->disk);
1955 format_dev_t(md->name, MKDEV(_major, minor));
1957 md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1958 if (!md->wq)
1959 goto bad;
1961 md->bdev = bdget_disk(md->disk, 0);
1962 if (!md->bdev)
1963 goto bad;
1965 dm_stats_init(&md->stats);
1967 /* Populate the mapping, nobody knows we exist yet */
1968 spin_lock(&_minor_lock);
1969 old_md = idr_replace(&_minor_idr, md, minor);
1970 spin_unlock(&_minor_lock);
1972 BUG_ON(old_md != MINOR_ALLOCED);
1974 return md;
1976 bad:
1977 cleanup_mapped_device(md);
1978 bad_io_barrier:
1979 free_minor(minor);
1980 bad_minor:
1981 module_put(THIS_MODULE);
1982 bad_module_get:
1983 kvfree(md);
1984 return NULL;
1987 static void unlock_fs(struct mapped_device *md);
1989 static void free_dev(struct mapped_device *md)
1991 int minor = MINOR(disk_devt(md->disk));
1993 unlock_fs(md);
1995 cleanup_mapped_device(md);
1997 free_table_devices(&md->table_devices);
1998 dm_stats_cleanup(&md->stats);
1999 free_minor(minor);
2001 module_put(THIS_MODULE);
2002 kvfree(md);
2005 static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2007 struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2008 int ret = 0;
2010 if (dm_table_bio_based(t)) {
2012 * The md may already have mempools that need changing.
2013 * If so, reload bioset because front_pad may have changed
2014 * because a different table was loaded.
2016 bioset_exit(&md->bs);
2017 bioset_exit(&md->io_bs);
2019 } else if (bioset_initialized(&md->bs)) {
2021 * There's no need to reload with request-based dm
2022 * because the size of front_pad doesn't change.
2023 * Note for future: If you are to reload bioset,
2024 * prep-ed requests in the queue may refer
2025 * to bio from the old bioset, so you must walk
2026 * through the queue to unprep.
2028 goto out;
2031 BUG_ON(!p ||
2032 bioset_initialized(&md->bs) ||
2033 bioset_initialized(&md->io_bs));
2035 ret = bioset_init_from_src(&md->bs, &p->bs);
2036 if (ret)
2037 goto out;
2038 ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2039 if (ret)
2040 bioset_exit(&md->bs);
2041 out:
2042 /* mempool bind completed, no longer need any mempools in the table */
2043 dm_table_free_md_mempools(t);
2044 return ret;
2048 * Bind a table to the device.
2050 static void event_callback(void *context)
2052 unsigned long flags;
2053 LIST_HEAD(uevents);
2054 struct mapped_device *md = (struct mapped_device *) context;
2056 spin_lock_irqsave(&md->uevent_lock, flags);
2057 list_splice_init(&md->uevent_list, &uevents);
2058 spin_unlock_irqrestore(&md->uevent_lock, flags);
2060 dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2062 atomic_inc(&md->event_nr);
2063 wake_up(&md->eventq);
2064 dm_issue_global_event();
2068 * Protected by md->suspend_lock obtained by dm_swap_table().
2070 static void __set_size(struct mapped_device *md, sector_t size)
2072 lockdep_assert_held(&md->suspend_lock);
2074 set_capacity(md->disk, size);
2076 i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2080 * Returns old map, which caller must destroy.
2082 static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2083 struct queue_limits *limits)
2085 struct dm_table *old_map;
2086 struct request_queue *q = md->queue;
2087 bool request_based = dm_table_request_based(t);
2088 sector_t size;
2089 int ret;
2091 lockdep_assert_held(&md->suspend_lock);
2093 size = dm_table_get_size(t);
2096 * Wipe any geometry if the size of the table changed.
2098 if (size != dm_get_size(md))
2099 memset(&md->geometry, 0, sizeof(md->geometry));
2101 __set_size(md, size);
2103 dm_table_event_callback(t, event_callback, md);
2106 * The queue hasn't been stopped yet, if the old table type wasn't
2107 * for request-based during suspension. So stop it to prevent
2108 * I/O mapping before resume.
2109 * This must be done before setting the queue restrictions,
2110 * because request-based dm may be run just after the setting.
2112 if (request_based)
2113 dm_stop_queue(q);
2115 if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2117 * Leverage the fact that request-based DM targets and
2118 * NVMe bio based targets are immutable singletons
2119 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2120 * and __process_bio.
2122 md->immutable_target = dm_table_get_immutable_target(t);
2125 ret = __bind_mempools(md, t);
2126 if (ret) {
2127 old_map = ERR_PTR(ret);
2128 goto out;
2131 old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2132 rcu_assign_pointer(md->map, (void *)t);
2133 md->immutable_target_type = dm_table_get_immutable_target_type(t);
2135 dm_table_set_restrictions(t, q, limits);
2136 if (old_map)
2137 dm_sync_table(md);
2139 out:
2140 return old_map;
2144 * Returns unbound table for the caller to free.
2146 static struct dm_table *__unbind(struct mapped_device *md)
2148 struct dm_table *map = rcu_dereference_protected(md->map, 1);
2150 if (!map)
2151 return NULL;
2153 dm_table_event_callback(map, NULL, NULL);
2154 RCU_INIT_POINTER(md->map, NULL);
2155 dm_sync_table(md);
2157 return map;
2161 * Constructor for a new device.
2163 int dm_create(int minor, struct mapped_device **result)
2165 int r;
2166 struct mapped_device *md;
2168 md = alloc_dev(minor);
2169 if (!md)
2170 return -ENXIO;
2172 r = dm_sysfs_init(md);
2173 if (r) {
2174 free_dev(md);
2175 return r;
2178 *result = md;
2179 return 0;
2183 * Functions to manage md->type.
2184 * All are required to hold md->type_lock.
2186 void dm_lock_md_type(struct mapped_device *md)
2188 mutex_lock(&md->type_lock);
2191 void dm_unlock_md_type(struct mapped_device *md)
2193 mutex_unlock(&md->type_lock);
2196 void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2198 BUG_ON(!mutex_is_locked(&md->type_lock));
2199 md->type = type;
2202 enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2204 return md->type;
2207 struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2209 return md->immutable_target_type;
2213 * The queue_limits are only valid as long as you have a reference
2214 * count on 'md'.
2216 struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2218 BUG_ON(!atomic_read(&md->holders));
2219 return &md->queue->limits;
2221 EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2224 * Setup the DM device's queue based on md's type
2226 int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2228 int r;
2229 struct queue_limits limits;
2230 enum dm_queue_mode type = dm_get_md_type(md);
2232 switch (type) {
2233 case DM_TYPE_REQUEST_BASED:
2234 md->disk->fops = &dm_rq_blk_dops;
2235 r = dm_mq_init_request_queue(md, t);
2236 if (r) {
2237 DMERR("Cannot initialize queue for request-based dm mapped device");
2238 return r;
2240 break;
2241 case DM_TYPE_BIO_BASED:
2242 case DM_TYPE_DAX_BIO_BASED:
2243 case DM_TYPE_NVME_BIO_BASED:
2244 break;
2245 case DM_TYPE_NONE:
2246 WARN_ON_ONCE(true);
2247 break;
2250 r = dm_calculate_queue_limits(t, &limits);
2251 if (r) {
2252 DMERR("Cannot calculate initial queue limits");
2253 return r;
2255 dm_table_set_restrictions(t, md->queue, &limits);
2256 blk_register_queue(md->disk);
2258 return 0;
2261 struct mapped_device *dm_get_md(dev_t dev)
2263 struct mapped_device *md;
2264 unsigned minor = MINOR(dev);
2266 if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2267 return NULL;
2269 spin_lock(&_minor_lock);
2271 md = idr_find(&_minor_idr, minor);
2272 if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2273 test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2274 md = NULL;
2275 goto out;
2277 dm_get(md);
2278 out:
2279 spin_unlock(&_minor_lock);
2281 return md;
2283 EXPORT_SYMBOL_GPL(dm_get_md);
2285 void *dm_get_mdptr(struct mapped_device *md)
2287 return md->interface_ptr;
2290 void dm_set_mdptr(struct mapped_device *md, void *ptr)
2292 md->interface_ptr = ptr;
2295 void dm_get(struct mapped_device *md)
2297 atomic_inc(&md->holders);
2298 BUG_ON(test_bit(DMF_FREEING, &md->flags));
2301 int dm_hold(struct mapped_device *md)
2303 spin_lock(&_minor_lock);
2304 if (test_bit(DMF_FREEING, &md->flags)) {
2305 spin_unlock(&_minor_lock);
2306 return -EBUSY;
2308 dm_get(md);
2309 spin_unlock(&_minor_lock);
2310 return 0;
2312 EXPORT_SYMBOL_GPL(dm_hold);
2314 const char *dm_device_name(struct mapped_device *md)
2316 return md->name;
2318 EXPORT_SYMBOL_GPL(dm_device_name);
2320 static void __dm_destroy(struct mapped_device *md, bool wait)
2322 struct dm_table *map;
2323 int srcu_idx;
2325 might_sleep();
2327 spin_lock(&_minor_lock);
2328 idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2329 set_bit(DMF_FREEING, &md->flags);
2330 spin_unlock(&_minor_lock);
2332 blk_set_queue_dying(md->queue);
2335 * Take suspend_lock so that presuspend and postsuspend methods
2336 * do not race with internal suspend.
2338 mutex_lock(&md->suspend_lock);
2339 map = dm_get_live_table(md, &srcu_idx);
2340 if (!dm_suspended_md(md)) {
2341 dm_table_presuspend_targets(map);
2342 set_bit(DMF_SUSPENDED, &md->flags);
2343 set_bit(DMF_POST_SUSPENDING, &md->flags);
2344 dm_table_postsuspend_targets(map);
2346 /* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2347 dm_put_live_table(md, srcu_idx);
2348 mutex_unlock(&md->suspend_lock);
2351 * Rare, but there may be I/O requests still going to complete,
2352 * for example. Wait for all references to disappear.
2353 * No one should increment the reference count of the mapped_device,
2354 * after the mapped_device state becomes DMF_FREEING.
2356 if (wait)
2357 while (atomic_read(&md->holders))
2358 msleep(1);
2359 else if (atomic_read(&md->holders))
2360 DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2361 dm_device_name(md), atomic_read(&md->holders));
2363 dm_sysfs_exit(md);
2364 dm_table_destroy(__unbind(md));
2365 free_dev(md);
2368 void dm_destroy(struct mapped_device *md)
2370 __dm_destroy(md, true);
2373 void dm_destroy_immediate(struct mapped_device *md)
2375 __dm_destroy(md, false);
2378 void dm_put(struct mapped_device *md)
2380 atomic_dec(&md->holders);
2382 EXPORT_SYMBOL_GPL(dm_put);
2384 static bool md_in_flight_bios(struct mapped_device *md)
2386 int cpu;
2387 struct hd_struct *part = &dm_disk(md)->part0;
2388 long sum = 0;
2390 for_each_possible_cpu(cpu) {
2391 sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
2392 sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
2395 return sum != 0;
2398 static int dm_wait_for_bios_completion(struct mapped_device *md, long task_state)
2400 int r = 0;
2401 DEFINE_WAIT(wait);
2403 while (true) {
2404 prepare_to_wait(&md->wait, &wait, task_state);
2406 if (!md_in_flight_bios(md))
2407 break;
2409 if (signal_pending_state(task_state, current)) {
2410 r = -EINTR;
2411 break;
2414 io_schedule();
2416 finish_wait(&md->wait, &wait);
2418 return r;
2421 static int dm_wait_for_completion(struct mapped_device *md, long task_state)
2423 int r = 0;
2425 if (!queue_is_mq(md->queue))
2426 return dm_wait_for_bios_completion(md, task_state);
2428 while (true) {
2429 if (!blk_mq_queue_inflight(md->queue))
2430 break;
2432 if (signal_pending_state(task_state, current)) {
2433 r = -EINTR;
2434 break;
2437 msleep(5);
2440 return r;
2444 * Process the deferred bios
2446 static void dm_wq_work(struct work_struct *work)
2448 struct mapped_device *md = container_of(work, struct mapped_device, work);
2449 struct bio *bio;
2451 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2452 spin_lock_irq(&md->deferred_lock);
2453 bio = bio_list_pop(&md->deferred);
2454 spin_unlock_irq(&md->deferred_lock);
2456 if (!bio)
2457 break;
2459 submit_bio_noacct(bio);
2463 static void dm_queue_flush(struct mapped_device *md)
2465 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2466 smp_mb__after_atomic();
2467 queue_work(md->wq, &md->work);
2471 * Swap in a new table, returning the old one for the caller to destroy.
2473 struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2475 struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2476 struct queue_limits limits;
2477 int r;
2479 mutex_lock(&md->suspend_lock);
2481 /* device must be suspended */
2482 if (!dm_suspended_md(md))
2483 goto out;
2486 * If the new table has no data devices, retain the existing limits.
2487 * This helps multipath with queue_if_no_path if all paths disappear,
2488 * then new I/O is queued based on these limits, and then some paths
2489 * reappear.
2491 if (dm_table_has_no_data_devices(table)) {
2492 live_map = dm_get_live_table_fast(md);
2493 if (live_map)
2494 limits = md->queue->limits;
2495 dm_put_live_table_fast(md);
2498 if (!live_map) {
2499 r = dm_calculate_queue_limits(table, &limits);
2500 if (r) {
2501 map = ERR_PTR(r);
2502 goto out;
2506 map = __bind(md, table, &limits);
2507 dm_issue_global_event();
2509 out:
2510 mutex_unlock(&md->suspend_lock);
2511 return map;
2515 * Functions to lock and unlock any filesystem running on the
2516 * device.
2518 static int lock_fs(struct mapped_device *md)
2520 int r;
2522 WARN_ON(md->frozen_sb);
2524 md->frozen_sb = freeze_bdev(md->bdev);
2525 if (IS_ERR(md->frozen_sb)) {
2526 r = PTR_ERR(md->frozen_sb);
2527 md->frozen_sb = NULL;
2528 return r;
2531 set_bit(DMF_FROZEN, &md->flags);
2533 return 0;
2536 static void unlock_fs(struct mapped_device *md)
2538 if (!test_bit(DMF_FROZEN, &md->flags))
2539 return;
2541 thaw_bdev(md->bdev, md->frozen_sb);
2542 md->frozen_sb = NULL;
2543 clear_bit(DMF_FROZEN, &md->flags);
2547 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2548 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2549 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2551 * If __dm_suspend returns 0, the device is completely quiescent
2552 * now. There is no request-processing activity. All new requests
2553 * are being added to md->deferred list.
2555 static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2556 unsigned suspend_flags, long task_state,
2557 int dmf_suspended_flag)
2559 bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2560 bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2561 int r;
2563 lockdep_assert_held(&md->suspend_lock);
2566 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2567 * This flag is cleared before dm_suspend returns.
2569 if (noflush)
2570 set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2571 else
2572 DMDEBUG("%s: suspending with flush", dm_device_name(md));
2575 * This gets reverted if there's an error later and the targets
2576 * provide the .presuspend_undo hook.
2578 dm_table_presuspend_targets(map);
2581 * Flush I/O to the device.
2582 * Any I/O submitted after lock_fs() may not be flushed.
2583 * noflush takes precedence over do_lockfs.
2584 * (lock_fs() flushes I/Os and waits for them to complete.)
2586 if (!noflush && do_lockfs) {
2587 r = lock_fs(md);
2588 if (r) {
2589 dm_table_presuspend_undo_targets(map);
2590 return r;
2595 * Here we must make sure that no processes are submitting requests
2596 * to target drivers i.e. no one may be executing
2597 * __split_and_process_bio. This is called from dm_request and
2598 * dm_wq_work.
2600 * To get all processes out of __split_and_process_bio in dm_request,
2601 * we take the write lock. To prevent any process from reentering
2602 * __split_and_process_bio from dm_request and quiesce the thread
2603 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2604 * flush_workqueue(md->wq).
2606 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2607 if (map)
2608 synchronize_srcu(&md->io_barrier);
2611 * Stop md->queue before flushing md->wq in case request-based
2612 * dm defers requests to md->wq from md->queue.
2614 if (dm_request_based(md))
2615 dm_stop_queue(md->queue);
2617 flush_workqueue(md->wq);
2620 * At this point no more requests are entering target request routines.
2621 * We call dm_wait_for_completion to wait for all existing requests
2622 * to finish.
2624 r = dm_wait_for_completion(md, task_state);
2625 if (!r)
2626 set_bit(dmf_suspended_flag, &md->flags);
2628 if (noflush)
2629 clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2630 if (map)
2631 synchronize_srcu(&md->io_barrier);
2633 /* were we interrupted ? */
2634 if (r < 0) {
2635 dm_queue_flush(md);
2637 if (dm_request_based(md))
2638 dm_start_queue(md->queue);
2640 unlock_fs(md);
2641 dm_table_presuspend_undo_targets(map);
2642 /* pushback list is already flushed, so skip flush */
2645 return r;
2649 * We need to be able to change a mapping table under a mounted
2650 * filesystem. For example we might want to move some data in
2651 * the background. Before the table can be swapped with
2652 * dm_bind_table, dm_suspend must be called to flush any in
2653 * flight bios and ensure that any further io gets deferred.
2656 * Suspend mechanism in request-based dm.
2658 * 1. Flush all I/Os by lock_fs() if needed.
2659 * 2. Stop dispatching any I/O by stopping the request_queue.
2660 * 3. Wait for all in-flight I/Os to be completed or requeued.
2662 * To abort suspend, start the request_queue.
2664 int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2666 struct dm_table *map = NULL;
2667 int r = 0;
2669 retry:
2670 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2672 if (dm_suspended_md(md)) {
2673 r = -EINVAL;
2674 goto out_unlock;
2677 if (dm_suspended_internally_md(md)) {
2678 /* already internally suspended, wait for internal resume */
2679 mutex_unlock(&md->suspend_lock);
2680 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2681 if (r)
2682 return r;
2683 goto retry;
2686 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2688 r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2689 if (r)
2690 goto out_unlock;
2692 set_bit(DMF_POST_SUSPENDING, &md->flags);
2693 dm_table_postsuspend_targets(map);
2694 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2696 out_unlock:
2697 mutex_unlock(&md->suspend_lock);
2698 return r;
2701 static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2703 if (map) {
2704 int r = dm_table_resume_targets(map);
2705 if (r)
2706 return r;
2709 dm_queue_flush(md);
2712 * Flushing deferred I/Os must be done after targets are resumed
2713 * so that mapping of targets can work correctly.
2714 * Request-based dm is queueing the deferred I/Os in its request_queue.
2716 if (dm_request_based(md))
2717 dm_start_queue(md->queue);
2719 unlock_fs(md);
2721 return 0;
2724 int dm_resume(struct mapped_device *md)
2726 int r;
2727 struct dm_table *map = NULL;
2729 retry:
2730 r = -EINVAL;
2731 mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2733 if (!dm_suspended_md(md))
2734 goto out;
2736 if (dm_suspended_internally_md(md)) {
2737 /* already internally suspended, wait for internal resume */
2738 mutex_unlock(&md->suspend_lock);
2739 r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2740 if (r)
2741 return r;
2742 goto retry;
2745 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2746 if (!map || !dm_table_get_size(map))
2747 goto out;
2749 r = __dm_resume(md, map);
2750 if (r)
2751 goto out;
2753 clear_bit(DMF_SUSPENDED, &md->flags);
2754 out:
2755 mutex_unlock(&md->suspend_lock);
2757 return r;
2761 * Internal suspend/resume works like userspace-driven suspend. It waits
2762 * until all bios finish and prevents issuing new bios to the target drivers.
2763 * It may be used only from the kernel.
2766 static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2768 struct dm_table *map = NULL;
2770 lockdep_assert_held(&md->suspend_lock);
2772 if (md->internal_suspend_count++)
2773 return; /* nested internal suspend */
2775 if (dm_suspended_md(md)) {
2776 set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2777 return; /* nest suspend */
2780 map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2783 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2784 * supported. Properly supporting a TASK_INTERRUPTIBLE internal suspend
2785 * would require changing .presuspend to return an error -- avoid this
2786 * until there is a need for more elaborate variants of internal suspend.
2788 (void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2789 DMF_SUSPENDED_INTERNALLY);
2791 set_bit(DMF_POST_SUSPENDING, &md->flags);
2792 dm_table_postsuspend_targets(map);
2793 clear_bit(DMF_POST_SUSPENDING, &md->flags);
2796 static void __dm_internal_resume(struct mapped_device *md)
2798 BUG_ON(!md->internal_suspend_count);
2800 if (--md->internal_suspend_count)
2801 return; /* resume from nested internal suspend */
2803 if (dm_suspended_md(md))
2804 goto done; /* resume from nested suspend */
2807 * NOTE: existing callers don't need to call dm_table_resume_targets
2808 * (which may fail -- so best to avoid it for now by passing NULL map)
2810 (void) __dm_resume(md, NULL);
2812 done:
2813 clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2814 smp_mb__after_atomic();
2815 wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2818 void dm_internal_suspend_noflush(struct mapped_device *md)
2820 mutex_lock(&md->suspend_lock);
2821 __dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2822 mutex_unlock(&md->suspend_lock);
2824 EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2826 void dm_internal_resume(struct mapped_device *md)
2828 mutex_lock(&md->suspend_lock);
2829 __dm_internal_resume(md);
2830 mutex_unlock(&md->suspend_lock);
2832 EXPORT_SYMBOL_GPL(dm_internal_resume);
2835 * Fast variants of internal suspend/resume hold md->suspend_lock,
2836 * which prevents interaction with userspace-driven suspend.
2839 void dm_internal_suspend_fast(struct mapped_device *md)
2841 mutex_lock(&md->suspend_lock);
2842 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2843 return;
2845 set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2846 synchronize_srcu(&md->io_barrier);
2847 flush_workqueue(md->wq);
2848 dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2850 EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2852 void dm_internal_resume_fast(struct mapped_device *md)
2854 if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2855 goto done;
2857 dm_queue_flush(md);
2859 done:
2860 mutex_unlock(&md->suspend_lock);
2862 EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2864 /*-----------------------------------------------------------------
2865 * Event notification.
2866 *---------------------------------------------------------------*/
2867 int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2868 unsigned cookie)
2870 int r;
2871 unsigned noio_flag;
2872 char udev_cookie[DM_COOKIE_LENGTH];
2873 char *envp[] = { udev_cookie, NULL };
2875 noio_flag = memalloc_noio_save();
2877 if (!cookie)
2878 r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2879 else {
2880 snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2881 DM_COOKIE_ENV_VAR_NAME, cookie);
2882 r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2883 action, envp);
2886 memalloc_noio_restore(noio_flag);
2888 return r;
2891 uint32_t dm_next_uevent_seq(struct mapped_device *md)
2893 return atomic_add_return(1, &md->uevent_seq);
2896 uint32_t dm_get_event_nr(struct mapped_device *md)
2898 return atomic_read(&md->event_nr);
2901 int dm_wait_event(struct mapped_device *md, int event_nr)
2903 return wait_event_interruptible(md->eventq,
2904 (event_nr != atomic_read(&md->event_nr)));
2907 void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2909 unsigned long flags;
2911 spin_lock_irqsave(&md->uevent_lock, flags);
2912 list_add(elist, &md->uevent_list);
2913 spin_unlock_irqrestore(&md->uevent_lock, flags);
2917 * The gendisk is only valid as long as you have a reference
2918 * count on 'md'.
2920 struct gendisk *dm_disk(struct mapped_device *md)
2922 return md->disk;
2924 EXPORT_SYMBOL_GPL(dm_disk);
2926 struct kobject *dm_kobject(struct mapped_device *md)
2928 return &md->kobj_holder.kobj;
2931 struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2933 struct mapped_device *md;
2935 md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2937 spin_lock(&_minor_lock);
2938 if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2939 md = NULL;
2940 goto out;
2942 dm_get(md);
2943 out:
2944 spin_unlock(&_minor_lock);
2946 return md;
2949 int dm_suspended_md(struct mapped_device *md)
2951 return test_bit(DMF_SUSPENDED, &md->flags);
2954 static int dm_post_suspending_md(struct mapped_device *md)
2956 return test_bit(DMF_POST_SUSPENDING, &md->flags);
2959 int dm_suspended_internally_md(struct mapped_device *md)
2961 return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2964 int dm_test_deferred_remove_flag(struct mapped_device *md)
2966 return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2969 int dm_suspended(struct dm_target *ti)
2971 return dm_suspended_md(dm_table_get_md(ti->table));
2973 EXPORT_SYMBOL_GPL(dm_suspended);
2975 int dm_post_suspending(struct dm_target *ti)
2977 return dm_post_suspending_md(dm_table_get_md(ti->table));
2979 EXPORT_SYMBOL_GPL(dm_post_suspending);
2981 int dm_noflush_suspending(struct dm_target *ti)
2983 return __noflush_suspending(dm_table_get_md(ti->table));
2985 EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2987 struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2988 unsigned integrity, unsigned per_io_data_size,
2989 unsigned min_pool_size)
2991 struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2992 unsigned int pool_size = 0;
2993 unsigned int front_pad, io_front_pad;
2994 int ret;
2996 if (!pools)
2997 return NULL;
2999 switch (type) {
3000 case DM_TYPE_BIO_BASED:
3001 case DM_TYPE_DAX_BIO_BASED:
3002 case DM_TYPE_NVME_BIO_BASED:
3003 pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
3004 front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3005 io_front_pad = roundup(front_pad, __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3006 ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3007 if (ret)
3008 goto out;
3009 if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3010 goto out;
3011 break;
3012 case DM_TYPE_REQUEST_BASED:
3013 pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3014 front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3015 /* per_io_data_size is used for blk-mq pdu at queue allocation */
3016 break;
3017 default:
3018 BUG();
3021 ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3022 if (ret)
3023 goto out;
3025 if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3026 goto out;
3028 return pools;
3030 out:
3031 dm_free_md_mempools(pools);
3033 return NULL;
3036 void dm_free_md_mempools(struct dm_md_mempools *pools)
3038 if (!pools)
3039 return;
3041 bioset_exit(&pools->bs);
3042 bioset_exit(&pools->io_bs);
3044 kfree(pools);
3047 struct dm_pr {
3048 u64 old_key;
3049 u64 new_key;
3050 u32 flags;
3051 bool fail_early;
3054 static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3055 void *data)
3057 struct mapped_device *md = bdev->bd_disk->private_data;
3058 struct dm_table *table;
3059 struct dm_target *ti;
3060 int ret = -ENOTTY, srcu_idx;
3062 table = dm_get_live_table(md, &srcu_idx);
3063 if (!table || !dm_table_get_size(table))
3064 goto out;
3066 /* We only support devices that have a single target */
3067 if (dm_table_get_num_targets(table) != 1)
3068 goto out;
3069 ti = dm_table_get_target(table, 0);
3071 ret = -EINVAL;
3072 if (!ti->type->iterate_devices)
3073 goto out;
3075 ret = ti->type->iterate_devices(ti, fn, data);
3076 out:
3077 dm_put_live_table(md, srcu_idx);
3078 return ret;
3082 * For register / unregister we need to manually call out to every path.
3084 static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3085 sector_t start, sector_t len, void *data)
3087 struct dm_pr *pr = data;
3088 const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3090 if (!ops || !ops->pr_register)
3091 return -EOPNOTSUPP;
3092 return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3095 static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3096 u32 flags)
3098 struct dm_pr pr = {
3099 .old_key = old_key,
3100 .new_key = new_key,
3101 .flags = flags,
3102 .fail_early = true,
3104 int ret;
3106 ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3107 if (ret && new_key) {
3108 /* unregister all paths if we failed to register any path */
3109 pr.old_key = new_key;
3110 pr.new_key = 0;
3111 pr.flags = 0;
3112 pr.fail_early = false;
3113 dm_call_pr(bdev, __dm_pr_register, &pr);
3116 return ret;
3119 static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3120 u32 flags)
3122 struct mapped_device *md = bdev->bd_disk->private_data;
3123 const struct pr_ops *ops;
3124 int r, srcu_idx;
3126 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3127 if (r < 0)
3128 goto out;
3130 ops = bdev->bd_disk->fops->pr_ops;
3131 if (ops && ops->pr_reserve)
3132 r = ops->pr_reserve(bdev, key, type, flags);
3133 else
3134 r = -EOPNOTSUPP;
3135 out:
3136 dm_unprepare_ioctl(md, srcu_idx);
3137 return r;
3140 static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3142 struct mapped_device *md = bdev->bd_disk->private_data;
3143 const struct pr_ops *ops;
3144 int r, srcu_idx;
3146 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3147 if (r < 0)
3148 goto out;
3150 ops = bdev->bd_disk->fops->pr_ops;
3151 if (ops && ops->pr_release)
3152 r = ops->pr_release(bdev, key, type);
3153 else
3154 r = -EOPNOTSUPP;
3155 out:
3156 dm_unprepare_ioctl(md, srcu_idx);
3157 return r;
3160 static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3161 enum pr_type type, bool abort)
3163 struct mapped_device *md = bdev->bd_disk->private_data;
3164 const struct pr_ops *ops;
3165 int r, srcu_idx;
3167 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3168 if (r < 0)
3169 goto out;
3171 ops = bdev->bd_disk->fops->pr_ops;
3172 if (ops && ops->pr_preempt)
3173 r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3174 else
3175 r = -EOPNOTSUPP;
3176 out:
3177 dm_unprepare_ioctl(md, srcu_idx);
3178 return r;
3181 static int dm_pr_clear(struct block_device *bdev, u64 key)
3183 struct mapped_device *md = bdev->bd_disk->private_data;
3184 const struct pr_ops *ops;
3185 int r, srcu_idx;
3187 r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3188 if (r < 0)
3189 goto out;
3191 ops = bdev->bd_disk->fops->pr_ops;
3192 if (ops && ops->pr_clear)
3193 r = ops->pr_clear(bdev, key);
3194 else
3195 r = -EOPNOTSUPP;
3196 out:
3197 dm_unprepare_ioctl(md, srcu_idx);
3198 return r;
3201 static const struct pr_ops dm_pr_ops = {
3202 .pr_register = dm_pr_register,
3203 .pr_reserve = dm_pr_reserve,
3204 .pr_release = dm_pr_release,
3205 .pr_preempt = dm_pr_preempt,
3206 .pr_clear = dm_pr_clear,
3209 static const struct block_device_operations dm_blk_dops = {
3210 .submit_bio = dm_submit_bio,
3211 .open = dm_blk_open,
3212 .release = dm_blk_close,
3213 .ioctl = dm_blk_ioctl,
3214 .getgeo = dm_blk_getgeo,
3215 .report_zones = dm_blk_report_zones,
3216 .pr_ops = &dm_pr_ops,
3217 .owner = THIS_MODULE
3220 static const struct block_device_operations dm_rq_blk_dops = {
3221 .open = dm_blk_open,
3222 .release = dm_blk_close,
3223 .ioctl = dm_blk_ioctl,
3224 .getgeo = dm_blk_getgeo,
3225 .pr_ops = &dm_pr_ops,
3226 .owner = THIS_MODULE
3229 static const struct dax_operations dm_dax_ops = {
3230 .direct_access = dm_dax_direct_access,
3231 .dax_supported = dm_dax_supported,
3232 .copy_from_iter = dm_dax_copy_from_iter,
3233 .copy_to_iter = dm_dax_copy_to_iter,
3234 .zero_page_range = dm_dax_zero_page_range,
3238 * module hooks
3240 module_init(dm_init);
3241 module_exit(dm_exit);
3243 module_param(major, uint, 0);
3244 MODULE_PARM_DESC(major, "The major number of the device mapper");
3246 module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3247 MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3249 module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3250 MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3252 MODULE_DESCRIPTION(DM_NAME " driver");
3253 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3254 MODULE_LICENSE("GPL");