1 // SPDX-License-Identifier: GPL-2.0-or-later
3 // core.c -- Voltage/Current Regulator framework.
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
36 #define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 static DEFINE_WW_CLASS(regulator_ww_class
);
48 static DEFINE_MUTEX(regulator_nesting_mutex
);
49 static DEFINE_MUTEX(regulator_list_mutex
);
50 static LIST_HEAD(regulator_map_list
);
51 static LIST_HEAD(regulator_ena_gpio_list
);
52 static LIST_HEAD(regulator_supply_alias_list
);
53 static LIST_HEAD(regulator_coupler_list
);
54 static bool has_full_constraints
;
56 static struct dentry
*debugfs_root
;
59 * struct regulator_map
61 * Used to provide symbolic supply names to devices.
63 struct regulator_map
{
64 struct list_head list
;
65 const char *dev_name
; /* The dev_name() for the consumer */
67 struct regulator_dev
*regulator
;
71 * struct regulator_enable_gpio
73 * Management for shared enable GPIO pin
75 struct regulator_enable_gpio
{
76 struct list_head list
;
77 struct gpio_desc
*gpiod
;
78 u32 enable_count
; /* a number of enabled shared GPIO */
79 u32 request_count
; /* a number of requested shared GPIO */
83 * struct regulator_supply_alias
85 * Used to map lookups for a supply onto an alternative device.
87 struct regulator_supply_alias
{
88 struct list_head list
;
89 struct device
*src_dev
;
90 const char *src_supply
;
91 struct device
*alias_dev
;
92 const char *alias_supply
;
95 static int _regulator_is_enabled(struct regulator_dev
*rdev
);
96 static int _regulator_disable(struct regulator
*regulator
);
97 static int _regulator_get_current_limit(struct regulator_dev
*rdev
);
98 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
);
99 static int _notifier_call_chain(struct regulator_dev
*rdev
,
100 unsigned long event
, void *data
);
101 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
102 int min_uV
, int max_uV
);
103 static int regulator_balance_voltage(struct regulator_dev
*rdev
,
104 suspend_state_t state
);
105 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
107 const char *supply_name
);
108 static void destroy_regulator(struct regulator
*regulator
);
109 static void _regulator_put(struct regulator
*regulator
);
111 const char *rdev_get_name(struct regulator_dev
*rdev
)
113 if (rdev
->constraints
&& rdev
->constraints
->name
)
114 return rdev
->constraints
->name
;
115 else if (rdev
->desc
->name
)
116 return rdev
->desc
->name
;
121 static bool have_full_constraints(void)
123 return has_full_constraints
|| of_have_populated_dt();
126 static bool regulator_ops_is_valid(struct regulator_dev
*rdev
, int ops
)
128 if (!rdev
->constraints
) {
129 rdev_err(rdev
, "no constraints\n");
133 if (rdev
->constraints
->valid_ops_mask
& ops
)
140 * regulator_lock_nested - lock a single regulator
141 * @rdev: regulator source
142 * @ww_ctx: w/w mutex acquire context
144 * This function can be called many times by one task on
145 * a single regulator and its mutex will be locked only
146 * once. If a task, which is calling this function is other
147 * than the one, which initially locked the mutex, it will
150 static inline int regulator_lock_nested(struct regulator_dev
*rdev
,
151 struct ww_acquire_ctx
*ww_ctx
)
156 mutex_lock(®ulator_nesting_mutex
);
158 if (ww_ctx
|| !ww_mutex_trylock(&rdev
->mutex
)) {
159 if (rdev
->mutex_owner
== current
)
165 mutex_unlock(®ulator_nesting_mutex
);
166 ret
= ww_mutex_lock(&rdev
->mutex
, ww_ctx
);
167 mutex_lock(®ulator_nesting_mutex
);
173 if (lock
&& ret
!= -EDEADLK
) {
175 rdev
->mutex_owner
= current
;
178 mutex_unlock(®ulator_nesting_mutex
);
184 * regulator_lock - lock a single regulator
185 * @rdev: regulator source
187 * This function can be called many times by one task on
188 * a single regulator and its mutex will be locked only
189 * once. If a task, which is calling this function is other
190 * than the one, which initially locked the mutex, it will
193 void regulator_lock(struct regulator_dev
*rdev
)
195 regulator_lock_nested(rdev
, NULL
);
197 EXPORT_SYMBOL_GPL(regulator_lock
);
200 * regulator_unlock - unlock a single regulator
201 * @rdev: regulator_source
203 * This function unlocks the mutex when the
204 * reference counter reaches 0.
206 void regulator_unlock(struct regulator_dev
*rdev
)
208 mutex_lock(®ulator_nesting_mutex
);
210 if (--rdev
->ref_cnt
== 0) {
211 rdev
->mutex_owner
= NULL
;
212 ww_mutex_unlock(&rdev
->mutex
);
215 WARN_ON_ONCE(rdev
->ref_cnt
< 0);
217 mutex_unlock(®ulator_nesting_mutex
);
219 EXPORT_SYMBOL_GPL(regulator_unlock
);
221 static bool regulator_supply_is_couple(struct regulator_dev
*rdev
)
223 struct regulator_dev
*c_rdev
;
226 for (i
= 1; i
< rdev
->coupling_desc
.n_coupled
; i
++) {
227 c_rdev
= rdev
->coupling_desc
.coupled_rdevs
[i
];
229 if (rdev
->supply
->rdev
== c_rdev
)
236 static void regulator_unlock_recursive(struct regulator_dev
*rdev
,
237 unsigned int n_coupled
)
239 struct regulator_dev
*c_rdev
, *supply_rdev
;
240 int i
, supply_n_coupled
;
242 for (i
= n_coupled
; i
> 0; i
--) {
243 c_rdev
= rdev
->coupling_desc
.coupled_rdevs
[i
- 1];
248 if (c_rdev
->supply
&& !regulator_supply_is_couple(c_rdev
)) {
249 supply_rdev
= c_rdev
->supply
->rdev
;
250 supply_n_coupled
= supply_rdev
->coupling_desc
.n_coupled
;
252 regulator_unlock_recursive(supply_rdev
,
256 regulator_unlock(c_rdev
);
260 static int regulator_lock_recursive(struct regulator_dev
*rdev
,
261 struct regulator_dev
**new_contended_rdev
,
262 struct regulator_dev
**old_contended_rdev
,
263 struct ww_acquire_ctx
*ww_ctx
)
265 struct regulator_dev
*c_rdev
;
268 for (i
= 0; i
< rdev
->coupling_desc
.n_coupled
; i
++) {
269 c_rdev
= rdev
->coupling_desc
.coupled_rdevs
[i
];
274 if (c_rdev
!= *old_contended_rdev
) {
275 err
= regulator_lock_nested(c_rdev
, ww_ctx
);
277 if (err
== -EDEADLK
) {
278 *new_contended_rdev
= c_rdev
;
282 /* shouldn't happen */
283 WARN_ON_ONCE(err
!= -EALREADY
);
286 *old_contended_rdev
= NULL
;
289 if (c_rdev
->supply
&& !regulator_supply_is_couple(c_rdev
)) {
290 err
= regulator_lock_recursive(c_rdev
->supply
->rdev
,
295 regulator_unlock(c_rdev
);
304 regulator_unlock_recursive(rdev
, i
);
310 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
312 * @rdev: regulator source
313 * @ww_ctx: w/w mutex acquire context
315 * Unlock all regulators related with rdev by coupling or supplying.
317 static void regulator_unlock_dependent(struct regulator_dev
*rdev
,
318 struct ww_acquire_ctx
*ww_ctx
)
320 regulator_unlock_recursive(rdev
, rdev
->coupling_desc
.n_coupled
);
321 ww_acquire_fini(ww_ctx
);
325 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
326 * @rdev: regulator source
327 * @ww_ctx: w/w mutex acquire context
329 * This function as a wrapper on regulator_lock_recursive(), which locks
330 * all regulators related with rdev by coupling or supplying.
332 static void regulator_lock_dependent(struct regulator_dev
*rdev
,
333 struct ww_acquire_ctx
*ww_ctx
)
335 struct regulator_dev
*new_contended_rdev
= NULL
;
336 struct regulator_dev
*old_contended_rdev
= NULL
;
339 mutex_lock(®ulator_list_mutex
);
341 ww_acquire_init(ww_ctx
, ®ulator_ww_class
);
344 if (new_contended_rdev
) {
345 ww_mutex_lock_slow(&new_contended_rdev
->mutex
, ww_ctx
);
346 old_contended_rdev
= new_contended_rdev
;
347 old_contended_rdev
->ref_cnt
++;
350 err
= regulator_lock_recursive(rdev
,
355 if (old_contended_rdev
)
356 regulator_unlock(old_contended_rdev
);
358 } while (err
== -EDEADLK
);
360 ww_acquire_done(ww_ctx
);
362 mutex_unlock(®ulator_list_mutex
);
366 * of_get_child_regulator - get a child regulator device node
367 * based on supply name
368 * @parent: Parent device node
369 * @prop_name: Combination regulator supply name and "-supply"
371 * Traverse all child nodes.
372 * Extract the child regulator device node corresponding to the supply name.
373 * returns the device node corresponding to the regulator if found, else
376 static struct device_node
*of_get_child_regulator(struct device_node
*parent
,
377 const char *prop_name
)
379 struct device_node
*regnode
= NULL
;
380 struct device_node
*child
= NULL
;
382 for_each_child_of_node(parent
, child
) {
383 regnode
= of_parse_phandle(child
, prop_name
, 0);
386 regnode
= of_get_child_regulator(child
, prop_name
);
401 * of_get_regulator - get a regulator device node based on supply name
402 * @dev: Device pointer for the consumer (of regulator) device
403 * @supply: regulator supply name
405 * Extract the regulator device node corresponding to the supply name.
406 * returns the device node corresponding to the regulator if found, else
409 static struct device_node
*of_get_regulator(struct device
*dev
, const char *supply
)
411 struct device_node
*regnode
= NULL
;
412 char prop_name
[32]; /* 32 is max size of property name */
414 dev_dbg(dev
, "Looking up %s-supply from device tree\n", supply
);
416 snprintf(prop_name
, 32, "%s-supply", supply
);
417 regnode
= of_parse_phandle(dev
->of_node
, prop_name
, 0);
420 regnode
= of_get_child_regulator(dev
->of_node
, prop_name
);
424 dev_dbg(dev
, "Looking up %s property in node %pOF failed\n",
425 prop_name
, dev
->of_node
);
431 /* Platform voltage constraint check */
432 int regulator_check_voltage(struct regulator_dev
*rdev
,
433 int *min_uV
, int *max_uV
)
435 BUG_ON(*min_uV
> *max_uV
);
437 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
438 rdev_err(rdev
, "voltage operation not allowed\n");
442 if (*max_uV
> rdev
->constraints
->max_uV
)
443 *max_uV
= rdev
->constraints
->max_uV
;
444 if (*min_uV
< rdev
->constraints
->min_uV
)
445 *min_uV
= rdev
->constraints
->min_uV
;
447 if (*min_uV
> *max_uV
) {
448 rdev_err(rdev
, "unsupportable voltage range: %d-%duV\n",
456 /* return 0 if the state is valid */
457 static int regulator_check_states(suspend_state_t state
)
459 return (state
> PM_SUSPEND_MAX
|| state
== PM_SUSPEND_TO_IDLE
);
462 /* Make sure we select a voltage that suits the needs of all
463 * regulator consumers
465 int regulator_check_consumers(struct regulator_dev
*rdev
,
466 int *min_uV
, int *max_uV
,
467 suspend_state_t state
)
469 struct regulator
*regulator
;
470 struct regulator_voltage
*voltage
;
472 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
473 voltage
= ®ulator
->voltage
[state
];
475 * Assume consumers that didn't say anything are OK
476 * with anything in the constraint range.
478 if (!voltage
->min_uV
&& !voltage
->max_uV
)
481 if (*max_uV
> voltage
->max_uV
)
482 *max_uV
= voltage
->max_uV
;
483 if (*min_uV
< voltage
->min_uV
)
484 *min_uV
= voltage
->min_uV
;
487 if (*min_uV
> *max_uV
) {
488 rdev_err(rdev
, "Restricting voltage, %u-%uuV\n",
496 /* current constraint check */
497 static int regulator_check_current_limit(struct regulator_dev
*rdev
,
498 int *min_uA
, int *max_uA
)
500 BUG_ON(*min_uA
> *max_uA
);
502 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_CURRENT
)) {
503 rdev_err(rdev
, "current operation not allowed\n");
507 if (*max_uA
> rdev
->constraints
->max_uA
)
508 *max_uA
= rdev
->constraints
->max_uA
;
509 if (*min_uA
< rdev
->constraints
->min_uA
)
510 *min_uA
= rdev
->constraints
->min_uA
;
512 if (*min_uA
> *max_uA
) {
513 rdev_err(rdev
, "unsupportable current range: %d-%duA\n",
521 /* operating mode constraint check */
522 static int regulator_mode_constrain(struct regulator_dev
*rdev
,
526 case REGULATOR_MODE_FAST
:
527 case REGULATOR_MODE_NORMAL
:
528 case REGULATOR_MODE_IDLE
:
529 case REGULATOR_MODE_STANDBY
:
532 rdev_err(rdev
, "invalid mode %x specified\n", *mode
);
536 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_MODE
)) {
537 rdev_err(rdev
, "mode operation not allowed\n");
541 /* The modes are bitmasks, the most power hungry modes having
542 * the lowest values. If the requested mode isn't supported
543 * try higher modes. */
545 if (rdev
->constraints
->valid_modes_mask
& *mode
)
553 static inline struct regulator_state
*
554 regulator_get_suspend_state(struct regulator_dev
*rdev
, suspend_state_t state
)
556 if (rdev
->constraints
== NULL
)
560 case PM_SUSPEND_STANDBY
:
561 return &rdev
->constraints
->state_standby
;
563 return &rdev
->constraints
->state_mem
;
565 return &rdev
->constraints
->state_disk
;
571 static ssize_t
regulator_uV_show(struct device
*dev
,
572 struct device_attribute
*attr
, char *buf
)
574 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
577 regulator_lock(rdev
);
578 uV
= regulator_get_voltage_rdev(rdev
);
579 regulator_unlock(rdev
);
583 return sprintf(buf
, "%d\n", uV
);
585 static DEVICE_ATTR(microvolts
, 0444, regulator_uV_show
, NULL
);
587 static ssize_t
regulator_uA_show(struct device
*dev
,
588 struct device_attribute
*attr
, char *buf
)
590 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
592 return sprintf(buf
, "%d\n", _regulator_get_current_limit(rdev
));
594 static DEVICE_ATTR(microamps
, 0444, regulator_uA_show
, NULL
);
596 static ssize_t
name_show(struct device
*dev
, struct device_attribute
*attr
,
599 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
601 return sprintf(buf
, "%s\n", rdev_get_name(rdev
));
603 static DEVICE_ATTR_RO(name
);
605 static const char *regulator_opmode_to_str(int mode
)
608 case REGULATOR_MODE_FAST
:
610 case REGULATOR_MODE_NORMAL
:
612 case REGULATOR_MODE_IDLE
:
614 case REGULATOR_MODE_STANDBY
:
620 static ssize_t
regulator_print_opmode(char *buf
, int mode
)
622 return sprintf(buf
, "%s\n", regulator_opmode_to_str(mode
));
625 static ssize_t
regulator_opmode_show(struct device
*dev
,
626 struct device_attribute
*attr
, char *buf
)
628 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
630 return regulator_print_opmode(buf
, _regulator_get_mode(rdev
));
632 static DEVICE_ATTR(opmode
, 0444, regulator_opmode_show
, NULL
);
634 static ssize_t
regulator_print_state(char *buf
, int state
)
637 return sprintf(buf
, "enabled\n");
639 return sprintf(buf
, "disabled\n");
641 return sprintf(buf
, "unknown\n");
644 static ssize_t
regulator_state_show(struct device
*dev
,
645 struct device_attribute
*attr
, char *buf
)
647 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
650 regulator_lock(rdev
);
651 ret
= regulator_print_state(buf
, _regulator_is_enabled(rdev
));
652 regulator_unlock(rdev
);
656 static DEVICE_ATTR(state
, 0444, regulator_state_show
, NULL
);
658 static ssize_t
regulator_status_show(struct device
*dev
,
659 struct device_attribute
*attr
, char *buf
)
661 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
665 status
= rdev
->desc
->ops
->get_status(rdev
);
670 case REGULATOR_STATUS_OFF
:
673 case REGULATOR_STATUS_ON
:
676 case REGULATOR_STATUS_ERROR
:
679 case REGULATOR_STATUS_FAST
:
682 case REGULATOR_STATUS_NORMAL
:
685 case REGULATOR_STATUS_IDLE
:
688 case REGULATOR_STATUS_STANDBY
:
691 case REGULATOR_STATUS_BYPASS
:
694 case REGULATOR_STATUS_UNDEFINED
:
701 return sprintf(buf
, "%s\n", label
);
703 static DEVICE_ATTR(status
, 0444, regulator_status_show
, NULL
);
705 static ssize_t
regulator_min_uA_show(struct device
*dev
,
706 struct device_attribute
*attr
, char *buf
)
708 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
710 if (!rdev
->constraints
)
711 return sprintf(buf
, "constraint not defined\n");
713 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uA
);
715 static DEVICE_ATTR(min_microamps
, 0444, regulator_min_uA_show
, NULL
);
717 static ssize_t
regulator_max_uA_show(struct device
*dev
,
718 struct device_attribute
*attr
, char *buf
)
720 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
722 if (!rdev
->constraints
)
723 return sprintf(buf
, "constraint not defined\n");
725 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uA
);
727 static DEVICE_ATTR(max_microamps
, 0444, regulator_max_uA_show
, NULL
);
729 static ssize_t
regulator_min_uV_show(struct device
*dev
,
730 struct device_attribute
*attr
, char *buf
)
732 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
734 if (!rdev
->constraints
)
735 return sprintf(buf
, "constraint not defined\n");
737 return sprintf(buf
, "%d\n", rdev
->constraints
->min_uV
);
739 static DEVICE_ATTR(min_microvolts
, 0444, regulator_min_uV_show
, NULL
);
741 static ssize_t
regulator_max_uV_show(struct device
*dev
,
742 struct device_attribute
*attr
, char *buf
)
744 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
746 if (!rdev
->constraints
)
747 return sprintf(buf
, "constraint not defined\n");
749 return sprintf(buf
, "%d\n", rdev
->constraints
->max_uV
);
751 static DEVICE_ATTR(max_microvolts
, 0444, regulator_max_uV_show
, NULL
);
753 static ssize_t
regulator_total_uA_show(struct device
*dev
,
754 struct device_attribute
*attr
, char *buf
)
756 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
757 struct regulator
*regulator
;
760 regulator_lock(rdev
);
761 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
762 if (regulator
->enable_count
)
763 uA
+= regulator
->uA_load
;
765 regulator_unlock(rdev
);
766 return sprintf(buf
, "%d\n", uA
);
768 static DEVICE_ATTR(requested_microamps
, 0444, regulator_total_uA_show
, NULL
);
770 static ssize_t
num_users_show(struct device
*dev
, struct device_attribute
*attr
,
773 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
774 return sprintf(buf
, "%d\n", rdev
->use_count
);
776 static DEVICE_ATTR_RO(num_users
);
778 static ssize_t
type_show(struct device
*dev
, struct device_attribute
*attr
,
781 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
783 switch (rdev
->desc
->type
) {
784 case REGULATOR_VOLTAGE
:
785 return sprintf(buf
, "voltage\n");
786 case REGULATOR_CURRENT
:
787 return sprintf(buf
, "current\n");
789 return sprintf(buf
, "unknown\n");
791 static DEVICE_ATTR_RO(type
);
793 static ssize_t
regulator_suspend_mem_uV_show(struct device
*dev
,
794 struct device_attribute
*attr
, char *buf
)
796 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
798 return sprintf(buf
, "%d\n", rdev
->constraints
->state_mem
.uV
);
800 static DEVICE_ATTR(suspend_mem_microvolts
, 0444,
801 regulator_suspend_mem_uV_show
, NULL
);
803 static ssize_t
regulator_suspend_disk_uV_show(struct device
*dev
,
804 struct device_attribute
*attr
, char *buf
)
806 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
808 return sprintf(buf
, "%d\n", rdev
->constraints
->state_disk
.uV
);
810 static DEVICE_ATTR(suspend_disk_microvolts
, 0444,
811 regulator_suspend_disk_uV_show
, NULL
);
813 static ssize_t
regulator_suspend_standby_uV_show(struct device
*dev
,
814 struct device_attribute
*attr
, char *buf
)
816 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
818 return sprintf(buf
, "%d\n", rdev
->constraints
->state_standby
.uV
);
820 static DEVICE_ATTR(suspend_standby_microvolts
, 0444,
821 regulator_suspend_standby_uV_show
, NULL
);
823 static ssize_t
regulator_suspend_mem_mode_show(struct device
*dev
,
824 struct device_attribute
*attr
, char *buf
)
826 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
828 return regulator_print_opmode(buf
,
829 rdev
->constraints
->state_mem
.mode
);
831 static DEVICE_ATTR(suspend_mem_mode
, 0444,
832 regulator_suspend_mem_mode_show
, NULL
);
834 static ssize_t
regulator_suspend_disk_mode_show(struct device
*dev
,
835 struct device_attribute
*attr
, char *buf
)
837 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
839 return regulator_print_opmode(buf
,
840 rdev
->constraints
->state_disk
.mode
);
842 static DEVICE_ATTR(suspend_disk_mode
, 0444,
843 regulator_suspend_disk_mode_show
, NULL
);
845 static ssize_t
regulator_suspend_standby_mode_show(struct device
*dev
,
846 struct device_attribute
*attr
, char *buf
)
848 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
850 return regulator_print_opmode(buf
,
851 rdev
->constraints
->state_standby
.mode
);
853 static DEVICE_ATTR(suspend_standby_mode
, 0444,
854 regulator_suspend_standby_mode_show
, NULL
);
856 static ssize_t
regulator_suspend_mem_state_show(struct device
*dev
,
857 struct device_attribute
*attr
, char *buf
)
859 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
861 return regulator_print_state(buf
,
862 rdev
->constraints
->state_mem
.enabled
);
864 static DEVICE_ATTR(suspend_mem_state
, 0444,
865 regulator_suspend_mem_state_show
, NULL
);
867 static ssize_t
regulator_suspend_disk_state_show(struct device
*dev
,
868 struct device_attribute
*attr
, char *buf
)
870 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
872 return regulator_print_state(buf
,
873 rdev
->constraints
->state_disk
.enabled
);
875 static DEVICE_ATTR(suspend_disk_state
, 0444,
876 regulator_suspend_disk_state_show
, NULL
);
878 static ssize_t
regulator_suspend_standby_state_show(struct device
*dev
,
879 struct device_attribute
*attr
, char *buf
)
881 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
883 return regulator_print_state(buf
,
884 rdev
->constraints
->state_standby
.enabled
);
886 static DEVICE_ATTR(suspend_standby_state
, 0444,
887 regulator_suspend_standby_state_show
, NULL
);
889 static ssize_t
regulator_bypass_show(struct device
*dev
,
890 struct device_attribute
*attr
, char *buf
)
892 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
897 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypass
);
906 return sprintf(buf
, "%s\n", report
);
908 static DEVICE_ATTR(bypass
, 0444,
909 regulator_bypass_show
, NULL
);
911 /* Calculate the new optimum regulator operating mode based on the new total
912 * consumer load. All locks held by caller */
913 static int drms_uA_update(struct regulator_dev
*rdev
)
915 struct regulator
*sibling
;
916 int current_uA
= 0, output_uV
, input_uV
, err
;
920 * first check to see if we can set modes at all, otherwise just
921 * tell the consumer everything is OK.
923 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_DRMS
)) {
924 rdev_dbg(rdev
, "DRMS operation not allowed\n");
928 if (!rdev
->desc
->ops
->get_optimum_mode
&&
929 !rdev
->desc
->ops
->set_load
)
932 if (!rdev
->desc
->ops
->set_mode
&&
933 !rdev
->desc
->ops
->set_load
)
936 /* calc total requested load */
937 list_for_each_entry(sibling
, &rdev
->consumer_list
, list
) {
938 if (sibling
->enable_count
)
939 current_uA
+= sibling
->uA_load
;
942 current_uA
+= rdev
->constraints
->system_load
;
944 if (rdev
->desc
->ops
->set_load
) {
945 /* set the optimum mode for our new total regulator load */
946 err
= rdev
->desc
->ops
->set_load(rdev
, current_uA
);
948 rdev_err(rdev
, "failed to set load %d\n", current_uA
);
950 /* get output voltage */
951 output_uV
= regulator_get_voltage_rdev(rdev
);
952 if (output_uV
<= 0) {
953 rdev_err(rdev
, "invalid output voltage found\n");
957 /* get input voltage */
960 input_uV
= regulator_get_voltage(rdev
->supply
);
962 input_uV
= rdev
->constraints
->input_uV
;
964 rdev_err(rdev
, "invalid input voltage found\n");
968 /* now get the optimum mode for our new total regulator load */
969 mode
= rdev
->desc
->ops
->get_optimum_mode(rdev
, input_uV
,
970 output_uV
, current_uA
);
972 /* check the new mode is allowed */
973 err
= regulator_mode_constrain(rdev
, &mode
);
975 rdev_err(rdev
, "failed to get optimum mode @ %d uA %d -> %d uV\n",
976 current_uA
, input_uV
, output_uV
);
980 err
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
982 rdev_err(rdev
, "failed to set optimum mode %x\n", mode
);
988 static int suspend_set_state(struct regulator_dev
*rdev
,
989 suspend_state_t state
)
992 struct regulator_state
*rstate
;
994 rstate
= regulator_get_suspend_state(rdev
, state
);
998 /* If we have no suspend mode configuration don't set anything;
999 * only warn if the driver implements set_suspend_voltage or
1000 * set_suspend_mode callback.
1002 if (rstate
->enabled
!= ENABLE_IN_SUSPEND
&&
1003 rstate
->enabled
!= DISABLE_IN_SUSPEND
) {
1004 if (rdev
->desc
->ops
->set_suspend_voltage
||
1005 rdev
->desc
->ops
->set_suspend_mode
)
1006 rdev_warn(rdev
, "No configuration\n");
1010 if (rstate
->enabled
== ENABLE_IN_SUSPEND
&&
1011 rdev
->desc
->ops
->set_suspend_enable
)
1012 ret
= rdev
->desc
->ops
->set_suspend_enable(rdev
);
1013 else if (rstate
->enabled
== DISABLE_IN_SUSPEND
&&
1014 rdev
->desc
->ops
->set_suspend_disable
)
1015 ret
= rdev
->desc
->ops
->set_suspend_disable(rdev
);
1016 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1020 rdev_err(rdev
, "failed to enabled/disable\n");
1024 if (rdev
->desc
->ops
->set_suspend_voltage
&& rstate
->uV
> 0) {
1025 ret
= rdev
->desc
->ops
->set_suspend_voltage(rdev
, rstate
->uV
);
1027 rdev_err(rdev
, "failed to set voltage\n");
1032 if (rdev
->desc
->ops
->set_suspend_mode
&& rstate
->mode
> 0) {
1033 ret
= rdev
->desc
->ops
->set_suspend_mode(rdev
, rstate
->mode
);
1035 rdev_err(rdev
, "failed to set mode\n");
1043 static void print_constraints(struct regulator_dev
*rdev
)
1045 struct regulation_constraints
*constraints
= rdev
->constraints
;
1047 size_t len
= sizeof(buf
) - 1;
1051 if (constraints
->min_uV
&& constraints
->max_uV
) {
1052 if (constraints
->min_uV
== constraints
->max_uV
)
1053 count
+= scnprintf(buf
+ count
, len
- count
, "%d mV ",
1054 constraints
->min_uV
/ 1000);
1056 count
+= scnprintf(buf
+ count
, len
- count
,
1058 constraints
->min_uV
/ 1000,
1059 constraints
->max_uV
/ 1000);
1062 if (!constraints
->min_uV
||
1063 constraints
->min_uV
!= constraints
->max_uV
) {
1064 ret
= regulator_get_voltage_rdev(rdev
);
1066 count
+= scnprintf(buf
+ count
, len
- count
,
1067 "at %d mV ", ret
/ 1000);
1070 if (constraints
->uV_offset
)
1071 count
+= scnprintf(buf
+ count
, len
- count
, "%dmV offset ",
1072 constraints
->uV_offset
/ 1000);
1074 if (constraints
->min_uA
&& constraints
->max_uA
) {
1075 if (constraints
->min_uA
== constraints
->max_uA
)
1076 count
+= scnprintf(buf
+ count
, len
- count
, "%d mA ",
1077 constraints
->min_uA
/ 1000);
1079 count
+= scnprintf(buf
+ count
, len
- count
,
1081 constraints
->min_uA
/ 1000,
1082 constraints
->max_uA
/ 1000);
1085 if (!constraints
->min_uA
||
1086 constraints
->min_uA
!= constraints
->max_uA
) {
1087 ret
= _regulator_get_current_limit(rdev
);
1089 count
+= scnprintf(buf
+ count
, len
- count
,
1090 "at %d mA ", ret
/ 1000);
1093 if (constraints
->valid_modes_mask
& REGULATOR_MODE_FAST
)
1094 count
+= scnprintf(buf
+ count
, len
- count
, "fast ");
1095 if (constraints
->valid_modes_mask
& REGULATOR_MODE_NORMAL
)
1096 count
+= scnprintf(buf
+ count
, len
- count
, "normal ");
1097 if (constraints
->valid_modes_mask
& REGULATOR_MODE_IDLE
)
1098 count
+= scnprintf(buf
+ count
, len
- count
, "idle ");
1099 if (constraints
->valid_modes_mask
& REGULATOR_MODE_STANDBY
)
1100 count
+= scnprintf(buf
+ count
, len
- count
, "standby");
1103 scnprintf(buf
, len
, "no parameters");
1105 rdev_dbg(rdev
, "%s\n", buf
);
1107 if ((constraints
->min_uV
!= constraints
->max_uV
) &&
1108 !regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
))
1110 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1113 static int machine_constraints_voltage(struct regulator_dev
*rdev
,
1114 struct regulation_constraints
*constraints
)
1116 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1119 /* do we need to apply the constraint voltage */
1120 if (rdev
->constraints
->apply_uV
&&
1121 rdev
->constraints
->min_uV
&& rdev
->constraints
->max_uV
) {
1122 int target_min
, target_max
;
1123 int current_uV
= regulator_get_voltage_rdev(rdev
);
1125 if (current_uV
== -ENOTRECOVERABLE
) {
1126 /* This regulator can't be read and must be initialized */
1127 rdev_info(rdev
, "Setting %d-%duV\n",
1128 rdev
->constraints
->min_uV
,
1129 rdev
->constraints
->max_uV
);
1130 _regulator_do_set_voltage(rdev
,
1131 rdev
->constraints
->min_uV
,
1132 rdev
->constraints
->max_uV
);
1133 current_uV
= regulator_get_voltage_rdev(rdev
);
1136 if (current_uV
< 0) {
1138 "failed to get the current voltage(%d)\n",
1144 * If we're below the minimum voltage move up to the
1145 * minimum voltage, if we're above the maximum voltage
1146 * then move down to the maximum.
1148 target_min
= current_uV
;
1149 target_max
= current_uV
;
1151 if (current_uV
< rdev
->constraints
->min_uV
) {
1152 target_min
= rdev
->constraints
->min_uV
;
1153 target_max
= rdev
->constraints
->min_uV
;
1156 if (current_uV
> rdev
->constraints
->max_uV
) {
1157 target_min
= rdev
->constraints
->max_uV
;
1158 target_max
= rdev
->constraints
->max_uV
;
1161 if (target_min
!= current_uV
|| target_max
!= current_uV
) {
1162 rdev_info(rdev
, "Bringing %duV into %d-%duV\n",
1163 current_uV
, target_min
, target_max
);
1164 ret
= _regulator_do_set_voltage(
1165 rdev
, target_min
, target_max
);
1168 "failed to apply %d-%duV constraint(%d)\n",
1169 target_min
, target_max
, ret
);
1175 /* constrain machine-level voltage specs to fit
1176 * the actual range supported by this regulator.
1178 if (ops
->list_voltage
&& rdev
->desc
->n_voltages
) {
1179 int count
= rdev
->desc
->n_voltages
;
1181 int min_uV
= INT_MAX
;
1182 int max_uV
= INT_MIN
;
1183 int cmin
= constraints
->min_uV
;
1184 int cmax
= constraints
->max_uV
;
1186 /* it's safe to autoconfigure fixed-voltage supplies
1187 and the constraints are used by list_voltage. */
1188 if (count
== 1 && !cmin
) {
1191 constraints
->min_uV
= cmin
;
1192 constraints
->max_uV
= cmax
;
1195 /* voltage constraints are optional */
1196 if ((cmin
== 0) && (cmax
== 0))
1199 /* else require explicit machine-level constraints */
1200 if (cmin
<= 0 || cmax
<= 0 || cmax
< cmin
) {
1201 rdev_err(rdev
, "invalid voltage constraints\n");
1205 /* no need to loop voltages if range is continuous */
1206 if (rdev
->desc
->continuous_voltage_range
)
1209 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1210 for (i
= 0; i
< count
; i
++) {
1213 value
= ops
->list_voltage(rdev
, i
);
1217 /* maybe adjust [min_uV..max_uV] */
1218 if (value
>= cmin
&& value
< min_uV
)
1220 if (value
<= cmax
&& value
> max_uV
)
1224 /* final: [min_uV..max_uV] valid iff constraints valid */
1225 if (max_uV
< min_uV
) {
1227 "unsupportable voltage constraints %u-%uuV\n",
1232 /* use regulator's subset of machine constraints */
1233 if (constraints
->min_uV
< min_uV
) {
1234 rdev_dbg(rdev
, "override min_uV, %d -> %d\n",
1235 constraints
->min_uV
, min_uV
);
1236 constraints
->min_uV
= min_uV
;
1238 if (constraints
->max_uV
> max_uV
) {
1239 rdev_dbg(rdev
, "override max_uV, %d -> %d\n",
1240 constraints
->max_uV
, max_uV
);
1241 constraints
->max_uV
= max_uV
;
1248 static int machine_constraints_current(struct regulator_dev
*rdev
,
1249 struct regulation_constraints
*constraints
)
1251 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1254 if (!constraints
->min_uA
&& !constraints
->max_uA
)
1257 if (constraints
->min_uA
> constraints
->max_uA
) {
1258 rdev_err(rdev
, "Invalid current constraints\n");
1262 if (!ops
->set_current_limit
|| !ops
->get_current_limit
) {
1263 rdev_warn(rdev
, "Operation of current configuration missing\n");
1267 /* Set regulator current in constraints range */
1268 ret
= ops
->set_current_limit(rdev
, constraints
->min_uA
,
1269 constraints
->max_uA
);
1271 rdev_err(rdev
, "Failed to set current constraint, %d\n", ret
);
1278 static int _regulator_do_enable(struct regulator_dev
*rdev
);
1281 * set_machine_constraints - sets regulator constraints
1282 * @rdev: regulator source
1283 * @constraints: constraints to apply
1285 * Allows platform initialisation code to define and constrain
1286 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1287 * Constraints *must* be set by platform code in order for some
1288 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1291 static int set_machine_constraints(struct regulator_dev
*rdev
,
1292 const struct regulation_constraints
*constraints
)
1295 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
1298 rdev
->constraints
= kmemdup(constraints
, sizeof(*constraints
),
1301 rdev
->constraints
= kzalloc(sizeof(*constraints
),
1303 if (!rdev
->constraints
)
1306 ret
= machine_constraints_voltage(rdev
, rdev
->constraints
);
1310 ret
= machine_constraints_current(rdev
, rdev
->constraints
);
1314 if (rdev
->constraints
->ilim_uA
&& ops
->set_input_current_limit
) {
1315 ret
= ops
->set_input_current_limit(rdev
,
1316 rdev
->constraints
->ilim_uA
);
1318 rdev_err(rdev
, "failed to set input limit\n");
1323 /* do we need to setup our suspend state */
1324 if (rdev
->constraints
->initial_state
) {
1325 ret
= suspend_set_state(rdev
, rdev
->constraints
->initial_state
);
1327 rdev_err(rdev
, "failed to set suspend state\n");
1332 if (rdev
->constraints
->initial_mode
) {
1333 if (!ops
->set_mode
) {
1334 rdev_err(rdev
, "no set_mode operation\n");
1338 ret
= ops
->set_mode(rdev
, rdev
->constraints
->initial_mode
);
1340 rdev_err(rdev
, "failed to set initial mode: %d\n", ret
);
1343 } else if (rdev
->constraints
->system_load
) {
1345 * We'll only apply the initial system load if an
1346 * initial mode wasn't specified.
1348 drms_uA_update(rdev
);
1351 if ((rdev
->constraints
->ramp_delay
|| rdev
->constraints
->ramp_disable
)
1352 && ops
->set_ramp_delay
) {
1353 ret
= ops
->set_ramp_delay(rdev
, rdev
->constraints
->ramp_delay
);
1355 rdev_err(rdev
, "failed to set ramp_delay\n");
1360 if (rdev
->constraints
->pull_down
&& ops
->set_pull_down
) {
1361 ret
= ops
->set_pull_down(rdev
);
1363 rdev_err(rdev
, "failed to set pull down\n");
1368 if (rdev
->constraints
->soft_start
&& ops
->set_soft_start
) {
1369 ret
= ops
->set_soft_start(rdev
);
1371 rdev_err(rdev
, "failed to set soft start\n");
1376 if (rdev
->constraints
->over_current_protection
1377 && ops
->set_over_current_protection
) {
1378 ret
= ops
->set_over_current_protection(rdev
);
1380 rdev_err(rdev
, "failed to set over current protection\n");
1385 if (rdev
->constraints
->active_discharge
&& ops
->set_active_discharge
) {
1386 bool ad_state
= (rdev
->constraints
->active_discharge
==
1387 REGULATOR_ACTIVE_DISCHARGE_ENABLE
) ? true : false;
1389 ret
= ops
->set_active_discharge(rdev
, ad_state
);
1391 rdev_err(rdev
, "failed to set active discharge\n");
1396 /* If the constraints say the regulator should be on at this point
1397 * and we have control then make sure it is enabled.
1399 if (rdev
->constraints
->always_on
|| rdev
->constraints
->boot_on
) {
1401 ret
= regulator_enable(rdev
->supply
);
1403 _regulator_put(rdev
->supply
);
1404 rdev
->supply
= NULL
;
1409 ret
= _regulator_do_enable(rdev
);
1410 if (ret
< 0 && ret
!= -EINVAL
) {
1411 rdev_err(rdev
, "failed to enable\n");
1415 if (rdev
->constraints
->always_on
)
1419 print_constraints(rdev
);
1424 * set_supply - set regulator supply regulator
1425 * @rdev: regulator name
1426 * @supply_rdev: supply regulator name
1428 * Called by platform initialisation code to set the supply regulator for this
1429 * regulator. This ensures that a regulators supply will also be enabled by the
1430 * core if it's child is enabled.
1432 static int set_supply(struct regulator_dev
*rdev
,
1433 struct regulator_dev
*supply_rdev
)
1437 rdev_info(rdev
, "supplied by %s\n", rdev_get_name(supply_rdev
));
1439 if (!try_module_get(supply_rdev
->owner
))
1442 rdev
->supply
= create_regulator(supply_rdev
, &rdev
->dev
, "SUPPLY");
1443 if (rdev
->supply
== NULL
) {
1447 supply_rdev
->open_count
++;
1453 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1454 * @rdev: regulator source
1455 * @consumer_dev_name: dev_name() string for device supply applies to
1456 * @supply: symbolic name for supply
1458 * Allows platform initialisation code to map physical regulator
1459 * sources to symbolic names for supplies for use by devices. Devices
1460 * should use these symbolic names to request regulators, avoiding the
1461 * need to provide board-specific regulator names as platform data.
1463 static int set_consumer_device_supply(struct regulator_dev
*rdev
,
1464 const char *consumer_dev_name
,
1467 struct regulator_map
*node
, *new_node
;
1473 if (consumer_dev_name
!= NULL
)
1478 new_node
= kzalloc(sizeof(struct regulator_map
), GFP_KERNEL
);
1479 if (new_node
== NULL
)
1482 new_node
->regulator
= rdev
;
1483 new_node
->supply
= supply
;
1486 new_node
->dev_name
= kstrdup(consumer_dev_name
, GFP_KERNEL
);
1487 if (new_node
->dev_name
== NULL
) {
1493 mutex_lock(®ulator_list_mutex
);
1494 list_for_each_entry(node
, ®ulator_map_list
, list
) {
1495 if (node
->dev_name
&& consumer_dev_name
) {
1496 if (strcmp(node
->dev_name
, consumer_dev_name
) != 0)
1498 } else if (node
->dev_name
|| consumer_dev_name
) {
1502 if (strcmp(node
->supply
, supply
) != 0)
1505 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1507 dev_name(&node
->regulator
->dev
),
1508 node
->regulator
->desc
->name
,
1510 dev_name(&rdev
->dev
), rdev_get_name(rdev
));
1514 list_add(&new_node
->list
, ®ulator_map_list
);
1515 mutex_unlock(®ulator_list_mutex
);
1520 mutex_unlock(®ulator_list_mutex
);
1521 kfree(new_node
->dev_name
);
1526 static void unset_regulator_supplies(struct regulator_dev
*rdev
)
1528 struct regulator_map
*node
, *n
;
1530 list_for_each_entry_safe(node
, n
, ®ulator_map_list
, list
) {
1531 if (rdev
== node
->regulator
) {
1532 list_del(&node
->list
);
1533 kfree(node
->dev_name
);
1539 #ifdef CONFIG_DEBUG_FS
1540 static ssize_t
constraint_flags_read_file(struct file
*file
,
1541 char __user
*user_buf
,
1542 size_t count
, loff_t
*ppos
)
1544 const struct regulator
*regulator
= file
->private_data
;
1545 const struct regulation_constraints
*c
= regulator
->rdev
->constraints
;
1552 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
1556 ret
= snprintf(buf
, PAGE_SIZE
,
1560 "ramp_disable: %u\n"
1563 "over_current_protection: %u\n",
1570 c
->over_current_protection
);
1572 ret
= simple_read_from_buffer(user_buf
, count
, ppos
, buf
, ret
);
1580 static const struct file_operations constraint_flags_fops
= {
1581 #ifdef CONFIG_DEBUG_FS
1582 .open
= simple_open
,
1583 .read
= constraint_flags_read_file
,
1584 .llseek
= default_llseek
,
1588 #define REG_STR_SIZE 64
1590 static struct regulator
*create_regulator(struct regulator_dev
*rdev
,
1592 const char *supply_name
)
1594 struct regulator
*regulator
;
1598 char buf
[REG_STR_SIZE
];
1601 size
= snprintf(buf
, REG_STR_SIZE
, "%s-%s",
1602 dev
->kobj
.name
, supply_name
);
1603 if (size
>= REG_STR_SIZE
)
1606 supply_name
= kstrdup(buf
, GFP_KERNEL
);
1607 if (supply_name
== NULL
)
1610 supply_name
= kstrdup_const(supply_name
, GFP_KERNEL
);
1611 if (supply_name
== NULL
)
1615 regulator
= kzalloc(sizeof(*regulator
), GFP_KERNEL
);
1616 if (regulator
== NULL
) {
1621 regulator
->rdev
= rdev
;
1622 regulator
->supply_name
= supply_name
;
1624 regulator_lock(rdev
);
1625 list_add(®ulator
->list
, &rdev
->consumer_list
);
1626 regulator_unlock(rdev
);
1629 regulator
->dev
= dev
;
1631 /* Add a link to the device sysfs entry */
1632 err
= sysfs_create_link_nowarn(&rdev
->dev
.kobj
, &dev
->kobj
,
1635 rdev_dbg(rdev
, "could not add device link %s err %d\n",
1636 dev
->kobj
.name
, err
);
1641 regulator
->debugfs
= debugfs_create_dir(supply_name
,
1643 if (!regulator
->debugfs
) {
1644 rdev_dbg(rdev
, "Failed to create debugfs directory\n");
1646 debugfs_create_u32("uA_load", 0444, regulator
->debugfs
,
1647 ®ulator
->uA_load
);
1648 debugfs_create_u32("min_uV", 0444, regulator
->debugfs
,
1649 ®ulator
->voltage
[PM_SUSPEND_ON
].min_uV
);
1650 debugfs_create_u32("max_uV", 0444, regulator
->debugfs
,
1651 ®ulator
->voltage
[PM_SUSPEND_ON
].max_uV
);
1652 debugfs_create_file("constraint_flags", 0444,
1653 regulator
->debugfs
, regulator
,
1654 &constraint_flags_fops
);
1658 * Check now if the regulator is an always on regulator - if
1659 * it is then we don't need to do nearly so much work for
1660 * enable/disable calls.
1662 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
) &&
1663 _regulator_is_enabled(rdev
))
1664 regulator
->always_on
= true;
1669 static int _regulator_get_enable_time(struct regulator_dev
*rdev
)
1671 if (rdev
->constraints
&& rdev
->constraints
->enable_time
)
1672 return rdev
->constraints
->enable_time
;
1673 if (rdev
->desc
->ops
->enable_time
)
1674 return rdev
->desc
->ops
->enable_time(rdev
);
1675 return rdev
->desc
->enable_time
;
1678 static struct regulator_supply_alias
*regulator_find_supply_alias(
1679 struct device
*dev
, const char *supply
)
1681 struct regulator_supply_alias
*map
;
1683 list_for_each_entry(map
, ®ulator_supply_alias_list
, list
)
1684 if (map
->src_dev
== dev
&& strcmp(map
->src_supply
, supply
) == 0)
1690 static void regulator_supply_alias(struct device
**dev
, const char **supply
)
1692 struct regulator_supply_alias
*map
;
1694 map
= regulator_find_supply_alias(*dev
, *supply
);
1696 dev_dbg(*dev
, "Mapping supply %s to %s,%s\n",
1697 *supply
, map
->alias_supply
,
1698 dev_name(map
->alias_dev
));
1699 *dev
= map
->alias_dev
;
1700 *supply
= map
->alias_supply
;
1704 static int regulator_match(struct device
*dev
, const void *data
)
1706 struct regulator_dev
*r
= dev_to_rdev(dev
);
1708 return strcmp(rdev_get_name(r
), data
) == 0;
1711 static struct regulator_dev
*regulator_lookup_by_name(const char *name
)
1715 dev
= class_find_device(®ulator_class
, NULL
, name
, regulator_match
);
1717 return dev
? dev_to_rdev(dev
) : NULL
;
1721 * regulator_dev_lookup - lookup a regulator device.
1722 * @dev: device for regulator "consumer".
1723 * @supply: Supply name or regulator ID.
1725 * If successful, returns a struct regulator_dev that corresponds to the name
1726 * @supply and with the embedded struct device refcount incremented by one.
1727 * The refcount must be dropped by calling put_device().
1728 * On failure one of the following ERR-PTR-encoded values is returned:
1729 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1732 static struct regulator_dev
*regulator_dev_lookup(struct device
*dev
,
1735 struct regulator_dev
*r
= NULL
;
1736 struct device_node
*node
;
1737 struct regulator_map
*map
;
1738 const char *devname
= NULL
;
1740 regulator_supply_alias(&dev
, &supply
);
1742 /* first do a dt based lookup */
1743 if (dev
&& dev
->of_node
) {
1744 node
= of_get_regulator(dev
, supply
);
1746 r
= of_find_regulator_by_node(node
);
1751 * We have a node, but there is no device.
1752 * assume it has not registered yet.
1754 return ERR_PTR(-EPROBE_DEFER
);
1758 /* if not found, try doing it non-dt way */
1760 devname
= dev_name(dev
);
1762 mutex_lock(®ulator_list_mutex
);
1763 list_for_each_entry(map
, ®ulator_map_list
, list
) {
1764 /* If the mapping has a device set up it must match */
1765 if (map
->dev_name
&&
1766 (!devname
|| strcmp(map
->dev_name
, devname
)))
1769 if (strcmp(map
->supply
, supply
) == 0 &&
1770 get_device(&map
->regulator
->dev
)) {
1775 mutex_unlock(®ulator_list_mutex
);
1780 r
= regulator_lookup_by_name(supply
);
1784 return ERR_PTR(-ENODEV
);
1787 static int regulator_resolve_supply(struct regulator_dev
*rdev
)
1789 struct regulator_dev
*r
;
1790 struct device
*dev
= rdev
->dev
.parent
;
1793 /* No supply to resolve? */
1794 if (!rdev
->supply_name
)
1797 /* Supply already resolved? */
1801 r
= regulator_dev_lookup(dev
, rdev
->supply_name
);
1805 /* Did the lookup explicitly defer for us? */
1806 if (ret
== -EPROBE_DEFER
)
1809 if (have_full_constraints()) {
1810 r
= dummy_regulator_rdev
;
1811 get_device(&r
->dev
);
1813 dev_err(dev
, "Failed to resolve %s-supply for %s\n",
1814 rdev
->supply_name
, rdev
->desc
->name
);
1815 return -EPROBE_DEFER
;
1820 * If the supply's parent device is not the same as the
1821 * regulator's parent device, then ensure the parent device
1822 * is bound before we resolve the supply, in case the parent
1823 * device get probe deferred and unregisters the supply.
1825 if (r
->dev
.parent
&& r
->dev
.parent
!= rdev
->dev
.parent
) {
1826 if (!device_is_bound(r
->dev
.parent
)) {
1827 put_device(&r
->dev
);
1828 return -EPROBE_DEFER
;
1832 /* Recursively resolve the supply of the supply */
1833 ret
= regulator_resolve_supply(r
);
1835 put_device(&r
->dev
);
1839 ret
= set_supply(rdev
, r
);
1841 put_device(&r
->dev
);
1846 * In set_machine_constraints() we may have turned this regulator on
1847 * but we couldn't propagate to the supply if it hadn't been resolved
1850 if (rdev
->use_count
) {
1851 ret
= regulator_enable(rdev
->supply
);
1853 _regulator_put(rdev
->supply
);
1854 rdev
->supply
= NULL
;
1862 /* Internal regulator request function */
1863 struct regulator
*_regulator_get(struct device
*dev
, const char *id
,
1864 enum regulator_get_type get_type
)
1866 struct regulator_dev
*rdev
;
1867 struct regulator
*regulator
;
1868 struct device_link
*link
;
1871 if (get_type
>= MAX_GET_TYPE
) {
1872 dev_err(dev
, "invalid type %d in %s\n", get_type
, __func__
);
1873 return ERR_PTR(-EINVAL
);
1877 pr_err("get() with no identifier\n");
1878 return ERR_PTR(-EINVAL
);
1881 rdev
= regulator_dev_lookup(dev
, id
);
1883 ret
= PTR_ERR(rdev
);
1886 * If regulator_dev_lookup() fails with error other
1887 * than -ENODEV our job here is done, we simply return it.
1890 return ERR_PTR(ret
);
1892 if (!have_full_constraints()) {
1894 "incomplete constraints, dummy supplies not allowed\n");
1895 return ERR_PTR(-ENODEV
);
1901 * Assume that a regulator is physically present and
1902 * enabled, even if it isn't hooked up, and just
1905 dev_warn(dev
, "supply %s not found, using dummy regulator\n", id
);
1906 rdev
= dummy_regulator_rdev
;
1907 get_device(&rdev
->dev
);
1912 "dummy supplies not allowed for exclusive requests\n");
1916 return ERR_PTR(-ENODEV
);
1920 if (rdev
->exclusive
) {
1921 regulator
= ERR_PTR(-EPERM
);
1922 put_device(&rdev
->dev
);
1926 if (get_type
== EXCLUSIVE_GET
&& rdev
->open_count
) {
1927 regulator
= ERR_PTR(-EBUSY
);
1928 put_device(&rdev
->dev
);
1932 mutex_lock(®ulator_list_mutex
);
1933 ret
= (rdev
->coupling_desc
.n_resolved
!= rdev
->coupling_desc
.n_coupled
);
1934 mutex_unlock(®ulator_list_mutex
);
1937 regulator
= ERR_PTR(-EPROBE_DEFER
);
1938 put_device(&rdev
->dev
);
1942 ret
= regulator_resolve_supply(rdev
);
1944 regulator
= ERR_PTR(ret
);
1945 put_device(&rdev
->dev
);
1949 if (!try_module_get(rdev
->owner
)) {
1950 regulator
= ERR_PTR(-EPROBE_DEFER
);
1951 put_device(&rdev
->dev
);
1955 regulator
= create_regulator(rdev
, dev
, id
);
1956 if (regulator
== NULL
) {
1957 regulator
= ERR_PTR(-ENOMEM
);
1958 module_put(rdev
->owner
);
1959 put_device(&rdev
->dev
);
1964 if (get_type
== EXCLUSIVE_GET
) {
1965 rdev
->exclusive
= 1;
1967 ret
= _regulator_is_enabled(rdev
);
1969 rdev
->use_count
= 1;
1971 rdev
->use_count
= 0;
1974 link
= device_link_add(dev
, &rdev
->dev
, DL_FLAG_STATELESS
);
1975 if (!IS_ERR_OR_NULL(link
))
1976 regulator
->device_link
= true;
1982 * regulator_get - lookup and obtain a reference to a regulator.
1983 * @dev: device for regulator "consumer"
1984 * @id: Supply name or regulator ID.
1986 * Returns a struct regulator corresponding to the regulator producer,
1987 * or IS_ERR() condition containing errno.
1989 * Use of supply names configured via regulator_set_device_supply() is
1990 * strongly encouraged. It is recommended that the supply name used
1991 * should match the name used for the supply and/or the relevant
1992 * device pins in the datasheet.
1994 struct regulator
*regulator_get(struct device
*dev
, const char *id
)
1996 return _regulator_get(dev
, id
, NORMAL_GET
);
1998 EXPORT_SYMBOL_GPL(regulator_get
);
2001 * regulator_get_exclusive - obtain exclusive access to a regulator.
2002 * @dev: device for regulator "consumer"
2003 * @id: Supply name or regulator ID.
2005 * Returns a struct regulator corresponding to the regulator producer,
2006 * or IS_ERR() condition containing errno. Other consumers will be
2007 * unable to obtain this regulator while this reference is held and the
2008 * use count for the regulator will be initialised to reflect the current
2009 * state of the regulator.
2011 * This is intended for use by consumers which cannot tolerate shared
2012 * use of the regulator such as those which need to force the
2013 * regulator off for correct operation of the hardware they are
2016 * Use of supply names configured via regulator_set_device_supply() is
2017 * strongly encouraged. It is recommended that the supply name used
2018 * should match the name used for the supply and/or the relevant
2019 * device pins in the datasheet.
2021 struct regulator
*regulator_get_exclusive(struct device
*dev
, const char *id
)
2023 return _regulator_get(dev
, id
, EXCLUSIVE_GET
);
2025 EXPORT_SYMBOL_GPL(regulator_get_exclusive
);
2028 * regulator_get_optional - obtain optional access to a regulator.
2029 * @dev: device for regulator "consumer"
2030 * @id: Supply name or regulator ID.
2032 * Returns a struct regulator corresponding to the regulator producer,
2033 * or IS_ERR() condition containing errno.
2035 * This is intended for use by consumers for devices which can have
2036 * some supplies unconnected in normal use, such as some MMC devices.
2037 * It can allow the regulator core to provide stub supplies for other
2038 * supplies requested using normal regulator_get() calls without
2039 * disrupting the operation of drivers that can handle absent
2042 * Use of supply names configured via regulator_set_device_supply() is
2043 * strongly encouraged. It is recommended that the supply name used
2044 * should match the name used for the supply and/or the relevant
2045 * device pins in the datasheet.
2047 struct regulator
*regulator_get_optional(struct device
*dev
, const char *id
)
2049 return _regulator_get(dev
, id
, OPTIONAL_GET
);
2051 EXPORT_SYMBOL_GPL(regulator_get_optional
);
2053 static void destroy_regulator(struct regulator
*regulator
)
2055 struct regulator_dev
*rdev
= regulator
->rdev
;
2057 debugfs_remove_recursive(regulator
->debugfs
);
2059 if (regulator
->dev
) {
2060 if (regulator
->device_link
)
2061 device_link_remove(regulator
->dev
, &rdev
->dev
);
2063 /* remove any sysfs entries */
2064 sysfs_remove_link(&rdev
->dev
.kobj
, regulator
->supply_name
);
2067 regulator_lock(rdev
);
2068 list_del(®ulator
->list
);
2071 rdev
->exclusive
= 0;
2072 regulator_unlock(rdev
);
2074 kfree_const(regulator
->supply_name
);
2078 /* regulator_list_mutex lock held by regulator_put() */
2079 static void _regulator_put(struct regulator
*regulator
)
2081 struct regulator_dev
*rdev
;
2083 if (IS_ERR_OR_NULL(regulator
))
2086 lockdep_assert_held_once(®ulator_list_mutex
);
2088 /* Docs say you must disable before calling regulator_put() */
2089 WARN_ON(regulator
->enable_count
);
2091 rdev
= regulator
->rdev
;
2093 destroy_regulator(regulator
);
2095 module_put(rdev
->owner
);
2096 put_device(&rdev
->dev
);
2100 * regulator_put - "free" the regulator source
2101 * @regulator: regulator source
2103 * Note: drivers must ensure that all regulator_enable calls made on this
2104 * regulator source are balanced by regulator_disable calls prior to calling
2107 void regulator_put(struct regulator
*regulator
)
2109 mutex_lock(®ulator_list_mutex
);
2110 _regulator_put(regulator
);
2111 mutex_unlock(®ulator_list_mutex
);
2113 EXPORT_SYMBOL_GPL(regulator_put
);
2116 * regulator_register_supply_alias - Provide device alias for supply lookup
2118 * @dev: device that will be given as the regulator "consumer"
2119 * @id: Supply name or regulator ID
2120 * @alias_dev: device that should be used to lookup the supply
2121 * @alias_id: Supply name or regulator ID that should be used to lookup the
2124 * All lookups for id on dev will instead be conducted for alias_id on
2127 int regulator_register_supply_alias(struct device
*dev
, const char *id
,
2128 struct device
*alias_dev
,
2129 const char *alias_id
)
2131 struct regulator_supply_alias
*map
;
2133 map
= regulator_find_supply_alias(dev
, id
);
2137 map
= kzalloc(sizeof(struct regulator_supply_alias
), GFP_KERNEL
);
2142 map
->src_supply
= id
;
2143 map
->alias_dev
= alias_dev
;
2144 map
->alias_supply
= alias_id
;
2146 list_add(&map
->list
, ®ulator_supply_alias_list
);
2148 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2149 id
, dev_name(dev
), alias_id
, dev_name(alias_dev
));
2153 EXPORT_SYMBOL_GPL(regulator_register_supply_alias
);
2156 * regulator_unregister_supply_alias - Remove device alias
2158 * @dev: device that will be given as the regulator "consumer"
2159 * @id: Supply name or regulator ID
2161 * Remove a lookup alias if one exists for id on dev.
2163 void regulator_unregister_supply_alias(struct device
*dev
, const char *id
)
2165 struct regulator_supply_alias
*map
;
2167 map
= regulator_find_supply_alias(dev
, id
);
2169 list_del(&map
->list
);
2173 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias
);
2176 * regulator_bulk_register_supply_alias - register multiple aliases
2178 * @dev: device that will be given as the regulator "consumer"
2179 * @id: List of supply names or regulator IDs
2180 * @alias_dev: device that should be used to lookup the supply
2181 * @alias_id: List of supply names or regulator IDs that should be used to
2183 * @num_id: Number of aliases to register
2185 * @return 0 on success, an errno on failure.
2187 * This helper function allows drivers to register several supply
2188 * aliases in one operation. If any of the aliases cannot be
2189 * registered any aliases that were registered will be removed
2190 * before returning to the caller.
2192 int regulator_bulk_register_supply_alias(struct device
*dev
,
2193 const char *const *id
,
2194 struct device
*alias_dev
,
2195 const char *const *alias_id
,
2201 for (i
= 0; i
< num_id
; ++i
) {
2202 ret
= regulator_register_supply_alias(dev
, id
[i
], alias_dev
,
2212 "Failed to create supply alias %s,%s -> %s,%s\n",
2213 id
[i
], dev_name(dev
), alias_id
[i
], dev_name(alias_dev
));
2216 regulator_unregister_supply_alias(dev
, id
[i
]);
2220 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias
);
2223 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2225 * @dev: device that will be given as the regulator "consumer"
2226 * @id: List of supply names or regulator IDs
2227 * @num_id: Number of aliases to unregister
2229 * This helper function allows drivers to unregister several supply
2230 * aliases in one operation.
2232 void regulator_bulk_unregister_supply_alias(struct device
*dev
,
2233 const char *const *id
,
2238 for (i
= 0; i
< num_id
; ++i
)
2239 regulator_unregister_supply_alias(dev
, id
[i
]);
2241 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias
);
2244 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2245 static int regulator_ena_gpio_request(struct regulator_dev
*rdev
,
2246 const struct regulator_config
*config
)
2248 struct regulator_enable_gpio
*pin
, *new_pin
;
2249 struct gpio_desc
*gpiod
;
2251 gpiod
= config
->ena_gpiod
;
2252 new_pin
= kzalloc(sizeof(*new_pin
), GFP_KERNEL
);
2254 mutex_lock(®ulator_list_mutex
);
2256 list_for_each_entry(pin
, ®ulator_ena_gpio_list
, list
) {
2257 if (pin
->gpiod
== gpiod
) {
2258 rdev_dbg(rdev
, "GPIO is already used\n");
2259 goto update_ena_gpio_to_rdev
;
2263 if (new_pin
== NULL
) {
2264 mutex_unlock(®ulator_list_mutex
);
2272 list_add(&pin
->list
, ®ulator_ena_gpio_list
);
2274 update_ena_gpio_to_rdev
:
2275 pin
->request_count
++;
2276 rdev
->ena_pin
= pin
;
2278 mutex_unlock(®ulator_list_mutex
);
2284 static void regulator_ena_gpio_free(struct regulator_dev
*rdev
)
2286 struct regulator_enable_gpio
*pin
, *n
;
2291 /* Free the GPIO only in case of no use */
2292 list_for_each_entry_safe(pin
, n
, ®ulator_ena_gpio_list
, list
) {
2293 if (pin
!= rdev
->ena_pin
)
2296 if (--pin
->request_count
)
2299 gpiod_put(pin
->gpiod
);
2300 list_del(&pin
->list
);
2305 rdev
->ena_pin
= NULL
;
2309 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2310 * @rdev: regulator_dev structure
2311 * @enable: enable GPIO at initial use?
2313 * GPIO is enabled in case of initial use. (enable_count is 0)
2314 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2316 static int regulator_ena_gpio_ctrl(struct regulator_dev
*rdev
, bool enable
)
2318 struct regulator_enable_gpio
*pin
= rdev
->ena_pin
;
2324 /* Enable GPIO at initial use */
2325 if (pin
->enable_count
== 0)
2326 gpiod_set_value_cansleep(pin
->gpiod
, 1);
2328 pin
->enable_count
++;
2330 if (pin
->enable_count
> 1) {
2331 pin
->enable_count
--;
2335 /* Disable GPIO if not used */
2336 if (pin
->enable_count
<= 1) {
2337 gpiod_set_value_cansleep(pin
->gpiod
, 0);
2338 pin
->enable_count
= 0;
2346 * _regulator_enable_delay - a delay helper function
2347 * @delay: time to delay in microseconds
2349 * Delay for the requested amount of time as per the guidelines in:
2351 * Documentation/timers/timers-howto.rst
2353 * The assumption here is that regulators will never be enabled in
2354 * atomic context and therefore sleeping functions can be used.
2356 static void _regulator_enable_delay(unsigned int delay
)
2358 unsigned int ms
= delay
/ 1000;
2359 unsigned int us
= delay
% 1000;
2363 * For small enough values, handle super-millisecond
2364 * delays in the usleep_range() call below.
2373 * Give the scheduler some room to coalesce with any other
2374 * wakeup sources. For delays shorter than 10 us, don't even
2375 * bother setting up high-resolution timers and just busy-
2379 usleep_range(us
, us
+ 100);
2385 * _regulator_check_status_enabled
2387 * A helper function to check if the regulator status can be interpreted
2388 * as 'regulator is enabled'.
2389 * @rdev: the regulator device to check
2392 * * 1 - if status shows regulator is in enabled state
2393 * * 0 - if not enabled state
2394 * * Error Value - as received from ops->get_status()
2396 static inline int _regulator_check_status_enabled(struct regulator_dev
*rdev
)
2398 int ret
= rdev
->desc
->ops
->get_status(rdev
);
2401 rdev_info(rdev
, "get_status returned error: %d\n", ret
);
2406 case REGULATOR_STATUS_OFF
:
2407 case REGULATOR_STATUS_ERROR
:
2408 case REGULATOR_STATUS_UNDEFINED
:
2415 static int _regulator_do_enable(struct regulator_dev
*rdev
)
2419 /* Query before enabling in case configuration dependent. */
2420 ret
= _regulator_get_enable_time(rdev
);
2424 rdev_warn(rdev
, "enable_time() failed: %d\n", ret
);
2428 trace_regulator_enable(rdev_get_name(rdev
));
2430 if (rdev
->desc
->off_on_delay
) {
2431 /* if needed, keep a distance of off_on_delay from last time
2432 * this regulator was disabled.
2434 unsigned long start_jiffy
= jiffies
;
2435 unsigned long intended
, max_delay
, remaining
;
2437 max_delay
= usecs_to_jiffies(rdev
->desc
->off_on_delay
);
2438 intended
= rdev
->last_off_jiffy
+ max_delay
;
2440 if (time_before(start_jiffy
, intended
)) {
2441 /* calc remaining jiffies to deal with one-time
2443 * in case of multiple timer wrapping, either it can be
2444 * detected by out-of-range remaining, or it cannot be
2445 * detected and we get a penalty of
2446 * _regulator_enable_delay().
2448 remaining
= intended
- start_jiffy
;
2449 if (remaining
<= max_delay
)
2450 _regulator_enable_delay(
2451 jiffies_to_usecs(remaining
));
2455 if (rdev
->ena_pin
) {
2456 if (!rdev
->ena_gpio_state
) {
2457 ret
= regulator_ena_gpio_ctrl(rdev
, true);
2460 rdev
->ena_gpio_state
= 1;
2462 } else if (rdev
->desc
->ops
->enable
) {
2463 ret
= rdev
->desc
->ops
->enable(rdev
);
2470 /* Allow the regulator to ramp; it would be useful to extend
2471 * this for bulk operations so that the regulators can ramp
2473 trace_regulator_enable_delay(rdev_get_name(rdev
));
2475 /* If poll_enabled_time is set, poll upto the delay calculated
2476 * above, delaying poll_enabled_time uS to check if the regulator
2477 * actually got enabled.
2478 * If the regulator isn't enabled after enable_delay has
2479 * expired, return -ETIMEDOUT.
2481 if (rdev
->desc
->poll_enabled_time
) {
2482 unsigned int time_remaining
= delay
;
2484 while (time_remaining
> 0) {
2485 _regulator_enable_delay(rdev
->desc
->poll_enabled_time
);
2487 if (rdev
->desc
->ops
->get_status
) {
2488 ret
= _regulator_check_status_enabled(rdev
);
2493 } else if (rdev
->desc
->ops
->is_enabled(rdev
))
2496 time_remaining
-= rdev
->desc
->poll_enabled_time
;
2499 if (time_remaining
<= 0) {
2500 rdev_err(rdev
, "Enabled check timed out\n");
2504 _regulator_enable_delay(delay
);
2507 trace_regulator_enable_complete(rdev_get_name(rdev
));
2513 * _regulator_handle_consumer_enable - handle that a consumer enabled
2514 * @regulator: regulator source
2516 * Some things on a regulator consumer (like the contribution towards total
2517 * load on the regulator) only have an effect when the consumer wants the
2518 * regulator enabled. Explained in example with two consumers of the same
2520 * consumer A: set_load(100); => total load = 0
2521 * consumer A: regulator_enable(); => total load = 100
2522 * consumer B: set_load(1000); => total load = 100
2523 * consumer B: regulator_enable(); => total load = 1100
2524 * consumer A: regulator_disable(); => total_load = 1000
2526 * This function (together with _regulator_handle_consumer_disable) is
2527 * responsible for keeping track of the refcount for a given regulator consumer
2528 * and applying / unapplying these things.
2530 * Returns 0 upon no error; -error upon error.
2532 static int _regulator_handle_consumer_enable(struct regulator
*regulator
)
2534 struct regulator_dev
*rdev
= regulator
->rdev
;
2536 lockdep_assert_held_once(&rdev
->mutex
.base
);
2538 regulator
->enable_count
++;
2539 if (regulator
->uA_load
&& regulator
->enable_count
== 1)
2540 return drms_uA_update(rdev
);
2546 * _regulator_handle_consumer_disable - handle that a consumer disabled
2547 * @regulator: regulator source
2549 * The opposite of _regulator_handle_consumer_enable().
2551 * Returns 0 upon no error; -error upon error.
2553 static int _regulator_handle_consumer_disable(struct regulator
*regulator
)
2555 struct regulator_dev
*rdev
= regulator
->rdev
;
2557 lockdep_assert_held_once(&rdev
->mutex
.base
);
2559 if (!regulator
->enable_count
) {
2560 rdev_err(rdev
, "Underflow of regulator enable count\n");
2564 regulator
->enable_count
--;
2565 if (regulator
->uA_load
&& regulator
->enable_count
== 0)
2566 return drms_uA_update(rdev
);
2571 /* locks held by regulator_enable() */
2572 static int _regulator_enable(struct regulator
*regulator
)
2574 struct regulator_dev
*rdev
= regulator
->rdev
;
2577 lockdep_assert_held_once(&rdev
->mutex
.base
);
2579 if (rdev
->use_count
== 0 && rdev
->supply
) {
2580 ret
= _regulator_enable(rdev
->supply
);
2585 /* balance only if there are regulators coupled */
2586 if (rdev
->coupling_desc
.n_coupled
> 1) {
2587 ret
= regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
2589 goto err_disable_supply
;
2592 ret
= _regulator_handle_consumer_enable(regulator
);
2594 goto err_disable_supply
;
2596 if (rdev
->use_count
== 0) {
2597 /* The regulator may on if it's not switchable or left on */
2598 ret
= _regulator_is_enabled(rdev
);
2599 if (ret
== -EINVAL
|| ret
== 0) {
2600 if (!regulator_ops_is_valid(rdev
,
2601 REGULATOR_CHANGE_STATUS
)) {
2603 goto err_consumer_disable
;
2606 ret
= _regulator_do_enable(rdev
);
2608 goto err_consumer_disable
;
2610 _notifier_call_chain(rdev
, REGULATOR_EVENT_ENABLE
,
2612 } else if (ret
< 0) {
2613 rdev_err(rdev
, "is_enabled() failed: %d\n", ret
);
2614 goto err_consumer_disable
;
2616 /* Fallthrough on positive return values - already enabled */
2623 err_consumer_disable
:
2624 _regulator_handle_consumer_disable(regulator
);
2627 if (rdev
->use_count
== 0 && rdev
->supply
)
2628 _regulator_disable(rdev
->supply
);
2634 * regulator_enable - enable regulator output
2635 * @regulator: regulator source
2637 * Request that the regulator be enabled with the regulator output at
2638 * the predefined voltage or current value. Calls to regulator_enable()
2639 * must be balanced with calls to regulator_disable().
2641 * NOTE: the output value can be set by other drivers, boot loader or may be
2642 * hardwired in the regulator.
2644 int regulator_enable(struct regulator
*regulator
)
2646 struct regulator_dev
*rdev
= regulator
->rdev
;
2647 struct ww_acquire_ctx ww_ctx
;
2650 regulator_lock_dependent(rdev
, &ww_ctx
);
2651 ret
= _regulator_enable(regulator
);
2652 regulator_unlock_dependent(rdev
, &ww_ctx
);
2656 EXPORT_SYMBOL_GPL(regulator_enable
);
2658 static int _regulator_do_disable(struct regulator_dev
*rdev
)
2662 trace_regulator_disable(rdev_get_name(rdev
));
2664 if (rdev
->ena_pin
) {
2665 if (rdev
->ena_gpio_state
) {
2666 ret
= regulator_ena_gpio_ctrl(rdev
, false);
2669 rdev
->ena_gpio_state
= 0;
2672 } else if (rdev
->desc
->ops
->disable
) {
2673 ret
= rdev
->desc
->ops
->disable(rdev
);
2678 /* cares about last_off_jiffy only if off_on_delay is required by
2681 if (rdev
->desc
->off_on_delay
)
2682 rdev
->last_off_jiffy
= jiffies
;
2684 trace_regulator_disable_complete(rdev_get_name(rdev
));
2689 /* locks held by regulator_disable() */
2690 static int _regulator_disable(struct regulator
*regulator
)
2692 struct regulator_dev
*rdev
= regulator
->rdev
;
2695 lockdep_assert_held_once(&rdev
->mutex
.base
);
2697 if (WARN(rdev
->use_count
<= 0,
2698 "unbalanced disables for %s\n", rdev_get_name(rdev
)))
2701 /* are we the last user and permitted to disable ? */
2702 if (rdev
->use_count
== 1 &&
2703 (rdev
->constraints
&& !rdev
->constraints
->always_on
)) {
2705 /* we are last user */
2706 if (regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
)) {
2707 ret
= _notifier_call_chain(rdev
,
2708 REGULATOR_EVENT_PRE_DISABLE
,
2710 if (ret
& NOTIFY_STOP_MASK
)
2713 ret
= _regulator_do_disable(rdev
);
2715 rdev_err(rdev
, "failed to disable\n");
2716 _notifier_call_chain(rdev
,
2717 REGULATOR_EVENT_ABORT_DISABLE
,
2721 _notifier_call_chain(rdev
, REGULATOR_EVENT_DISABLE
,
2725 rdev
->use_count
= 0;
2726 } else if (rdev
->use_count
> 1) {
2731 ret
= _regulator_handle_consumer_disable(regulator
);
2733 if (ret
== 0 && rdev
->coupling_desc
.n_coupled
> 1)
2734 ret
= regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
2736 if (ret
== 0 && rdev
->use_count
== 0 && rdev
->supply
)
2737 ret
= _regulator_disable(rdev
->supply
);
2743 * regulator_disable - disable regulator output
2744 * @regulator: regulator source
2746 * Disable the regulator output voltage or current. Calls to
2747 * regulator_enable() must be balanced with calls to
2748 * regulator_disable().
2750 * NOTE: this will only disable the regulator output if no other consumer
2751 * devices have it enabled, the regulator device supports disabling and
2752 * machine constraints permit this operation.
2754 int regulator_disable(struct regulator
*regulator
)
2756 struct regulator_dev
*rdev
= regulator
->rdev
;
2757 struct ww_acquire_ctx ww_ctx
;
2760 regulator_lock_dependent(rdev
, &ww_ctx
);
2761 ret
= _regulator_disable(regulator
);
2762 regulator_unlock_dependent(rdev
, &ww_ctx
);
2766 EXPORT_SYMBOL_GPL(regulator_disable
);
2768 /* locks held by regulator_force_disable() */
2769 static int _regulator_force_disable(struct regulator_dev
*rdev
)
2773 lockdep_assert_held_once(&rdev
->mutex
.base
);
2775 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2776 REGULATOR_EVENT_PRE_DISABLE
, NULL
);
2777 if (ret
& NOTIFY_STOP_MASK
)
2780 ret
= _regulator_do_disable(rdev
);
2782 rdev_err(rdev
, "failed to force disable\n");
2783 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2784 REGULATOR_EVENT_ABORT_DISABLE
, NULL
);
2788 _notifier_call_chain(rdev
, REGULATOR_EVENT_FORCE_DISABLE
|
2789 REGULATOR_EVENT_DISABLE
, NULL
);
2795 * regulator_force_disable - force disable regulator output
2796 * @regulator: regulator source
2798 * Forcibly disable the regulator output voltage or current.
2799 * NOTE: this *will* disable the regulator output even if other consumer
2800 * devices have it enabled. This should be used for situations when device
2801 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2803 int regulator_force_disable(struct regulator
*regulator
)
2805 struct regulator_dev
*rdev
= regulator
->rdev
;
2806 struct ww_acquire_ctx ww_ctx
;
2809 regulator_lock_dependent(rdev
, &ww_ctx
);
2811 ret
= _regulator_force_disable(regulator
->rdev
);
2813 if (rdev
->coupling_desc
.n_coupled
> 1)
2814 regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
2816 if (regulator
->uA_load
) {
2817 regulator
->uA_load
= 0;
2818 ret
= drms_uA_update(rdev
);
2821 if (rdev
->use_count
!= 0 && rdev
->supply
)
2822 _regulator_disable(rdev
->supply
);
2824 regulator_unlock_dependent(rdev
, &ww_ctx
);
2828 EXPORT_SYMBOL_GPL(regulator_force_disable
);
2830 static void regulator_disable_work(struct work_struct
*work
)
2832 struct regulator_dev
*rdev
= container_of(work
, struct regulator_dev
,
2834 struct ww_acquire_ctx ww_ctx
;
2836 struct regulator
*regulator
;
2837 int total_count
= 0;
2839 regulator_lock_dependent(rdev
, &ww_ctx
);
2842 * Workqueue functions queue the new work instance while the previous
2843 * work instance is being processed. Cancel the queued work instance
2844 * as the work instance under processing does the job of the queued
2847 cancel_delayed_work(&rdev
->disable_work
);
2849 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
2850 count
= regulator
->deferred_disables
;
2855 total_count
+= count
;
2856 regulator
->deferred_disables
= 0;
2858 for (i
= 0; i
< count
; i
++) {
2859 ret
= _regulator_disable(regulator
);
2861 rdev_err(rdev
, "Deferred disable failed: %d\n", ret
);
2864 WARN_ON(!total_count
);
2866 if (rdev
->coupling_desc
.n_coupled
> 1)
2867 regulator_balance_voltage(rdev
, PM_SUSPEND_ON
);
2869 regulator_unlock_dependent(rdev
, &ww_ctx
);
2873 * regulator_disable_deferred - disable regulator output with delay
2874 * @regulator: regulator source
2875 * @ms: milliseconds until the regulator is disabled
2877 * Execute regulator_disable() on the regulator after a delay. This
2878 * is intended for use with devices that require some time to quiesce.
2880 * NOTE: this will only disable the regulator output if no other consumer
2881 * devices have it enabled, the regulator device supports disabling and
2882 * machine constraints permit this operation.
2884 int regulator_disable_deferred(struct regulator
*regulator
, int ms
)
2886 struct regulator_dev
*rdev
= regulator
->rdev
;
2889 return regulator_disable(regulator
);
2891 regulator_lock(rdev
);
2892 regulator
->deferred_disables
++;
2893 mod_delayed_work(system_power_efficient_wq
, &rdev
->disable_work
,
2894 msecs_to_jiffies(ms
));
2895 regulator_unlock(rdev
);
2899 EXPORT_SYMBOL_GPL(regulator_disable_deferred
);
2901 static int _regulator_is_enabled(struct regulator_dev
*rdev
)
2903 /* A GPIO control always takes precedence */
2905 return rdev
->ena_gpio_state
;
2907 /* If we don't know then assume that the regulator is always on */
2908 if (!rdev
->desc
->ops
->is_enabled
)
2911 return rdev
->desc
->ops
->is_enabled(rdev
);
2914 static int _regulator_list_voltage(struct regulator_dev
*rdev
,
2915 unsigned selector
, int lock
)
2917 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
2920 if (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1 && !selector
)
2921 return rdev
->desc
->fixed_uV
;
2923 if (ops
->list_voltage
) {
2924 if (selector
>= rdev
->desc
->n_voltages
)
2927 regulator_lock(rdev
);
2928 ret
= ops
->list_voltage(rdev
, selector
);
2930 regulator_unlock(rdev
);
2931 } else if (rdev
->is_switch
&& rdev
->supply
) {
2932 ret
= _regulator_list_voltage(rdev
->supply
->rdev
,
2939 if (ret
< rdev
->constraints
->min_uV
)
2941 else if (ret
> rdev
->constraints
->max_uV
)
2949 * regulator_is_enabled - is the regulator output enabled
2950 * @regulator: regulator source
2952 * Returns positive if the regulator driver backing the source/client
2953 * has requested that the device be enabled, zero if it hasn't, else a
2954 * negative errno code.
2956 * Note that the device backing this regulator handle can have multiple
2957 * users, so it might be enabled even if regulator_enable() was never
2958 * called for this particular source.
2960 int regulator_is_enabled(struct regulator
*regulator
)
2964 if (regulator
->always_on
)
2967 regulator_lock(regulator
->rdev
);
2968 ret
= _regulator_is_enabled(regulator
->rdev
);
2969 regulator_unlock(regulator
->rdev
);
2973 EXPORT_SYMBOL_GPL(regulator_is_enabled
);
2976 * regulator_count_voltages - count regulator_list_voltage() selectors
2977 * @regulator: regulator source
2979 * Returns number of selectors, or negative errno. Selectors are
2980 * numbered starting at zero, and typically correspond to bitfields
2981 * in hardware registers.
2983 int regulator_count_voltages(struct regulator
*regulator
)
2985 struct regulator_dev
*rdev
= regulator
->rdev
;
2987 if (rdev
->desc
->n_voltages
)
2988 return rdev
->desc
->n_voltages
;
2990 if (!rdev
->is_switch
|| !rdev
->supply
)
2993 return regulator_count_voltages(rdev
->supply
);
2995 EXPORT_SYMBOL_GPL(regulator_count_voltages
);
2998 * regulator_list_voltage - enumerate supported voltages
2999 * @regulator: regulator source
3000 * @selector: identify voltage to list
3001 * Context: can sleep
3003 * Returns a voltage that can be passed to @regulator_set_voltage(),
3004 * zero if this selector code can't be used on this system, or a
3007 int regulator_list_voltage(struct regulator
*regulator
, unsigned selector
)
3009 return _regulator_list_voltage(regulator
->rdev
, selector
, 1);
3011 EXPORT_SYMBOL_GPL(regulator_list_voltage
);
3014 * regulator_get_regmap - get the regulator's register map
3015 * @regulator: regulator source
3017 * Returns the register map for the given regulator, or an ERR_PTR value
3018 * if the regulator doesn't use regmap.
3020 struct regmap
*regulator_get_regmap(struct regulator
*regulator
)
3022 struct regmap
*map
= regulator
->rdev
->regmap
;
3024 return map
? map
: ERR_PTR(-EOPNOTSUPP
);
3028 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3029 * @regulator: regulator source
3030 * @vsel_reg: voltage selector register, output parameter
3031 * @vsel_mask: mask for voltage selector bitfield, output parameter
3033 * Returns the hardware register offset and bitmask used for setting the
3034 * regulator voltage. This might be useful when configuring voltage-scaling
3035 * hardware or firmware that can make I2C requests behind the kernel's back,
3038 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3039 * and 0 is returned, otherwise a negative errno is returned.
3041 int regulator_get_hardware_vsel_register(struct regulator
*regulator
,
3043 unsigned *vsel_mask
)
3045 struct regulator_dev
*rdev
= regulator
->rdev
;
3046 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3048 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
3051 *vsel_reg
= rdev
->desc
->vsel_reg
;
3052 *vsel_mask
= rdev
->desc
->vsel_mask
;
3056 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register
);
3059 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3060 * @regulator: regulator source
3061 * @selector: identify voltage to list
3063 * Converts the selector to a hardware-specific voltage selector that can be
3064 * directly written to the regulator registers. The address of the voltage
3065 * register can be determined by calling @regulator_get_hardware_vsel_register.
3067 * On error a negative errno is returned.
3069 int regulator_list_hardware_vsel(struct regulator
*regulator
,
3072 struct regulator_dev
*rdev
= regulator
->rdev
;
3073 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3075 if (selector
>= rdev
->desc
->n_voltages
)
3077 if (ops
->set_voltage_sel
!= regulator_set_voltage_sel_regmap
)
3082 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel
);
3085 * regulator_get_linear_step - return the voltage step size between VSEL values
3086 * @regulator: regulator source
3088 * Returns the voltage step size between VSEL values for linear
3089 * regulators, or return 0 if the regulator isn't a linear regulator.
3091 unsigned int regulator_get_linear_step(struct regulator
*regulator
)
3093 struct regulator_dev
*rdev
= regulator
->rdev
;
3095 return rdev
->desc
->uV_step
;
3097 EXPORT_SYMBOL_GPL(regulator_get_linear_step
);
3100 * regulator_is_supported_voltage - check if a voltage range can be supported
3102 * @regulator: Regulator to check.
3103 * @min_uV: Minimum required voltage in uV.
3104 * @max_uV: Maximum required voltage in uV.
3106 * Returns a boolean.
3108 int regulator_is_supported_voltage(struct regulator
*regulator
,
3109 int min_uV
, int max_uV
)
3111 struct regulator_dev
*rdev
= regulator
->rdev
;
3112 int i
, voltages
, ret
;
3114 /* If we can't change voltage check the current voltage */
3115 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
3116 ret
= regulator_get_voltage(regulator
);
3118 return min_uV
<= ret
&& ret
<= max_uV
;
3123 /* Any voltage within constrains range is fine? */
3124 if (rdev
->desc
->continuous_voltage_range
)
3125 return min_uV
>= rdev
->constraints
->min_uV
&&
3126 max_uV
<= rdev
->constraints
->max_uV
;
3128 ret
= regulator_count_voltages(regulator
);
3133 for (i
= 0; i
< voltages
; i
++) {
3134 ret
= regulator_list_voltage(regulator
, i
);
3136 if (ret
>= min_uV
&& ret
<= max_uV
)
3142 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage
);
3144 static int regulator_map_voltage(struct regulator_dev
*rdev
, int min_uV
,
3147 const struct regulator_desc
*desc
= rdev
->desc
;
3149 if (desc
->ops
->map_voltage
)
3150 return desc
->ops
->map_voltage(rdev
, min_uV
, max_uV
);
3152 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear
)
3153 return regulator_map_voltage_linear(rdev
, min_uV
, max_uV
);
3155 if (desc
->ops
->list_voltage
== regulator_list_voltage_linear_range
)
3156 return regulator_map_voltage_linear_range(rdev
, min_uV
, max_uV
);
3158 if (desc
->ops
->list_voltage
==
3159 regulator_list_voltage_pickable_linear_range
)
3160 return regulator_map_voltage_pickable_linear_range(rdev
,
3163 return regulator_map_voltage_iterate(rdev
, min_uV
, max_uV
);
3166 static int _regulator_call_set_voltage(struct regulator_dev
*rdev
,
3167 int min_uV
, int max_uV
,
3170 struct pre_voltage_change_data data
;
3173 data
.old_uV
= regulator_get_voltage_rdev(rdev
);
3174 data
.min_uV
= min_uV
;
3175 data
.max_uV
= max_uV
;
3176 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
3178 if (ret
& NOTIFY_STOP_MASK
)
3181 ret
= rdev
->desc
->ops
->set_voltage(rdev
, min_uV
, max_uV
, selector
);
3185 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
3186 (void *)data
.old_uV
);
3191 static int _regulator_call_set_voltage_sel(struct regulator_dev
*rdev
,
3192 int uV
, unsigned selector
)
3194 struct pre_voltage_change_data data
;
3197 data
.old_uV
= regulator_get_voltage_rdev(rdev
);
3200 ret
= _notifier_call_chain(rdev
, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE
,
3202 if (ret
& NOTIFY_STOP_MASK
)
3205 ret
= rdev
->desc
->ops
->set_voltage_sel(rdev
, selector
);
3209 _notifier_call_chain(rdev
, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE
,
3210 (void *)data
.old_uV
);
3215 static int _regulator_set_voltage_sel_step(struct regulator_dev
*rdev
,
3216 int uV
, int new_selector
)
3218 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3219 int diff
, old_sel
, curr_sel
, ret
;
3221 /* Stepping is only needed if the regulator is enabled. */
3222 if (!_regulator_is_enabled(rdev
))
3225 if (!ops
->get_voltage_sel
)
3228 old_sel
= ops
->get_voltage_sel(rdev
);
3232 diff
= new_selector
- old_sel
;
3234 return 0; /* No change needed. */
3238 for (curr_sel
= old_sel
+ rdev
->desc
->vsel_step
;
3239 curr_sel
< new_selector
;
3240 curr_sel
+= rdev
->desc
->vsel_step
) {
3242 * Call the callback directly instead of using
3243 * _regulator_call_set_voltage_sel() as we don't
3244 * want to notify anyone yet. Same in the branch
3247 ret
= ops
->set_voltage_sel(rdev
, curr_sel
);
3252 /* Stepping down. */
3253 for (curr_sel
= old_sel
- rdev
->desc
->vsel_step
;
3254 curr_sel
> new_selector
;
3255 curr_sel
-= rdev
->desc
->vsel_step
) {
3256 ret
= ops
->set_voltage_sel(rdev
, curr_sel
);
3263 /* The final selector will trigger the notifiers. */
3264 return _regulator_call_set_voltage_sel(rdev
, uV
, new_selector
);
3268 * At least try to return to the previous voltage if setting a new
3271 (void)ops
->set_voltage_sel(rdev
, old_sel
);
3275 static int _regulator_set_voltage_time(struct regulator_dev
*rdev
,
3276 int old_uV
, int new_uV
)
3278 unsigned int ramp_delay
= 0;
3280 if (rdev
->constraints
->ramp_delay
)
3281 ramp_delay
= rdev
->constraints
->ramp_delay
;
3282 else if (rdev
->desc
->ramp_delay
)
3283 ramp_delay
= rdev
->desc
->ramp_delay
;
3284 else if (rdev
->constraints
->settling_time
)
3285 return rdev
->constraints
->settling_time
;
3286 else if (rdev
->constraints
->settling_time_up
&&
3288 return rdev
->constraints
->settling_time_up
;
3289 else if (rdev
->constraints
->settling_time_down
&&
3291 return rdev
->constraints
->settling_time_down
;
3293 if (ramp_delay
== 0) {
3294 rdev_dbg(rdev
, "ramp_delay not set\n");
3298 return DIV_ROUND_UP(abs(new_uV
- old_uV
), ramp_delay
);
3301 static int _regulator_do_set_voltage(struct regulator_dev
*rdev
,
3302 int min_uV
, int max_uV
)
3307 unsigned int selector
;
3308 int old_selector
= -1;
3309 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3310 int old_uV
= regulator_get_voltage_rdev(rdev
);
3312 trace_regulator_set_voltage(rdev_get_name(rdev
), min_uV
, max_uV
);
3314 min_uV
+= rdev
->constraints
->uV_offset
;
3315 max_uV
+= rdev
->constraints
->uV_offset
;
3318 * If we can't obtain the old selector there is not enough
3319 * info to call set_voltage_time_sel().
3321 if (_regulator_is_enabled(rdev
) &&
3322 ops
->set_voltage_time_sel
&& ops
->get_voltage_sel
) {
3323 old_selector
= ops
->get_voltage_sel(rdev
);
3324 if (old_selector
< 0)
3325 return old_selector
;
3328 if (ops
->set_voltage
) {
3329 ret
= _regulator_call_set_voltage(rdev
, min_uV
, max_uV
,
3333 if (ops
->list_voltage
)
3334 best_val
= ops
->list_voltage(rdev
,
3337 best_val
= regulator_get_voltage_rdev(rdev
);
3340 } else if (ops
->set_voltage_sel
) {
3341 ret
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
3343 best_val
= ops
->list_voltage(rdev
, ret
);
3344 if (min_uV
<= best_val
&& max_uV
>= best_val
) {
3346 if (old_selector
== selector
)
3348 else if (rdev
->desc
->vsel_step
)
3349 ret
= _regulator_set_voltage_sel_step(
3350 rdev
, best_val
, selector
);
3352 ret
= _regulator_call_set_voltage_sel(
3353 rdev
, best_val
, selector
);
3365 if (ops
->set_voltage_time_sel
) {
3367 * Call set_voltage_time_sel if successfully obtained
3370 if (old_selector
>= 0 && old_selector
!= selector
)
3371 delay
= ops
->set_voltage_time_sel(rdev
, old_selector
,
3374 if (old_uV
!= best_val
) {
3375 if (ops
->set_voltage_time
)
3376 delay
= ops
->set_voltage_time(rdev
, old_uV
,
3379 delay
= _regulator_set_voltage_time(rdev
,
3386 rdev_warn(rdev
, "failed to get delay: %d\n", delay
);
3390 /* Insert any necessary delays */
3391 if (delay
>= 1000) {
3392 mdelay(delay
/ 1000);
3393 udelay(delay
% 1000);
3398 if (best_val
>= 0) {
3399 unsigned long data
= best_val
;
3401 _notifier_call_chain(rdev
, REGULATOR_EVENT_VOLTAGE_CHANGE
,
3406 trace_regulator_set_voltage_complete(rdev_get_name(rdev
), best_val
);
3411 static int _regulator_do_set_suspend_voltage(struct regulator_dev
*rdev
,
3412 int min_uV
, int max_uV
, suspend_state_t state
)
3414 struct regulator_state
*rstate
;
3417 rstate
= regulator_get_suspend_state(rdev
, state
);
3421 if (min_uV
< rstate
->min_uV
)
3422 min_uV
= rstate
->min_uV
;
3423 if (max_uV
> rstate
->max_uV
)
3424 max_uV
= rstate
->max_uV
;
3426 sel
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
3430 uV
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
3431 if (uV
>= min_uV
&& uV
<= max_uV
)
3437 static int regulator_set_voltage_unlocked(struct regulator
*regulator
,
3438 int min_uV
, int max_uV
,
3439 suspend_state_t state
)
3441 struct regulator_dev
*rdev
= regulator
->rdev
;
3442 struct regulator_voltage
*voltage
= ®ulator
->voltage
[state
];
3444 int old_min_uV
, old_max_uV
;
3447 /* If we're setting the same range as last time the change
3448 * should be a noop (some cpufreq implementations use the same
3449 * voltage for multiple frequencies, for example).
3451 if (voltage
->min_uV
== min_uV
&& voltage
->max_uV
== max_uV
)
3454 /* If we're trying to set a range that overlaps the current voltage,
3455 * return successfully even though the regulator does not support
3456 * changing the voltage.
3458 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_VOLTAGE
)) {
3459 current_uV
= regulator_get_voltage_rdev(rdev
);
3460 if (min_uV
<= current_uV
&& current_uV
<= max_uV
) {
3461 voltage
->min_uV
= min_uV
;
3462 voltage
->max_uV
= max_uV
;
3468 if (!rdev
->desc
->ops
->set_voltage
&&
3469 !rdev
->desc
->ops
->set_voltage_sel
) {
3474 /* constraints check */
3475 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
3479 /* restore original values in case of error */
3480 old_min_uV
= voltage
->min_uV
;
3481 old_max_uV
= voltage
->max_uV
;
3482 voltage
->min_uV
= min_uV
;
3483 voltage
->max_uV
= max_uV
;
3485 /* for not coupled regulators this will just set the voltage */
3486 ret
= regulator_balance_voltage(rdev
, state
);
3488 voltage
->min_uV
= old_min_uV
;
3489 voltage
->max_uV
= old_max_uV
;
3496 int regulator_set_voltage_rdev(struct regulator_dev
*rdev
, int min_uV
,
3497 int max_uV
, suspend_state_t state
)
3499 int best_supply_uV
= 0;
3500 int supply_change_uV
= 0;
3504 regulator_ops_is_valid(rdev
->supply
->rdev
,
3505 REGULATOR_CHANGE_VOLTAGE
) &&
3506 (rdev
->desc
->min_dropout_uV
|| !(rdev
->desc
->ops
->get_voltage
||
3507 rdev
->desc
->ops
->get_voltage_sel
))) {
3508 int current_supply_uV
;
3511 selector
= regulator_map_voltage(rdev
, min_uV
, max_uV
);
3517 best_supply_uV
= _regulator_list_voltage(rdev
, selector
, 0);
3518 if (best_supply_uV
< 0) {
3519 ret
= best_supply_uV
;
3523 best_supply_uV
+= rdev
->desc
->min_dropout_uV
;
3525 current_supply_uV
= regulator_get_voltage_rdev(rdev
->supply
->rdev
);
3526 if (current_supply_uV
< 0) {
3527 ret
= current_supply_uV
;
3531 supply_change_uV
= best_supply_uV
- current_supply_uV
;
3534 if (supply_change_uV
> 0) {
3535 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
3536 best_supply_uV
, INT_MAX
, state
);
3538 dev_err(&rdev
->dev
, "Failed to increase supply voltage: %d\n",
3544 if (state
== PM_SUSPEND_ON
)
3545 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
3547 ret
= _regulator_do_set_suspend_voltage(rdev
, min_uV
,
3552 if (supply_change_uV
< 0) {
3553 ret
= regulator_set_voltage_unlocked(rdev
->supply
,
3554 best_supply_uV
, INT_MAX
, state
);
3556 dev_warn(&rdev
->dev
, "Failed to decrease supply voltage: %d\n",
3558 /* No need to fail here */
3565 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev
);
3567 static int regulator_limit_voltage_step(struct regulator_dev
*rdev
,
3568 int *current_uV
, int *min_uV
)
3570 struct regulation_constraints
*constraints
= rdev
->constraints
;
3572 /* Limit voltage change only if necessary */
3573 if (!constraints
->max_uV_step
|| !_regulator_is_enabled(rdev
))
3576 if (*current_uV
< 0) {
3577 *current_uV
= regulator_get_voltage_rdev(rdev
);
3579 if (*current_uV
< 0)
3583 if (abs(*current_uV
- *min_uV
) <= constraints
->max_uV_step
)
3586 /* Clamp target voltage within the given step */
3587 if (*current_uV
< *min_uV
)
3588 *min_uV
= min(*current_uV
+ constraints
->max_uV_step
,
3591 *min_uV
= max(*current_uV
- constraints
->max_uV_step
,
3597 static int regulator_get_optimal_voltage(struct regulator_dev
*rdev
,
3599 int *min_uV
, int *max_uV
,
3600 suspend_state_t state
,
3603 struct coupling_desc
*c_desc
= &rdev
->coupling_desc
;
3604 struct regulator_dev
**c_rdevs
= c_desc
->coupled_rdevs
;
3605 struct regulation_constraints
*constraints
= rdev
->constraints
;
3606 int desired_min_uV
= 0, desired_max_uV
= INT_MAX
;
3607 int max_current_uV
= 0, min_current_uV
= INT_MAX
;
3608 int highest_min_uV
= 0, target_uV
, possible_uV
;
3609 int i
, ret
, max_spread
;
3615 * If there are no coupled regulators, simply set the voltage
3616 * demanded by consumers.
3618 if (n_coupled
== 1) {
3620 * If consumers don't provide any demands, set voltage
3623 desired_min_uV
= constraints
->min_uV
;
3624 desired_max_uV
= constraints
->max_uV
;
3626 ret
= regulator_check_consumers(rdev
,
3628 &desired_max_uV
, state
);
3632 possible_uV
= desired_min_uV
;
3638 /* Find highest min desired voltage */
3639 for (i
= 0; i
< n_coupled
; i
++) {
3641 int tmp_max
= INT_MAX
;
3643 lockdep_assert_held_once(&c_rdevs
[i
]->mutex
.base
);
3645 ret
= regulator_check_consumers(c_rdevs
[i
],
3651 ret
= regulator_check_voltage(c_rdevs
[i
], &tmp_min
, &tmp_max
);
3655 highest_min_uV
= max(highest_min_uV
, tmp_min
);
3658 desired_min_uV
= tmp_min
;
3659 desired_max_uV
= tmp_max
;
3663 max_spread
= constraints
->max_spread
[0];
3666 * Let target_uV be equal to the desired one if possible.
3667 * If not, set it to minimum voltage, allowed by other coupled
3670 target_uV
= max(desired_min_uV
, highest_min_uV
- max_spread
);
3673 * Find min and max voltages, which currently aren't violating
3676 for (i
= 1; i
< n_coupled
; i
++) {
3679 if (!_regulator_is_enabled(c_rdevs
[i
]))
3682 tmp_act
= regulator_get_voltage_rdev(c_rdevs
[i
]);
3686 min_current_uV
= min(tmp_act
, min_current_uV
);
3687 max_current_uV
= max(tmp_act
, max_current_uV
);
3690 /* There aren't any other regulators enabled */
3691 if (max_current_uV
== 0) {
3692 possible_uV
= target_uV
;
3695 * Correct target voltage, so as it currently isn't
3696 * violating max_spread
3698 possible_uV
= max(target_uV
, max_current_uV
- max_spread
);
3699 possible_uV
= min(possible_uV
, min_current_uV
+ max_spread
);
3702 if (possible_uV
> desired_max_uV
)
3705 done
= (possible_uV
== target_uV
);
3706 desired_min_uV
= possible_uV
;
3709 /* Apply max_uV_step constraint if necessary */
3710 if (state
== PM_SUSPEND_ON
) {
3711 ret
= regulator_limit_voltage_step(rdev
, current_uV
,
3720 /* Set current_uV if wasn't done earlier in the code and if necessary */
3721 if (n_coupled
> 1 && *current_uV
== -1) {
3723 if (_regulator_is_enabled(rdev
)) {
3724 ret
= regulator_get_voltage_rdev(rdev
);
3730 *current_uV
= desired_min_uV
;
3734 *min_uV
= desired_min_uV
;
3735 *max_uV
= desired_max_uV
;
3740 int regulator_do_balance_voltage(struct regulator_dev
*rdev
,
3741 suspend_state_t state
, bool skip_coupled
)
3743 struct regulator_dev
**c_rdevs
;
3744 struct regulator_dev
*best_rdev
;
3745 struct coupling_desc
*c_desc
= &rdev
->coupling_desc
;
3746 int i
, ret
, n_coupled
, best_min_uV
, best_max_uV
, best_c_rdev
;
3747 unsigned int delta
, best_delta
;
3748 unsigned long c_rdev_done
= 0;
3749 bool best_c_rdev_done
;
3751 c_rdevs
= c_desc
->coupled_rdevs
;
3752 n_coupled
= skip_coupled
? 1 : c_desc
->n_coupled
;
3755 * Find the best possible voltage change on each loop. Leave the loop
3756 * if there isn't any possible change.
3759 best_c_rdev_done
= false;
3767 * Find highest difference between optimal voltage
3768 * and current voltage.
3770 for (i
= 0; i
< n_coupled
; i
++) {
3772 * optimal_uV is the best voltage that can be set for
3773 * i-th regulator at the moment without violating
3774 * max_spread constraint in order to balance
3775 * the coupled voltages.
3777 int optimal_uV
= 0, optimal_max_uV
= 0, current_uV
= 0;
3779 if (test_bit(i
, &c_rdev_done
))
3782 ret
= regulator_get_optimal_voltage(c_rdevs
[i
],
3790 delta
= abs(optimal_uV
- current_uV
);
3792 if (delta
&& best_delta
<= delta
) {
3793 best_c_rdev_done
= ret
;
3795 best_rdev
= c_rdevs
[i
];
3796 best_min_uV
= optimal_uV
;
3797 best_max_uV
= optimal_max_uV
;
3802 /* Nothing to change, return successfully */
3808 ret
= regulator_set_voltage_rdev(best_rdev
, best_min_uV
,
3809 best_max_uV
, state
);
3814 if (best_c_rdev_done
)
3815 set_bit(best_c_rdev
, &c_rdev_done
);
3817 } while (n_coupled
> 1);
3823 static int regulator_balance_voltage(struct regulator_dev
*rdev
,
3824 suspend_state_t state
)
3826 struct coupling_desc
*c_desc
= &rdev
->coupling_desc
;
3827 struct regulator_coupler
*coupler
= c_desc
->coupler
;
3828 bool skip_coupled
= false;
3831 * If system is in a state other than PM_SUSPEND_ON, don't check
3832 * other coupled regulators.
3834 if (state
!= PM_SUSPEND_ON
)
3835 skip_coupled
= true;
3837 if (c_desc
->n_resolved
< c_desc
->n_coupled
) {
3838 rdev_err(rdev
, "Not all coupled regulators registered\n");
3842 /* Invoke custom balancer for customized couplers */
3843 if (coupler
&& coupler
->balance_voltage
)
3844 return coupler
->balance_voltage(coupler
, rdev
, state
);
3846 return regulator_do_balance_voltage(rdev
, state
, skip_coupled
);
3850 * regulator_set_voltage - set regulator output voltage
3851 * @regulator: regulator source
3852 * @min_uV: Minimum required voltage in uV
3853 * @max_uV: Maximum acceptable voltage in uV
3855 * Sets a voltage regulator to the desired output voltage. This can be set
3856 * during any regulator state. IOW, regulator can be disabled or enabled.
3858 * If the regulator is enabled then the voltage will change to the new value
3859 * immediately otherwise if the regulator is disabled the regulator will
3860 * output at the new voltage when enabled.
3862 * NOTE: If the regulator is shared between several devices then the lowest
3863 * request voltage that meets the system constraints will be used.
3864 * Regulator system constraints must be set for this regulator before
3865 * calling this function otherwise this call will fail.
3867 int regulator_set_voltage(struct regulator
*regulator
, int min_uV
, int max_uV
)
3869 struct ww_acquire_ctx ww_ctx
;
3872 regulator_lock_dependent(regulator
->rdev
, &ww_ctx
);
3874 ret
= regulator_set_voltage_unlocked(regulator
, min_uV
, max_uV
,
3877 regulator_unlock_dependent(regulator
->rdev
, &ww_ctx
);
3881 EXPORT_SYMBOL_GPL(regulator_set_voltage
);
3883 static inline int regulator_suspend_toggle(struct regulator_dev
*rdev
,
3884 suspend_state_t state
, bool en
)
3886 struct regulator_state
*rstate
;
3888 rstate
= regulator_get_suspend_state(rdev
, state
);
3892 if (!rstate
->changeable
)
3895 rstate
->enabled
= (en
) ? ENABLE_IN_SUSPEND
: DISABLE_IN_SUSPEND
;
3900 int regulator_suspend_enable(struct regulator_dev
*rdev
,
3901 suspend_state_t state
)
3903 return regulator_suspend_toggle(rdev
, state
, true);
3905 EXPORT_SYMBOL_GPL(regulator_suspend_enable
);
3907 int regulator_suspend_disable(struct regulator_dev
*rdev
,
3908 suspend_state_t state
)
3910 struct regulator
*regulator
;
3911 struct regulator_voltage
*voltage
;
3914 * if any consumer wants this regulator device keeping on in
3915 * suspend states, don't set it as disabled.
3917 list_for_each_entry(regulator
, &rdev
->consumer_list
, list
) {
3918 voltage
= ®ulator
->voltage
[state
];
3919 if (voltage
->min_uV
|| voltage
->max_uV
)
3923 return regulator_suspend_toggle(rdev
, state
, false);
3925 EXPORT_SYMBOL_GPL(regulator_suspend_disable
);
3927 static int _regulator_set_suspend_voltage(struct regulator
*regulator
,
3928 int min_uV
, int max_uV
,
3929 suspend_state_t state
)
3931 struct regulator_dev
*rdev
= regulator
->rdev
;
3932 struct regulator_state
*rstate
;
3934 rstate
= regulator_get_suspend_state(rdev
, state
);
3938 if (rstate
->min_uV
== rstate
->max_uV
) {
3939 rdev_err(rdev
, "The suspend voltage can't be changed!\n");
3943 return regulator_set_voltage_unlocked(regulator
, min_uV
, max_uV
, state
);
3946 int regulator_set_suspend_voltage(struct regulator
*regulator
, int min_uV
,
3947 int max_uV
, suspend_state_t state
)
3949 struct ww_acquire_ctx ww_ctx
;
3952 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3953 if (regulator_check_states(state
) || state
== PM_SUSPEND_ON
)
3956 regulator_lock_dependent(regulator
->rdev
, &ww_ctx
);
3958 ret
= _regulator_set_suspend_voltage(regulator
, min_uV
,
3961 regulator_unlock_dependent(regulator
->rdev
, &ww_ctx
);
3965 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage
);
3968 * regulator_set_voltage_time - get raise/fall time
3969 * @regulator: regulator source
3970 * @old_uV: starting voltage in microvolts
3971 * @new_uV: target voltage in microvolts
3973 * Provided with the starting and ending voltage, this function attempts to
3974 * calculate the time in microseconds required to rise or fall to this new
3977 int regulator_set_voltage_time(struct regulator
*regulator
,
3978 int old_uV
, int new_uV
)
3980 struct regulator_dev
*rdev
= regulator
->rdev
;
3981 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
3987 if (ops
->set_voltage_time
)
3988 return ops
->set_voltage_time(rdev
, old_uV
, new_uV
);
3989 else if (!ops
->set_voltage_time_sel
)
3990 return _regulator_set_voltage_time(rdev
, old_uV
, new_uV
);
3992 /* Currently requires operations to do this */
3993 if (!ops
->list_voltage
|| !rdev
->desc
->n_voltages
)
3996 for (i
= 0; i
< rdev
->desc
->n_voltages
; i
++) {
3997 /* We only look for exact voltage matches here */
3998 voltage
= regulator_list_voltage(regulator
, i
);
4003 if (voltage
== old_uV
)
4005 if (voltage
== new_uV
)
4009 if (old_sel
< 0 || new_sel
< 0)
4012 return ops
->set_voltage_time_sel(rdev
, old_sel
, new_sel
);
4014 EXPORT_SYMBOL_GPL(regulator_set_voltage_time
);
4017 * regulator_set_voltage_time_sel - get raise/fall time
4018 * @rdev: regulator source device
4019 * @old_selector: selector for starting voltage
4020 * @new_selector: selector for target voltage
4022 * Provided with the starting and target voltage selectors, this function
4023 * returns time in microseconds required to rise or fall to this new voltage
4025 * Drivers providing ramp_delay in regulation_constraints can use this as their
4026 * set_voltage_time_sel() operation.
4028 int regulator_set_voltage_time_sel(struct regulator_dev
*rdev
,
4029 unsigned int old_selector
,
4030 unsigned int new_selector
)
4032 int old_volt
, new_volt
;
4035 if (!rdev
->desc
->ops
->list_voltage
)
4038 old_volt
= rdev
->desc
->ops
->list_voltage(rdev
, old_selector
);
4039 new_volt
= rdev
->desc
->ops
->list_voltage(rdev
, new_selector
);
4041 if (rdev
->desc
->ops
->set_voltage_time
)
4042 return rdev
->desc
->ops
->set_voltage_time(rdev
, old_volt
,
4045 return _regulator_set_voltage_time(rdev
, old_volt
, new_volt
);
4047 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel
);
4050 * regulator_sync_voltage - re-apply last regulator output voltage
4051 * @regulator: regulator source
4053 * Re-apply the last configured voltage. This is intended to be used
4054 * where some external control source the consumer is cooperating with
4055 * has caused the configured voltage to change.
4057 int regulator_sync_voltage(struct regulator
*regulator
)
4059 struct regulator_dev
*rdev
= regulator
->rdev
;
4060 struct regulator_voltage
*voltage
= ®ulator
->voltage
[PM_SUSPEND_ON
];
4061 int ret
, min_uV
, max_uV
;
4063 regulator_lock(rdev
);
4065 if (!rdev
->desc
->ops
->set_voltage
&&
4066 !rdev
->desc
->ops
->set_voltage_sel
) {
4071 /* This is only going to work if we've had a voltage configured. */
4072 if (!voltage
->min_uV
&& !voltage
->max_uV
) {
4077 min_uV
= voltage
->min_uV
;
4078 max_uV
= voltage
->max_uV
;
4080 /* This should be a paranoia check... */
4081 ret
= regulator_check_voltage(rdev
, &min_uV
, &max_uV
);
4085 ret
= regulator_check_consumers(rdev
, &min_uV
, &max_uV
, 0);
4089 ret
= _regulator_do_set_voltage(rdev
, min_uV
, max_uV
);
4092 regulator_unlock(rdev
);
4095 EXPORT_SYMBOL_GPL(regulator_sync_voltage
);
4097 int regulator_get_voltage_rdev(struct regulator_dev
*rdev
)
4102 if (rdev
->desc
->ops
->get_bypass
) {
4103 ret
= rdev
->desc
->ops
->get_bypass(rdev
, &bypassed
);
4107 /* if bypassed the regulator must have a supply */
4108 if (!rdev
->supply
) {
4110 "bypassed regulator has no supply!\n");
4111 return -EPROBE_DEFER
;
4114 return regulator_get_voltage_rdev(rdev
->supply
->rdev
);
4118 if (rdev
->desc
->ops
->get_voltage_sel
) {
4119 sel
= rdev
->desc
->ops
->get_voltage_sel(rdev
);
4122 ret
= rdev
->desc
->ops
->list_voltage(rdev
, sel
);
4123 } else if (rdev
->desc
->ops
->get_voltage
) {
4124 ret
= rdev
->desc
->ops
->get_voltage(rdev
);
4125 } else if (rdev
->desc
->ops
->list_voltage
) {
4126 ret
= rdev
->desc
->ops
->list_voltage(rdev
, 0);
4127 } else if (rdev
->desc
->fixed_uV
&& (rdev
->desc
->n_voltages
== 1)) {
4128 ret
= rdev
->desc
->fixed_uV
;
4129 } else if (rdev
->supply
) {
4130 ret
= regulator_get_voltage_rdev(rdev
->supply
->rdev
);
4131 } else if (rdev
->supply_name
) {
4132 return -EPROBE_DEFER
;
4139 return ret
- rdev
->constraints
->uV_offset
;
4141 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev
);
4144 * regulator_get_voltage - get regulator output voltage
4145 * @regulator: regulator source
4147 * This returns the current regulator voltage in uV.
4149 * NOTE: If the regulator is disabled it will return the voltage value. This
4150 * function should not be used to determine regulator state.
4152 int regulator_get_voltage(struct regulator
*regulator
)
4154 struct ww_acquire_ctx ww_ctx
;
4157 regulator_lock_dependent(regulator
->rdev
, &ww_ctx
);
4158 ret
= regulator_get_voltage_rdev(regulator
->rdev
);
4159 regulator_unlock_dependent(regulator
->rdev
, &ww_ctx
);
4163 EXPORT_SYMBOL_GPL(regulator_get_voltage
);
4166 * regulator_set_current_limit - set regulator output current limit
4167 * @regulator: regulator source
4168 * @min_uA: Minimum supported current in uA
4169 * @max_uA: Maximum supported current in uA
4171 * Sets current sink to the desired output current. This can be set during
4172 * any regulator state. IOW, regulator can be disabled or enabled.
4174 * If the regulator is enabled then the current will change to the new value
4175 * immediately otherwise if the regulator is disabled the regulator will
4176 * output at the new current when enabled.
4178 * NOTE: Regulator system constraints must be set for this regulator before
4179 * calling this function otherwise this call will fail.
4181 int regulator_set_current_limit(struct regulator
*regulator
,
4182 int min_uA
, int max_uA
)
4184 struct regulator_dev
*rdev
= regulator
->rdev
;
4187 regulator_lock(rdev
);
4190 if (!rdev
->desc
->ops
->set_current_limit
) {
4195 /* constraints check */
4196 ret
= regulator_check_current_limit(rdev
, &min_uA
, &max_uA
);
4200 ret
= rdev
->desc
->ops
->set_current_limit(rdev
, min_uA
, max_uA
);
4202 regulator_unlock(rdev
);
4205 EXPORT_SYMBOL_GPL(regulator_set_current_limit
);
4207 static int _regulator_get_current_limit_unlocked(struct regulator_dev
*rdev
)
4210 if (!rdev
->desc
->ops
->get_current_limit
)
4213 return rdev
->desc
->ops
->get_current_limit(rdev
);
4216 static int _regulator_get_current_limit(struct regulator_dev
*rdev
)
4220 regulator_lock(rdev
);
4221 ret
= _regulator_get_current_limit_unlocked(rdev
);
4222 regulator_unlock(rdev
);
4228 * regulator_get_current_limit - get regulator output current
4229 * @regulator: regulator source
4231 * This returns the current supplied by the specified current sink in uA.
4233 * NOTE: If the regulator is disabled it will return the current value. This
4234 * function should not be used to determine regulator state.
4236 int regulator_get_current_limit(struct regulator
*regulator
)
4238 return _regulator_get_current_limit(regulator
->rdev
);
4240 EXPORT_SYMBOL_GPL(regulator_get_current_limit
);
4243 * regulator_set_mode - set regulator operating mode
4244 * @regulator: regulator source
4245 * @mode: operating mode - one of the REGULATOR_MODE constants
4247 * Set regulator operating mode to increase regulator efficiency or improve
4248 * regulation performance.
4250 * NOTE: Regulator system constraints must be set for this regulator before
4251 * calling this function otherwise this call will fail.
4253 int regulator_set_mode(struct regulator
*regulator
, unsigned int mode
)
4255 struct regulator_dev
*rdev
= regulator
->rdev
;
4257 int regulator_curr_mode
;
4259 regulator_lock(rdev
);
4262 if (!rdev
->desc
->ops
->set_mode
) {
4267 /* return if the same mode is requested */
4268 if (rdev
->desc
->ops
->get_mode
) {
4269 regulator_curr_mode
= rdev
->desc
->ops
->get_mode(rdev
);
4270 if (regulator_curr_mode
== mode
) {
4276 /* constraints check */
4277 ret
= regulator_mode_constrain(rdev
, &mode
);
4281 ret
= rdev
->desc
->ops
->set_mode(rdev
, mode
);
4283 regulator_unlock(rdev
);
4286 EXPORT_SYMBOL_GPL(regulator_set_mode
);
4288 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev
*rdev
)
4291 if (!rdev
->desc
->ops
->get_mode
)
4294 return rdev
->desc
->ops
->get_mode(rdev
);
4297 static unsigned int _regulator_get_mode(struct regulator_dev
*rdev
)
4301 regulator_lock(rdev
);
4302 ret
= _regulator_get_mode_unlocked(rdev
);
4303 regulator_unlock(rdev
);
4309 * regulator_get_mode - get regulator operating mode
4310 * @regulator: regulator source
4312 * Get the current regulator operating mode.
4314 unsigned int regulator_get_mode(struct regulator
*regulator
)
4316 return _regulator_get_mode(regulator
->rdev
);
4318 EXPORT_SYMBOL_GPL(regulator_get_mode
);
4320 static int _regulator_get_error_flags(struct regulator_dev
*rdev
,
4321 unsigned int *flags
)
4325 regulator_lock(rdev
);
4328 if (!rdev
->desc
->ops
->get_error_flags
) {
4333 ret
= rdev
->desc
->ops
->get_error_flags(rdev
, flags
);
4335 regulator_unlock(rdev
);
4340 * regulator_get_error_flags - get regulator error information
4341 * @regulator: regulator source
4342 * @flags: pointer to store error flags
4344 * Get the current regulator error information.
4346 int regulator_get_error_flags(struct regulator
*regulator
,
4347 unsigned int *flags
)
4349 return _regulator_get_error_flags(regulator
->rdev
, flags
);
4351 EXPORT_SYMBOL_GPL(regulator_get_error_flags
);
4354 * regulator_set_load - set regulator load
4355 * @regulator: regulator source
4356 * @uA_load: load current
4358 * Notifies the regulator core of a new device load. This is then used by
4359 * DRMS (if enabled by constraints) to set the most efficient regulator
4360 * operating mode for the new regulator loading.
4362 * Consumer devices notify their supply regulator of the maximum power
4363 * they will require (can be taken from device datasheet in the power
4364 * consumption tables) when they change operational status and hence power
4365 * state. Examples of operational state changes that can affect power
4366 * consumption are :-
4368 * o Device is opened / closed.
4369 * o Device I/O is about to begin or has just finished.
4370 * o Device is idling in between work.
4372 * This information is also exported via sysfs to userspace.
4374 * DRMS will sum the total requested load on the regulator and change
4375 * to the most efficient operating mode if platform constraints allow.
4377 * NOTE: when a regulator consumer requests to have a regulator
4378 * disabled then any load that consumer requested no longer counts
4379 * toward the total requested load. If the regulator is re-enabled
4380 * then the previously requested load will start counting again.
4382 * If a regulator is an always-on regulator then an individual consumer's
4383 * load will still be removed if that consumer is fully disabled.
4385 * On error a negative errno is returned.
4387 int regulator_set_load(struct regulator
*regulator
, int uA_load
)
4389 struct regulator_dev
*rdev
= regulator
->rdev
;
4393 regulator_lock(rdev
);
4394 old_uA_load
= regulator
->uA_load
;
4395 regulator
->uA_load
= uA_load
;
4396 if (regulator
->enable_count
&& old_uA_load
!= uA_load
) {
4397 ret
= drms_uA_update(rdev
);
4399 regulator
->uA_load
= old_uA_load
;
4401 regulator_unlock(rdev
);
4405 EXPORT_SYMBOL_GPL(regulator_set_load
);
4408 * regulator_allow_bypass - allow the regulator to go into bypass mode
4410 * @regulator: Regulator to configure
4411 * @enable: enable or disable bypass mode
4413 * Allow the regulator to go into bypass mode if all other consumers
4414 * for the regulator also enable bypass mode and the machine
4415 * constraints allow this. Bypass mode means that the regulator is
4416 * simply passing the input directly to the output with no regulation.
4418 int regulator_allow_bypass(struct regulator
*regulator
, bool enable
)
4420 struct regulator_dev
*rdev
= regulator
->rdev
;
4421 const char *name
= rdev_get_name(rdev
);
4424 if (!rdev
->desc
->ops
->set_bypass
)
4427 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_BYPASS
))
4430 regulator_lock(rdev
);
4432 if (enable
&& !regulator
->bypass
) {
4433 rdev
->bypass_count
++;
4435 if (rdev
->bypass_count
== rdev
->open_count
) {
4436 trace_regulator_bypass_enable(name
);
4438 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
4440 rdev
->bypass_count
--;
4442 trace_regulator_bypass_enable_complete(name
);
4445 } else if (!enable
&& regulator
->bypass
) {
4446 rdev
->bypass_count
--;
4448 if (rdev
->bypass_count
!= rdev
->open_count
) {
4449 trace_regulator_bypass_disable(name
);
4451 ret
= rdev
->desc
->ops
->set_bypass(rdev
, enable
);
4453 rdev
->bypass_count
++;
4455 trace_regulator_bypass_disable_complete(name
);
4460 regulator
->bypass
= enable
;
4462 regulator_unlock(rdev
);
4466 EXPORT_SYMBOL_GPL(regulator_allow_bypass
);
4469 * regulator_register_notifier - register regulator event notifier
4470 * @regulator: regulator source
4471 * @nb: notifier block
4473 * Register notifier block to receive regulator events.
4475 int regulator_register_notifier(struct regulator
*regulator
,
4476 struct notifier_block
*nb
)
4478 return blocking_notifier_chain_register(®ulator
->rdev
->notifier
,
4481 EXPORT_SYMBOL_GPL(regulator_register_notifier
);
4484 * regulator_unregister_notifier - unregister regulator event notifier
4485 * @regulator: regulator source
4486 * @nb: notifier block
4488 * Unregister regulator event notifier block.
4490 int regulator_unregister_notifier(struct regulator
*regulator
,
4491 struct notifier_block
*nb
)
4493 return blocking_notifier_chain_unregister(®ulator
->rdev
->notifier
,
4496 EXPORT_SYMBOL_GPL(regulator_unregister_notifier
);
4498 /* notify regulator consumers and downstream regulator consumers.
4499 * Note mutex must be held by caller.
4501 static int _notifier_call_chain(struct regulator_dev
*rdev
,
4502 unsigned long event
, void *data
)
4504 /* call rdev chain first */
4505 return blocking_notifier_call_chain(&rdev
->notifier
, event
, data
);
4509 * regulator_bulk_get - get multiple regulator consumers
4511 * @dev: Device to supply
4512 * @num_consumers: Number of consumers to register
4513 * @consumers: Configuration of consumers; clients are stored here.
4515 * @return 0 on success, an errno on failure.
4517 * This helper function allows drivers to get several regulator
4518 * consumers in one operation. If any of the regulators cannot be
4519 * acquired then any regulators that were allocated will be freed
4520 * before returning to the caller.
4522 int regulator_bulk_get(struct device
*dev
, int num_consumers
,
4523 struct regulator_bulk_data
*consumers
)
4528 for (i
= 0; i
< num_consumers
; i
++)
4529 consumers
[i
].consumer
= NULL
;
4531 for (i
= 0; i
< num_consumers
; i
++) {
4532 consumers
[i
].consumer
= regulator_get(dev
,
4533 consumers
[i
].supply
);
4534 if (IS_ERR(consumers
[i
].consumer
)) {
4535 ret
= PTR_ERR(consumers
[i
].consumer
);
4536 consumers
[i
].consumer
= NULL
;
4544 if (ret
!= -EPROBE_DEFER
)
4545 dev_err(dev
, "Failed to get supply '%s': %d\n",
4546 consumers
[i
].supply
, ret
);
4548 dev_dbg(dev
, "Failed to get supply '%s', deferring\n",
4549 consumers
[i
].supply
);
4552 regulator_put(consumers
[i
].consumer
);
4556 EXPORT_SYMBOL_GPL(regulator_bulk_get
);
4558 static void regulator_bulk_enable_async(void *data
, async_cookie_t cookie
)
4560 struct regulator_bulk_data
*bulk
= data
;
4562 bulk
->ret
= regulator_enable(bulk
->consumer
);
4566 * regulator_bulk_enable - enable multiple regulator consumers
4568 * @num_consumers: Number of consumers
4569 * @consumers: Consumer data; clients are stored here.
4570 * @return 0 on success, an errno on failure
4572 * This convenience API allows consumers to enable multiple regulator
4573 * clients in a single API call. If any consumers cannot be enabled
4574 * then any others that were enabled will be disabled again prior to
4577 int regulator_bulk_enable(int num_consumers
,
4578 struct regulator_bulk_data
*consumers
)
4580 ASYNC_DOMAIN_EXCLUSIVE(async_domain
);
4584 for (i
= 0; i
< num_consumers
; i
++) {
4585 async_schedule_domain(regulator_bulk_enable_async
,
4586 &consumers
[i
], &async_domain
);
4589 async_synchronize_full_domain(&async_domain
);
4591 /* If any consumer failed we need to unwind any that succeeded */
4592 for (i
= 0; i
< num_consumers
; i
++) {
4593 if (consumers
[i
].ret
!= 0) {
4594 ret
= consumers
[i
].ret
;
4602 for (i
= 0; i
< num_consumers
; i
++) {
4603 if (consumers
[i
].ret
< 0)
4604 pr_err("Failed to enable %s: %d\n", consumers
[i
].supply
,
4607 regulator_disable(consumers
[i
].consumer
);
4612 EXPORT_SYMBOL_GPL(regulator_bulk_enable
);
4615 * regulator_bulk_disable - disable multiple regulator consumers
4617 * @num_consumers: Number of consumers
4618 * @consumers: Consumer data; clients are stored here.
4619 * @return 0 on success, an errno on failure
4621 * This convenience API allows consumers to disable multiple regulator
4622 * clients in a single API call. If any consumers cannot be disabled
4623 * then any others that were disabled will be enabled again prior to
4626 int regulator_bulk_disable(int num_consumers
,
4627 struct regulator_bulk_data
*consumers
)
4632 for (i
= num_consumers
- 1; i
>= 0; --i
) {
4633 ret
= regulator_disable(consumers
[i
].consumer
);
4641 pr_err("Failed to disable %s: %d\n", consumers
[i
].supply
, ret
);
4642 for (++i
; i
< num_consumers
; ++i
) {
4643 r
= regulator_enable(consumers
[i
].consumer
);
4645 pr_err("Failed to re-enable %s: %d\n",
4646 consumers
[i
].supply
, r
);
4651 EXPORT_SYMBOL_GPL(regulator_bulk_disable
);
4654 * regulator_bulk_force_disable - force disable multiple regulator consumers
4656 * @num_consumers: Number of consumers
4657 * @consumers: Consumer data; clients are stored here.
4658 * @return 0 on success, an errno on failure
4660 * This convenience API allows consumers to forcibly disable multiple regulator
4661 * clients in a single API call.
4662 * NOTE: This should be used for situations when device damage will
4663 * likely occur if the regulators are not disabled (e.g. over temp).
4664 * Although regulator_force_disable function call for some consumers can
4665 * return error numbers, the function is called for all consumers.
4667 int regulator_bulk_force_disable(int num_consumers
,
4668 struct regulator_bulk_data
*consumers
)
4673 for (i
= 0; i
< num_consumers
; i
++) {
4675 regulator_force_disable(consumers
[i
].consumer
);
4677 /* Store first error for reporting */
4678 if (consumers
[i
].ret
&& !ret
)
4679 ret
= consumers
[i
].ret
;
4684 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable
);
4687 * regulator_bulk_free - free multiple regulator consumers
4689 * @num_consumers: Number of consumers
4690 * @consumers: Consumer data; clients are stored here.
4692 * This convenience API allows consumers to free multiple regulator
4693 * clients in a single API call.
4695 void regulator_bulk_free(int num_consumers
,
4696 struct regulator_bulk_data
*consumers
)
4700 for (i
= 0; i
< num_consumers
; i
++) {
4701 regulator_put(consumers
[i
].consumer
);
4702 consumers
[i
].consumer
= NULL
;
4705 EXPORT_SYMBOL_GPL(regulator_bulk_free
);
4708 * regulator_notifier_call_chain - call regulator event notifier
4709 * @rdev: regulator source
4710 * @event: notifier block
4711 * @data: callback-specific data.
4713 * Called by regulator drivers to notify clients a regulator event has
4714 * occurred. We also notify regulator clients downstream.
4715 * Note lock must be held by caller.
4717 int regulator_notifier_call_chain(struct regulator_dev
*rdev
,
4718 unsigned long event
, void *data
)
4720 lockdep_assert_held_once(&rdev
->mutex
.base
);
4722 _notifier_call_chain(rdev
, event
, data
);
4726 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain
);
4729 * regulator_mode_to_status - convert a regulator mode into a status
4731 * @mode: Mode to convert
4733 * Convert a regulator mode into a status.
4735 int regulator_mode_to_status(unsigned int mode
)
4738 case REGULATOR_MODE_FAST
:
4739 return REGULATOR_STATUS_FAST
;
4740 case REGULATOR_MODE_NORMAL
:
4741 return REGULATOR_STATUS_NORMAL
;
4742 case REGULATOR_MODE_IDLE
:
4743 return REGULATOR_STATUS_IDLE
;
4744 case REGULATOR_MODE_STANDBY
:
4745 return REGULATOR_STATUS_STANDBY
;
4747 return REGULATOR_STATUS_UNDEFINED
;
4750 EXPORT_SYMBOL_GPL(regulator_mode_to_status
);
4752 static struct attribute
*regulator_dev_attrs
[] = {
4753 &dev_attr_name
.attr
,
4754 &dev_attr_num_users
.attr
,
4755 &dev_attr_type
.attr
,
4756 &dev_attr_microvolts
.attr
,
4757 &dev_attr_microamps
.attr
,
4758 &dev_attr_opmode
.attr
,
4759 &dev_attr_state
.attr
,
4760 &dev_attr_status
.attr
,
4761 &dev_attr_bypass
.attr
,
4762 &dev_attr_requested_microamps
.attr
,
4763 &dev_attr_min_microvolts
.attr
,
4764 &dev_attr_max_microvolts
.attr
,
4765 &dev_attr_min_microamps
.attr
,
4766 &dev_attr_max_microamps
.attr
,
4767 &dev_attr_suspend_standby_state
.attr
,
4768 &dev_attr_suspend_mem_state
.attr
,
4769 &dev_attr_suspend_disk_state
.attr
,
4770 &dev_attr_suspend_standby_microvolts
.attr
,
4771 &dev_attr_suspend_mem_microvolts
.attr
,
4772 &dev_attr_suspend_disk_microvolts
.attr
,
4773 &dev_attr_suspend_standby_mode
.attr
,
4774 &dev_attr_suspend_mem_mode
.attr
,
4775 &dev_attr_suspend_disk_mode
.attr
,
4780 * To avoid cluttering sysfs (and memory) with useless state, only
4781 * create attributes that can be meaningfully displayed.
4783 static umode_t
regulator_attr_is_visible(struct kobject
*kobj
,
4784 struct attribute
*attr
, int idx
)
4786 struct device
*dev
= kobj_to_dev(kobj
);
4787 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4788 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
4789 umode_t mode
= attr
->mode
;
4791 /* these three are always present */
4792 if (attr
== &dev_attr_name
.attr
||
4793 attr
== &dev_attr_num_users
.attr
||
4794 attr
== &dev_attr_type
.attr
)
4797 /* some attributes need specific methods to be displayed */
4798 if (attr
== &dev_attr_microvolts
.attr
) {
4799 if ((ops
->get_voltage
&& ops
->get_voltage(rdev
) >= 0) ||
4800 (ops
->get_voltage_sel
&& ops
->get_voltage_sel(rdev
) >= 0) ||
4801 (ops
->list_voltage
&& ops
->list_voltage(rdev
, 0) >= 0) ||
4802 (rdev
->desc
->fixed_uV
&& rdev
->desc
->n_voltages
== 1))
4807 if (attr
== &dev_attr_microamps
.attr
)
4808 return ops
->get_current_limit
? mode
: 0;
4810 if (attr
== &dev_attr_opmode
.attr
)
4811 return ops
->get_mode
? mode
: 0;
4813 if (attr
== &dev_attr_state
.attr
)
4814 return (rdev
->ena_pin
|| ops
->is_enabled
) ? mode
: 0;
4816 if (attr
== &dev_attr_status
.attr
)
4817 return ops
->get_status
? mode
: 0;
4819 if (attr
== &dev_attr_bypass
.attr
)
4820 return ops
->get_bypass
? mode
: 0;
4822 /* constraints need specific supporting methods */
4823 if (attr
== &dev_attr_min_microvolts
.attr
||
4824 attr
== &dev_attr_max_microvolts
.attr
)
4825 return (ops
->set_voltage
|| ops
->set_voltage_sel
) ? mode
: 0;
4827 if (attr
== &dev_attr_min_microamps
.attr
||
4828 attr
== &dev_attr_max_microamps
.attr
)
4829 return ops
->set_current_limit
? mode
: 0;
4831 if (attr
== &dev_attr_suspend_standby_state
.attr
||
4832 attr
== &dev_attr_suspend_mem_state
.attr
||
4833 attr
== &dev_attr_suspend_disk_state
.attr
)
4836 if (attr
== &dev_attr_suspend_standby_microvolts
.attr
||
4837 attr
== &dev_attr_suspend_mem_microvolts
.attr
||
4838 attr
== &dev_attr_suspend_disk_microvolts
.attr
)
4839 return ops
->set_suspend_voltage
? mode
: 0;
4841 if (attr
== &dev_attr_suspend_standby_mode
.attr
||
4842 attr
== &dev_attr_suspend_mem_mode
.attr
||
4843 attr
== &dev_attr_suspend_disk_mode
.attr
)
4844 return ops
->set_suspend_mode
? mode
: 0;
4849 static const struct attribute_group regulator_dev_group
= {
4850 .attrs
= regulator_dev_attrs
,
4851 .is_visible
= regulator_attr_is_visible
,
4854 static const struct attribute_group
*regulator_dev_groups
[] = {
4855 ®ulator_dev_group
,
4859 static void regulator_dev_release(struct device
*dev
)
4861 struct regulator_dev
*rdev
= dev_get_drvdata(dev
);
4863 kfree(rdev
->constraints
);
4864 of_node_put(rdev
->dev
.of_node
);
4868 static void rdev_init_debugfs(struct regulator_dev
*rdev
)
4870 struct device
*parent
= rdev
->dev
.parent
;
4871 const char *rname
= rdev_get_name(rdev
);
4872 char name
[NAME_MAX
];
4874 /* Avoid duplicate debugfs directory names */
4875 if (parent
&& rname
== rdev
->desc
->name
) {
4876 snprintf(name
, sizeof(name
), "%s-%s", dev_name(parent
),
4881 rdev
->debugfs
= debugfs_create_dir(rname
, debugfs_root
);
4882 if (!rdev
->debugfs
) {
4883 rdev_warn(rdev
, "Failed to create debugfs directory\n");
4887 debugfs_create_u32("use_count", 0444, rdev
->debugfs
,
4889 debugfs_create_u32("open_count", 0444, rdev
->debugfs
,
4891 debugfs_create_u32("bypass_count", 0444, rdev
->debugfs
,
4892 &rdev
->bypass_count
);
4895 static int regulator_register_resolve_supply(struct device
*dev
, void *data
)
4897 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
4899 if (regulator_resolve_supply(rdev
))
4900 rdev_dbg(rdev
, "unable to resolve supply\n");
4905 int regulator_coupler_register(struct regulator_coupler
*coupler
)
4907 mutex_lock(®ulator_list_mutex
);
4908 list_add_tail(&coupler
->list
, ®ulator_coupler_list
);
4909 mutex_unlock(®ulator_list_mutex
);
4914 static struct regulator_coupler
*
4915 regulator_find_coupler(struct regulator_dev
*rdev
)
4917 struct regulator_coupler
*coupler
;
4921 * Note that regulators are appended to the list and the generic
4922 * coupler is registered first, hence it will be attached at last
4925 list_for_each_entry_reverse(coupler
, ®ulator_coupler_list
, list
) {
4926 err
= coupler
->attach_regulator(coupler
, rdev
);
4928 if (!coupler
->balance_voltage
&&
4929 rdev
->coupling_desc
.n_coupled
> 2)
4930 goto err_unsupported
;
4936 return ERR_PTR(err
);
4944 return ERR_PTR(-EINVAL
);
4947 if (coupler
->detach_regulator
)
4948 coupler
->detach_regulator(coupler
, rdev
);
4951 "Voltage balancing for multiple regulator couples is unimplemented\n");
4953 return ERR_PTR(-EPERM
);
4956 static void regulator_resolve_coupling(struct regulator_dev
*rdev
)
4958 struct regulator_coupler
*coupler
= rdev
->coupling_desc
.coupler
;
4959 struct coupling_desc
*c_desc
= &rdev
->coupling_desc
;
4960 int n_coupled
= c_desc
->n_coupled
;
4961 struct regulator_dev
*c_rdev
;
4964 for (i
= 1; i
< n_coupled
; i
++) {
4965 /* already resolved */
4966 if (c_desc
->coupled_rdevs
[i
])
4969 c_rdev
= of_parse_coupled_regulator(rdev
, i
- 1);
4974 if (c_rdev
->coupling_desc
.coupler
!= coupler
) {
4975 rdev_err(rdev
, "coupler mismatch with %s\n",
4976 rdev_get_name(c_rdev
));
4980 c_desc
->coupled_rdevs
[i
] = c_rdev
;
4981 c_desc
->n_resolved
++;
4983 regulator_resolve_coupling(c_rdev
);
4987 static void regulator_remove_coupling(struct regulator_dev
*rdev
)
4989 struct regulator_coupler
*coupler
= rdev
->coupling_desc
.coupler
;
4990 struct coupling_desc
*__c_desc
, *c_desc
= &rdev
->coupling_desc
;
4991 struct regulator_dev
*__c_rdev
, *c_rdev
;
4992 unsigned int __n_coupled
, n_coupled
;
4996 n_coupled
= c_desc
->n_coupled
;
4998 for (i
= 1; i
< n_coupled
; i
++) {
4999 c_rdev
= c_desc
->coupled_rdevs
[i
];
5004 regulator_lock(c_rdev
);
5006 __c_desc
= &c_rdev
->coupling_desc
;
5007 __n_coupled
= __c_desc
->n_coupled
;
5009 for (k
= 1; k
< __n_coupled
; k
++) {
5010 __c_rdev
= __c_desc
->coupled_rdevs
[k
];
5012 if (__c_rdev
== rdev
) {
5013 __c_desc
->coupled_rdevs
[k
] = NULL
;
5014 __c_desc
->n_resolved
--;
5019 regulator_unlock(c_rdev
);
5021 c_desc
->coupled_rdevs
[i
] = NULL
;
5022 c_desc
->n_resolved
--;
5025 if (coupler
&& coupler
->detach_regulator
) {
5026 err
= coupler
->detach_regulator(coupler
, rdev
);
5028 rdev_err(rdev
, "failed to detach from coupler: %d\n",
5032 kfree(rdev
->coupling_desc
.coupled_rdevs
);
5033 rdev
->coupling_desc
.coupled_rdevs
= NULL
;
5036 static int regulator_init_coupling(struct regulator_dev
*rdev
)
5038 int err
, n_phandles
;
5041 if (!IS_ENABLED(CONFIG_OF
))
5044 n_phandles
= of_get_n_coupled(rdev
);
5046 alloc_size
= sizeof(*rdev
) * (n_phandles
+ 1);
5048 rdev
->coupling_desc
.coupled_rdevs
= kzalloc(alloc_size
, GFP_KERNEL
);
5049 if (!rdev
->coupling_desc
.coupled_rdevs
)
5053 * Every regulator should always have coupling descriptor filled with
5054 * at least pointer to itself.
5056 rdev
->coupling_desc
.coupled_rdevs
[0] = rdev
;
5057 rdev
->coupling_desc
.n_coupled
= n_phandles
+ 1;
5058 rdev
->coupling_desc
.n_resolved
++;
5060 /* regulator isn't coupled */
5061 if (n_phandles
== 0)
5064 if (!of_check_coupling_data(rdev
))
5067 mutex_lock(®ulator_list_mutex
);
5068 rdev
->coupling_desc
.coupler
= regulator_find_coupler(rdev
);
5069 mutex_unlock(®ulator_list_mutex
);
5071 if (IS_ERR(rdev
->coupling_desc
.coupler
)) {
5072 err
= PTR_ERR(rdev
->coupling_desc
.coupler
);
5073 rdev_err(rdev
, "failed to get coupler: %d\n", err
);
5080 static int generic_coupler_attach(struct regulator_coupler
*coupler
,
5081 struct regulator_dev
*rdev
)
5083 if (rdev
->coupling_desc
.n_coupled
> 2) {
5085 "Voltage balancing for multiple regulator couples is unimplemented\n");
5089 if (!rdev
->constraints
->always_on
) {
5091 "Coupling of a non always-on regulator is unimplemented\n");
5098 static struct regulator_coupler generic_regulator_coupler
= {
5099 .attach_regulator
= generic_coupler_attach
,
5103 * regulator_register - register regulator
5104 * @regulator_desc: regulator to register
5105 * @cfg: runtime configuration for regulator
5107 * Called by regulator drivers to register a regulator.
5108 * Returns a valid pointer to struct regulator_dev on success
5109 * or an ERR_PTR() on error.
5111 struct regulator_dev
*
5112 regulator_register(const struct regulator_desc
*regulator_desc
,
5113 const struct regulator_config
*cfg
)
5115 const struct regulation_constraints
*constraints
= NULL
;
5116 const struct regulator_init_data
*init_data
;
5117 struct regulator_config
*config
= NULL
;
5118 static atomic_t regulator_no
= ATOMIC_INIT(-1);
5119 struct regulator_dev
*rdev
;
5120 bool dangling_cfg_gpiod
= false;
5121 bool dangling_of_gpiod
= false;
5126 return ERR_PTR(-EINVAL
);
5128 dangling_cfg_gpiod
= true;
5129 if (regulator_desc
== NULL
) {
5137 if (regulator_desc
->name
== NULL
|| regulator_desc
->ops
== NULL
) {
5142 if (regulator_desc
->type
!= REGULATOR_VOLTAGE
&&
5143 regulator_desc
->type
!= REGULATOR_CURRENT
) {
5148 /* Only one of each should be implemented */
5149 WARN_ON(regulator_desc
->ops
->get_voltage
&&
5150 regulator_desc
->ops
->get_voltage_sel
);
5151 WARN_ON(regulator_desc
->ops
->set_voltage
&&
5152 regulator_desc
->ops
->set_voltage_sel
);
5154 /* If we're using selectors we must implement list_voltage. */
5155 if (regulator_desc
->ops
->get_voltage_sel
&&
5156 !regulator_desc
->ops
->list_voltage
) {
5160 if (regulator_desc
->ops
->set_voltage_sel
&&
5161 !regulator_desc
->ops
->list_voltage
) {
5166 rdev
= kzalloc(sizeof(struct regulator_dev
), GFP_KERNEL
);
5171 device_initialize(&rdev
->dev
);
5174 * Duplicate the config so the driver could override it after
5175 * parsing init data.
5177 config
= kmemdup(cfg
, sizeof(*cfg
), GFP_KERNEL
);
5178 if (config
== NULL
) {
5183 init_data
= regulator_of_get_init_data(dev
, regulator_desc
, config
,
5184 &rdev
->dev
.of_node
);
5187 * Sometimes not all resources are probed already so we need to take
5188 * that into account. This happens most the time if the ena_gpiod comes
5189 * from a gpio extender or something else.
5191 if (PTR_ERR(init_data
) == -EPROBE_DEFER
) {
5192 ret
= -EPROBE_DEFER
;
5197 * We need to keep track of any GPIO descriptor coming from the
5198 * device tree until we have handled it over to the core. If the
5199 * config that was passed in to this function DOES NOT contain
5200 * a descriptor, and the config after this call DOES contain
5201 * a descriptor, we definitely got one from parsing the device
5204 if (!cfg
->ena_gpiod
&& config
->ena_gpiod
)
5205 dangling_of_gpiod
= true;
5207 init_data
= config
->init_data
;
5208 rdev
->dev
.of_node
= of_node_get(config
->of_node
);
5211 ww_mutex_init(&rdev
->mutex
, ®ulator_ww_class
);
5212 rdev
->reg_data
= config
->driver_data
;
5213 rdev
->owner
= regulator_desc
->owner
;
5214 rdev
->desc
= regulator_desc
;
5216 rdev
->regmap
= config
->regmap
;
5217 else if (dev_get_regmap(dev
, NULL
))
5218 rdev
->regmap
= dev_get_regmap(dev
, NULL
);
5219 else if (dev
->parent
)
5220 rdev
->regmap
= dev_get_regmap(dev
->parent
, NULL
);
5221 INIT_LIST_HEAD(&rdev
->consumer_list
);
5222 INIT_LIST_HEAD(&rdev
->list
);
5223 BLOCKING_INIT_NOTIFIER_HEAD(&rdev
->notifier
);
5224 INIT_DELAYED_WORK(&rdev
->disable_work
, regulator_disable_work
);
5226 /* preform any regulator specific init */
5227 if (init_data
&& init_data
->regulator_init
) {
5228 ret
= init_data
->regulator_init(rdev
->reg_data
);
5233 if (config
->ena_gpiod
) {
5234 ret
= regulator_ena_gpio_request(rdev
, config
);
5236 rdev_err(rdev
, "Failed to request enable GPIO: %d\n",
5240 /* The regulator core took over the GPIO descriptor */
5241 dangling_cfg_gpiod
= false;
5242 dangling_of_gpiod
= false;
5245 /* register with sysfs */
5246 rdev
->dev
.class = ®ulator_class
;
5247 rdev
->dev
.parent
= dev
;
5248 dev_set_name(&rdev
->dev
, "regulator.%lu",
5249 (unsigned long) atomic_inc_return(®ulator_no
));
5250 dev_set_drvdata(&rdev
->dev
, rdev
);
5252 /* set regulator constraints */
5254 constraints
= &init_data
->constraints
;
5256 if (init_data
&& init_data
->supply_regulator
)
5257 rdev
->supply_name
= init_data
->supply_regulator
;
5258 else if (regulator_desc
->supply_name
)
5259 rdev
->supply_name
= regulator_desc
->supply_name
;
5261 ret
= set_machine_constraints(rdev
, constraints
);
5262 if (ret
== -EPROBE_DEFER
) {
5263 /* Regulator might be in bypass mode and so needs its supply
5264 * to set the constraints */
5265 /* FIXME: this currently triggers a chicken-and-egg problem
5266 * when creating -SUPPLY symlink in sysfs to a regulator
5267 * that is just being created */
5268 ret
= regulator_resolve_supply(rdev
);
5270 ret
= set_machine_constraints(rdev
, constraints
);
5272 rdev_dbg(rdev
, "unable to resolve supply early: %pe\n",
5278 ret
= regulator_init_coupling(rdev
);
5282 /* add consumers devices */
5284 for (i
= 0; i
< init_data
->num_consumer_supplies
; i
++) {
5285 ret
= set_consumer_device_supply(rdev
,
5286 init_data
->consumer_supplies
[i
].dev_name
,
5287 init_data
->consumer_supplies
[i
].supply
);
5289 dev_err(dev
, "Failed to set supply %s\n",
5290 init_data
->consumer_supplies
[i
].supply
);
5291 goto unset_supplies
;
5296 if (!rdev
->desc
->ops
->get_voltage
&&
5297 !rdev
->desc
->ops
->list_voltage
&&
5298 !rdev
->desc
->fixed_uV
)
5299 rdev
->is_switch
= true;
5301 ret
= device_add(&rdev
->dev
);
5303 goto unset_supplies
;
5305 rdev_init_debugfs(rdev
);
5307 /* try to resolve regulators coupling since a new one was registered */
5308 mutex_lock(®ulator_list_mutex
);
5309 regulator_resolve_coupling(rdev
);
5310 mutex_unlock(®ulator_list_mutex
);
5312 /* try to resolve regulators supply since a new one was registered */
5313 class_for_each_device(®ulator_class
, NULL
, NULL
,
5314 regulator_register_resolve_supply
);
5319 mutex_lock(®ulator_list_mutex
);
5320 unset_regulator_supplies(rdev
);
5321 regulator_remove_coupling(rdev
);
5322 mutex_unlock(®ulator_list_mutex
);
5324 kfree(rdev
->coupling_desc
.coupled_rdevs
);
5325 mutex_lock(®ulator_list_mutex
);
5326 regulator_ena_gpio_free(rdev
);
5327 mutex_unlock(®ulator_list_mutex
);
5329 if (dangling_of_gpiod
)
5330 gpiod_put(config
->ena_gpiod
);
5332 put_device(&rdev
->dev
);
5334 if (dangling_cfg_gpiod
)
5335 gpiod_put(cfg
->ena_gpiod
);
5336 return ERR_PTR(ret
);
5338 EXPORT_SYMBOL_GPL(regulator_register
);
5341 * regulator_unregister - unregister regulator
5342 * @rdev: regulator to unregister
5344 * Called by regulator drivers to unregister a regulator.
5346 void regulator_unregister(struct regulator_dev
*rdev
)
5352 while (rdev
->use_count
--)
5353 regulator_disable(rdev
->supply
);
5354 regulator_put(rdev
->supply
);
5357 flush_work(&rdev
->disable_work
.work
);
5359 mutex_lock(®ulator_list_mutex
);
5361 debugfs_remove_recursive(rdev
->debugfs
);
5362 WARN_ON(rdev
->open_count
);
5363 regulator_remove_coupling(rdev
);
5364 unset_regulator_supplies(rdev
);
5365 list_del(&rdev
->list
);
5366 regulator_ena_gpio_free(rdev
);
5367 device_unregister(&rdev
->dev
);
5369 mutex_unlock(®ulator_list_mutex
);
5371 EXPORT_SYMBOL_GPL(regulator_unregister
);
5373 #ifdef CONFIG_SUSPEND
5375 * regulator_suspend - prepare regulators for system wide suspend
5376 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5378 * Configure each regulator with it's suspend operating parameters for state.
5380 static int regulator_suspend(struct device
*dev
)
5382 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5383 suspend_state_t state
= pm_suspend_target_state
;
5386 regulator_lock(rdev
);
5387 ret
= suspend_set_state(rdev
, state
);
5388 regulator_unlock(rdev
);
5393 static int regulator_resume(struct device
*dev
)
5395 suspend_state_t state
= pm_suspend_target_state
;
5396 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5397 struct regulator_state
*rstate
;
5400 rstate
= regulator_get_suspend_state(rdev
, state
);
5404 regulator_lock(rdev
);
5406 if (rdev
->desc
->ops
->resume
&&
5407 (rstate
->enabled
== ENABLE_IN_SUSPEND
||
5408 rstate
->enabled
== DISABLE_IN_SUSPEND
))
5409 ret
= rdev
->desc
->ops
->resume(rdev
);
5411 regulator_unlock(rdev
);
5415 #else /* !CONFIG_SUSPEND */
5417 #define regulator_suspend NULL
5418 #define regulator_resume NULL
5420 #endif /* !CONFIG_SUSPEND */
5423 static const struct dev_pm_ops __maybe_unused regulator_pm_ops
= {
5424 .suspend
= regulator_suspend
,
5425 .resume
= regulator_resume
,
5429 struct class regulator_class
= {
5430 .name
= "regulator",
5431 .dev_release
= regulator_dev_release
,
5432 .dev_groups
= regulator_dev_groups
,
5434 .pm
= ®ulator_pm_ops
,
5438 * regulator_has_full_constraints - the system has fully specified constraints
5440 * Calling this function will cause the regulator API to disable all
5441 * regulators which have a zero use count and don't have an always_on
5442 * constraint in a late_initcall.
5444 * The intention is that this will become the default behaviour in a
5445 * future kernel release so users are encouraged to use this facility
5448 void regulator_has_full_constraints(void)
5450 has_full_constraints
= 1;
5452 EXPORT_SYMBOL_GPL(regulator_has_full_constraints
);
5455 * rdev_get_drvdata - get rdev regulator driver data
5458 * Get rdev regulator driver private data. This call can be used in the
5459 * regulator driver context.
5461 void *rdev_get_drvdata(struct regulator_dev
*rdev
)
5463 return rdev
->reg_data
;
5465 EXPORT_SYMBOL_GPL(rdev_get_drvdata
);
5468 * regulator_get_drvdata - get regulator driver data
5469 * @regulator: regulator
5471 * Get regulator driver private data. This call can be used in the consumer
5472 * driver context when non API regulator specific functions need to be called.
5474 void *regulator_get_drvdata(struct regulator
*regulator
)
5476 return regulator
->rdev
->reg_data
;
5478 EXPORT_SYMBOL_GPL(regulator_get_drvdata
);
5481 * regulator_set_drvdata - set regulator driver data
5482 * @regulator: regulator
5485 void regulator_set_drvdata(struct regulator
*regulator
, void *data
)
5487 regulator
->rdev
->reg_data
= data
;
5489 EXPORT_SYMBOL_GPL(regulator_set_drvdata
);
5492 * regulator_get_id - get regulator ID
5495 int rdev_get_id(struct regulator_dev
*rdev
)
5497 return rdev
->desc
->id
;
5499 EXPORT_SYMBOL_GPL(rdev_get_id
);
5501 struct device
*rdev_get_dev(struct regulator_dev
*rdev
)
5505 EXPORT_SYMBOL_GPL(rdev_get_dev
);
5507 struct regmap
*rdev_get_regmap(struct regulator_dev
*rdev
)
5509 return rdev
->regmap
;
5511 EXPORT_SYMBOL_GPL(rdev_get_regmap
);
5513 void *regulator_get_init_drvdata(struct regulator_init_data
*reg_init_data
)
5515 return reg_init_data
->driver_data
;
5517 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata
);
5519 #ifdef CONFIG_DEBUG_FS
5520 static int supply_map_show(struct seq_file
*sf
, void *data
)
5522 struct regulator_map
*map
;
5524 list_for_each_entry(map
, ®ulator_map_list
, list
) {
5525 seq_printf(sf
, "%s -> %s.%s\n",
5526 rdev_get_name(map
->regulator
), map
->dev_name
,
5532 DEFINE_SHOW_ATTRIBUTE(supply_map
);
5534 struct summary_data
{
5536 struct regulator_dev
*parent
;
5540 static void regulator_summary_show_subtree(struct seq_file
*s
,
5541 struct regulator_dev
*rdev
,
5544 static int regulator_summary_show_children(struct device
*dev
, void *data
)
5546 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5547 struct summary_data
*summary_data
= data
;
5549 if (rdev
->supply
&& rdev
->supply
->rdev
== summary_data
->parent
)
5550 regulator_summary_show_subtree(summary_data
->s
, rdev
,
5551 summary_data
->level
+ 1);
5556 static void regulator_summary_show_subtree(struct seq_file
*s
,
5557 struct regulator_dev
*rdev
,
5560 struct regulation_constraints
*c
;
5561 struct regulator
*consumer
;
5562 struct summary_data summary_data
;
5563 unsigned int opmode
;
5568 opmode
= _regulator_get_mode_unlocked(rdev
);
5569 seq_printf(s
, "%*s%-*s %3d %4d %6d %7s ",
5571 30 - level
* 3, rdev_get_name(rdev
),
5572 rdev
->use_count
, rdev
->open_count
, rdev
->bypass_count
,
5573 regulator_opmode_to_str(opmode
));
5575 seq_printf(s
, "%5dmV ", regulator_get_voltage_rdev(rdev
) / 1000);
5576 seq_printf(s
, "%5dmA ",
5577 _regulator_get_current_limit_unlocked(rdev
) / 1000);
5579 c
= rdev
->constraints
;
5581 switch (rdev
->desc
->type
) {
5582 case REGULATOR_VOLTAGE
:
5583 seq_printf(s
, "%5dmV %5dmV ",
5584 c
->min_uV
/ 1000, c
->max_uV
/ 1000);
5586 case REGULATOR_CURRENT
:
5587 seq_printf(s
, "%5dmA %5dmA ",
5588 c
->min_uA
/ 1000, c
->max_uA
/ 1000);
5595 list_for_each_entry(consumer
, &rdev
->consumer_list
, list
) {
5596 if (consumer
->dev
&& consumer
->dev
->class == ®ulator_class
)
5599 seq_printf(s
, "%*s%-*s ",
5600 (level
+ 1) * 3 + 1, "",
5601 30 - (level
+ 1) * 3,
5602 consumer
->supply_name
? consumer
->supply_name
:
5603 consumer
->dev
? dev_name(consumer
->dev
) : "deviceless");
5605 switch (rdev
->desc
->type
) {
5606 case REGULATOR_VOLTAGE
:
5607 seq_printf(s
, "%3d %33dmA%c%5dmV %5dmV",
5608 consumer
->enable_count
,
5609 consumer
->uA_load
/ 1000,
5610 consumer
->uA_load
&& !consumer
->enable_count
?
5612 consumer
->voltage
[PM_SUSPEND_ON
].min_uV
/ 1000,
5613 consumer
->voltage
[PM_SUSPEND_ON
].max_uV
/ 1000);
5615 case REGULATOR_CURRENT
:
5623 summary_data
.level
= level
;
5624 summary_data
.parent
= rdev
;
5626 class_for_each_device(®ulator_class
, NULL
, &summary_data
,
5627 regulator_summary_show_children
);
5630 struct summary_lock_data
{
5631 struct ww_acquire_ctx
*ww_ctx
;
5632 struct regulator_dev
**new_contended_rdev
;
5633 struct regulator_dev
**old_contended_rdev
;
5636 static int regulator_summary_lock_one(struct device
*dev
, void *data
)
5638 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5639 struct summary_lock_data
*lock_data
= data
;
5642 if (rdev
!= *lock_data
->old_contended_rdev
) {
5643 ret
= regulator_lock_nested(rdev
, lock_data
->ww_ctx
);
5645 if (ret
== -EDEADLK
)
5646 *lock_data
->new_contended_rdev
= rdev
;
5650 *lock_data
->old_contended_rdev
= NULL
;
5656 static int regulator_summary_unlock_one(struct device
*dev
, void *data
)
5658 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5659 struct summary_lock_data
*lock_data
= data
;
5662 if (rdev
== *lock_data
->new_contended_rdev
)
5666 regulator_unlock(rdev
);
5671 static int regulator_summary_lock_all(struct ww_acquire_ctx
*ww_ctx
,
5672 struct regulator_dev
**new_contended_rdev
,
5673 struct regulator_dev
**old_contended_rdev
)
5675 struct summary_lock_data lock_data
;
5678 lock_data
.ww_ctx
= ww_ctx
;
5679 lock_data
.new_contended_rdev
= new_contended_rdev
;
5680 lock_data
.old_contended_rdev
= old_contended_rdev
;
5682 ret
= class_for_each_device(®ulator_class
, NULL
, &lock_data
,
5683 regulator_summary_lock_one
);
5685 class_for_each_device(®ulator_class
, NULL
, &lock_data
,
5686 regulator_summary_unlock_one
);
5691 static void regulator_summary_lock(struct ww_acquire_ctx
*ww_ctx
)
5693 struct regulator_dev
*new_contended_rdev
= NULL
;
5694 struct regulator_dev
*old_contended_rdev
= NULL
;
5697 mutex_lock(®ulator_list_mutex
);
5699 ww_acquire_init(ww_ctx
, ®ulator_ww_class
);
5702 if (new_contended_rdev
) {
5703 ww_mutex_lock_slow(&new_contended_rdev
->mutex
, ww_ctx
);
5704 old_contended_rdev
= new_contended_rdev
;
5705 old_contended_rdev
->ref_cnt
++;
5708 err
= regulator_summary_lock_all(ww_ctx
,
5709 &new_contended_rdev
,
5710 &old_contended_rdev
);
5712 if (old_contended_rdev
)
5713 regulator_unlock(old_contended_rdev
);
5715 } while (err
== -EDEADLK
);
5717 ww_acquire_done(ww_ctx
);
5720 static void regulator_summary_unlock(struct ww_acquire_ctx
*ww_ctx
)
5722 class_for_each_device(®ulator_class
, NULL
, NULL
,
5723 regulator_summary_unlock_one
);
5724 ww_acquire_fini(ww_ctx
);
5726 mutex_unlock(®ulator_list_mutex
);
5729 static int regulator_summary_show_roots(struct device
*dev
, void *data
)
5731 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5732 struct seq_file
*s
= data
;
5735 regulator_summary_show_subtree(s
, rdev
, 0);
5740 static int regulator_summary_show(struct seq_file
*s
, void *data
)
5742 struct ww_acquire_ctx ww_ctx
;
5744 seq_puts(s
, " regulator use open bypass opmode voltage current min max\n");
5745 seq_puts(s
, "---------------------------------------------------------------------------------------\n");
5747 regulator_summary_lock(&ww_ctx
);
5749 class_for_each_device(®ulator_class
, NULL
, s
,
5750 regulator_summary_show_roots
);
5752 regulator_summary_unlock(&ww_ctx
);
5756 DEFINE_SHOW_ATTRIBUTE(regulator_summary
);
5757 #endif /* CONFIG_DEBUG_FS */
5759 static int __init
regulator_init(void)
5763 ret
= class_register(®ulator_class
);
5765 debugfs_root
= debugfs_create_dir("regulator", NULL
);
5767 pr_warn("regulator: Failed to create debugfs directory\n");
5769 #ifdef CONFIG_DEBUG_FS
5770 debugfs_create_file("supply_map", 0444, debugfs_root
, NULL
,
5773 debugfs_create_file("regulator_summary", 0444, debugfs_root
,
5774 NULL
, ®ulator_summary_fops
);
5776 regulator_dummy_init();
5778 regulator_coupler_register(&generic_regulator_coupler
);
5783 /* init early to allow our consumers to complete system booting */
5784 core_initcall(regulator_init
);
5786 static int regulator_late_cleanup(struct device
*dev
, void *data
)
5788 struct regulator_dev
*rdev
= dev_to_rdev(dev
);
5789 const struct regulator_ops
*ops
= rdev
->desc
->ops
;
5790 struct regulation_constraints
*c
= rdev
->constraints
;
5793 if (c
&& c
->always_on
)
5796 if (!regulator_ops_is_valid(rdev
, REGULATOR_CHANGE_STATUS
))
5799 regulator_lock(rdev
);
5801 if (rdev
->use_count
)
5804 /* If we can't read the status assume it's on. */
5805 if (ops
->is_enabled
)
5806 enabled
= ops
->is_enabled(rdev
);
5813 if (have_full_constraints()) {
5814 /* We log since this may kill the system if it goes
5816 rdev_info(rdev
, "disabling\n");
5817 ret
= _regulator_do_disable(rdev
);
5819 rdev_err(rdev
, "couldn't disable: %d\n", ret
);
5821 /* The intention is that in future we will
5822 * assume that full constraints are provided
5823 * so warn even if we aren't going to do
5826 rdev_warn(rdev
, "incomplete constraints, leaving on\n");
5830 regulator_unlock(rdev
);
5835 static void regulator_init_complete_work_function(struct work_struct
*work
)
5838 * Regulators may had failed to resolve their input supplies
5839 * when were registered, either because the input supply was
5840 * not registered yet or because its parent device was not
5841 * bound yet. So attempt to resolve the input supplies for
5842 * pending regulators before trying to disable unused ones.
5844 class_for_each_device(®ulator_class
, NULL
, NULL
,
5845 regulator_register_resolve_supply
);
5847 /* If we have a full configuration then disable any regulators
5848 * we have permission to change the status for and which are
5849 * not in use or always_on. This is effectively the default
5850 * for DT and ACPI as they have full constraints.
5852 class_for_each_device(®ulator_class
, NULL
, NULL
,
5853 regulator_late_cleanup
);
5856 static DECLARE_DELAYED_WORK(regulator_init_complete_work
,
5857 regulator_init_complete_work_function
);
5859 static int __init
regulator_init_complete(void)
5862 * Since DT doesn't provide an idiomatic mechanism for
5863 * enabling full constraints and since it's much more natural
5864 * with DT to provide them just assume that a DT enabled
5865 * system has full constraints.
5867 if (of_have_populated_dt())
5868 has_full_constraints
= true;
5871 * We punt completion for an arbitrary amount of time since
5872 * systems like distros will load many drivers from userspace
5873 * so consumers might not always be ready yet, this is
5874 * particularly an issue with laptops where this might bounce
5875 * the display off then on. Ideally we'd get a notification
5876 * from userspace when this happens but we don't so just wait
5877 * a bit and hope we waited long enough. It'd be better if
5878 * we'd only do this on systems that need it, and a kernel
5879 * command line option might be useful.
5881 schedule_delayed_work(®ulator_init_complete_work
,
5882 msecs_to_jiffies(30000));
5886 late_initcall_sync(regulator_init_complete
);