Linux 5.9.7
[linux/fpc-iii.git] / drivers / regulator / core.c
blob79317d6bf85132ac24901a53baf4e936013e6e9d
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 //
3 // core.c -- Voltage/Current Regulator framework.
4 //
5 // Copyright 2007, 2008 Wolfson Microelectronics PLC.
6 // Copyright 2008 SlimLogic Ltd.
7 //
8 // Author: Liam Girdwood <lrg@slimlogic.co.uk>
10 #include <linux/kernel.h>
11 #include <linux/init.h>
12 #include <linux/debugfs.h>
13 #include <linux/device.h>
14 #include <linux/slab.h>
15 #include <linux/async.h>
16 #include <linux/err.h>
17 #include <linux/mutex.h>
18 #include <linux/suspend.h>
19 #include <linux/delay.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/of.h>
22 #include <linux/regmap.h>
23 #include <linux/regulator/of_regulator.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/regulator/coupler.h>
26 #include <linux/regulator/driver.h>
27 #include <linux/regulator/machine.h>
28 #include <linux/module.h>
30 #define CREATE_TRACE_POINTS
31 #include <trace/events/regulator.h>
33 #include "dummy.h"
34 #include "internal.h"
36 #define rdev_crit(rdev, fmt, ...) \
37 pr_crit("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
38 #define rdev_err(rdev, fmt, ...) \
39 pr_err("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
40 #define rdev_warn(rdev, fmt, ...) \
41 pr_warn("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
42 #define rdev_info(rdev, fmt, ...) \
43 pr_info("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
44 #define rdev_dbg(rdev, fmt, ...) \
45 pr_debug("%s: " fmt, rdev_get_name(rdev), ##__VA_ARGS__)
47 static DEFINE_WW_CLASS(regulator_ww_class);
48 static DEFINE_MUTEX(regulator_nesting_mutex);
49 static DEFINE_MUTEX(regulator_list_mutex);
50 static LIST_HEAD(regulator_map_list);
51 static LIST_HEAD(regulator_ena_gpio_list);
52 static LIST_HEAD(regulator_supply_alias_list);
53 static LIST_HEAD(regulator_coupler_list);
54 static bool has_full_constraints;
56 static struct dentry *debugfs_root;
59 * struct regulator_map
61 * Used to provide symbolic supply names to devices.
63 struct regulator_map {
64 struct list_head list;
65 const char *dev_name; /* The dev_name() for the consumer */
66 const char *supply;
67 struct regulator_dev *regulator;
71 * struct regulator_enable_gpio
73 * Management for shared enable GPIO pin
75 struct regulator_enable_gpio {
76 struct list_head list;
77 struct gpio_desc *gpiod;
78 u32 enable_count; /* a number of enabled shared GPIO */
79 u32 request_count; /* a number of requested shared GPIO */
83 * struct regulator_supply_alias
85 * Used to map lookups for a supply onto an alternative device.
87 struct regulator_supply_alias {
88 struct list_head list;
89 struct device *src_dev;
90 const char *src_supply;
91 struct device *alias_dev;
92 const char *alias_supply;
95 static int _regulator_is_enabled(struct regulator_dev *rdev);
96 static int _regulator_disable(struct regulator *regulator);
97 static int _regulator_get_current_limit(struct regulator_dev *rdev);
98 static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
99 static int _notifier_call_chain(struct regulator_dev *rdev,
100 unsigned long event, void *data);
101 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
102 int min_uV, int max_uV);
103 static int regulator_balance_voltage(struct regulator_dev *rdev,
104 suspend_state_t state);
105 static struct regulator *create_regulator(struct regulator_dev *rdev,
106 struct device *dev,
107 const char *supply_name);
108 static void destroy_regulator(struct regulator *regulator);
109 static void _regulator_put(struct regulator *regulator);
111 const char *rdev_get_name(struct regulator_dev *rdev)
113 if (rdev->constraints && rdev->constraints->name)
114 return rdev->constraints->name;
115 else if (rdev->desc->name)
116 return rdev->desc->name;
117 else
118 return "";
121 static bool have_full_constraints(void)
123 return has_full_constraints || of_have_populated_dt();
126 static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
128 if (!rdev->constraints) {
129 rdev_err(rdev, "no constraints\n");
130 return false;
133 if (rdev->constraints->valid_ops_mask & ops)
134 return true;
136 return false;
140 * regulator_lock_nested - lock a single regulator
141 * @rdev: regulator source
142 * @ww_ctx: w/w mutex acquire context
144 * This function can be called many times by one task on
145 * a single regulator and its mutex will be locked only
146 * once. If a task, which is calling this function is other
147 * than the one, which initially locked the mutex, it will
148 * wait on mutex.
150 static inline int regulator_lock_nested(struct regulator_dev *rdev,
151 struct ww_acquire_ctx *ww_ctx)
153 bool lock = false;
154 int ret = 0;
156 mutex_lock(&regulator_nesting_mutex);
158 if (ww_ctx || !ww_mutex_trylock(&rdev->mutex)) {
159 if (rdev->mutex_owner == current)
160 rdev->ref_cnt++;
161 else
162 lock = true;
164 if (lock) {
165 mutex_unlock(&regulator_nesting_mutex);
166 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
167 mutex_lock(&regulator_nesting_mutex);
169 } else {
170 lock = true;
173 if (lock && ret != -EDEADLK) {
174 rdev->ref_cnt++;
175 rdev->mutex_owner = current;
178 mutex_unlock(&regulator_nesting_mutex);
180 return ret;
184 * regulator_lock - lock a single regulator
185 * @rdev: regulator source
187 * This function can be called many times by one task on
188 * a single regulator and its mutex will be locked only
189 * once. If a task, which is calling this function is other
190 * than the one, which initially locked the mutex, it will
191 * wait on mutex.
193 void regulator_lock(struct regulator_dev *rdev)
195 regulator_lock_nested(rdev, NULL);
197 EXPORT_SYMBOL_GPL(regulator_lock);
200 * regulator_unlock - unlock a single regulator
201 * @rdev: regulator_source
203 * This function unlocks the mutex when the
204 * reference counter reaches 0.
206 void regulator_unlock(struct regulator_dev *rdev)
208 mutex_lock(&regulator_nesting_mutex);
210 if (--rdev->ref_cnt == 0) {
211 rdev->mutex_owner = NULL;
212 ww_mutex_unlock(&rdev->mutex);
215 WARN_ON_ONCE(rdev->ref_cnt < 0);
217 mutex_unlock(&regulator_nesting_mutex);
219 EXPORT_SYMBOL_GPL(regulator_unlock);
221 static bool regulator_supply_is_couple(struct regulator_dev *rdev)
223 struct regulator_dev *c_rdev;
224 int i;
226 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
227 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
229 if (rdev->supply->rdev == c_rdev)
230 return true;
233 return false;
236 static void regulator_unlock_recursive(struct regulator_dev *rdev,
237 unsigned int n_coupled)
239 struct regulator_dev *c_rdev, *supply_rdev;
240 int i, supply_n_coupled;
242 for (i = n_coupled; i > 0; i--) {
243 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
245 if (!c_rdev)
246 continue;
248 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
249 supply_rdev = c_rdev->supply->rdev;
250 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
252 regulator_unlock_recursive(supply_rdev,
253 supply_n_coupled);
256 regulator_unlock(c_rdev);
260 static int regulator_lock_recursive(struct regulator_dev *rdev,
261 struct regulator_dev **new_contended_rdev,
262 struct regulator_dev **old_contended_rdev,
263 struct ww_acquire_ctx *ww_ctx)
265 struct regulator_dev *c_rdev;
266 int i, err;
268 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
269 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
271 if (!c_rdev)
272 continue;
274 if (c_rdev != *old_contended_rdev) {
275 err = regulator_lock_nested(c_rdev, ww_ctx);
276 if (err) {
277 if (err == -EDEADLK) {
278 *new_contended_rdev = c_rdev;
279 goto err_unlock;
282 /* shouldn't happen */
283 WARN_ON_ONCE(err != -EALREADY);
285 } else {
286 *old_contended_rdev = NULL;
289 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
290 err = regulator_lock_recursive(c_rdev->supply->rdev,
291 new_contended_rdev,
292 old_contended_rdev,
293 ww_ctx);
294 if (err) {
295 regulator_unlock(c_rdev);
296 goto err_unlock;
301 return 0;
303 err_unlock:
304 regulator_unlock_recursive(rdev, i);
306 return err;
310 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
311 * regulators
312 * @rdev: regulator source
313 * @ww_ctx: w/w mutex acquire context
315 * Unlock all regulators related with rdev by coupling or supplying.
317 static void regulator_unlock_dependent(struct regulator_dev *rdev,
318 struct ww_acquire_ctx *ww_ctx)
320 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
321 ww_acquire_fini(ww_ctx);
325 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
326 * @rdev: regulator source
327 * @ww_ctx: w/w mutex acquire context
329 * This function as a wrapper on regulator_lock_recursive(), which locks
330 * all regulators related with rdev by coupling or supplying.
332 static void regulator_lock_dependent(struct regulator_dev *rdev,
333 struct ww_acquire_ctx *ww_ctx)
335 struct regulator_dev *new_contended_rdev = NULL;
336 struct regulator_dev *old_contended_rdev = NULL;
337 int err;
339 mutex_lock(&regulator_list_mutex);
341 ww_acquire_init(ww_ctx, &regulator_ww_class);
343 do {
344 if (new_contended_rdev) {
345 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
346 old_contended_rdev = new_contended_rdev;
347 old_contended_rdev->ref_cnt++;
350 err = regulator_lock_recursive(rdev,
351 &new_contended_rdev,
352 &old_contended_rdev,
353 ww_ctx);
355 if (old_contended_rdev)
356 regulator_unlock(old_contended_rdev);
358 } while (err == -EDEADLK);
360 ww_acquire_done(ww_ctx);
362 mutex_unlock(&regulator_list_mutex);
366 * of_get_child_regulator - get a child regulator device node
367 * based on supply name
368 * @parent: Parent device node
369 * @prop_name: Combination regulator supply name and "-supply"
371 * Traverse all child nodes.
372 * Extract the child regulator device node corresponding to the supply name.
373 * returns the device node corresponding to the regulator if found, else
374 * returns NULL.
376 static struct device_node *of_get_child_regulator(struct device_node *parent,
377 const char *prop_name)
379 struct device_node *regnode = NULL;
380 struct device_node *child = NULL;
382 for_each_child_of_node(parent, child) {
383 regnode = of_parse_phandle(child, prop_name, 0);
385 if (!regnode) {
386 regnode = of_get_child_regulator(child, prop_name);
387 if (regnode)
388 goto err_node_put;
389 } else {
390 goto err_node_put;
393 return NULL;
395 err_node_put:
396 of_node_put(child);
397 return regnode;
401 * of_get_regulator - get a regulator device node based on supply name
402 * @dev: Device pointer for the consumer (of regulator) device
403 * @supply: regulator supply name
405 * Extract the regulator device node corresponding to the supply name.
406 * returns the device node corresponding to the regulator if found, else
407 * returns NULL.
409 static struct device_node *of_get_regulator(struct device *dev, const char *supply)
411 struct device_node *regnode = NULL;
412 char prop_name[32]; /* 32 is max size of property name */
414 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
416 snprintf(prop_name, 32, "%s-supply", supply);
417 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
419 if (!regnode) {
420 regnode = of_get_child_regulator(dev->of_node, prop_name);
421 if (regnode)
422 return regnode;
424 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
425 prop_name, dev->of_node);
426 return NULL;
428 return regnode;
431 /* Platform voltage constraint check */
432 int regulator_check_voltage(struct regulator_dev *rdev,
433 int *min_uV, int *max_uV)
435 BUG_ON(*min_uV > *max_uV);
437 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
438 rdev_err(rdev, "voltage operation not allowed\n");
439 return -EPERM;
442 if (*max_uV > rdev->constraints->max_uV)
443 *max_uV = rdev->constraints->max_uV;
444 if (*min_uV < rdev->constraints->min_uV)
445 *min_uV = rdev->constraints->min_uV;
447 if (*min_uV > *max_uV) {
448 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
449 *min_uV, *max_uV);
450 return -EINVAL;
453 return 0;
456 /* return 0 if the state is valid */
457 static int regulator_check_states(suspend_state_t state)
459 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
462 /* Make sure we select a voltage that suits the needs of all
463 * regulator consumers
465 int regulator_check_consumers(struct regulator_dev *rdev,
466 int *min_uV, int *max_uV,
467 suspend_state_t state)
469 struct regulator *regulator;
470 struct regulator_voltage *voltage;
472 list_for_each_entry(regulator, &rdev->consumer_list, list) {
473 voltage = &regulator->voltage[state];
475 * Assume consumers that didn't say anything are OK
476 * with anything in the constraint range.
478 if (!voltage->min_uV && !voltage->max_uV)
479 continue;
481 if (*max_uV > voltage->max_uV)
482 *max_uV = voltage->max_uV;
483 if (*min_uV < voltage->min_uV)
484 *min_uV = voltage->min_uV;
487 if (*min_uV > *max_uV) {
488 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
489 *min_uV, *max_uV);
490 return -EINVAL;
493 return 0;
496 /* current constraint check */
497 static int regulator_check_current_limit(struct regulator_dev *rdev,
498 int *min_uA, int *max_uA)
500 BUG_ON(*min_uA > *max_uA);
502 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
503 rdev_err(rdev, "current operation not allowed\n");
504 return -EPERM;
507 if (*max_uA > rdev->constraints->max_uA)
508 *max_uA = rdev->constraints->max_uA;
509 if (*min_uA < rdev->constraints->min_uA)
510 *min_uA = rdev->constraints->min_uA;
512 if (*min_uA > *max_uA) {
513 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
514 *min_uA, *max_uA);
515 return -EINVAL;
518 return 0;
521 /* operating mode constraint check */
522 static int regulator_mode_constrain(struct regulator_dev *rdev,
523 unsigned int *mode)
525 switch (*mode) {
526 case REGULATOR_MODE_FAST:
527 case REGULATOR_MODE_NORMAL:
528 case REGULATOR_MODE_IDLE:
529 case REGULATOR_MODE_STANDBY:
530 break;
531 default:
532 rdev_err(rdev, "invalid mode %x specified\n", *mode);
533 return -EINVAL;
536 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
537 rdev_err(rdev, "mode operation not allowed\n");
538 return -EPERM;
541 /* The modes are bitmasks, the most power hungry modes having
542 * the lowest values. If the requested mode isn't supported
543 * try higher modes. */
544 while (*mode) {
545 if (rdev->constraints->valid_modes_mask & *mode)
546 return 0;
547 *mode /= 2;
550 return -EINVAL;
553 static inline struct regulator_state *
554 regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
556 if (rdev->constraints == NULL)
557 return NULL;
559 switch (state) {
560 case PM_SUSPEND_STANDBY:
561 return &rdev->constraints->state_standby;
562 case PM_SUSPEND_MEM:
563 return &rdev->constraints->state_mem;
564 case PM_SUSPEND_MAX:
565 return &rdev->constraints->state_disk;
566 default:
567 return NULL;
571 static ssize_t regulator_uV_show(struct device *dev,
572 struct device_attribute *attr, char *buf)
574 struct regulator_dev *rdev = dev_get_drvdata(dev);
575 int uV;
577 regulator_lock(rdev);
578 uV = regulator_get_voltage_rdev(rdev);
579 regulator_unlock(rdev);
581 if (uV < 0)
582 return uV;
583 return sprintf(buf, "%d\n", uV);
585 static DEVICE_ATTR(microvolts, 0444, regulator_uV_show, NULL);
587 static ssize_t regulator_uA_show(struct device *dev,
588 struct device_attribute *attr, char *buf)
590 struct regulator_dev *rdev = dev_get_drvdata(dev);
592 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
594 static DEVICE_ATTR(microamps, 0444, regulator_uA_show, NULL);
596 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
597 char *buf)
599 struct regulator_dev *rdev = dev_get_drvdata(dev);
601 return sprintf(buf, "%s\n", rdev_get_name(rdev));
603 static DEVICE_ATTR_RO(name);
605 static const char *regulator_opmode_to_str(int mode)
607 switch (mode) {
608 case REGULATOR_MODE_FAST:
609 return "fast";
610 case REGULATOR_MODE_NORMAL:
611 return "normal";
612 case REGULATOR_MODE_IDLE:
613 return "idle";
614 case REGULATOR_MODE_STANDBY:
615 return "standby";
617 return "unknown";
620 static ssize_t regulator_print_opmode(char *buf, int mode)
622 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
625 static ssize_t regulator_opmode_show(struct device *dev,
626 struct device_attribute *attr, char *buf)
628 struct regulator_dev *rdev = dev_get_drvdata(dev);
630 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
632 static DEVICE_ATTR(opmode, 0444, regulator_opmode_show, NULL);
634 static ssize_t regulator_print_state(char *buf, int state)
636 if (state > 0)
637 return sprintf(buf, "enabled\n");
638 else if (state == 0)
639 return sprintf(buf, "disabled\n");
640 else
641 return sprintf(buf, "unknown\n");
644 static ssize_t regulator_state_show(struct device *dev,
645 struct device_attribute *attr, char *buf)
647 struct regulator_dev *rdev = dev_get_drvdata(dev);
648 ssize_t ret;
650 regulator_lock(rdev);
651 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
652 regulator_unlock(rdev);
654 return ret;
656 static DEVICE_ATTR(state, 0444, regulator_state_show, NULL);
658 static ssize_t regulator_status_show(struct device *dev,
659 struct device_attribute *attr, char *buf)
661 struct regulator_dev *rdev = dev_get_drvdata(dev);
662 int status;
663 char *label;
665 status = rdev->desc->ops->get_status(rdev);
666 if (status < 0)
667 return status;
669 switch (status) {
670 case REGULATOR_STATUS_OFF:
671 label = "off";
672 break;
673 case REGULATOR_STATUS_ON:
674 label = "on";
675 break;
676 case REGULATOR_STATUS_ERROR:
677 label = "error";
678 break;
679 case REGULATOR_STATUS_FAST:
680 label = "fast";
681 break;
682 case REGULATOR_STATUS_NORMAL:
683 label = "normal";
684 break;
685 case REGULATOR_STATUS_IDLE:
686 label = "idle";
687 break;
688 case REGULATOR_STATUS_STANDBY:
689 label = "standby";
690 break;
691 case REGULATOR_STATUS_BYPASS:
692 label = "bypass";
693 break;
694 case REGULATOR_STATUS_UNDEFINED:
695 label = "undefined";
696 break;
697 default:
698 return -ERANGE;
701 return sprintf(buf, "%s\n", label);
703 static DEVICE_ATTR(status, 0444, regulator_status_show, NULL);
705 static ssize_t regulator_min_uA_show(struct device *dev,
706 struct device_attribute *attr, char *buf)
708 struct regulator_dev *rdev = dev_get_drvdata(dev);
710 if (!rdev->constraints)
711 return sprintf(buf, "constraint not defined\n");
713 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
715 static DEVICE_ATTR(min_microamps, 0444, regulator_min_uA_show, NULL);
717 static ssize_t regulator_max_uA_show(struct device *dev,
718 struct device_attribute *attr, char *buf)
720 struct regulator_dev *rdev = dev_get_drvdata(dev);
722 if (!rdev->constraints)
723 return sprintf(buf, "constraint not defined\n");
725 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
727 static DEVICE_ATTR(max_microamps, 0444, regulator_max_uA_show, NULL);
729 static ssize_t regulator_min_uV_show(struct device *dev,
730 struct device_attribute *attr, char *buf)
732 struct regulator_dev *rdev = dev_get_drvdata(dev);
734 if (!rdev->constraints)
735 return sprintf(buf, "constraint not defined\n");
737 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
739 static DEVICE_ATTR(min_microvolts, 0444, regulator_min_uV_show, NULL);
741 static ssize_t regulator_max_uV_show(struct device *dev,
742 struct device_attribute *attr, char *buf)
744 struct regulator_dev *rdev = dev_get_drvdata(dev);
746 if (!rdev->constraints)
747 return sprintf(buf, "constraint not defined\n");
749 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
751 static DEVICE_ATTR(max_microvolts, 0444, regulator_max_uV_show, NULL);
753 static ssize_t regulator_total_uA_show(struct device *dev,
754 struct device_attribute *attr, char *buf)
756 struct regulator_dev *rdev = dev_get_drvdata(dev);
757 struct regulator *regulator;
758 int uA = 0;
760 regulator_lock(rdev);
761 list_for_each_entry(regulator, &rdev->consumer_list, list) {
762 if (regulator->enable_count)
763 uA += regulator->uA_load;
765 regulator_unlock(rdev);
766 return sprintf(buf, "%d\n", uA);
768 static DEVICE_ATTR(requested_microamps, 0444, regulator_total_uA_show, NULL);
770 static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
771 char *buf)
773 struct regulator_dev *rdev = dev_get_drvdata(dev);
774 return sprintf(buf, "%d\n", rdev->use_count);
776 static DEVICE_ATTR_RO(num_users);
778 static ssize_t type_show(struct device *dev, struct device_attribute *attr,
779 char *buf)
781 struct regulator_dev *rdev = dev_get_drvdata(dev);
783 switch (rdev->desc->type) {
784 case REGULATOR_VOLTAGE:
785 return sprintf(buf, "voltage\n");
786 case REGULATOR_CURRENT:
787 return sprintf(buf, "current\n");
789 return sprintf(buf, "unknown\n");
791 static DEVICE_ATTR_RO(type);
793 static ssize_t regulator_suspend_mem_uV_show(struct device *dev,
794 struct device_attribute *attr, char *buf)
796 struct regulator_dev *rdev = dev_get_drvdata(dev);
798 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
800 static DEVICE_ATTR(suspend_mem_microvolts, 0444,
801 regulator_suspend_mem_uV_show, NULL);
803 static ssize_t regulator_suspend_disk_uV_show(struct device *dev,
804 struct device_attribute *attr, char *buf)
806 struct regulator_dev *rdev = dev_get_drvdata(dev);
808 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
810 static DEVICE_ATTR(suspend_disk_microvolts, 0444,
811 regulator_suspend_disk_uV_show, NULL);
813 static ssize_t regulator_suspend_standby_uV_show(struct device *dev,
814 struct device_attribute *attr, char *buf)
816 struct regulator_dev *rdev = dev_get_drvdata(dev);
818 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
820 static DEVICE_ATTR(suspend_standby_microvolts, 0444,
821 regulator_suspend_standby_uV_show, NULL);
823 static ssize_t regulator_suspend_mem_mode_show(struct device *dev,
824 struct device_attribute *attr, char *buf)
826 struct regulator_dev *rdev = dev_get_drvdata(dev);
828 return regulator_print_opmode(buf,
829 rdev->constraints->state_mem.mode);
831 static DEVICE_ATTR(suspend_mem_mode, 0444,
832 regulator_suspend_mem_mode_show, NULL);
834 static ssize_t regulator_suspend_disk_mode_show(struct device *dev,
835 struct device_attribute *attr, char *buf)
837 struct regulator_dev *rdev = dev_get_drvdata(dev);
839 return regulator_print_opmode(buf,
840 rdev->constraints->state_disk.mode);
842 static DEVICE_ATTR(suspend_disk_mode, 0444,
843 regulator_suspend_disk_mode_show, NULL);
845 static ssize_t regulator_suspend_standby_mode_show(struct device *dev,
846 struct device_attribute *attr, char *buf)
848 struct regulator_dev *rdev = dev_get_drvdata(dev);
850 return regulator_print_opmode(buf,
851 rdev->constraints->state_standby.mode);
853 static DEVICE_ATTR(suspend_standby_mode, 0444,
854 regulator_suspend_standby_mode_show, NULL);
856 static ssize_t regulator_suspend_mem_state_show(struct device *dev,
857 struct device_attribute *attr, char *buf)
859 struct regulator_dev *rdev = dev_get_drvdata(dev);
861 return regulator_print_state(buf,
862 rdev->constraints->state_mem.enabled);
864 static DEVICE_ATTR(suspend_mem_state, 0444,
865 regulator_suspend_mem_state_show, NULL);
867 static ssize_t regulator_suspend_disk_state_show(struct device *dev,
868 struct device_attribute *attr, char *buf)
870 struct regulator_dev *rdev = dev_get_drvdata(dev);
872 return regulator_print_state(buf,
873 rdev->constraints->state_disk.enabled);
875 static DEVICE_ATTR(suspend_disk_state, 0444,
876 regulator_suspend_disk_state_show, NULL);
878 static ssize_t regulator_suspend_standby_state_show(struct device *dev,
879 struct device_attribute *attr, char *buf)
881 struct regulator_dev *rdev = dev_get_drvdata(dev);
883 return regulator_print_state(buf,
884 rdev->constraints->state_standby.enabled);
886 static DEVICE_ATTR(suspend_standby_state, 0444,
887 regulator_suspend_standby_state_show, NULL);
889 static ssize_t regulator_bypass_show(struct device *dev,
890 struct device_attribute *attr, char *buf)
892 struct regulator_dev *rdev = dev_get_drvdata(dev);
893 const char *report;
894 bool bypass;
895 int ret;
897 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
899 if (ret != 0)
900 report = "unknown";
901 else if (bypass)
902 report = "enabled";
903 else
904 report = "disabled";
906 return sprintf(buf, "%s\n", report);
908 static DEVICE_ATTR(bypass, 0444,
909 regulator_bypass_show, NULL);
911 /* Calculate the new optimum regulator operating mode based on the new total
912 * consumer load. All locks held by caller */
913 static int drms_uA_update(struct regulator_dev *rdev)
915 struct regulator *sibling;
916 int current_uA = 0, output_uV, input_uV, err;
917 unsigned int mode;
920 * first check to see if we can set modes at all, otherwise just
921 * tell the consumer everything is OK.
923 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
924 rdev_dbg(rdev, "DRMS operation not allowed\n");
925 return 0;
928 if (!rdev->desc->ops->get_optimum_mode &&
929 !rdev->desc->ops->set_load)
930 return 0;
932 if (!rdev->desc->ops->set_mode &&
933 !rdev->desc->ops->set_load)
934 return -EINVAL;
936 /* calc total requested load */
937 list_for_each_entry(sibling, &rdev->consumer_list, list) {
938 if (sibling->enable_count)
939 current_uA += sibling->uA_load;
942 current_uA += rdev->constraints->system_load;
944 if (rdev->desc->ops->set_load) {
945 /* set the optimum mode for our new total regulator load */
946 err = rdev->desc->ops->set_load(rdev, current_uA);
947 if (err < 0)
948 rdev_err(rdev, "failed to set load %d\n", current_uA);
949 } else {
950 /* get output voltage */
951 output_uV = regulator_get_voltage_rdev(rdev);
952 if (output_uV <= 0) {
953 rdev_err(rdev, "invalid output voltage found\n");
954 return -EINVAL;
957 /* get input voltage */
958 input_uV = 0;
959 if (rdev->supply)
960 input_uV = regulator_get_voltage(rdev->supply);
961 if (input_uV <= 0)
962 input_uV = rdev->constraints->input_uV;
963 if (input_uV <= 0) {
964 rdev_err(rdev, "invalid input voltage found\n");
965 return -EINVAL;
968 /* now get the optimum mode for our new total regulator load */
969 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
970 output_uV, current_uA);
972 /* check the new mode is allowed */
973 err = regulator_mode_constrain(rdev, &mode);
974 if (err < 0) {
975 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV\n",
976 current_uA, input_uV, output_uV);
977 return err;
980 err = rdev->desc->ops->set_mode(rdev, mode);
981 if (err < 0)
982 rdev_err(rdev, "failed to set optimum mode %x\n", mode);
985 return err;
988 static int suspend_set_state(struct regulator_dev *rdev,
989 suspend_state_t state)
991 int ret = 0;
992 struct regulator_state *rstate;
994 rstate = regulator_get_suspend_state(rdev, state);
995 if (rstate == NULL)
996 return 0;
998 /* If we have no suspend mode configuration don't set anything;
999 * only warn if the driver implements set_suspend_voltage or
1000 * set_suspend_mode callback.
1002 if (rstate->enabled != ENABLE_IN_SUSPEND &&
1003 rstate->enabled != DISABLE_IN_SUSPEND) {
1004 if (rdev->desc->ops->set_suspend_voltage ||
1005 rdev->desc->ops->set_suspend_mode)
1006 rdev_warn(rdev, "No configuration\n");
1007 return 0;
1010 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1011 rdev->desc->ops->set_suspend_enable)
1012 ret = rdev->desc->ops->set_suspend_enable(rdev);
1013 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1014 rdev->desc->ops->set_suspend_disable)
1015 ret = rdev->desc->ops->set_suspend_disable(rdev);
1016 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1017 ret = 0;
1019 if (ret < 0) {
1020 rdev_err(rdev, "failed to enabled/disable\n");
1021 return ret;
1024 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1025 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1026 if (ret < 0) {
1027 rdev_err(rdev, "failed to set voltage\n");
1028 return ret;
1032 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1033 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1034 if (ret < 0) {
1035 rdev_err(rdev, "failed to set mode\n");
1036 return ret;
1040 return ret;
1043 static void print_constraints(struct regulator_dev *rdev)
1045 struct regulation_constraints *constraints = rdev->constraints;
1046 char buf[160] = "";
1047 size_t len = sizeof(buf) - 1;
1048 int count = 0;
1049 int ret;
1051 if (constraints->min_uV && constraints->max_uV) {
1052 if (constraints->min_uV == constraints->max_uV)
1053 count += scnprintf(buf + count, len - count, "%d mV ",
1054 constraints->min_uV / 1000);
1055 else
1056 count += scnprintf(buf + count, len - count,
1057 "%d <--> %d mV ",
1058 constraints->min_uV / 1000,
1059 constraints->max_uV / 1000);
1062 if (!constraints->min_uV ||
1063 constraints->min_uV != constraints->max_uV) {
1064 ret = regulator_get_voltage_rdev(rdev);
1065 if (ret > 0)
1066 count += scnprintf(buf + count, len - count,
1067 "at %d mV ", ret / 1000);
1070 if (constraints->uV_offset)
1071 count += scnprintf(buf + count, len - count, "%dmV offset ",
1072 constraints->uV_offset / 1000);
1074 if (constraints->min_uA && constraints->max_uA) {
1075 if (constraints->min_uA == constraints->max_uA)
1076 count += scnprintf(buf + count, len - count, "%d mA ",
1077 constraints->min_uA / 1000);
1078 else
1079 count += scnprintf(buf + count, len - count,
1080 "%d <--> %d mA ",
1081 constraints->min_uA / 1000,
1082 constraints->max_uA / 1000);
1085 if (!constraints->min_uA ||
1086 constraints->min_uA != constraints->max_uA) {
1087 ret = _regulator_get_current_limit(rdev);
1088 if (ret > 0)
1089 count += scnprintf(buf + count, len - count,
1090 "at %d mA ", ret / 1000);
1093 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1094 count += scnprintf(buf + count, len - count, "fast ");
1095 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1096 count += scnprintf(buf + count, len - count, "normal ");
1097 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1098 count += scnprintf(buf + count, len - count, "idle ");
1099 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1100 count += scnprintf(buf + count, len - count, "standby");
1102 if (!count)
1103 scnprintf(buf, len, "no parameters");
1105 rdev_dbg(rdev, "%s\n", buf);
1107 if ((constraints->min_uV != constraints->max_uV) &&
1108 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1109 rdev_warn(rdev,
1110 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1113 static int machine_constraints_voltage(struct regulator_dev *rdev,
1114 struct regulation_constraints *constraints)
1116 const struct regulator_ops *ops = rdev->desc->ops;
1117 int ret;
1119 /* do we need to apply the constraint voltage */
1120 if (rdev->constraints->apply_uV &&
1121 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1122 int target_min, target_max;
1123 int current_uV = regulator_get_voltage_rdev(rdev);
1125 if (current_uV == -ENOTRECOVERABLE) {
1126 /* This regulator can't be read and must be initialized */
1127 rdev_info(rdev, "Setting %d-%duV\n",
1128 rdev->constraints->min_uV,
1129 rdev->constraints->max_uV);
1130 _regulator_do_set_voltage(rdev,
1131 rdev->constraints->min_uV,
1132 rdev->constraints->max_uV);
1133 current_uV = regulator_get_voltage_rdev(rdev);
1136 if (current_uV < 0) {
1137 rdev_err(rdev,
1138 "failed to get the current voltage(%d)\n",
1139 current_uV);
1140 return current_uV;
1144 * If we're below the minimum voltage move up to the
1145 * minimum voltage, if we're above the maximum voltage
1146 * then move down to the maximum.
1148 target_min = current_uV;
1149 target_max = current_uV;
1151 if (current_uV < rdev->constraints->min_uV) {
1152 target_min = rdev->constraints->min_uV;
1153 target_max = rdev->constraints->min_uV;
1156 if (current_uV > rdev->constraints->max_uV) {
1157 target_min = rdev->constraints->max_uV;
1158 target_max = rdev->constraints->max_uV;
1161 if (target_min != current_uV || target_max != current_uV) {
1162 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1163 current_uV, target_min, target_max);
1164 ret = _regulator_do_set_voltage(
1165 rdev, target_min, target_max);
1166 if (ret < 0) {
1167 rdev_err(rdev,
1168 "failed to apply %d-%duV constraint(%d)\n",
1169 target_min, target_max, ret);
1170 return ret;
1175 /* constrain machine-level voltage specs to fit
1176 * the actual range supported by this regulator.
1178 if (ops->list_voltage && rdev->desc->n_voltages) {
1179 int count = rdev->desc->n_voltages;
1180 int i;
1181 int min_uV = INT_MAX;
1182 int max_uV = INT_MIN;
1183 int cmin = constraints->min_uV;
1184 int cmax = constraints->max_uV;
1186 /* it's safe to autoconfigure fixed-voltage supplies
1187 and the constraints are used by list_voltage. */
1188 if (count == 1 && !cmin) {
1189 cmin = 1;
1190 cmax = INT_MAX;
1191 constraints->min_uV = cmin;
1192 constraints->max_uV = cmax;
1195 /* voltage constraints are optional */
1196 if ((cmin == 0) && (cmax == 0))
1197 return 0;
1199 /* else require explicit machine-level constraints */
1200 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1201 rdev_err(rdev, "invalid voltage constraints\n");
1202 return -EINVAL;
1205 /* no need to loop voltages if range is continuous */
1206 if (rdev->desc->continuous_voltage_range)
1207 return 0;
1209 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1210 for (i = 0; i < count; i++) {
1211 int value;
1213 value = ops->list_voltage(rdev, i);
1214 if (value <= 0)
1215 continue;
1217 /* maybe adjust [min_uV..max_uV] */
1218 if (value >= cmin && value < min_uV)
1219 min_uV = value;
1220 if (value <= cmax && value > max_uV)
1221 max_uV = value;
1224 /* final: [min_uV..max_uV] valid iff constraints valid */
1225 if (max_uV < min_uV) {
1226 rdev_err(rdev,
1227 "unsupportable voltage constraints %u-%uuV\n",
1228 min_uV, max_uV);
1229 return -EINVAL;
1232 /* use regulator's subset of machine constraints */
1233 if (constraints->min_uV < min_uV) {
1234 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1235 constraints->min_uV, min_uV);
1236 constraints->min_uV = min_uV;
1238 if (constraints->max_uV > max_uV) {
1239 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1240 constraints->max_uV, max_uV);
1241 constraints->max_uV = max_uV;
1245 return 0;
1248 static int machine_constraints_current(struct regulator_dev *rdev,
1249 struct regulation_constraints *constraints)
1251 const struct regulator_ops *ops = rdev->desc->ops;
1252 int ret;
1254 if (!constraints->min_uA && !constraints->max_uA)
1255 return 0;
1257 if (constraints->min_uA > constraints->max_uA) {
1258 rdev_err(rdev, "Invalid current constraints\n");
1259 return -EINVAL;
1262 if (!ops->set_current_limit || !ops->get_current_limit) {
1263 rdev_warn(rdev, "Operation of current configuration missing\n");
1264 return 0;
1267 /* Set regulator current in constraints range */
1268 ret = ops->set_current_limit(rdev, constraints->min_uA,
1269 constraints->max_uA);
1270 if (ret < 0) {
1271 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1272 return ret;
1275 return 0;
1278 static int _regulator_do_enable(struct regulator_dev *rdev);
1281 * set_machine_constraints - sets regulator constraints
1282 * @rdev: regulator source
1283 * @constraints: constraints to apply
1285 * Allows platform initialisation code to define and constrain
1286 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1287 * Constraints *must* be set by platform code in order for some
1288 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1289 * set_mode.
1291 static int set_machine_constraints(struct regulator_dev *rdev,
1292 const struct regulation_constraints *constraints)
1294 int ret = 0;
1295 const struct regulator_ops *ops = rdev->desc->ops;
1297 if (constraints)
1298 rdev->constraints = kmemdup(constraints, sizeof(*constraints),
1299 GFP_KERNEL);
1300 else
1301 rdev->constraints = kzalloc(sizeof(*constraints),
1302 GFP_KERNEL);
1303 if (!rdev->constraints)
1304 return -ENOMEM;
1306 ret = machine_constraints_voltage(rdev, rdev->constraints);
1307 if (ret != 0)
1308 return ret;
1310 ret = machine_constraints_current(rdev, rdev->constraints);
1311 if (ret != 0)
1312 return ret;
1314 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1315 ret = ops->set_input_current_limit(rdev,
1316 rdev->constraints->ilim_uA);
1317 if (ret < 0) {
1318 rdev_err(rdev, "failed to set input limit\n");
1319 return ret;
1323 /* do we need to setup our suspend state */
1324 if (rdev->constraints->initial_state) {
1325 ret = suspend_set_state(rdev, rdev->constraints->initial_state);
1326 if (ret < 0) {
1327 rdev_err(rdev, "failed to set suspend state\n");
1328 return ret;
1332 if (rdev->constraints->initial_mode) {
1333 if (!ops->set_mode) {
1334 rdev_err(rdev, "no set_mode operation\n");
1335 return -EINVAL;
1338 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1339 if (ret < 0) {
1340 rdev_err(rdev, "failed to set initial mode: %d\n", ret);
1341 return ret;
1343 } else if (rdev->constraints->system_load) {
1345 * We'll only apply the initial system load if an
1346 * initial mode wasn't specified.
1348 drms_uA_update(rdev);
1351 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1352 && ops->set_ramp_delay) {
1353 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1354 if (ret < 0) {
1355 rdev_err(rdev, "failed to set ramp_delay\n");
1356 return ret;
1360 if (rdev->constraints->pull_down && ops->set_pull_down) {
1361 ret = ops->set_pull_down(rdev);
1362 if (ret < 0) {
1363 rdev_err(rdev, "failed to set pull down\n");
1364 return ret;
1368 if (rdev->constraints->soft_start && ops->set_soft_start) {
1369 ret = ops->set_soft_start(rdev);
1370 if (ret < 0) {
1371 rdev_err(rdev, "failed to set soft start\n");
1372 return ret;
1376 if (rdev->constraints->over_current_protection
1377 && ops->set_over_current_protection) {
1378 ret = ops->set_over_current_protection(rdev);
1379 if (ret < 0) {
1380 rdev_err(rdev, "failed to set over current protection\n");
1381 return ret;
1385 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1386 bool ad_state = (rdev->constraints->active_discharge ==
1387 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1389 ret = ops->set_active_discharge(rdev, ad_state);
1390 if (ret < 0) {
1391 rdev_err(rdev, "failed to set active discharge\n");
1392 return ret;
1396 /* If the constraints say the regulator should be on at this point
1397 * and we have control then make sure it is enabled.
1399 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1400 if (rdev->supply) {
1401 ret = regulator_enable(rdev->supply);
1402 if (ret < 0) {
1403 _regulator_put(rdev->supply);
1404 rdev->supply = NULL;
1405 return ret;
1409 ret = _regulator_do_enable(rdev);
1410 if (ret < 0 && ret != -EINVAL) {
1411 rdev_err(rdev, "failed to enable\n");
1412 return ret;
1415 if (rdev->constraints->always_on)
1416 rdev->use_count++;
1419 print_constraints(rdev);
1420 return 0;
1424 * set_supply - set regulator supply regulator
1425 * @rdev: regulator name
1426 * @supply_rdev: supply regulator name
1428 * Called by platform initialisation code to set the supply regulator for this
1429 * regulator. This ensures that a regulators supply will also be enabled by the
1430 * core if it's child is enabled.
1432 static int set_supply(struct regulator_dev *rdev,
1433 struct regulator_dev *supply_rdev)
1435 int err;
1437 rdev_info(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1439 if (!try_module_get(supply_rdev->owner))
1440 return -ENODEV;
1442 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1443 if (rdev->supply == NULL) {
1444 err = -ENOMEM;
1445 return err;
1447 supply_rdev->open_count++;
1449 return 0;
1453 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1454 * @rdev: regulator source
1455 * @consumer_dev_name: dev_name() string for device supply applies to
1456 * @supply: symbolic name for supply
1458 * Allows platform initialisation code to map physical regulator
1459 * sources to symbolic names for supplies for use by devices. Devices
1460 * should use these symbolic names to request regulators, avoiding the
1461 * need to provide board-specific regulator names as platform data.
1463 static int set_consumer_device_supply(struct regulator_dev *rdev,
1464 const char *consumer_dev_name,
1465 const char *supply)
1467 struct regulator_map *node, *new_node;
1468 int has_dev;
1470 if (supply == NULL)
1471 return -EINVAL;
1473 if (consumer_dev_name != NULL)
1474 has_dev = 1;
1475 else
1476 has_dev = 0;
1478 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1479 if (new_node == NULL)
1480 return -ENOMEM;
1482 new_node->regulator = rdev;
1483 new_node->supply = supply;
1485 if (has_dev) {
1486 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1487 if (new_node->dev_name == NULL) {
1488 kfree(new_node);
1489 return -ENOMEM;
1493 mutex_lock(&regulator_list_mutex);
1494 list_for_each_entry(node, &regulator_map_list, list) {
1495 if (node->dev_name && consumer_dev_name) {
1496 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1497 continue;
1498 } else if (node->dev_name || consumer_dev_name) {
1499 continue;
1502 if (strcmp(node->supply, supply) != 0)
1503 continue;
1505 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1506 consumer_dev_name,
1507 dev_name(&node->regulator->dev),
1508 node->regulator->desc->name,
1509 supply,
1510 dev_name(&rdev->dev), rdev_get_name(rdev));
1511 goto fail;
1514 list_add(&new_node->list, &regulator_map_list);
1515 mutex_unlock(&regulator_list_mutex);
1517 return 0;
1519 fail:
1520 mutex_unlock(&regulator_list_mutex);
1521 kfree(new_node->dev_name);
1522 kfree(new_node);
1523 return -EBUSY;
1526 static void unset_regulator_supplies(struct regulator_dev *rdev)
1528 struct regulator_map *node, *n;
1530 list_for_each_entry_safe(node, n, &regulator_map_list, list) {
1531 if (rdev == node->regulator) {
1532 list_del(&node->list);
1533 kfree(node->dev_name);
1534 kfree(node);
1539 #ifdef CONFIG_DEBUG_FS
1540 static ssize_t constraint_flags_read_file(struct file *file,
1541 char __user *user_buf,
1542 size_t count, loff_t *ppos)
1544 const struct regulator *regulator = file->private_data;
1545 const struct regulation_constraints *c = regulator->rdev->constraints;
1546 char *buf;
1547 ssize_t ret;
1549 if (!c)
1550 return 0;
1552 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1553 if (!buf)
1554 return -ENOMEM;
1556 ret = snprintf(buf, PAGE_SIZE,
1557 "always_on: %u\n"
1558 "boot_on: %u\n"
1559 "apply_uV: %u\n"
1560 "ramp_disable: %u\n"
1561 "soft_start: %u\n"
1562 "pull_down: %u\n"
1563 "over_current_protection: %u\n",
1564 c->always_on,
1565 c->boot_on,
1566 c->apply_uV,
1567 c->ramp_disable,
1568 c->soft_start,
1569 c->pull_down,
1570 c->over_current_protection);
1572 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1573 kfree(buf);
1575 return ret;
1578 #endif
1580 static const struct file_operations constraint_flags_fops = {
1581 #ifdef CONFIG_DEBUG_FS
1582 .open = simple_open,
1583 .read = constraint_flags_read_file,
1584 .llseek = default_llseek,
1585 #endif
1588 #define REG_STR_SIZE 64
1590 static struct regulator *create_regulator(struct regulator_dev *rdev,
1591 struct device *dev,
1592 const char *supply_name)
1594 struct regulator *regulator;
1595 int err;
1597 if (dev) {
1598 char buf[REG_STR_SIZE];
1599 int size;
1601 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1602 dev->kobj.name, supply_name);
1603 if (size >= REG_STR_SIZE)
1604 return NULL;
1606 supply_name = kstrdup(buf, GFP_KERNEL);
1607 if (supply_name == NULL)
1608 return NULL;
1609 } else {
1610 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1611 if (supply_name == NULL)
1612 return NULL;
1615 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1616 if (regulator == NULL) {
1617 kfree(supply_name);
1618 return NULL;
1621 regulator->rdev = rdev;
1622 regulator->supply_name = supply_name;
1624 regulator_lock(rdev);
1625 list_add(&regulator->list, &rdev->consumer_list);
1626 regulator_unlock(rdev);
1628 if (dev) {
1629 regulator->dev = dev;
1631 /* Add a link to the device sysfs entry */
1632 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1633 supply_name);
1634 if (err) {
1635 rdev_dbg(rdev, "could not add device link %s err %d\n",
1636 dev->kobj.name, err);
1637 /* non-fatal */
1641 regulator->debugfs = debugfs_create_dir(supply_name,
1642 rdev->debugfs);
1643 if (!regulator->debugfs) {
1644 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1645 } else {
1646 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1647 &regulator->uA_load);
1648 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1649 &regulator->voltage[PM_SUSPEND_ON].min_uV);
1650 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1651 &regulator->voltage[PM_SUSPEND_ON].max_uV);
1652 debugfs_create_file("constraint_flags", 0444,
1653 regulator->debugfs, regulator,
1654 &constraint_flags_fops);
1658 * Check now if the regulator is an always on regulator - if
1659 * it is then we don't need to do nearly so much work for
1660 * enable/disable calls.
1662 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1663 _regulator_is_enabled(rdev))
1664 regulator->always_on = true;
1666 return regulator;
1669 static int _regulator_get_enable_time(struct regulator_dev *rdev)
1671 if (rdev->constraints && rdev->constraints->enable_time)
1672 return rdev->constraints->enable_time;
1673 if (rdev->desc->ops->enable_time)
1674 return rdev->desc->ops->enable_time(rdev);
1675 return rdev->desc->enable_time;
1678 static struct regulator_supply_alias *regulator_find_supply_alias(
1679 struct device *dev, const char *supply)
1681 struct regulator_supply_alias *map;
1683 list_for_each_entry(map, &regulator_supply_alias_list, list)
1684 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1685 return map;
1687 return NULL;
1690 static void regulator_supply_alias(struct device **dev, const char **supply)
1692 struct regulator_supply_alias *map;
1694 map = regulator_find_supply_alias(*dev, *supply);
1695 if (map) {
1696 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1697 *supply, map->alias_supply,
1698 dev_name(map->alias_dev));
1699 *dev = map->alias_dev;
1700 *supply = map->alias_supply;
1704 static int regulator_match(struct device *dev, const void *data)
1706 struct regulator_dev *r = dev_to_rdev(dev);
1708 return strcmp(rdev_get_name(r), data) == 0;
1711 static struct regulator_dev *regulator_lookup_by_name(const char *name)
1713 struct device *dev;
1715 dev = class_find_device(&regulator_class, NULL, name, regulator_match);
1717 return dev ? dev_to_rdev(dev) : NULL;
1721 * regulator_dev_lookup - lookup a regulator device.
1722 * @dev: device for regulator "consumer".
1723 * @supply: Supply name or regulator ID.
1725 * If successful, returns a struct regulator_dev that corresponds to the name
1726 * @supply and with the embedded struct device refcount incremented by one.
1727 * The refcount must be dropped by calling put_device().
1728 * On failure one of the following ERR-PTR-encoded values is returned:
1729 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
1730 * in the future.
1732 static struct regulator_dev *regulator_dev_lookup(struct device *dev,
1733 const char *supply)
1735 struct regulator_dev *r = NULL;
1736 struct device_node *node;
1737 struct regulator_map *map;
1738 const char *devname = NULL;
1740 regulator_supply_alias(&dev, &supply);
1742 /* first do a dt based lookup */
1743 if (dev && dev->of_node) {
1744 node = of_get_regulator(dev, supply);
1745 if (node) {
1746 r = of_find_regulator_by_node(node);
1747 if (r)
1748 return r;
1751 * We have a node, but there is no device.
1752 * assume it has not registered yet.
1754 return ERR_PTR(-EPROBE_DEFER);
1758 /* if not found, try doing it non-dt way */
1759 if (dev)
1760 devname = dev_name(dev);
1762 mutex_lock(&regulator_list_mutex);
1763 list_for_each_entry(map, &regulator_map_list, list) {
1764 /* If the mapping has a device set up it must match */
1765 if (map->dev_name &&
1766 (!devname || strcmp(map->dev_name, devname)))
1767 continue;
1769 if (strcmp(map->supply, supply) == 0 &&
1770 get_device(&map->regulator->dev)) {
1771 r = map->regulator;
1772 break;
1775 mutex_unlock(&regulator_list_mutex);
1777 if (r)
1778 return r;
1780 r = regulator_lookup_by_name(supply);
1781 if (r)
1782 return r;
1784 return ERR_PTR(-ENODEV);
1787 static int regulator_resolve_supply(struct regulator_dev *rdev)
1789 struct regulator_dev *r;
1790 struct device *dev = rdev->dev.parent;
1791 int ret;
1793 /* No supply to resolve? */
1794 if (!rdev->supply_name)
1795 return 0;
1797 /* Supply already resolved? */
1798 if (rdev->supply)
1799 return 0;
1801 r = regulator_dev_lookup(dev, rdev->supply_name);
1802 if (IS_ERR(r)) {
1803 ret = PTR_ERR(r);
1805 /* Did the lookup explicitly defer for us? */
1806 if (ret == -EPROBE_DEFER)
1807 return ret;
1809 if (have_full_constraints()) {
1810 r = dummy_regulator_rdev;
1811 get_device(&r->dev);
1812 } else {
1813 dev_err(dev, "Failed to resolve %s-supply for %s\n",
1814 rdev->supply_name, rdev->desc->name);
1815 return -EPROBE_DEFER;
1820 * If the supply's parent device is not the same as the
1821 * regulator's parent device, then ensure the parent device
1822 * is bound before we resolve the supply, in case the parent
1823 * device get probe deferred and unregisters the supply.
1825 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
1826 if (!device_is_bound(r->dev.parent)) {
1827 put_device(&r->dev);
1828 return -EPROBE_DEFER;
1832 /* Recursively resolve the supply of the supply */
1833 ret = regulator_resolve_supply(r);
1834 if (ret < 0) {
1835 put_device(&r->dev);
1836 return ret;
1839 ret = set_supply(rdev, r);
1840 if (ret < 0) {
1841 put_device(&r->dev);
1842 return ret;
1846 * In set_machine_constraints() we may have turned this regulator on
1847 * but we couldn't propagate to the supply if it hadn't been resolved
1848 * yet. Do it now.
1850 if (rdev->use_count) {
1851 ret = regulator_enable(rdev->supply);
1852 if (ret < 0) {
1853 _regulator_put(rdev->supply);
1854 rdev->supply = NULL;
1855 return ret;
1859 return 0;
1862 /* Internal regulator request function */
1863 struct regulator *_regulator_get(struct device *dev, const char *id,
1864 enum regulator_get_type get_type)
1866 struct regulator_dev *rdev;
1867 struct regulator *regulator;
1868 struct device_link *link;
1869 int ret;
1871 if (get_type >= MAX_GET_TYPE) {
1872 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
1873 return ERR_PTR(-EINVAL);
1876 if (id == NULL) {
1877 pr_err("get() with no identifier\n");
1878 return ERR_PTR(-EINVAL);
1881 rdev = regulator_dev_lookup(dev, id);
1882 if (IS_ERR(rdev)) {
1883 ret = PTR_ERR(rdev);
1886 * If regulator_dev_lookup() fails with error other
1887 * than -ENODEV our job here is done, we simply return it.
1889 if (ret != -ENODEV)
1890 return ERR_PTR(ret);
1892 if (!have_full_constraints()) {
1893 dev_warn(dev,
1894 "incomplete constraints, dummy supplies not allowed\n");
1895 return ERR_PTR(-ENODEV);
1898 switch (get_type) {
1899 case NORMAL_GET:
1901 * Assume that a regulator is physically present and
1902 * enabled, even if it isn't hooked up, and just
1903 * provide a dummy.
1905 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
1906 rdev = dummy_regulator_rdev;
1907 get_device(&rdev->dev);
1908 break;
1910 case EXCLUSIVE_GET:
1911 dev_warn(dev,
1912 "dummy supplies not allowed for exclusive requests\n");
1913 fallthrough;
1915 default:
1916 return ERR_PTR(-ENODEV);
1920 if (rdev->exclusive) {
1921 regulator = ERR_PTR(-EPERM);
1922 put_device(&rdev->dev);
1923 return regulator;
1926 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
1927 regulator = ERR_PTR(-EBUSY);
1928 put_device(&rdev->dev);
1929 return regulator;
1932 mutex_lock(&regulator_list_mutex);
1933 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
1934 mutex_unlock(&regulator_list_mutex);
1936 if (ret != 0) {
1937 regulator = ERR_PTR(-EPROBE_DEFER);
1938 put_device(&rdev->dev);
1939 return regulator;
1942 ret = regulator_resolve_supply(rdev);
1943 if (ret < 0) {
1944 regulator = ERR_PTR(ret);
1945 put_device(&rdev->dev);
1946 return regulator;
1949 if (!try_module_get(rdev->owner)) {
1950 regulator = ERR_PTR(-EPROBE_DEFER);
1951 put_device(&rdev->dev);
1952 return regulator;
1955 regulator = create_regulator(rdev, dev, id);
1956 if (regulator == NULL) {
1957 regulator = ERR_PTR(-ENOMEM);
1958 module_put(rdev->owner);
1959 put_device(&rdev->dev);
1960 return regulator;
1963 rdev->open_count++;
1964 if (get_type == EXCLUSIVE_GET) {
1965 rdev->exclusive = 1;
1967 ret = _regulator_is_enabled(rdev);
1968 if (ret > 0)
1969 rdev->use_count = 1;
1970 else
1971 rdev->use_count = 0;
1974 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
1975 if (!IS_ERR_OR_NULL(link))
1976 regulator->device_link = true;
1978 return regulator;
1982 * regulator_get - lookup and obtain a reference to a regulator.
1983 * @dev: device for regulator "consumer"
1984 * @id: Supply name or regulator ID.
1986 * Returns a struct regulator corresponding to the regulator producer,
1987 * or IS_ERR() condition containing errno.
1989 * Use of supply names configured via regulator_set_device_supply() is
1990 * strongly encouraged. It is recommended that the supply name used
1991 * should match the name used for the supply and/or the relevant
1992 * device pins in the datasheet.
1994 struct regulator *regulator_get(struct device *dev, const char *id)
1996 return _regulator_get(dev, id, NORMAL_GET);
1998 EXPORT_SYMBOL_GPL(regulator_get);
2001 * regulator_get_exclusive - obtain exclusive access to a regulator.
2002 * @dev: device for regulator "consumer"
2003 * @id: Supply name or regulator ID.
2005 * Returns a struct regulator corresponding to the regulator producer,
2006 * or IS_ERR() condition containing errno. Other consumers will be
2007 * unable to obtain this regulator while this reference is held and the
2008 * use count for the regulator will be initialised to reflect the current
2009 * state of the regulator.
2011 * This is intended for use by consumers which cannot tolerate shared
2012 * use of the regulator such as those which need to force the
2013 * regulator off for correct operation of the hardware they are
2014 * controlling.
2016 * Use of supply names configured via regulator_set_device_supply() is
2017 * strongly encouraged. It is recommended that the supply name used
2018 * should match the name used for the supply and/or the relevant
2019 * device pins in the datasheet.
2021 struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2023 return _regulator_get(dev, id, EXCLUSIVE_GET);
2025 EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2028 * regulator_get_optional - obtain optional access to a regulator.
2029 * @dev: device for regulator "consumer"
2030 * @id: Supply name or regulator ID.
2032 * Returns a struct regulator corresponding to the regulator producer,
2033 * or IS_ERR() condition containing errno.
2035 * This is intended for use by consumers for devices which can have
2036 * some supplies unconnected in normal use, such as some MMC devices.
2037 * It can allow the regulator core to provide stub supplies for other
2038 * supplies requested using normal regulator_get() calls without
2039 * disrupting the operation of drivers that can handle absent
2040 * supplies.
2042 * Use of supply names configured via regulator_set_device_supply() is
2043 * strongly encouraged. It is recommended that the supply name used
2044 * should match the name used for the supply and/or the relevant
2045 * device pins in the datasheet.
2047 struct regulator *regulator_get_optional(struct device *dev, const char *id)
2049 return _regulator_get(dev, id, OPTIONAL_GET);
2051 EXPORT_SYMBOL_GPL(regulator_get_optional);
2053 static void destroy_regulator(struct regulator *regulator)
2055 struct regulator_dev *rdev = regulator->rdev;
2057 debugfs_remove_recursive(regulator->debugfs);
2059 if (regulator->dev) {
2060 if (regulator->device_link)
2061 device_link_remove(regulator->dev, &rdev->dev);
2063 /* remove any sysfs entries */
2064 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2067 regulator_lock(rdev);
2068 list_del(&regulator->list);
2070 rdev->open_count--;
2071 rdev->exclusive = 0;
2072 regulator_unlock(rdev);
2074 kfree_const(regulator->supply_name);
2075 kfree(regulator);
2078 /* regulator_list_mutex lock held by regulator_put() */
2079 static void _regulator_put(struct regulator *regulator)
2081 struct regulator_dev *rdev;
2083 if (IS_ERR_OR_NULL(regulator))
2084 return;
2086 lockdep_assert_held_once(&regulator_list_mutex);
2088 /* Docs say you must disable before calling regulator_put() */
2089 WARN_ON(regulator->enable_count);
2091 rdev = regulator->rdev;
2093 destroy_regulator(regulator);
2095 module_put(rdev->owner);
2096 put_device(&rdev->dev);
2100 * regulator_put - "free" the regulator source
2101 * @regulator: regulator source
2103 * Note: drivers must ensure that all regulator_enable calls made on this
2104 * regulator source are balanced by regulator_disable calls prior to calling
2105 * this function.
2107 void regulator_put(struct regulator *regulator)
2109 mutex_lock(&regulator_list_mutex);
2110 _regulator_put(regulator);
2111 mutex_unlock(&regulator_list_mutex);
2113 EXPORT_SYMBOL_GPL(regulator_put);
2116 * regulator_register_supply_alias - Provide device alias for supply lookup
2118 * @dev: device that will be given as the regulator "consumer"
2119 * @id: Supply name or regulator ID
2120 * @alias_dev: device that should be used to lookup the supply
2121 * @alias_id: Supply name or regulator ID that should be used to lookup the
2122 * supply
2124 * All lookups for id on dev will instead be conducted for alias_id on
2125 * alias_dev.
2127 int regulator_register_supply_alias(struct device *dev, const char *id,
2128 struct device *alias_dev,
2129 const char *alias_id)
2131 struct regulator_supply_alias *map;
2133 map = regulator_find_supply_alias(dev, id);
2134 if (map)
2135 return -EEXIST;
2137 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2138 if (!map)
2139 return -ENOMEM;
2141 map->src_dev = dev;
2142 map->src_supply = id;
2143 map->alias_dev = alias_dev;
2144 map->alias_supply = alias_id;
2146 list_add(&map->list, &regulator_supply_alias_list);
2148 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2149 id, dev_name(dev), alias_id, dev_name(alias_dev));
2151 return 0;
2153 EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2156 * regulator_unregister_supply_alias - Remove device alias
2158 * @dev: device that will be given as the regulator "consumer"
2159 * @id: Supply name or regulator ID
2161 * Remove a lookup alias if one exists for id on dev.
2163 void regulator_unregister_supply_alias(struct device *dev, const char *id)
2165 struct regulator_supply_alias *map;
2167 map = regulator_find_supply_alias(dev, id);
2168 if (map) {
2169 list_del(&map->list);
2170 kfree(map);
2173 EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2176 * regulator_bulk_register_supply_alias - register multiple aliases
2178 * @dev: device that will be given as the regulator "consumer"
2179 * @id: List of supply names or regulator IDs
2180 * @alias_dev: device that should be used to lookup the supply
2181 * @alias_id: List of supply names or regulator IDs that should be used to
2182 * lookup the supply
2183 * @num_id: Number of aliases to register
2185 * @return 0 on success, an errno on failure.
2187 * This helper function allows drivers to register several supply
2188 * aliases in one operation. If any of the aliases cannot be
2189 * registered any aliases that were registered will be removed
2190 * before returning to the caller.
2192 int regulator_bulk_register_supply_alias(struct device *dev,
2193 const char *const *id,
2194 struct device *alias_dev,
2195 const char *const *alias_id,
2196 int num_id)
2198 int i;
2199 int ret;
2201 for (i = 0; i < num_id; ++i) {
2202 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2203 alias_id[i]);
2204 if (ret < 0)
2205 goto err;
2208 return 0;
2210 err:
2211 dev_err(dev,
2212 "Failed to create supply alias %s,%s -> %s,%s\n",
2213 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2215 while (--i >= 0)
2216 regulator_unregister_supply_alias(dev, id[i]);
2218 return ret;
2220 EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2223 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2225 * @dev: device that will be given as the regulator "consumer"
2226 * @id: List of supply names or regulator IDs
2227 * @num_id: Number of aliases to unregister
2229 * This helper function allows drivers to unregister several supply
2230 * aliases in one operation.
2232 void regulator_bulk_unregister_supply_alias(struct device *dev,
2233 const char *const *id,
2234 int num_id)
2236 int i;
2238 for (i = 0; i < num_id; ++i)
2239 regulator_unregister_supply_alias(dev, id[i]);
2241 EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2244 /* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2245 static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2246 const struct regulator_config *config)
2248 struct regulator_enable_gpio *pin, *new_pin;
2249 struct gpio_desc *gpiod;
2251 gpiod = config->ena_gpiod;
2252 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2254 mutex_lock(&regulator_list_mutex);
2256 list_for_each_entry(pin, &regulator_ena_gpio_list, list) {
2257 if (pin->gpiod == gpiod) {
2258 rdev_dbg(rdev, "GPIO is already used\n");
2259 goto update_ena_gpio_to_rdev;
2263 if (new_pin == NULL) {
2264 mutex_unlock(&regulator_list_mutex);
2265 return -ENOMEM;
2268 pin = new_pin;
2269 new_pin = NULL;
2271 pin->gpiod = gpiod;
2272 list_add(&pin->list, &regulator_ena_gpio_list);
2274 update_ena_gpio_to_rdev:
2275 pin->request_count++;
2276 rdev->ena_pin = pin;
2278 mutex_unlock(&regulator_list_mutex);
2279 kfree(new_pin);
2281 return 0;
2284 static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2286 struct regulator_enable_gpio *pin, *n;
2288 if (!rdev->ena_pin)
2289 return;
2291 /* Free the GPIO only in case of no use */
2292 list_for_each_entry_safe(pin, n, &regulator_ena_gpio_list, list) {
2293 if (pin != rdev->ena_pin)
2294 continue;
2296 if (--pin->request_count)
2297 break;
2299 gpiod_put(pin->gpiod);
2300 list_del(&pin->list);
2301 kfree(pin);
2302 break;
2305 rdev->ena_pin = NULL;
2309 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2310 * @rdev: regulator_dev structure
2311 * @enable: enable GPIO at initial use?
2313 * GPIO is enabled in case of initial use. (enable_count is 0)
2314 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2316 static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2318 struct regulator_enable_gpio *pin = rdev->ena_pin;
2320 if (!pin)
2321 return -EINVAL;
2323 if (enable) {
2324 /* Enable GPIO at initial use */
2325 if (pin->enable_count == 0)
2326 gpiod_set_value_cansleep(pin->gpiod, 1);
2328 pin->enable_count++;
2329 } else {
2330 if (pin->enable_count > 1) {
2331 pin->enable_count--;
2332 return 0;
2335 /* Disable GPIO if not used */
2336 if (pin->enable_count <= 1) {
2337 gpiod_set_value_cansleep(pin->gpiod, 0);
2338 pin->enable_count = 0;
2342 return 0;
2346 * _regulator_enable_delay - a delay helper function
2347 * @delay: time to delay in microseconds
2349 * Delay for the requested amount of time as per the guidelines in:
2351 * Documentation/timers/timers-howto.rst
2353 * The assumption here is that regulators will never be enabled in
2354 * atomic context and therefore sleeping functions can be used.
2356 static void _regulator_enable_delay(unsigned int delay)
2358 unsigned int ms = delay / 1000;
2359 unsigned int us = delay % 1000;
2361 if (ms > 0) {
2363 * For small enough values, handle super-millisecond
2364 * delays in the usleep_range() call below.
2366 if (ms < 20)
2367 us += ms * 1000;
2368 else
2369 msleep(ms);
2373 * Give the scheduler some room to coalesce with any other
2374 * wakeup sources. For delays shorter than 10 us, don't even
2375 * bother setting up high-resolution timers and just busy-
2376 * loop.
2378 if (us >= 10)
2379 usleep_range(us, us + 100);
2380 else
2381 udelay(us);
2385 * _regulator_check_status_enabled
2387 * A helper function to check if the regulator status can be interpreted
2388 * as 'regulator is enabled'.
2389 * @rdev: the regulator device to check
2391 * Return:
2392 * * 1 - if status shows regulator is in enabled state
2393 * * 0 - if not enabled state
2394 * * Error Value - as received from ops->get_status()
2396 static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2398 int ret = rdev->desc->ops->get_status(rdev);
2400 if (ret < 0) {
2401 rdev_info(rdev, "get_status returned error: %d\n", ret);
2402 return ret;
2405 switch (ret) {
2406 case REGULATOR_STATUS_OFF:
2407 case REGULATOR_STATUS_ERROR:
2408 case REGULATOR_STATUS_UNDEFINED:
2409 return 0;
2410 default:
2411 return 1;
2415 static int _regulator_do_enable(struct regulator_dev *rdev)
2417 int ret, delay;
2419 /* Query before enabling in case configuration dependent. */
2420 ret = _regulator_get_enable_time(rdev);
2421 if (ret >= 0) {
2422 delay = ret;
2423 } else {
2424 rdev_warn(rdev, "enable_time() failed: %d\n", ret);
2425 delay = 0;
2428 trace_regulator_enable(rdev_get_name(rdev));
2430 if (rdev->desc->off_on_delay) {
2431 /* if needed, keep a distance of off_on_delay from last time
2432 * this regulator was disabled.
2434 unsigned long start_jiffy = jiffies;
2435 unsigned long intended, max_delay, remaining;
2437 max_delay = usecs_to_jiffies(rdev->desc->off_on_delay);
2438 intended = rdev->last_off_jiffy + max_delay;
2440 if (time_before(start_jiffy, intended)) {
2441 /* calc remaining jiffies to deal with one-time
2442 * timer wrapping.
2443 * in case of multiple timer wrapping, either it can be
2444 * detected by out-of-range remaining, or it cannot be
2445 * detected and we get a penalty of
2446 * _regulator_enable_delay().
2448 remaining = intended - start_jiffy;
2449 if (remaining <= max_delay)
2450 _regulator_enable_delay(
2451 jiffies_to_usecs(remaining));
2455 if (rdev->ena_pin) {
2456 if (!rdev->ena_gpio_state) {
2457 ret = regulator_ena_gpio_ctrl(rdev, true);
2458 if (ret < 0)
2459 return ret;
2460 rdev->ena_gpio_state = 1;
2462 } else if (rdev->desc->ops->enable) {
2463 ret = rdev->desc->ops->enable(rdev);
2464 if (ret < 0)
2465 return ret;
2466 } else {
2467 return -EINVAL;
2470 /* Allow the regulator to ramp; it would be useful to extend
2471 * this for bulk operations so that the regulators can ramp
2472 * together. */
2473 trace_regulator_enable_delay(rdev_get_name(rdev));
2475 /* If poll_enabled_time is set, poll upto the delay calculated
2476 * above, delaying poll_enabled_time uS to check if the regulator
2477 * actually got enabled.
2478 * If the regulator isn't enabled after enable_delay has
2479 * expired, return -ETIMEDOUT.
2481 if (rdev->desc->poll_enabled_time) {
2482 unsigned int time_remaining = delay;
2484 while (time_remaining > 0) {
2485 _regulator_enable_delay(rdev->desc->poll_enabled_time);
2487 if (rdev->desc->ops->get_status) {
2488 ret = _regulator_check_status_enabled(rdev);
2489 if (ret < 0)
2490 return ret;
2491 else if (ret)
2492 break;
2493 } else if (rdev->desc->ops->is_enabled(rdev))
2494 break;
2496 time_remaining -= rdev->desc->poll_enabled_time;
2499 if (time_remaining <= 0) {
2500 rdev_err(rdev, "Enabled check timed out\n");
2501 return -ETIMEDOUT;
2503 } else {
2504 _regulator_enable_delay(delay);
2507 trace_regulator_enable_complete(rdev_get_name(rdev));
2509 return 0;
2513 * _regulator_handle_consumer_enable - handle that a consumer enabled
2514 * @regulator: regulator source
2516 * Some things on a regulator consumer (like the contribution towards total
2517 * load on the regulator) only have an effect when the consumer wants the
2518 * regulator enabled. Explained in example with two consumers of the same
2519 * regulator:
2520 * consumer A: set_load(100); => total load = 0
2521 * consumer A: regulator_enable(); => total load = 100
2522 * consumer B: set_load(1000); => total load = 100
2523 * consumer B: regulator_enable(); => total load = 1100
2524 * consumer A: regulator_disable(); => total_load = 1000
2526 * This function (together with _regulator_handle_consumer_disable) is
2527 * responsible for keeping track of the refcount for a given regulator consumer
2528 * and applying / unapplying these things.
2530 * Returns 0 upon no error; -error upon error.
2532 static int _regulator_handle_consumer_enable(struct regulator *regulator)
2534 struct regulator_dev *rdev = regulator->rdev;
2536 lockdep_assert_held_once(&rdev->mutex.base);
2538 regulator->enable_count++;
2539 if (regulator->uA_load && regulator->enable_count == 1)
2540 return drms_uA_update(rdev);
2542 return 0;
2546 * _regulator_handle_consumer_disable - handle that a consumer disabled
2547 * @regulator: regulator source
2549 * The opposite of _regulator_handle_consumer_enable().
2551 * Returns 0 upon no error; -error upon error.
2553 static int _regulator_handle_consumer_disable(struct regulator *regulator)
2555 struct regulator_dev *rdev = regulator->rdev;
2557 lockdep_assert_held_once(&rdev->mutex.base);
2559 if (!regulator->enable_count) {
2560 rdev_err(rdev, "Underflow of regulator enable count\n");
2561 return -EINVAL;
2564 regulator->enable_count--;
2565 if (regulator->uA_load && regulator->enable_count == 0)
2566 return drms_uA_update(rdev);
2568 return 0;
2571 /* locks held by regulator_enable() */
2572 static int _regulator_enable(struct regulator *regulator)
2574 struct regulator_dev *rdev = regulator->rdev;
2575 int ret;
2577 lockdep_assert_held_once(&rdev->mutex.base);
2579 if (rdev->use_count == 0 && rdev->supply) {
2580 ret = _regulator_enable(rdev->supply);
2581 if (ret < 0)
2582 return ret;
2585 /* balance only if there are regulators coupled */
2586 if (rdev->coupling_desc.n_coupled > 1) {
2587 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2588 if (ret < 0)
2589 goto err_disable_supply;
2592 ret = _regulator_handle_consumer_enable(regulator);
2593 if (ret < 0)
2594 goto err_disable_supply;
2596 if (rdev->use_count == 0) {
2597 /* The regulator may on if it's not switchable or left on */
2598 ret = _regulator_is_enabled(rdev);
2599 if (ret == -EINVAL || ret == 0) {
2600 if (!regulator_ops_is_valid(rdev,
2601 REGULATOR_CHANGE_STATUS)) {
2602 ret = -EPERM;
2603 goto err_consumer_disable;
2606 ret = _regulator_do_enable(rdev);
2607 if (ret < 0)
2608 goto err_consumer_disable;
2610 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2611 NULL);
2612 } else if (ret < 0) {
2613 rdev_err(rdev, "is_enabled() failed: %d\n", ret);
2614 goto err_consumer_disable;
2616 /* Fallthrough on positive return values - already enabled */
2619 rdev->use_count++;
2621 return 0;
2623 err_consumer_disable:
2624 _regulator_handle_consumer_disable(regulator);
2626 err_disable_supply:
2627 if (rdev->use_count == 0 && rdev->supply)
2628 _regulator_disable(rdev->supply);
2630 return ret;
2634 * regulator_enable - enable regulator output
2635 * @regulator: regulator source
2637 * Request that the regulator be enabled with the regulator output at
2638 * the predefined voltage or current value. Calls to regulator_enable()
2639 * must be balanced with calls to regulator_disable().
2641 * NOTE: the output value can be set by other drivers, boot loader or may be
2642 * hardwired in the regulator.
2644 int regulator_enable(struct regulator *regulator)
2646 struct regulator_dev *rdev = regulator->rdev;
2647 struct ww_acquire_ctx ww_ctx;
2648 int ret;
2650 regulator_lock_dependent(rdev, &ww_ctx);
2651 ret = _regulator_enable(regulator);
2652 regulator_unlock_dependent(rdev, &ww_ctx);
2654 return ret;
2656 EXPORT_SYMBOL_GPL(regulator_enable);
2658 static int _regulator_do_disable(struct regulator_dev *rdev)
2660 int ret;
2662 trace_regulator_disable(rdev_get_name(rdev));
2664 if (rdev->ena_pin) {
2665 if (rdev->ena_gpio_state) {
2666 ret = regulator_ena_gpio_ctrl(rdev, false);
2667 if (ret < 0)
2668 return ret;
2669 rdev->ena_gpio_state = 0;
2672 } else if (rdev->desc->ops->disable) {
2673 ret = rdev->desc->ops->disable(rdev);
2674 if (ret != 0)
2675 return ret;
2678 /* cares about last_off_jiffy only if off_on_delay is required by
2679 * device.
2681 if (rdev->desc->off_on_delay)
2682 rdev->last_off_jiffy = jiffies;
2684 trace_regulator_disable_complete(rdev_get_name(rdev));
2686 return 0;
2689 /* locks held by regulator_disable() */
2690 static int _regulator_disable(struct regulator *regulator)
2692 struct regulator_dev *rdev = regulator->rdev;
2693 int ret = 0;
2695 lockdep_assert_held_once(&rdev->mutex.base);
2697 if (WARN(rdev->use_count <= 0,
2698 "unbalanced disables for %s\n", rdev_get_name(rdev)))
2699 return -EIO;
2701 /* are we the last user and permitted to disable ? */
2702 if (rdev->use_count == 1 &&
2703 (rdev->constraints && !rdev->constraints->always_on)) {
2705 /* we are last user */
2706 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
2707 ret = _notifier_call_chain(rdev,
2708 REGULATOR_EVENT_PRE_DISABLE,
2709 NULL);
2710 if (ret & NOTIFY_STOP_MASK)
2711 return -EINVAL;
2713 ret = _regulator_do_disable(rdev);
2714 if (ret < 0) {
2715 rdev_err(rdev, "failed to disable\n");
2716 _notifier_call_chain(rdev,
2717 REGULATOR_EVENT_ABORT_DISABLE,
2718 NULL);
2719 return ret;
2721 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
2722 NULL);
2725 rdev->use_count = 0;
2726 } else if (rdev->use_count > 1) {
2727 rdev->use_count--;
2730 if (ret == 0)
2731 ret = _regulator_handle_consumer_disable(regulator);
2733 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
2734 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2736 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
2737 ret = _regulator_disable(rdev->supply);
2739 return ret;
2743 * regulator_disable - disable regulator output
2744 * @regulator: regulator source
2746 * Disable the regulator output voltage or current. Calls to
2747 * regulator_enable() must be balanced with calls to
2748 * regulator_disable().
2750 * NOTE: this will only disable the regulator output if no other consumer
2751 * devices have it enabled, the regulator device supports disabling and
2752 * machine constraints permit this operation.
2754 int regulator_disable(struct regulator *regulator)
2756 struct regulator_dev *rdev = regulator->rdev;
2757 struct ww_acquire_ctx ww_ctx;
2758 int ret;
2760 regulator_lock_dependent(rdev, &ww_ctx);
2761 ret = _regulator_disable(regulator);
2762 regulator_unlock_dependent(rdev, &ww_ctx);
2764 return ret;
2766 EXPORT_SYMBOL_GPL(regulator_disable);
2768 /* locks held by regulator_force_disable() */
2769 static int _regulator_force_disable(struct regulator_dev *rdev)
2771 int ret = 0;
2773 lockdep_assert_held_once(&rdev->mutex.base);
2775 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2776 REGULATOR_EVENT_PRE_DISABLE, NULL);
2777 if (ret & NOTIFY_STOP_MASK)
2778 return -EINVAL;
2780 ret = _regulator_do_disable(rdev);
2781 if (ret < 0) {
2782 rdev_err(rdev, "failed to force disable\n");
2783 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2784 REGULATOR_EVENT_ABORT_DISABLE, NULL);
2785 return ret;
2788 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
2789 REGULATOR_EVENT_DISABLE, NULL);
2791 return 0;
2795 * regulator_force_disable - force disable regulator output
2796 * @regulator: regulator source
2798 * Forcibly disable the regulator output voltage or current.
2799 * NOTE: this *will* disable the regulator output even if other consumer
2800 * devices have it enabled. This should be used for situations when device
2801 * damage will likely occur if the regulator is not disabled (e.g. over temp).
2803 int regulator_force_disable(struct regulator *regulator)
2805 struct regulator_dev *rdev = regulator->rdev;
2806 struct ww_acquire_ctx ww_ctx;
2807 int ret;
2809 regulator_lock_dependent(rdev, &ww_ctx);
2811 ret = _regulator_force_disable(regulator->rdev);
2813 if (rdev->coupling_desc.n_coupled > 1)
2814 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2816 if (regulator->uA_load) {
2817 regulator->uA_load = 0;
2818 ret = drms_uA_update(rdev);
2821 if (rdev->use_count != 0 && rdev->supply)
2822 _regulator_disable(rdev->supply);
2824 regulator_unlock_dependent(rdev, &ww_ctx);
2826 return ret;
2828 EXPORT_SYMBOL_GPL(regulator_force_disable);
2830 static void regulator_disable_work(struct work_struct *work)
2832 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
2833 disable_work.work);
2834 struct ww_acquire_ctx ww_ctx;
2835 int count, i, ret;
2836 struct regulator *regulator;
2837 int total_count = 0;
2839 regulator_lock_dependent(rdev, &ww_ctx);
2842 * Workqueue functions queue the new work instance while the previous
2843 * work instance is being processed. Cancel the queued work instance
2844 * as the work instance under processing does the job of the queued
2845 * work instance.
2847 cancel_delayed_work(&rdev->disable_work);
2849 list_for_each_entry(regulator, &rdev->consumer_list, list) {
2850 count = regulator->deferred_disables;
2852 if (!count)
2853 continue;
2855 total_count += count;
2856 regulator->deferred_disables = 0;
2858 for (i = 0; i < count; i++) {
2859 ret = _regulator_disable(regulator);
2860 if (ret != 0)
2861 rdev_err(rdev, "Deferred disable failed: %d\n", ret);
2864 WARN_ON(!total_count);
2866 if (rdev->coupling_desc.n_coupled > 1)
2867 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2869 regulator_unlock_dependent(rdev, &ww_ctx);
2873 * regulator_disable_deferred - disable regulator output with delay
2874 * @regulator: regulator source
2875 * @ms: milliseconds until the regulator is disabled
2877 * Execute regulator_disable() on the regulator after a delay. This
2878 * is intended for use with devices that require some time to quiesce.
2880 * NOTE: this will only disable the regulator output if no other consumer
2881 * devices have it enabled, the regulator device supports disabling and
2882 * machine constraints permit this operation.
2884 int regulator_disable_deferred(struct regulator *regulator, int ms)
2886 struct regulator_dev *rdev = regulator->rdev;
2888 if (!ms)
2889 return regulator_disable(regulator);
2891 regulator_lock(rdev);
2892 regulator->deferred_disables++;
2893 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
2894 msecs_to_jiffies(ms));
2895 regulator_unlock(rdev);
2897 return 0;
2899 EXPORT_SYMBOL_GPL(regulator_disable_deferred);
2901 static int _regulator_is_enabled(struct regulator_dev *rdev)
2903 /* A GPIO control always takes precedence */
2904 if (rdev->ena_pin)
2905 return rdev->ena_gpio_state;
2907 /* If we don't know then assume that the regulator is always on */
2908 if (!rdev->desc->ops->is_enabled)
2909 return 1;
2911 return rdev->desc->ops->is_enabled(rdev);
2914 static int _regulator_list_voltage(struct regulator_dev *rdev,
2915 unsigned selector, int lock)
2917 const struct regulator_ops *ops = rdev->desc->ops;
2918 int ret;
2920 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
2921 return rdev->desc->fixed_uV;
2923 if (ops->list_voltage) {
2924 if (selector >= rdev->desc->n_voltages)
2925 return -EINVAL;
2926 if (lock)
2927 regulator_lock(rdev);
2928 ret = ops->list_voltage(rdev, selector);
2929 if (lock)
2930 regulator_unlock(rdev);
2931 } else if (rdev->is_switch && rdev->supply) {
2932 ret = _regulator_list_voltage(rdev->supply->rdev,
2933 selector, lock);
2934 } else {
2935 return -EINVAL;
2938 if (ret > 0) {
2939 if (ret < rdev->constraints->min_uV)
2940 ret = 0;
2941 else if (ret > rdev->constraints->max_uV)
2942 ret = 0;
2945 return ret;
2949 * regulator_is_enabled - is the regulator output enabled
2950 * @regulator: regulator source
2952 * Returns positive if the regulator driver backing the source/client
2953 * has requested that the device be enabled, zero if it hasn't, else a
2954 * negative errno code.
2956 * Note that the device backing this regulator handle can have multiple
2957 * users, so it might be enabled even if regulator_enable() was never
2958 * called for this particular source.
2960 int regulator_is_enabled(struct regulator *regulator)
2962 int ret;
2964 if (regulator->always_on)
2965 return 1;
2967 regulator_lock(regulator->rdev);
2968 ret = _regulator_is_enabled(regulator->rdev);
2969 regulator_unlock(regulator->rdev);
2971 return ret;
2973 EXPORT_SYMBOL_GPL(regulator_is_enabled);
2976 * regulator_count_voltages - count regulator_list_voltage() selectors
2977 * @regulator: regulator source
2979 * Returns number of selectors, or negative errno. Selectors are
2980 * numbered starting at zero, and typically correspond to bitfields
2981 * in hardware registers.
2983 int regulator_count_voltages(struct regulator *regulator)
2985 struct regulator_dev *rdev = regulator->rdev;
2987 if (rdev->desc->n_voltages)
2988 return rdev->desc->n_voltages;
2990 if (!rdev->is_switch || !rdev->supply)
2991 return -EINVAL;
2993 return regulator_count_voltages(rdev->supply);
2995 EXPORT_SYMBOL_GPL(regulator_count_voltages);
2998 * regulator_list_voltage - enumerate supported voltages
2999 * @regulator: regulator source
3000 * @selector: identify voltage to list
3001 * Context: can sleep
3003 * Returns a voltage that can be passed to @regulator_set_voltage(),
3004 * zero if this selector code can't be used on this system, or a
3005 * negative errno.
3007 int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3009 return _regulator_list_voltage(regulator->rdev, selector, 1);
3011 EXPORT_SYMBOL_GPL(regulator_list_voltage);
3014 * regulator_get_regmap - get the regulator's register map
3015 * @regulator: regulator source
3017 * Returns the register map for the given regulator, or an ERR_PTR value
3018 * if the regulator doesn't use regmap.
3020 struct regmap *regulator_get_regmap(struct regulator *regulator)
3022 struct regmap *map = regulator->rdev->regmap;
3024 return map ? map : ERR_PTR(-EOPNOTSUPP);
3028 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3029 * @regulator: regulator source
3030 * @vsel_reg: voltage selector register, output parameter
3031 * @vsel_mask: mask for voltage selector bitfield, output parameter
3033 * Returns the hardware register offset and bitmask used for setting the
3034 * regulator voltage. This might be useful when configuring voltage-scaling
3035 * hardware or firmware that can make I2C requests behind the kernel's back,
3036 * for example.
3038 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3039 * and 0 is returned, otherwise a negative errno is returned.
3041 int regulator_get_hardware_vsel_register(struct regulator *regulator,
3042 unsigned *vsel_reg,
3043 unsigned *vsel_mask)
3045 struct regulator_dev *rdev = regulator->rdev;
3046 const struct regulator_ops *ops = rdev->desc->ops;
3048 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3049 return -EOPNOTSUPP;
3051 *vsel_reg = rdev->desc->vsel_reg;
3052 *vsel_mask = rdev->desc->vsel_mask;
3054 return 0;
3056 EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3059 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3060 * @regulator: regulator source
3061 * @selector: identify voltage to list
3063 * Converts the selector to a hardware-specific voltage selector that can be
3064 * directly written to the regulator registers. The address of the voltage
3065 * register can be determined by calling @regulator_get_hardware_vsel_register.
3067 * On error a negative errno is returned.
3069 int regulator_list_hardware_vsel(struct regulator *regulator,
3070 unsigned selector)
3072 struct regulator_dev *rdev = regulator->rdev;
3073 const struct regulator_ops *ops = rdev->desc->ops;
3075 if (selector >= rdev->desc->n_voltages)
3076 return -EINVAL;
3077 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3078 return -EOPNOTSUPP;
3080 return selector;
3082 EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3085 * regulator_get_linear_step - return the voltage step size between VSEL values
3086 * @regulator: regulator source
3088 * Returns the voltage step size between VSEL values for linear
3089 * regulators, or return 0 if the regulator isn't a linear regulator.
3091 unsigned int regulator_get_linear_step(struct regulator *regulator)
3093 struct regulator_dev *rdev = regulator->rdev;
3095 return rdev->desc->uV_step;
3097 EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3100 * regulator_is_supported_voltage - check if a voltage range can be supported
3102 * @regulator: Regulator to check.
3103 * @min_uV: Minimum required voltage in uV.
3104 * @max_uV: Maximum required voltage in uV.
3106 * Returns a boolean.
3108 int regulator_is_supported_voltage(struct regulator *regulator,
3109 int min_uV, int max_uV)
3111 struct regulator_dev *rdev = regulator->rdev;
3112 int i, voltages, ret;
3114 /* If we can't change voltage check the current voltage */
3115 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3116 ret = regulator_get_voltage(regulator);
3117 if (ret >= 0)
3118 return min_uV <= ret && ret <= max_uV;
3119 else
3120 return ret;
3123 /* Any voltage within constrains range is fine? */
3124 if (rdev->desc->continuous_voltage_range)
3125 return min_uV >= rdev->constraints->min_uV &&
3126 max_uV <= rdev->constraints->max_uV;
3128 ret = regulator_count_voltages(regulator);
3129 if (ret < 0)
3130 return 0;
3131 voltages = ret;
3133 for (i = 0; i < voltages; i++) {
3134 ret = regulator_list_voltage(regulator, i);
3136 if (ret >= min_uV && ret <= max_uV)
3137 return 1;
3140 return 0;
3142 EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3144 static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3145 int max_uV)
3147 const struct regulator_desc *desc = rdev->desc;
3149 if (desc->ops->map_voltage)
3150 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3152 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3153 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3155 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3156 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3158 if (desc->ops->list_voltage ==
3159 regulator_list_voltage_pickable_linear_range)
3160 return regulator_map_voltage_pickable_linear_range(rdev,
3161 min_uV, max_uV);
3163 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3166 static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3167 int min_uV, int max_uV,
3168 unsigned *selector)
3170 struct pre_voltage_change_data data;
3171 int ret;
3173 data.old_uV = regulator_get_voltage_rdev(rdev);
3174 data.min_uV = min_uV;
3175 data.max_uV = max_uV;
3176 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3177 &data);
3178 if (ret & NOTIFY_STOP_MASK)
3179 return -EINVAL;
3181 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3182 if (ret >= 0)
3183 return ret;
3185 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3186 (void *)data.old_uV);
3188 return ret;
3191 static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3192 int uV, unsigned selector)
3194 struct pre_voltage_change_data data;
3195 int ret;
3197 data.old_uV = regulator_get_voltage_rdev(rdev);
3198 data.min_uV = uV;
3199 data.max_uV = uV;
3200 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3201 &data);
3202 if (ret & NOTIFY_STOP_MASK)
3203 return -EINVAL;
3205 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3206 if (ret >= 0)
3207 return ret;
3209 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3210 (void *)data.old_uV);
3212 return ret;
3215 static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3216 int uV, int new_selector)
3218 const struct regulator_ops *ops = rdev->desc->ops;
3219 int diff, old_sel, curr_sel, ret;
3221 /* Stepping is only needed if the regulator is enabled. */
3222 if (!_regulator_is_enabled(rdev))
3223 goto final_set;
3225 if (!ops->get_voltage_sel)
3226 return -EINVAL;
3228 old_sel = ops->get_voltage_sel(rdev);
3229 if (old_sel < 0)
3230 return old_sel;
3232 diff = new_selector - old_sel;
3233 if (diff == 0)
3234 return 0; /* No change needed. */
3236 if (diff > 0) {
3237 /* Stepping up. */
3238 for (curr_sel = old_sel + rdev->desc->vsel_step;
3239 curr_sel < new_selector;
3240 curr_sel += rdev->desc->vsel_step) {
3242 * Call the callback directly instead of using
3243 * _regulator_call_set_voltage_sel() as we don't
3244 * want to notify anyone yet. Same in the branch
3245 * below.
3247 ret = ops->set_voltage_sel(rdev, curr_sel);
3248 if (ret)
3249 goto try_revert;
3251 } else {
3252 /* Stepping down. */
3253 for (curr_sel = old_sel - rdev->desc->vsel_step;
3254 curr_sel > new_selector;
3255 curr_sel -= rdev->desc->vsel_step) {
3256 ret = ops->set_voltage_sel(rdev, curr_sel);
3257 if (ret)
3258 goto try_revert;
3262 final_set:
3263 /* The final selector will trigger the notifiers. */
3264 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3266 try_revert:
3268 * At least try to return to the previous voltage if setting a new
3269 * one failed.
3271 (void)ops->set_voltage_sel(rdev, old_sel);
3272 return ret;
3275 static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3276 int old_uV, int new_uV)
3278 unsigned int ramp_delay = 0;
3280 if (rdev->constraints->ramp_delay)
3281 ramp_delay = rdev->constraints->ramp_delay;
3282 else if (rdev->desc->ramp_delay)
3283 ramp_delay = rdev->desc->ramp_delay;
3284 else if (rdev->constraints->settling_time)
3285 return rdev->constraints->settling_time;
3286 else if (rdev->constraints->settling_time_up &&
3287 (new_uV > old_uV))
3288 return rdev->constraints->settling_time_up;
3289 else if (rdev->constraints->settling_time_down &&
3290 (new_uV < old_uV))
3291 return rdev->constraints->settling_time_down;
3293 if (ramp_delay == 0) {
3294 rdev_dbg(rdev, "ramp_delay not set\n");
3295 return 0;
3298 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3301 static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3302 int min_uV, int max_uV)
3304 int ret;
3305 int delay = 0;
3306 int best_val = 0;
3307 unsigned int selector;
3308 int old_selector = -1;
3309 const struct regulator_ops *ops = rdev->desc->ops;
3310 int old_uV = regulator_get_voltage_rdev(rdev);
3312 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3314 min_uV += rdev->constraints->uV_offset;
3315 max_uV += rdev->constraints->uV_offset;
3318 * If we can't obtain the old selector there is not enough
3319 * info to call set_voltage_time_sel().
3321 if (_regulator_is_enabled(rdev) &&
3322 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3323 old_selector = ops->get_voltage_sel(rdev);
3324 if (old_selector < 0)
3325 return old_selector;
3328 if (ops->set_voltage) {
3329 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3330 &selector);
3332 if (ret >= 0) {
3333 if (ops->list_voltage)
3334 best_val = ops->list_voltage(rdev,
3335 selector);
3336 else
3337 best_val = regulator_get_voltage_rdev(rdev);
3340 } else if (ops->set_voltage_sel) {
3341 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3342 if (ret >= 0) {
3343 best_val = ops->list_voltage(rdev, ret);
3344 if (min_uV <= best_val && max_uV >= best_val) {
3345 selector = ret;
3346 if (old_selector == selector)
3347 ret = 0;
3348 else if (rdev->desc->vsel_step)
3349 ret = _regulator_set_voltage_sel_step(
3350 rdev, best_val, selector);
3351 else
3352 ret = _regulator_call_set_voltage_sel(
3353 rdev, best_val, selector);
3354 } else {
3355 ret = -EINVAL;
3358 } else {
3359 ret = -EINVAL;
3362 if (ret)
3363 goto out;
3365 if (ops->set_voltage_time_sel) {
3367 * Call set_voltage_time_sel if successfully obtained
3368 * old_selector
3370 if (old_selector >= 0 && old_selector != selector)
3371 delay = ops->set_voltage_time_sel(rdev, old_selector,
3372 selector);
3373 } else {
3374 if (old_uV != best_val) {
3375 if (ops->set_voltage_time)
3376 delay = ops->set_voltage_time(rdev, old_uV,
3377 best_val);
3378 else
3379 delay = _regulator_set_voltage_time(rdev,
3380 old_uV,
3381 best_val);
3385 if (delay < 0) {
3386 rdev_warn(rdev, "failed to get delay: %d\n", delay);
3387 delay = 0;
3390 /* Insert any necessary delays */
3391 if (delay >= 1000) {
3392 mdelay(delay / 1000);
3393 udelay(delay % 1000);
3394 } else if (delay) {
3395 udelay(delay);
3398 if (best_val >= 0) {
3399 unsigned long data = best_val;
3401 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3402 (void *)data);
3405 out:
3406 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3408 return ret;
3411 static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3412 int min_uV, int max_uV, suspend_state_t state)
3414 struct regulator_state *rstate;
3415 int uV, sel;
3417 rstate = regulator_get_suspend_state(rdev, state);
3418 if (rstate == NULL)
3419 return -EINVAL;
3421 if (min_uV < rstate->min_uV)
3422 min_uV = rstate->min_uV;
3423 if (max_uV > rstate->max_uV)
3424 max_uV = rstate->max_uV;
3426 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3427 if (sel < 0)
3428 return sel;
3430 uV = rdev->desc->ops->list_voltage(rdev, sel);
3431 if (uV >= min_uV && uV <= max_uV)
3432 rstate->uV = uV;
3434 return 0;
3437 static int regulator_set_voltage_unlocked(struct regulator *regulator,
3438 int min_uV, int max_uV,
3439 suspend_state_t state)
3441 struct regulator_dev *rdev = regulator->rdev;
3442 struct regulator_voltage *voltage = &regulator->voltage[state];
3443 int ret = 0;
3444 int old_min_uV, old_max_uV;
3445 int current_uV;
3447 /* If we're setting the same range as last time the change
3448 * should be a noop (some cpufreq implementations use the same
3449 * voltage for multiple frequencies, for example).
3451 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3452 goto out;
3454 /* If we're trying to set a range that overlaps the current voltage,
3455 * return successfully even though the regulator does not support
3456 * changing the voltage.
3458 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3459 current_uV = regulator_get_voltage_rdev(rdev);
3460 if (min_uV <= current_uV && current_uV <= max_uV) {
3461 voltage->min_uV = min_uV;
3462 voltage->max_uV = max_uV;
3463 goto out;
3467 /* sanity check */
3468 if (!rdev->desc->ops->set_voltage &&
3469 !rdev->desc->ops->set_voltage_sel) {
3470 ret = -EINVAL;
3471 goto out;
3474 /* constraints check */
3475 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3476 if (ret < 0)
3477 goto out;
3479 /* restore original values in case of error */
3480 old_min_uV = voltage->min_uV;
3481 old_max_uV = voltage->max_uV;
3482 voltage->min_uV = min_uV;
3483 voltage->max_uV = max_uV;
3485 /* for not coupled regulators this will just set the voltage */
3486 ret = regulator_balance_voltage(rdev, state);
3487 if (ret < 0) {
3488 voltage->min_uV = old_min_uV;
3489 voltage->max_uV = old_max_uV;
3492 out:
3493 return ret;
3496 int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3497 int max_uV, suspend_state_t state)
3499 int best_supply_uV = 0;
3500 int supply_change_uV = 0;
3501 int ret;
3503 if (rdev->supply &&
3504 regulator_ops_is_valid(rdev->supply->rdev,
3505 REGULATOR_CHANGE_VOLTAGE) &&
3506 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3507 rdev->desc->ops->get_voltage_sel))) {
3508 int current_supply_uV;
3509 int selector;
3511 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3512 if (selector < 0) {
3513 ret = selector;
3514 goto out;
3517 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3518 if (best_supply_uV < 0) {
3519 ret = best_supply_uV;
3520 goto out;
3523 best_supply_uV += rdev->desc->min_dropout_uV;
3525 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3526 if (current_supply_uV < 0) {
3527 ret = current_supply_uV;
3528 goto out;
3531 supply_change_uV = best_supply_uV - current_supply_uV;
3534 if (supply_change_uV > 0) {
3535 ret = regulator_set_voltage_unlocked(rdev->supply,
3536 best_supply_uV, INT_MAX, state);
3537 if (ret) {
3538 dev_err(&rdev->dev, "Failed to increase supply voltage: %d\n",
3539 ret);
3540 goto out;
3544 if (state == PM_SUSPEND_ON)
3545 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3546 else
3547 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3548 max_uV, state);
3549 if (ret < 0)
3550 goto out;
3552 if (supply_change_uV < 0) {
3553 ret = regulator_set_voltage_unlocked(rdev->supply,
3554 best_supply_uV, INT_MAX, state);
3555 if (ret)
3556 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %d\n",
3557 ret);
3558 /* No need to fail here */
3559 ret = 0;
3562 out:
3563 return ret;
3565 EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3567 static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3568 int *current_uV, int *min_uV)
3570 struct regulation_constraints *constraints = rdev->constraints;
3572 /* Limit voltage change only if necessary */
3573 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3574 return 1;
3576 if (*current_uV < 0) {
3577 *current_uV = regulator_get_voltage_rdev(rdev);
3579 if (*current_uV < 0)
3580 return *current_uV;
3583 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3584 return 1;
3586 /* Clamp target voltage within the given step */
3587 if (*current_uV < *min_uV)
3588 *min_uV = min(*current_uV + constraints->max_uV_step,
3589 *min_uV);
3590 else
3591 *min_uV = max(*current_uV - constraints->max_uV_step,
3592 *min_uV);
3594 return 0;
3597 static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3598 int *current_uV,
3599 int *min_uV, int *max_uV,
3600 suspend_state_t state,
3601 int n_coupled)
3603 struct coupling_desc *c_desc = &rdev->coupling_desc;
3604 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3605 struct regulation_constraints *constraints = rdev->constraints;
3606 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3607 int max_current_uV = 0, min_current_uV = INT_MAX;
3608 int highest_min_uV = 0, target_uV, possible_uV;
3609 int i, ret, max_spread;
3610 bool done;
3612 *current_uV = -1;
3615 * If there are no coupled regulators, simply set the voltage
3616 * demanded by consumers.
3618 if (n_coupled == 1) {
3620 * If consumers don't provide any demands, set voltage
3621 * to min_uV
3623 desired_min_uV = constraints->min_uV;
3624 desired_max_uV = constraints->max_uV;
3626 ret = regulator_check_consumers(rdev,
3627 &desired_min_uV,
3628 &desired_max_uV, state);
3629 if (ret < 0)
3630 return ret;
3632 possible_uV = desired_min_uV;
3633 done = true;
3635 goto finish;
3638 /* Find highest min desired voltage */
3639 for (i = 0; i < n_coupled; i++) {
3640 int tmp_min = 0;
3641 int tmp_max = INT_MAX;
3643 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3645 ret = regulator_check_consumers(c_rdevs[i],
3646 &tmp_min,
3647 &tmp_max, state);
3648 if (ret < 0)
3649 return ret;
3651 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3652 if (ret < 0)
3653 return ret;
3655 highest_min_uV = max(highest_min_uV, tmp_min);
3657 if (i == 0) {
3658 desired_min_uV = tmp_min;
3659 desired_max_uV = tmp_max;
3663 max_spread = constraints->max_spread[0];
3666 * Let target_uV be equal to the desired one if possible.
3667 * If not, set it to minimum voltage, allowed by other coupled
3668 * regulators.
3670 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3673 * Find min and max voltages, which currently aren't violating
3674 * max_spread.
3676 for (i = 1; i < n_coupled; i++) {
3677 int tmp_act;
3679 if (!_regulator_is_enabled(c_rdevs[i]))
3680 continue;
3682 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3683 if (tmp_act < 0)
3684 return tmp_act;
3686 min_current_uV = min(tmp_act, min_current_uV);
3687 max_current_uV = max(tmp_act, max_current_uV);
3690 /* There aren't any other regulators enabled */
3691 if (max_current_uV == 0) {
3692 possible_uV = target_uV;
3693 } else {
3695 * Correct target voltage, so as it currently isn't
3696 * violating max_spread
3698 possible_uV = max(target_uV, max_current_uV - max_spread);
3699 possible_uV = min(possible_uV, min_current_uV + max_spread);
3702 if (possible_uV > desired_max_uV)
3703 return -EINVAL;
3705 done = (possible_uV == target_uV);
3706 desired_min_uV = possible_uV;
3708 finish:
3709 /* Apply max_uV_step constraint if necessary */
3710 if (state == PM_SUSPEND_ON) {
3711 ret = regulator_limit_voltage_step(rdev, current_uV,
3712 &desired_min_uV);
3713 if (ret < 0)
3714 return ret;
3716 if (ret == 0)
3717 done = false;
3720 /* Set current_uV if wasn't done earlier in the code and if necessary */
3721 if (n_coupled > 1 && *current_uV == -1) {
3723 if (_regulator_is_enabled(rdev)) {
3724 ret = regulator_get_voltage_rdev(rdev);
3725 if (ret < 0)
3726 return ret;
3728 *current_uV = ret;
3729 } else {
3730 *current_uV = desired_min_uV;
3734 *min_uV = desired_min_uV;
3735 *max_uV = desired_max_uV;
3737 return done;
3740 int regulator_do_balance_voltage(struct regulator_dev *rdev,
3741 suspend_state_t state, bool skip_coupled)
3743 struct regulator_dev **c_rdevs;
3744 struct regulator_dev *best_rdev;
3745 struct coupling_desc *c_desc = &rdev->coupling_desc;
3746 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
3747 unsigned int delta, best_delta;
3748 unsigned long c_rdev_done = 0;
3749 bool best_c_rdev_done;
3751 c_rdevs = c_desc->coupled_rdevs;
3752 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
3755 * Find the best possible voltage change on each loop. Leave the loop
3756 * if there isn't any possible change.
3758 do {
3759 best_c_rdev_done = false;
3760 best_delta = 0;
3761 best_min_uV = 0;
3762 best_max_uV = 0;
3763 best_c_rdev = 0;
3764 best_rdev = NULL;
3767 * Find highest difference between optimal voltage
3768 * and current voltage.
3770 for (i = 0; i < n_coupled; i++) {
3772 * optimal_uV is the best voltage that can be set for
3773 * i-th regulator at the moment without violating
3774 * max_spread constraint in order to balance
3775 * the coupled voltages.
3777 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
3779 if (test_bit(i, &c_rdev_done))
3780 continue;
3782 ret = regulator_get_optimal_voltage(c_rdevs[i],
3783 &current_uV,
3784 &optimal_uV,
3785 &optimal_max_uV,
3786 state, n_coupled);
3787 if (ret < 0)
3788 goto out;
3790 delta = abs(optimal_uV - current_uV);
3792 if (delta && best_delta <= delta) {
3793 best_c_rdev_done = ret;
3794 best_delta = delta;
3795 best_rdev = c_rdevs[i];
3796 best_min_uV = optimal_uV;
3797 best_max_uV = optimal_max_uV;
3798 best_c_rdev = i;
3802 /* Nothing to change, return successfully */
3803 if (!best_rdev) {
3804 ret = 0;
3805 goto out;
3808 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
3809 best_max_uV, state);
3811 if (ret < 0)
3812 goto out;
3814 if (best_c_rdev_done)
3815 set_bit(best_c_rdev, &c_rdev_done);
3817 } while (n_coupled > 1);
3819 out:
3820 return ret;
3823 static int regulator_balance_voltage(struct regulator_dev *rdev,
3824 suspend_state_t state)
3826 struct coupling_desc *c_desc = &rdev->coupling_desc;
3827 struct regulator_coupler *coupler = c_desc->coupler;
3828 bool skip_coupled = false;
3831 * If system is in a state other than PM_SUSPEND_ON, don't check
3832 * other coupled regulators.
3834 if (state != PM_SUSPEND_ON)
3835 skip_coupled = true;
3837 if (c_desc->n_resolved < c_desc->n_coupled) {
3838 rdev_err(rdev, "Not all coupled regulators registered\n");
3839 return -EPERM;
3842 /* Invoke custom balancer for customized couplers */
3843 if (coupler && coupler->balance_voltage)
3844 return coupler->balance_voltage(coupler, rdev, state);
3846 return regulator_do_balance_voltage(rdev, state, skip_coupled);
3850 * regulator_set_voltage - set regulator output voltage
3851 * @regulator: regulator source
3852 * @min_uV: Minimum required voltage in uV
3853 * @max_uV: Maximum acceptable voltage in uV
3855 * Sets a voltage regulator to the desired output voltage. This can be set
3856 * during any regulator state. IOW, regulator can be disabled or enabled.
3858 * If the regulator is enabled then the voltage will change to the new value
3859 * immediately otherwise if the regulator is disabled the regulator will
3860 * output at the new voltage when enabled.
3862 * NOTE: If the regulator is shared between several devices then the lowest
3863 * request voltage that meets the system constraints will be used.
3864 * Regulator system constraints must be set for this regulator before
3865 * calling this function otherwise this call will fail.
3867 int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
3869 struct ww_acquire_ctx ww_ctx;
3870 int ret;
3872 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3874 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
3875 PM_SUSPEND_ON);
3877 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3879 return ret;
3881 EXPORT_SYMBOL_GPL(regulator_set_voltage);
3883 static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
3884 suspend_state_t state, bool en)
3886 struct regulator_state *rstate;
3888 rstate = regulator_get_suspend_state(rdev, state);
3889 if (rstate == NULL)
3890 return -EINVAL;
3892 if (!rstate->changeable)
3893 return -EPERM;
3895 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
3897 return 0;
3900 int regulator_suspend_enable(struct regulator_dev *rdev,
3901 suspend_state_t state)
3903 return regulator_suspend_toggle(rdev, state, true);
3905 EXPORT_SYMBOL_GPL(regulator_suspend_enable);
3907 int regulator_suspend_disable(struct regulator_dev *rdev,
3908 suspend_state_t state)
3910 struct regulator *regulator;
3911 struct regulator_voltage *voltage;
3914 * if any consumer wants this regulator device keeping on in
3915 * suspend states, don't set it as disabled.
3917 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3918 voltage = &regulator->voltage[state];
3919 if (voltage->min_uV || voltage->max_uV)
3920 return 0;
3923 return regulator_suspend_toggle(rdev, state, false);
3925 EXPORT_SYMBOL_GPL(regulator_suspend_disable);
3927 static int _regulator_set_suspend_voltage(struct regulator *regulator,
3928 int min_uV, int max_uV,
3929 suspend_state_t state)
3931 struct regulator_dev *rdev = regulator->rdev;
3932 struct regulator_state *rstate;
3934 rstate = regulator_get_suspend_state(rdev, state);
3935 if (rstate == NULL)
3936 return -EINVAL;
3938 if (rstate->min_uV == rstate->max_uV) {
3939 rdev_err(rdev, "The suspend voltage can't be changed!\n");
3940 return -EPERM;
3943 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
3946 int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
3947 int max_uV, suspend_state_t state)
3949 struct ww_acquire_ctx ww_ctx;
3950 int ret;
3952 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
3953 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
3954 return -EINVAL;
3956 regulator_lock_dependent(regulator->rdev, &ww_ctx);
3958 ret = _regulator_set_suspend_voltage(regulator, min_uV,
3959 max_uV, state);
3961 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
3963 return ret;
3965 EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
3968 * regulator_set_voltage_time - get raise/fall time
3969 * @regulator: regulator source
3970 * @old_uV: starting voltage in microvolts
3971 * @new_uV: target voltage in microvolts
3973 * Provided with the starting and ending voltage, this function attempts to
3974 * calculate the time in microseconds required to rise or fall to this new
3975 * voltage.
3977 int regulator_set_voltage_time(struct regulator *regulator,
3978 int old_uV, int new_uV)
3980 struct regulator_dev *rdev = regulator->rdev;
3981 const struct regulator_ops *ops = rdev->desc->ops;
3982 int old_sel = -1;
3983 int new_sel = -1;
3984 int voltage;
3985 int i;
3987 if (ops->set_voltage_time)
3988 return ops->set_voltage_time(rdev, old_uV, new_uV);
3989 else if (!ops->set_voltage_time_sel)
3990 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
3992 /* Currently requires operations to do this */
3993 if (!ops->list_voltage || !rdev->desc->n_voltages)
3994 return -EINVAL;
3996 for (i = 0; i < rdev->desc->n_voltages; i++) {
3997 /* We only look for exact voltage matches here */
3998 voltage = regulator_list_voltage(regulator, i);
3999 if (voltage < 0)
4000 return -EINVAL;
4001 if (voltage == 0)
4002 continue;
4003 if (voltage == old_uV)
4004 old_sel = i;
4005 if (voltage == new_uV)
4006 new_sel = i;
4009 if (old_sel < 0 || new_sel < 0)
4010 return -EINVAL;
4012 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4014 EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4017 * regulator_set_voltage_time_sel - get raise/fall time
4018 * @rdev: regulator source device
4019 * @old_selector: selector for starting voltage
4020 * @new_selector: selector for target voltage
4022 * Provided with the starting and target voltage selectors, this function
4023 * returns time in microseconds required to rise or fall to this new voltage
4025 * Drivers providing ramp_delay in regulation_constraints can use this as their
4026 * set_voltage_time_sel() operation.
4028 int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4029 unsigned int old_selector,
4030 unsigned int new_selector)
4032 int old_volt, new_volt;
4034 /* sanity check */
4035 if (!rdev->desc->ops->list_voltage)
4036 return -EINVAL;
4038 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4039 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4041 if (rdev->desc->ops->set_voltage_time)
4042 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4043 new_volt);
4044 else
4045 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4047 EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4050 * regulator_sync_voltage - re-apply last regulator output voltage
4051 * @regulator: regulator source
4053 * Re-apply the last configured voltage. This is intended to be used
4054 * where some external control source the consumer is cooperating with
4055 * has caused the configured voltage to change.
4057 int regulator_sync_voltage(struct regulator *regulator)
4059 struct regulator_dev *rdev = regulator->rdev;
4060 struct regulator_voltage *voltage = &regulator->voltage[PM_SUSPEND_ON];
4061 int ret, min_uV, max_uV;
4063 regulator_lock(rdev);
4065 if (!rdev->desc->ops->set_voltage &&
4066 !rdev->desc->ops->set_voltage_sel) {
4067 ret = -EINVAL;
4068 goto out;
4071 /* This is only going to work if we've had a voltage configured. */
4072 if (!voltage->min_uV && !voltage->max_uV) {
4073 ret = -EINVAL;
4074 goto out;
4077 min_uV = voltage->min_uV;
4078 max_uV = voltage->max_uV;
4080 /* This should be a paranoia check... */
4081 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4082 if (ret < 0)
4083 goto out;
4085 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4086 if (ret < 0)
4087 goto out;
4089 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4091 out:
4092 regulator_unlock(rdev);
4093 return ret;
4095 EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4097 int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4099 int sel, ret;
4100 bool bypassed;
4102 if (rdev->desc->ops->get_bypass) {
4103 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4104 if (ret < 0)
4105 return ret;
4106 if (bypassed) {
4107 /* if bypassed the regulator must have a supply */
4108 if (!rdev->supply) {
4109 rdev_err(rdev,
4110 "bypassed regulator has no supply!\n");
4111 return -EPROBE_DEFER;
4114 return regulator_get_voltage_rdev(rdev->supply->rdev);
4118 if (rdev->desc->ops->get_voltage_sel) {
4119 sel = rdev->desc->ops->get_voltage_sel(rdev);
4120 if (sel < 0)
4121 return sel;
4122 ret = rdev->desc->ops->list_voltage(rdev, sel);
4123 } else if (rdev->desc->ops->get_voltage) {
4124 ret = rdev->desc->ops->get_voltage(rdev);
4125 } else if (rdev->desc->ops->list_voltage) {
4126 ret = rdev->desc->ops->list_voltage(rdev, 0);
4127 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4128 ret = rdev->desc->fixed_uV;
4129 } else if (rdev->supply) {
4130 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4131 } else if (rdev->supply_name) {
4132 return -EPROBE_DEFER;
4133 } else {
4134 return -EINVAL;
4137 if (ret < 0)
4138 return ret;
4139 return ret - rdev->constraints->uV_offset;
4141 EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4144 * regulator_get_voltage - get regulator output voltage
4145 * @regulator: regulator source
4147 * This returns the current regulator voltage in uV.
4149 * NOTE: If the regulator is disabled it will return the voltage value. This
4150 * function should not be used to determine regulator state.
4152 int regulator_get_voltage(struct regulator *regulator)
4154 struct ww_acquire_ctx ww_ctx;
4155 int ret;
4157 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4158 ret = regulator_get_voltage_rdev(regulator->rdev);
4159 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4161 return ret;
4163 EXPORT_SYMBOL_GPL(regulator_get_voltage);
4166 * regulator_set_current_limit - set regulator output current limit
4167 * @regulator: regulator source
4168 * @min_uA: Minimum supported current in uA
4169 * @max_uA: Maximum supported current in uA
4171 * Sets current sink to the desired output current. This can be set during
4172 * any regulator state. IOW, regulator can be disabled or enabled.
4174 * If the regulator is enabled then the current will change to the new value
4175 * immediately otherwise if the regulator is disabled the regulator will
4176 * output at the new current when enabled.
4178 * NOTE: Regulator system constraints must be set for this regulator before
4179 * calling this function otherwise this call will fail.
4181 int regulator_set_current_limit(struct regulator *regulator,
4182 int min_uA, int max_uA)
4184 struct regulator_dev *rdev = regulator->rdev;
4185 int ret;
4187 regulator_lock(rdev);
4189 /* sanity check */
4190 if (!rdev->desc->ops->set_current_limit) {
4191 ret = -EINVAL;
4192 goto out;
4195 /* constraints check */
4196 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4197 if (ret < 0)
4198 goto out;
4200 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4201 out:
4202 regulator_unlock(rdev);
4203 return ret;
4205 EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4207 static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4209 /* sanity check */
4210 if (!rdev->desc->ops->get_current_limit)
4211 return -EINVAL;
4213 return rdev->desc->ops->get_current_limit(rdev);
4216 static int _regulator_get_current_limit(struct regulator_dev *rdev)
4218 int ret;
4220 regulator_lock(rdev);
4221 ret = _regulator_get_current_limit_unlocked(rdev);
4222 regulator_unlock(rdev);
4224 return ret;
4228 * regulator_get_current_limit - get regulator output current
4229 * @regulator: regulator source
4231 * This returns the current supplied by the specified current sink in uA.
4233 * NOTE: If the regulator is disabled it will return the current value. This
4234 * function should not be used to determine regulator state.
4236 int regulator_get_current_limit(struct regulator *regulator)
4238 return _regulator_get_current_limit(regulator->rdev);
4240 EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4243 * regulator_set_mode - set regulator operating mode
4244 * @regulator: regulator source
4245 * @mode: operating mode - one of the REGULATOR_MODE constants
4247 * Set regulator operating mode to increase regulator efficiency or improve
4248 * regulation performance.
4250 * NOTE: Regulator system constraints must be set for this regulator before
4251 * calling this function otherwise this call will fail.
4253 int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4255 struct regulator_dev *rdev = regulator->rdev;
4256 int ret;
4257 int regulator_curr_mode;
4259 regulator_lock(rdev);
4261 /* sanity check */
4262 if (!rdev->desc->ops->set_mode) {
4263 ret = -EINVAL;
4264 goto out;
4267 /* return if the same mode is requested */
4268 if (rdev->desc->ops->get_mode) {
4269 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4270 if (regulator_curr_mode == mode) {
4271 ret = 0;
4272 goto out;
4276 /* constraints check */
4277 ret = regulator_mode_constrain(rdev, &mode);
4278 if (ret < 0)
4279 goto out;
4281 ret = rdev->desc->ops->set_mode(rdev, mode);
4282 out:
4283 regulator_unlock(rdev);
4284 return ret;
4286 EXPORT_SYMBOL_GPL(regulator_set_mode);
4288 static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4290 /* sanity check */
4291 if (!rdev->desc->ops->get_mode)
4292 return -EINVAL;
4294 return rdev->desc->ops->get_mode(rdev);
4297 static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4299 int ret;
4301 regulator_lock(rdev);
4302 ret = _regulator_get_mode_unlocked(rdev);
4303 regulator_unlock(rdev);
4305 return ret;
4309 * regulator_get_mode - get regulator operating mode
4310 * @regulator: regulator source
4312 * Get the current regulator operating mode.
4314 unsigned int regulator_get_mode(struct regulator *regulator)
4316 return _regulator_get_mode(regulator->rdev);
4318 EXPORT_SYMBOL_GPL(regulator_get_mode);
4320 static int _regulator_get_error_flags(struct regulator_dev *rdev,
4321 unsigned int *flags)
4323 int ret;
4325 regulator_lock(rdev);
4327 /* sanity check */
4328 if (!rdev->desc->ops->get_error_flags) {
4329 ret = -EINVAL;
4330 goto out;
4333 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4334 out:
4335 regulator_unlock(rdev);
4336 return ret;
4340 * regulator_get_error_flags - get regulator error information
4341 * @regulator: regulator source
4342 * @flags: pointer to store error flags
4344 * Get the current regulator error information.
4346 int regulator_get_error_flags(struct regulator *regulator,
4347 unsigned int *flags)
4349 return _regulator_get_error_flags(regulator->rdev, flags);
4351 EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4354 * regulator_set_load - set regulator load
4355 * @regulator: regulator source
4356 * @uA_load: load current
4358 * Notifies the regulator core of a new device load. This is then used by
4359 * DRMS (if enabled by constraints) to set the most efficient regulator
4360 * operating mode for the new regulator loading.
4362 * Consumer devices notify their supply regulator of the maximum power
4363 * they will require (can be taken from device datasheet in the power
4364 * consumption tables) when they change operational status and hence power
4365 * state. Examples of operational state changes that can affect power
4366 * consumption are :-
4368 * o Device is opened / closed.
4369 * o Device I/O is about to begin or has just finished.
4370 * o Device is idling in between work.
4372 * This information is also exported via sysfs to userspace.
4374 * DRMS will sum the total requested load on the regulator and change
4375 * to the most efficient operating mode if platform constraints allow.
4377 * NOTE: when a regulator consumer requests to have a regulator
4378 * disabled then any load that consumer requested no longer counts
4379 * toward the total requested load. If the regulator is re-enabled
4380 * then the previously requested load will start counting again.
4382 * If a regulator is an always-on regulator then an individual consumer's
4383 * load will still be removed if that consumer is fully disabled.
4385 * On error a negative errno is returned.
4387 int regulator_set_load(struct regulator *regulator, int uA_load)
4389 struct regulator_dev *rdev = regulator->rdev;
4390 int old_uA_load;
4391 int ret = 0;
4393 regulator_lock(rdev);
4394 old_uA_load = regulator->uA_load;
4395 regulator->uA_load = uA_load;
4396 if (regulator->enable_count && old_uA_load != uA_load) {
4397 ret = drms_uA_update(rdev);
4398 if (ret < 0)
4399 regulator->uA_load = old_uA_load;
4401 regulator_unlock(rdev);
4403 return ret;
4405 EXPORT_SYMBOL_GPL(regulator_set_load);
4408 * regulator_allow_bypass - allow the regulator to go into bypass mode
4410 * @regulator: Regulator to configure
4411 * @enable: enable or disable bypass mode
4413 * Allow the regulator to go into bypass mode if all other consumers
4414 * for the regulator also enable bypass mode and the machine
4415 * constraints allow this. Bypass mode means that the regulator is
4416 * simply passing the input directly to the output with no regulation.
4418 int regulator_allow_bypass(struct regulator *regulator, bool enable)
4420 struct regulator_dev *rdev = regulator->rdev;
4421 const char *name = rdev_get_name(rdev);
4422 int ret = 0;
4424 if (!rdev->desc->ops->set_bypass)
4425 return 0;
4427 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4428 return 0;
4430 regulator_lock(rdev);
4432 if (enable && !regulator->bypass) {
4433 rdev->bypass_count++;
4435 if (rdev->bypass_count == rdev->open_count) {
4436 trace_regulator_bypass_enable(name);
4438 ret = rdev->desc->ops->set_bypass(rdev, enable);
4439 if (ret != 0)
4440 rdev->bypass_count--;
4441 else
4442 trace_regulator_bypass_enable_complete(name);
4445 } else if (!enable && regulator->bypass) {
4446 rdev->bypass_count--;
4448 if (rdev->bypass_count != rdev->open_count) {
4449 trace_regulator_bypass_disable(name);
4451 ret = rdev->desc->ops->set_bypass(rdev, enable);
4452 if (ret != 0)
4453 rdev->bypass_count++;
4454 else
4455 trace_regulator_bypass_disable_complete(name);
4459 if (ret == 0)
4460 regulator->bypass = enable;
4462 regulator_unlock(rdev);
4464 return ret;
4466 EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4469 * regulator_register_notifier - register regulator event notifier
4470 * @regulator: regulator source
4471 * @nb: notifier block
4473 * Register notifier block to receive regulator events.
4475 int regulator_register_notifier(struct regulator *regulator,
4476 struct notifier_block *nb)
4478 return blocking_notifier_chain_register(&regulator->rdev->notifier,
4479 nb);
4481 EXPORT_SYMBOL_GPL(regulator_register_notifier);
4484 * regulator_unregister_notifier - unregister regulator event notifier
4485 * @regulator: regulator source
4486 * @nb: notifier block
4488 * Unregister regulator event notifier block.
4490 int regulator_unregister_notifier(struct regulator *regulator,
4491 struct notifier_block *nb)
4493 return blocking_notifier_chain_unregister(&regulator->rdev->notifier,
4494 nb);
4496 EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4498 /* notify regulator consumers and downstream regulator consumers.
4499 * Note mutex must be held by caller.
4501 static int _notifier_call_chain(struct regulator_dev *rdev,
4502 unsigned long event, void *data)
4504 /* call rdev chain first */
4505 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4509 * regulator_bulk_get - get multiple regulator consumers
4511 * @dev: Device to supply
4512 * @num_consumers: Number of consumers to register
4513 * @consumers: Configuration of consumers; clients are stored here.
4515 * @return 0 on success, an errno on failure.
4517 * This helper function allows drivers to get several regulator
4518 * consumers in one operation. If any of the regulators cannot be
4519 * acquired then any regulators that were allocated will be freed
4520 * before returning to the caller.
4522 int regulator_bulk_get(struct device *dev, int num_consumers,
4523 struct regulator_bulk_data *consumers)
4525 int i;
4526 int ret;
4528 for (i = 0; i < num_consumers; i++)
4529 consumers[i].consumer = NULL;
4531 for (i = 0; i < num_consumers; i++) {
4532 consumers[i].consumer = regulator_get(dev,
4533 consumers[i].supply);
4534 if (IS_ERR(consumers[i].consumer)) {
4535 ret = PTR_ERR(consumers[i].consumer);
4536 consumers[i].consumer = NULL;
4537 goto err;
4541 return 0;
4543 err:
4544 if (ret != -EPROBE_DEFER)
4545 dev_err(dev, "Failed to get supply '%s': %d\n",
4546 consumers[i].supply, ret);
4547 else
4548 dev_dbg(dev, "Failed to get supply '%s', deferring\n",
4549 consumers[i].supply);
4551 while (--i >= 0)
4552 regulator_put(consumers[i].consumer);
4554 return ret;
4556 EXPORT_SYMBOL_GPL(regulator_bulk_get);
4558 static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4560 struct regulator_bulk_data *bulk = data;
4562 bulk->ret = regulator_enable(bulk->consumer);
4566 * regulator_bulk_enable - enable multiple regulator consumers
4568 * @num_consumers: Number of consumers
4569 * @consumers: Consumer data; clients are stored here.
4570 * @return 0 on success, an errno on failure
4572 * This convenience API allows consumers to enable multiple regulator
4573 * clients in a single API call. If any consumers cannot be enabled
4574 * then any others that were enabled will be disabled again prior to
4575 * return.
4577 int regulator_bulk_enable(int num_consumers,
4578 struct regulator_bulk_data *consumers)
4580 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4581 int i;
4582 int ret = 0;
4584 for (i = 0; i < num_consumers; i++) {
4585 async_schedule_domain(regulator_bulk_enable_async,
4586 &consumers[i], &async_domain);
4589 async_synchronize_full_domain(&async_domain);
4591 /* If any consumer failed we need to unwind any that succeeded */
4592 for (i = 0; i < num_consumers; i++) {
4593 if (consumers[i].ret != 0) {
4594 ret = consumers[i].ret;
4595 goto err;
4599 return 0;
4601 err:
4602 for (i = 0; i < num_consumers; i++) {
4603 if (consumers[i].ret < 0)
4604 pr_err("Failed to enable %s: %d\n", consumers[i].supply,
4605 consumers[i].ret);
4606 else
4607 regulator_disable(consumers[i].consumer);
4610 return ret;
4612 EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4615 * regulator_bulk_disable - disable multiple regulator consumers
4617 * @num_consumers: Number of consumers
4618 * @consumers: Consumer data; clients are stored here.
4619 * @return 0 on success, an errno on failure
4621 * This convenience API allows consumers to disable multiple regulator
4622 * clients in a single API call. If any consumers cannot be disabled
4623 * then any others that were disabled will be enabled again prior to
4624 * return.
4626 int regulator_bulk_disable(int num_consumers,
4627 struct regulator_bulk_data *consumers)
4629 int i;
4630 int ret, r;
4632 for (i = num_consumers - 1; i >= 0; --i) {
4633 ret = regulator_disable(consumers[i].consumer);
4634 if (ret != 0)
4635 goto err;
4638 return 0;
4640 err:
4641 pr_err("Failed to disable %s: %d\n", consumers[i].supply, ret);
4642 for (++i; i < num_consumers; ++i) {
4643 r = regulator_enable(consumers[i].consumer);
4644 if (r != 0)
4645 pr_err("Failed to re-enable %s: %d\n",
4646 consumers[i].supply, r);
4649 return ret;
4651 EXPORT_SYMBOL_GPL(regulator_bulk_disable);
4654 * regulator_bulk_force_disable - force disable multiple regulator consumers
4656 * @num_consumers: Number of consumers
4657 * @consumers: Consumer data; clients are stored here.
4658 * @return 0 on success, an errno on failure
4660 * This convenience API allows consumers to forcibly disable multiple regulator
4661 * clients in a single API call.
4662 * NOTE: This should be used for situations when device damage will
4663 * likely occur if the regulators are not disabled (e.g. over temp).
4664 * Although regulator_force_disable function call for some consumers can
4665 * return error numbers, the function is called for all consumers.
4667 int regulator_bulk_force_disable(int num_consumers,
4668 struct regulator_bulk_data *consumers)
4670 int i;
4671 int ret = 0;
4673 for (i = 0; i < num_consumers; i++) {
4674 consumers[i].ret =
4675 regulator_force_disable(consumers[i].consumer);
4677 /* Store first error for reporting */
4678 if (consumers[i].ret && !ret)
4679 ret = consumers[i].ret;
4682 return ret;
4684 EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
4687 * regulator_bulk_free - free multiple regulator consumers
4689 * @num_consumers: Number of consumers
4690 * @consumers: Consumer data; clients are stored here.
4692 * This convenience API allows consumers to free multiple regulator
4693 * clients in a single API call.
4695 void regulator_bulk_free(int num_consumers,
4696 struct regulator_bulk_data *consumers)
4698 int i;
4700 for (i = 0; i < num_consumers; i++) {
4701 regulator_put(consumers[i].consumer);
4702 consumers[i].consumer = NULL;
4705 EXPORT_SYMBOL_GPL(regulator_bulk_free);
4708 * regulator_notifier_call_chain - call regulator event notifier
4709 * @rdev: regulator source
4710 * @event: notifier block
4711 * @data: callback-specific data.
4713 * Called by regulator drivers to notify clients a regulator event has
4714 * occurred. We also notify regulator clients downstream.
4715 * Note lock must be held by caller.
4717 int regulator_notifier_call_chain(struct regulator_dev *rdev,
4718 unsigned long event, void *data)
4720 lockdep_assert_held_once(&rdev->mutex.base);
4722 _notifier_call_chain(rdev, event, data);
4723 return NOTIFY_DONE;
4726 EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
4729 * regulator_mode_to_status - convert a regulator mode into a status
4731 * @mode: Mode to convert
4733 * Convert a regulator mode into a status.
4735 int regulator_mode_to_status(unsigned int mode)
4737 switch (mode) {
4738 case REGULATOR_MODE_FAST:
4739 return REGULATOR_STATUS_FAST;
4740 case REGULATOR_MODE_NORMAL:
4741 return REGULATOR_STATUS_NORMAL;
4742 case REGULATOR_MODE_IDLE:
4743 return REGULATOR_STATUS_IDLE;
4744 case REGULATOR_MODE_STANDBY:
4745 return REGULATOR_STATUS_STANDBY;
4746 default:
4747 return REGULATOR_STATUS_UNDEFINED;
4750 EXPORT_SYMBOL_GPL(regulator_mode_to_status);
4752 static struct attribute *regulator_dev_attrs[] = {
4753 &dev_attr_name.attr,
4754 &dev_attr_num_users.attr,
4755 &dev_attr_type.attr,
4756 &dev_attr_microvolts.attr,
4757 &dev_attr_microamps.attr,
4758 &dev_attr_opmode.attr,
4759 &dev_attr_state.attr,
4760 &dev_attr_status.attr,
4761 &dev_attr_bypass.attr,
4762 &dev_attr_requested_microamps.attr,
4763 &dev_attr_min_microvolts.attr,
4764 &dev_attr_max_microvolts.attr,
4765 &dev_attr_min_microamps.attr,
4766 &dev_attr_max_microamps.attr,
4767 &dev_attr_suspend_standby_state.attr,
4768 &dev_attr_suspend_mem_state.attr,
4769 &dev_attr_suspend_disk_state.attr,
4770 &dev_attr_suspend_standby_microvolts.attr,
4771 &dev_attr_suspend_mem_microvolts.attr,
4772 &dev_attr_suspend_disk_microvolts.attr,
4773 &dev_attr_suspend_standby_mode.attr,
4774 &dev_attr_suspend_mem_mode.attr,
4775 &dev_attr_suspend_disk_mode.attr,
4776 NULL
4780 * To avoid cluttering sysfs (and memory) with useless state, only
4781 * create attributes that can be meaningfully displayed.
4783 static umode_t regulator_attr_is_visible(struct kobject *kobj,
4784 struct attribute *attr, int idx)
4786 struct device *dev = kobj_to_dev(kobj);
4787 struct regulator_dev *rdev = dev_to_rdev(dev);
4788 const struct regulator_ops *ops = rdev->desc->ops;
4789 umode_t mode = attr->mode;
4791 /* these three are always present */
4792 if (attr == &dev_attr_name.attr ||
4793 attr == &dev_attr_num_users.attr ||
4794 attr == &dev_attr_type.attr)
4795 return mode;
4797 /* some attributes need specific methods to be displayed */
4798 if (attr == &dev_attr_microvolts.attr) {
4799 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
4800 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
4801 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
4802 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
4803 return mode;
4804 return 0;
4807 if (attr == &dev_attr_microamps.attr)
4808 return ops->get_current_limit ? mode : 0;
4810 if (attr == &dev_attr_opmode.attr)
4811 return ops->get_mode ? mode : 0;
4813 if (attr == &dev_attr_state.attr)
4814 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
4816 if (attr == &dev_attr_status.attr)
4817 return ops->get_status ? mode : 0;
4819 if (attr == &dev_attr_bypass.attr)
4820 return ops->get_bypass ? mode : 0;
4822 /* constraints need specific supporting methods */
4823 if (attr == &dev_attr_min_microvolts.attr ||
4824 attr == &dev_attr_max_microvolts.attr)
4825 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
4827 if (attr == &dev_attr_min_microamps.attr ||
4828 attr == &dev_attr_max_microamps.attr)
4829 return ops->set_current_limit ? mode : 0;
4831 if (attr == &dev_attr_suspend_standby_state.attr ||
4832 attr == &dev_attr_suspend_mem_state.attr ||
4833 attr == &dev_attr_suspend_disk_state.attr)
4834 return mode;
4836 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
4837 attr == &dev_attr_suspend_mem_microvolts.attr ||
4838 attr == &dev_attr_suspend_disk_microvolts.attr)
4839 return ops->set_suspend_voltage ? mode : 0;
4841 if (attr == &dev_attr_suspend_standby_mode.attr ||
4842 attr == &dev_attr_suspend_mem_mode.attr ||
4843 attr == &dev_attr_suspend_disk_mode.attr)
4844 return ops->set_suspend_mode ? mode : 0;
4846 return mode;
4849 static const struct attribute_group regulator_dev_group = {
4850 .attrs = regulator_dev_attrs,
4851 .is_visible = regulator_attr_is_visible,
4854 static const struct attribute_group *regulator_dev_groups[] = {
4855 &regulator_dev_group,
4856 NULL
4859 static void regulator_dev_release(struct device *dev)
4861 struct regulator_dev *rdev = dev_get_drvdata(dev);
4863 kfree(rdev->constraints);
4864 of_node_put(rdev->dev.of_node);
4865 kfree(rdev);
4868 static void rdev_init_debugfs(struct regulator_dev *rdev)
4870 struct device *parent = rdev->dev.parent;
4871 const char *rname = rdev_get_name(rdev);
4872 char name[NAME_MAX];
4874 /* Avoid duplicate debugfs directory names */
4875 if (parent && rname == rdev->desc->name) {
4876 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
4877 rname);
4878 rname = name;
4881 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
4882 if (!rdev->debugfs) {
4883 rdev_warn(rdev, "Failed to create debugfs directory\n");
4884 return;
4887 debugfs_create_u32("use_count", 0444, rdev->debugfs,
4888 &rdev->use_count);
4889 debugfs_create_u32("open_count", 0444, rdev->debugfs,
4890 &rdev->open_count);
4891 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
4892 &rdev->bypass_count);
4895 static int regulator_register_resolve_supply(struct device *dev, void *data)
4897 struct regulator_dev *rdev = dev_to_rdev(dev);
4899 if (regulator_resolve_supply(rdev))
4900 rdev_dbg(rdev, "unable to resolve supply\n");
4902 return 0;
4905 int regulator_coupler_register(struct regulator_coupler *coupler)
4907 mutex_lock(&regulator_list_mutex);
4908 list_add_tail(&coupler->list, &regulator_coupler_list);
4909 mutex_unlock(&regulator_list_mutex);
4911 return 0;
4914 static struct regulator_coupler *
4915 regulator_find_coupler(struct regulator_dev *rdev)
4917 struct regulator_coupler *coupler;
4918 int err;
4921 * Note that regulators are appended to the list and the generic
4922 * coupler is registered first, hence it will be attached at last
4923 * if nobody cared.
4925 list_for_each_entry_reverse(coupler, &regulator_coupler_list, list) {
4926 err = coupler->attach_regulator(coupler, rdev);
4927 if (!err) {
4928 if (!coupler->balance_voltage &&
4929 rdev->coupling_desc.n_coupled > 2)
4930 goto err_unsupported;
4932 return coupler;
4935 if (err < 0)
4936 return ERR_PTR(err);
4938 if (err == 1)
4939 continue;
4941 break;
4944 return ERR_PTR(-EINVAL);
4946 err_unsupported:
4947 if (coupler->detach_regulator)
4948 coupler->detach_regulator(coupler, rdev);
4950 rdev_err(rdev,
4951 "Voltage balancing for multiple regulator couples is unimplemented\n");
4953 return ERR_PTR(-EPERM);
4956 static void regulator_resolve_coupling(struct regulator_dev *rdev)
4958 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4959 struct coupling_desc *c_desc = &rdev->coupling_desc;
4960 int n_coupled = c_desc->n_coupled;
4961 struct regulator_dev *c_rdev;
4962 int i;
4964 for (i = 1; i < n_coupled; i++) {
4965 /* already resolved */
4966 if (c_desc->coupled_rdevs[i])
4967 continue;
4969 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
4971 if (!c_rdev)
4972 continue;
4974 if (c_rdev->coupling_desc.coupler != coupler) {
4975 rdev_err(rdev, "coupler mismatch with %s\n",
4976 rdev_get_name(c_rdev));
4977 return;
4980 c_desc->coupled_rdevs[i] = c_rdev;
4981 c_desc->n_resolved++;
4983 regulator_resolve_coupling(c_rdev);
4987 static void regulator_remove_coupling(struct regulator_dev *rdev)
4989 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
4990 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
4991 struct regulator_dev *__c_rdev, *c_rdev;
4992 unsigned int __n_coupled, n_coupled;
4993 int i, k;
4994 int err;
4996 n_coupled = c_desc->n_coupled;
4998 for (i = 1; i < n_coupled; i++) {
4999 c_rdev = c_desc->coupled_rdevs[i];
5001 if (!c_rdev)
5002 continue;
5004 regulator_lock(c_rdev);
5006 __c_desc = &c_rdev->coupling_desc;
5007 __n_coupled = __c_desc->n_coupled;
5009 for (k = 1; k < __n_coupled; k++) {
5010 __c_rdev = __c_desc->coupled_rdevs[k];
5012 if (__c_rdev == rdev) {
5013 __c_desc->coupled_rdevs[k] = NULL;
5014 __c_desc->n_resolved--;
5015 break;
5019 regulator_unlock(c_rdev);
5021 c_desc->coupled_rdevs[i] = NULL;
5022 c_desc->n_resolved--;
5025 if (coupler && coupler->detach_regulator) {
5026 err = coupler->detach_regulator(coupler, rdev);
5027 if (err)
5028 rdev_err(rdev, "failed to detach from coupler: %d\n",
5029 err);
5032 kfree(rdev->coupling_desc.coupled_rdevs);
5033 rdev->coupling_desc.coupled_rdevs = NULL;
5036 static int regulator_init_coupling(struct regulator_dev *rdev)
5038 int err, n_phandles;
5039 size_t alloc_size;
5041 if (!IS_ENABLED(CONFIG_OF))
5042 n_phandles = 0;
5043 else
5044 n_phandles = of_get_n_coupled(rdev);
5046 alloc_size = sizeof(*rdev) * (n_phandles + 1);
5048 rdev->coupling_desc.coupled_rdevs = kzalloc(alloc_size, GFP_KERNEL);
5049 if (!rdev->coupling_desc.coupled_rdevs)
5050 return -ENOMEM;
5053 * Every regulator should always have coupling descriptor filled with
5054 * at least pointer to itself.
5056 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5057 rdev->coupling_desc.n_coupled = n_phandles + 1;
5058 rdev->coupling_desc.n_resolved++;
5060 /* regulator isn't coupled */
5061 if (n_phandles == 0)
5062 return 0;
5064 if (!of_check_coupling_data(rdev))
5065 return -EPERM;
5067 mutex_lock(&regulator_list_mutex);
5068 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5069 mutex_unlock(&regulator_list_mutex);
5071 if (IS_ERR(rdev->coupling_desc.coupler)) {
5072 err = PTR_ERR(rdev->coupling_desc.coupler);
5073 rdev_err(rdev, "failed to get coupler: %d\n", err);
5074 return err;
5077 return 0;
5080 static int generic_coupler_attach(struct regulator_coupler *coupler,
5081 struct regulator_dev *rdev)
5083 if (rdev->coupling_desc.n_coupled > 2) {
5084 rdev_err(rdev,
5085 "Voltage balancing for multiple regulator couples is unimplemented\n");
5086 return -EPERM;
5089 if (!rdev->constraints->always_on) {
5090 rdev_err(rdev,
5091 "Coupling of a non always-on regulator is unimplemented\n");
5092 return -ENOTSUPP;
5095 return 0;
5098 static struct regulator_coupler generic_regulator_coupler = {
5099 .attach_regulator = generic_coupler_attach,
5103 * regulator_register - register regulator
5104 * @regulator_desc: regulator to register
5105 * @cfg: runtime configuration for regulator
5107 * Called by regulator drivers to register a regulator.
5108 * Returns a valid pointer to struct regulator_dev on success
5109 * or an ERR_PTR() on error.
5111 struct regulator_dev *
5112 regulator_register(const struct regulator_desc *regulator_desc,
5113 const struct regulator_config *cfg)
5115 const struct regulation_constraints *constraints = NULL;
5116 const struct regulator_init_data *init_data;
5117 struct regulator_config *config = NULL;
5118 static atomic_t regulator_no = ATOMIC_INIT(-1);
5119 struct regulator_dev *rdev;
5120 bool dangling_cfg_gpiod = false;
5121 bool dangling_of_gpiod = false;
5122 struct device *dev;
5123 int ret, i;
5125 if (cfg == NULL)
5126 return ERR_PTR(-EINVAL);
5127 if (cfg->ena_gpiod)
5128 dangling_cfg_gpiod = true;
5129 if (regulator_desc == NULL) {
5130 ret = -EINVAL;
5131 goto rinse;
5134 dev = cfg->dev;
5135 WARN_ON(!dev);
5137 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5138 ret = -EINVAL;
5139 goto rinse;
5142 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5143 regulator_desc->type != REGULATOR_CURRENT) {
5144 ret = -EINVAL;
5145 goto rinse;
5148 /* Only one of each should be implemented */
5149 WARN_ON(regulator_desc->ops->get_voltage &&
5150 regulator_desc->ops->get_voltage_sel);
5151 WARN_ON(regulator_desc->ops->set_voltage &&
5152 regulator_desc->ops->set_voltage_sel);
5154 /* If we're using selectors we must implement list_voltage. */
5155 if (regulator_desc->ops->get_voltage_sel &&
5156 !regulator_desc->ops->list_voltage) {
5157 ret = -EINVAL;
5158 goto rinse;
5160 if (regulator_desc->ops->set_voltage_sel &&
5161 !regulator_desc->ops->list_voltage) {
5162 ret = -EINVAL;
5163 goto rinse;
5166 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5167 if (rdev == NULL) {
5168 ret = -ENOMEM;
5169 goto rinse;
5171 device_initialize(&rdev->dev);
5174 * Duplicate the config so the driver could override it after
5175 * parsing init data.
5177 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5178 if (config == NULL) {
5179 ret = -ENOMEM;
5180 goto clean;
5183 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5184 &rdev->dev.of_node);
5187 * Sometimes not all resources are probed already so we need to take
5188 * that into account. This happens most the time if the ena_gpiod comes
5189 * from a gpio extender or something else.
5191 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5192 ret = -EPROBE_DEFER;
5193 goto clean;
5197 * We need to keep track of any GPIO descriptor coming from the
5198 * device tree until we have handled it over to the core. If the
5199 * config that was passed in to this function DOES NOT contain
5200 * a descriptor, and the config after this call DOES contain
5201 * a descriptor, we definitely got one from parsing the device
5202 * tree.
5204 if (!cfg->ena_gpiod && config->ena_gpiod)
5205 dangling_of_gpiod = true;
5206 if (!init_data) {
5207 init_data = config->init_data;
5208 rdev->dev.of_node = of_node_get(config->of_node);
5211 ww_mutex_init(&rdev->mutex, &regulator_ww_class);
5212 rdev->reg_data = config->driver_data;
5213 rdev->owner = regulator_desc->owner;
5214 rdev->desc = regulator_desc;
5215 if (config->regmap)
5216 rdev->regmap = config->regmap;
5217 else if (dev_get_regmap(dev, NULL))
5218 rdev->regmap = dev_get_regmap(dev, NULL);
5219 else if (dev->parent)
5220 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5221 INIT_LIST_HEAD(&rdev->consumer_list);
5222 INIT_LIST_HEAD(&rdev->list);
5223 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5224 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5226 /* preform any regulator specific init */
5227 if (init_data && init_data->regulator_init) {
5228 ret = init_data->regulator_init(rdev->reg_data);
5229 if (ret < 0)
5230 goto clean;
5233 if (config->ena_gpiod) {
5234 ret = regulator_ena_gpio_request(rdev, config);
5235 if (ret != 0) {
5236 rdev_err(rdev, "Failed to request enable GPIO: %d\n",
5237 ret);
5238 goto clean;
5240 /* The regulator core took over the GPIO descriptor */
5241 dangling_cfg_gpiod = false;
5242 dangling_of_gpiod = false;
5245 /* register with sysfs */
5246 rdev->dev.class = &regulator_class;
5247 rdev->dev.parent = dev;
5248 dev_set_name(&rdev->dev, "regulator.%lu",
5249 (unsigned long) atomic_inc_return(&regulator_no));
5250 dev_set_drvdata(&rdev->dev, rdev);
5252 /* set regulator constraints */
5253 if (init_data)
5254 constraints = &init_data->constraints;
5256 if (init_data && init_data->supply_regulator)
5257 rdev->supply_name = init_data->supply_regulator;
5258 else if (regulator_desc->supply_name)
5259 rdev->supply_name = regulator_desc->supply_name;
5261 ret = set_machine_constraints(rdev, constraints);
5262 if (ret == -EPROBE_DEFER) {
5263 /* Regulator might be in bypass mode and so needs its supply
5264 * to set the constraints */
5265 /* FIXME: this currently triggers a chicken-and-egg problem
5266 * when creating -SUPPLY symlink in sysfs to a regulator
5267 * that is just being created */
5268 ret = regulator_resolve_supply(rdev);
5269 if (!ret)
5270 ret = set_machine_constraints(rdev, constraints);
5271 else
5272 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5273 ERR_PTR(ret));
5275 if (ret < 0)
5276 goto wash;
5278 ret = regulator_init_coupling(rdev);
5279 if (ret < 0)
5280 goto wash;
5282 /* add consumers devices */
5283 if (init_data) {
5284 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5285 ret = set_consumer_device_supply(rdev,
5286 init_data->consumer_supplies[i].dev_name,
5287 init_data->consumer_supplies[i].supply);
5288 if (ret < 0) {
5289 dev_err(dev, "Failed to set supply %s\n",
5290 init_data->consumer_supplies[i].supply);
5291 goto unset_supplies;
5296 if (!rdev->desc->ops->get_voltage &&
5297 !rdev->desc->ops->list_voltage &&
5298 !rdev->desc->fixed_uV)
5299 rdev->is_switch = true;
5301 ret = device_add(&rdev->dev);
5302 if (ret != 0)
5303 goto unset_supplies;
5305 rdev_init_debugfs(rdev);
5307 /* try to resolve regulators coupling since a new one was registered */
5308 mutex_lock(&regulator_list_mutex);
5309 regulator_resolve_coupling(rdev);
5310 mutex_unlock(&regulator_list_mutex);
5312 /* try to resolve regulators supply since a new one was registered */
5313 class_for_each_device(&regulator_class, NULL, NULL,
5314 regulator_register_resolve_supply);
5315 kfree(config);
5316 return rdev;
5318 unset_supplies:
5319 mutex_lock(&regulator_list_mutex);
5320 unset_regulator_supplies(rdev);
5321 regulator_remove_coupling(rdev);
5322 mutex_unlock(&regulator_list_mutex);
5323 wash:
5324 kfree(rdev->coupling_desc.coupled_rdevs);
5325 mutex_lock(&regulator_list_mutex);
5326 regulator_ena_gpio_free(rdev);
5327 mutex_unlock(&regulator_list_mutex);
5328 clean:
5329 if (dangling_of_gpiod)
5330 gpiod_put(config->ena_gpiod);
5331 kfree(config);
5332 put_device(&rdev->dev);
5333 rinse:
5334 if (dangling_cfg_gpiod)
5335 gpiod_put(cfg->ena_gpiod);
5336 return ERR_PTR(ret);
5338 EXPORT_SYMBOL_GPL(regulator_register);
5341 * regulator_unregister - unregister regulator
5342 * @rdev: regulator to unregister
5344 * Called by regulator drivers to unregister a regulator.
5346 void regulator_unregister(struct regulator_dev *rdev)
5348 if (rdev == NULL)
5349 return;
5351 if (rdev->supply) {
5352 while (rdev->use_count--)
5353 regulator_disable(rdev->supply);
5354 regulator_put(rdev->supply);
5357 flush_work(&rdev->disable_work.work);
5359 mutex_lock(&regulator_list_mutex);
5361 debugfs_remove_recursive(rdev->debugfs);
5362 WARN_ON(rdev->open_count);
5363 regulator_remove_coupling(rdev);
5364 unset_regulator_supplies(rdev);
5365 list_del(&rdev->list);
5366 regulator_ena_gpio_free(rdev);
5367 device_unregister(&rdev->dev);
5369 mutex_unlock(&regulator_list_mutex);
5371 EXPORT_SYMBOL_GPL(regulator_unregister);
5373 #ifdef CONFIG_SUSPEND
5375 * regulator_suspend - prepare regulators for system wide suspend
5376 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5378 * Configure each regulator with it's suspend operating parameters for state.
5380 static int regulator_suspend(struct device *dev)
5382 struct regulator_dev *rdev = dev_to_rdev(dev);
5383 suspend_state_t state = pm_suspend_target_state;
5384 int ret;
5386 regulator_lock(rdev);
5387 ret = suspend_set_state(rdev, state);
5388 regulator_unlock(rdev);
5390 return ret;
5393 static int regulator_resume(struct device *dev)
5395 suspend_state_t state = pm_suspend_target_state;
5396 struct regulator_dev *rdev = dev_to_rdev(dev);
5397 struct regulator_state *rstate;
5398 int ret = 0;
5400 rstate = regulator_get_suspend_state(rdev, state);
5401 if (rstate == NULL)
5402 return 0;
5404 regulator_lock(rdev);
5406 if (rdev->desc->ops->resume &&
5407 (rstate->enabled == ENABLE_IN_SUSPEND ||
5408 rstate->enabled == DISABLE_IN_SUSPEND))
5409 ret = rdev->desc->ops->resume(rdev);
5411 regulator_unlock(rdev);
5413 return ret;
5415 #else /* !CONFIG_SUSPEND */
5417 #define regulator_suspend NULL
5418 #define regulator_resume NULL
5420 #endif /* !CONFIG_SUSPEND */
5422 #ifdef CONFIG_PM
5423 static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5424 .suspend = regulator_suspend,
5425 .resume = regulator_resume,
5427 #endif
5429 struct class regulator_class = {
5430 .name = "regulator",
5431 .dev_release = regulator_dev_release,
5432 .dev_groups = regulator_dev_groups,
5433 #ifdef CONFIG_PM
5434 .pm = &regulator_pm_ops,
5435 #endif
5438 * regulator_has_full_constraints - the system has fully specified constraints
5440 * Calling this function will cause the regulator API to disable all
5441 * regulators which have a zero use count and don't have an always_on
5442 * constraint in a late_initcall.
5444 * The intention is that this will become the default behaviour in a
5445 * future kernel release so users are encouraged to use this facility
5446 * now.
5448 void regulator_has_full_constraints(void)
5450 has_full_constraints = 1;
5452 EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5455 * rdev_get_drvdata - get rdev regulator driver data
5456 * @rdev: regulator
5458 * Get rdev regulator driver private data. This call can be used in the
5459 * regulator driver context.
5461 void *rdev_get_drvdata(struct regulator_dev *rdev)
5463 return rdev->reg_data;
5465 EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5468 * regulator_get_drvdata - get regulator driver data
5469 * @regulator: regulator
5471 * Get regulator driver private data. This call can be used in the consumer
5472 * driver context when non API regulator specific functions need to be called.
5474 void *regulator_get_drvdata(struct regulator *regulator)
5476 return regulator->rdev->reg_data;
5478 EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5481 * regulator_set_drvdata - set regulator driver data
5482 * @regulator: regulator
5483 * @data: data
5485 void regulator_set_drvdata(struct regulator *regulator, void *data)
5487 regulator->rdev->reg_data = data;
5489 EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5492 * regulator_get_id - get regulator ID
5493 * @rdev: regulator
5495 int rdev_get_id(struct regulator_dev *rdev)
5497 return rdev->desc->id;
5499 EXPORT_SYMBOL_GPL(rdev_get_id);
5501 struct device *rdev_get_dev(struct regulator_dev *rdev)
5503 return &rdev->dev;
5505 EXPORT_SYMBOL_GPL(rdev_get_dev);
5507 struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5509 return rdev->regmap;
5511 EXPORT_SYMBOL_GPL(rdev_get_regmap);
5513 void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5515 return reg_init_data->driver_data;
5517 EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5519 #ifdef CONFIG_DEBUG_FS
5520 static int supply_map_show(struct seq_file *sf, void *data)
5522 struct regulator_map *map;
5524 list_for_each_entry(map, &regulator_map_list, list) {
5525 seq_printf(sf, "%s -> %s.%s\n",
5526 rdev_get_name(map->regulator), map->dev_name,
5527 map->supply);
5530 return 0;
5532 DEFINE_SHOW_ATTRIBUTE(supply_map);
5534 struct summary_data {
5535 struct seq_file *s;
5536 struct regulator_dev *parent;
5537 int level;
5540 static void regulator_summary_show_subtree(struct seq_file *s,
5541 struct regulator_dev *rdev,
5542 int level);
5544 static int regulator_summary_show_children(struct device *dev, void *data)
5546 struct regulator_dev *rdev = dev_to_rdev(dev);
5547 struct summary_data *summary_data = data;
5549 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5550 regulator_summary_show_subtree(summary_data->s, rdev,
5551 summary_data->level + 1);
5553 return 0;
5556 static void regulator_summary_show_subtree(struct seq_file *s,
5557 struct regulator_dev *rdev,
5558 int level)
5560 struct regulation_constraints *c;
5561 struct regulator *consumer;
5562 struct summary_data summary_data;
5563 unsigned int opmode;
5565 if (!rdev)
5566 return;
5568 opmode = _regulator_get_mode_unlocked(rdev);
5569 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5570 level * 3 + 1, "",
5571 30 - level * 3, rdev_get_name(rdev),
5572 rdev->use_count, rdev->open_count, rdev->bypass_count,
5573 regulator_opmode_to_str(opmode));
5575 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5576 seq_printf(s, "%5dmA ",
5577 _regulator_get_current_limit_unlocked(rdev) / 1000);
5579 c = rdev->constraints;
5580 if (c) {
5581 switch (rdev->desc->type) {
5582 case REGULATOR_VOLTAGE:
5583 seq_printf(s, "%5dmV %5dmV ",
5584 c->min_uV / 1000, c->max_uV / 1000);
5585 break;
5586 case REGULATOR_CURRENT:
5587 seq_printf(s, "%5dmA %5dmA ",
5588 c->min_uA / 1000, c->max_uA / 1000);
5589 break;
5593 seq_puts(s, "\n");
5595 list_for_each_entry(consumer, &rdev->consumer_list, list) {
5596 if (consumer->dev && consumer->dev->class == &regulator_class)
5597 continue;
5599 seq_printf(s, "%*s%-*s ",
5600 (level + 1) * 3 + 1, "",
5601 30 - (level + 1) * 3,
5602 consumer->supply_name ? consumer->supply_name :
5603 consumer->dev ? dev_name(consumer->dev) : "deviceless");
5605 switch (rdev->desc->type) {
5606 case REGULATOR_VOLTAGE:
5607 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
5608 consumer->enable_count,
5609 consumer->uA_load / 1000,
5610 consumer->uA_load && !consumer->enable_count ?
5611 '*' : ' ',
5612 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
5613 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
5614 break;
5615 case REGULATOR_CURRENT:
5616 break;
5619 seq_puts(s, "\n");
5622 summary_data.s = s;
5623 summary_data.level = level;
5624 summary_data.parent = rdev;
5626 class_for_each_device(&regulator_class, NULL, &summary_data,
5627 regulator_summary_show_children);
5630 struct summary_lock_data {
5631 struct ww_acquire_ctx *ww_ctx;
5632 struct regulator_dev **new_contended_rdev;
5633 struct regulator_dev **old_contended_rdev;
5636 static int regulator_summary_lock_one(struct device *dev, void *data)
5638 struct regulator_dev *rdev = dev_to_rdev(dev);
5639 struct summary_lock_data *lock_data = data;
5640 int ret = 0;
5642 if (rdev != *lock_data->old_contended_rdev) {
5643 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
5645 if (ret == -EDEADLK)
5646 *lock_data->new_contended_rdev = rdev;
5647 else
5648 WARN_ON_ONCE(ret);
5649 } else {
5650 *lock_data->old_contended_rdev = NULL;
5653 return ret;
5656 static int regulator_summary_unlock_one(struct device *dev, void *data)
5658 struct regulator_dev *rdev = dev_to_rdev(dev);
5659 struct summary_lock_data *lock_data = data;
5661 if (lock_data) {
5662 if (rdev == *lock_data->new_contended_rdev)
5663 return -EDEADLK;
5666 regulator_unlock(rdev);
5668 return 0;
5671 static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
5672 struct regulator_dev **new_contended_rdev,
5673 struct regulator_dev **old_contended_rdev)
5675 struct summary_lock_data lock_data;
5676 int ret;
5678 lock_data.ww_ctx = ww_ctx;
5679 lock_data.new_contended_rdev = new_contended_rdev;
5680 lock_data.old_contended_rdev = old_contended_rdev;
5682 ret = class_for_each_device(&regulator_class, NULL, &lock_data,
5683 regulator_summary_lock_one);
5684 if (ret)
5685 class_for_each_device(&regulator_class, NULL, &lock_data,
5686 regulator_summary_unlock_one);
5688 return ret;
5691 static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
5693 struct regulator_dev *new_contended_rdev = NULL;
5694 struct regulator_dev *old_contended_rdev = NULL;
5695 int err;
5697 mutex_lock(&regulator_list_mutex);
5699 ww_acquire_init(ww_ctx, &regulator_ww_class);
5701 do {
5702 if (new_contended_rdev) {
5703 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
5704 old_contended_rdev = new_contended_rdev;
5705 old_contended_rdev->ref_cnt++;
5708 err = regulator_summary_lock_all(ww_ctx,
5709 &new_contended_rdev,
5710 &old_contended_rdev);
5712 if (old_contended_rdev)
5713 regulator_unlock(old_contended_rdev);
5715 } while (err == -EDEADLK);
5717 ww_acquire_done(ww_ctx);
5720 static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
5722 class_for_each_device(&regulator_class, NULL, NULL,
5723 regulator_summary_unlock_one);
5724 ww_acquire_fini(ww_ctx);
5726 mutex_unlock(&regulator_list_mutex);
5729 static int regulator_summary_show_roots(struct device *dev, void *data)
5731 struct regulator_dev *rdev = dev_to_rdev(dev);
5732 struct seq_file *s = data;
5734 if (!rdev->supply)
5735 regulator_summary_show_subtree(s, rdev, 0);
5737 return 0;
5740 static int regulator_summary_show(struct seq_file *s, void *data)
5742 struct ww_acquire_ctx ww_ctx;
5744 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
5745 seq_puts(s, "---------------------------------------------------------------------------------------\n");
5747 regulator_summary_lock(&ww_ctx);
5749 class_for_each_device(&regulator_class, NULL, s,
5750 regulator_summary_show_roots);
5752 regulator_summary_unlock(&ww_ctx);
5754 return 0;
5756 DEFINE_SHOW_ATTRIBUTE(regulator_summary);
5757 #endif /* CONFIG_DEBUG_FS */
5759 static int __init regulator_init(void)
5761 int ret;
5763 ret = class_register(&regulator_class);
5765 debugfs_root = debugfs_create_dir("regulator", NULL);
5766 if (!debugfs_root)
5767 pr_warn("regulator: Failed to create debugfs directory\n");
5769 #ifdef CONFIG_DEBUG_FS
5770 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
5771 &supply_map_fops);
5773 debugfs_create_file("regulator_summary", 0444, debugfs_root,
5774 NULL, &regulator_summary_fops);
5775 #endif
5776 regulator_dummy_init();
5778 regulator_coupler_register(&generic_regulator_coupler);
5780 return ret;
5783 /* init early to allow our consumers to complete system booting */
5784 core_initcall(regulator_init);
5786 static int regulator_late_cleanup(struct device *dev, void *data)
5788 struct regulator_dev *rdev = dev_to_rdev(dev);
5789 const struct regulator_ops *ops = rdev->desc->ops;
5790 struct regulation_constraints *c = rdev->constraints;
5791 int enabled, ret;
5793 if (c && c->always_on)
5794 return 0;
5796 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
5797 return 0;
5799 regulator_lock(rdev);
5801 if (rdev->use_count)
5802 goto unlock;
5804 /* If we can't read the status assume it's on. */
5805 if (ops->is_enabled)
5806 enabled = ops->is_enabled(rdev);
5807 else
5808 enabled = 1;
5810 if (!enabled)
5811 goto unlock;
5813 if (have_full_constraints()) {
5814 /* We log since this may kill the system if it goes
5815 * wrong. */
5816 rdev_info(rdev, "disabling\n");
5817 ret = _regulator_do_disable(rdev);
5818 if (ret != 0)
5819 rdev_err(rdev, "couldn't disable: %d\n", ret);
5820 } else {
5821 /* The intention is that in future we will
5822 * assume that full constraints are provided
5823 * so warn even if we aren't going to do
5824 * anything here.
5826 rdev_warn(rdev, "incomplete constraints, leaving on\n");
5829 unlock:
5830 regulator_unlock(rdev);
5832 return 0;
5835 static void regulator_init_complete_work_function(struct work_struct *work)
5838 * Regulators may had failed to resolve their input supplies
5839 * when were registered, either because the input supply was
5840 * not registered yet or because its parent device was not
5841 * bound yet. So attempt to resolve the input supplies for
5842 * pending regulators before trying to disable unused ones.
5844 class_for_each_device(&regulator_class, NULL, NULL,
5845 regulator_register_resolve_supply);
5847 /* If we have a full configuration then disable any regulators
5848 * we have permission to change the status for and which are
5849 * not in use or always_on. This is effectively the default
5850 * for DT and ACPI as they have full constraints.
5852 class_for_each_device(&regulator_class, NULL, NULL,
5853 regulator_late_cleanup);
5856 static DECLARE_DELAYED_WORK(regulator_init_complete_work,
5857 regulator_init_complete_work_function);
5859 static int __init regulator_init_complete(void)
5862 * Since DT doesn't provide an idiomatic mechanism for
5863 * enabling full constraints and since it's much more natural
5864 * with DT to provide them just assume that a DT enabled
5865 * system has full constraints.
5867 if (of_have_populated_dt())
5868 has_full_constraints = true;
5871 * We punt completion for an arbitrary amount of time since
5872 * systems like distros will load many drivers from userspace
5873 * so consumers might not always be ready yet, this is
5874 * particularly an issue with laptops where this might bounce
5875 * the display off then on. Ideally we'd get a notification
5876 * from userspace when this happens but we don't so just wait
5877 * a bit and hope we waited long enough. It'd be better if
5878 * we'd only do this on systems that need it, and a kernel
5879 * command line option might be useful.
5881 schedule_delayed_work(&regulator_init_complete_work,
5882 msecs_to_jiffies(30000));
5884 return 0;
5886 late_initcall_sync(regulator_init_complete);