Linux 5.9.7
[linux/fpc-iii.git] / drivers / spi / spi.c
blob0cab239d8e7fc00983084107c7a74f5f0367af74
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 // SPI init/core code
3 //
4 // Copyright (C) 2005 David Brownell
5 // Copyright (C) 2008 Secret Lab Technologies Ltd.
7 #include <linux/kernel.h>
8 #include <linux/device.h>
9 #include <linux/init.h>
10 #include <linux/cache.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/mutex.h>
14 #include <linux/of_device.h>
15 #include <linux/of_irq.h>
16 #include <linux/clk/clk-conf.h>
17 #include <linux/slab.h>
18 #include <linux/mod_devicetable.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 #include <linux/of_gpio.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/pm_domain.h>
25 #include <linux/property.h>
26 #include <linux/export.h>
27 #include <linux/sched/rt.h>
28 #include <uapi/linux/sched/types.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/ioport.h>
32 #include <linux/acpi.h>
33 #include <linux/highmem.h>
34 #include <linux/idr.h>
35 #include <linux/platform_data/x86/apple.h>
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/spi.h>
39 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_start);
40 EXPORT_TRACEPOINT_SYMBOL(spi_transfer_stop);
42 #include "internals.h"
44 static DEFINE_IDR(spi_master_idr);
46 static void spidev_release(struct device *dev)
48 struct spi_device *spi = to_spi_device(dev);
50 /* spi controllers may cleanup for released devices */
51 if (spi->controller->cleanup)
52 spi->controller->cleanup(spi);
54 spi_controller_put(spi->controller);
55 kfree(spi->driver_override);
56 kfree(spi);
59 static ssize_t
60 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
62 const struct spi_device *spi = to_spi_device(dev);
63 int len;
65 len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
66 if (len != -ENODEV)
67 return len;
69 return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
71 static DEVICE_ATTR_RO(modalias);
73 static ssize_t driver_override_store(struct device *dev,
74 struct device_attribute *a,
75 const char *buf, size_t count)
77 struct spi_device *spi = to_spi_device(dev);
78 const char *end = memchr(buf, '\n', count);
79 const size_t len = end ? end - buf : count;
80 const char *driver_override, *old;
82 /* We need to keep extra room for a newline when displaying value */
83 if (len >= (PAGE_SIZE - 1))
84 return -EINVAL;
86 driver_override = kstrndup(buf, len, GFP_KERNEL);
87 if (!driver_override)
88 return -ENOMEM;
90 device_lock(dev);
91 old = spi->driver_override;
92 if (len) {
93 spi->driver_override = driver_override;
94 } else {
95 /* Empty string, disable driver override */
96 spi->driver_override = NULL;
97 kfree(driver_override);
99 device_unlock(dev);
100 kfree(old);
102 return count;
105 static ssize_t driver_override_show(struct device *dev,
106 struct device_attribute *a, char *buf)
108 const struct spi_device *spi = to_spi_device(dev);
109 ssize_t len;
111 device_lock(dev);
112 len = snprintf(buf, PAGE_SIZE, "%s\n", spi->driver_override ? : "");
113 device_unlock(dev);
114 return len;
116 static DEVICE_ATTR_RW(driver_override);
118 #define SPI_STATISTICS_ATTRS(field, file) \
119 static ssize_t spi_controller_##field##_show(struct device *dev, \
120 struct device_attribute *attr, \
121 char *buf) \
123 struct spi_controller *ctlr = container_of(dev, \
124 struct spi_controller, dev); \
125 return spi_statistics_##field##_show(&ctlr->statistics, buf); \
127 static struct device_attribute dev_attr_spi_controller_##field = { \
128 .attr = { .name = file, .mode = 0444 }, \
129 .show = spi_controller_##field##_show, \
130 }; \
131 static ssize_t spi_device_##field##_show(struct device *dev, \
132 struct device_attribute *attr, \
133 char *buf) \
135 struct spi_device *spi = to_spi_device(dev); \
136 return spi_statistics_##field##_show(&spi->statistics, buf); \
138 static struct device_attribute dev_attr_spi_device_##field = { \
139 .attr = { .name = file, .mode = 0444 }, \
140 .show = spi_device_##field##_show, \
143 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string) \
144 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
145 char *buf) \
147 unsigned long flags; \
148 ssize_t len; \
149 spin_lock_irqsave(&stat->lock, flags); \
150 len = sprintf(buf, format_string, stat->field); \
151 spin_unlock_irqrestore(&stat->lock, flags); \
152 return len; \
154 SPI_STATISTICS_ATTRS(name, file)
156 #define SPI_STATISTICS_SHOW(field, format_string) \
157 SPI_STATISTICS_SHOW_NAME(field, __stringify(field), \
158 field, format_string)
160 SPI_STATISTICS_SHOW(messages, "%lu");
161 SPI_STATISTICS_SHOW(transfers, "%lu");
162 SPI_STATISTICS_SHOW(errors, "%lu");
163 SPI_STATISTICS_SHOW(timedout, "%lu");
165 SPI_STATISTICS_SHOW(spi_sync, "%lu");
166 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
167 SPI_STATISTICS_SHOW(spi_async, "%lu");
169 SPI_STATISTICS_SHOW(bytes, "%llu");
170 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
171 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
173 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number) \
174 SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index, \
175 "transfer_bytes_histo_" number, \
176 transfer_bytes_histo[index], "%lu")
177 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0, "0-1");
178 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1, "2-3");
179 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2, "4-7");
180 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3, "8-15");
181 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4, "16-31");
182 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5, "32-63");
183 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6, "64-127");
184 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7, "128-255");
185 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8, "256-511");
186 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9, "512-1023");
187 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
188 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
189 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
190 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
191 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
192 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
193 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
195 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
197 static struct attribute *spi_dev_attrs[] = {
198 &dev_attr_modalias.attr,
199 &dev_attr_driver_override.attr,
200 NULL,
203 static const struct attribute_group spi_dev_group = {
204 .attrs = spi_dev_attrs,
207 static struct attribute *spi_device_statistics_attrs[] = {
208 &dev_attr_spi_device_messages.attr,
209 &dev_attr_spi_device_transfers.attr,
210 &dev_attr_spi_device_errors.attr,
211 &dev_attr_spi_device_timedout.attr,
212 &dev_attr_spi_device_spi_sync.attr,
213 &dev_attr_spi_device_spi_sync_immediate.attr,
214 &dev_attr_spi_device_spi_async.attr,
215 &dev_attr_spi_device_bytes.attr,
216 &dev_attr_spi_device_bytes_rx.attr,
217 &dev_attr_spi_device_bytes_tx.attr,
218 &dev_attr_spi_device_transfer_bytes_histo0.attr,
219 &dev_attr_spi_device_transfer_bytes_histo1.attr,
220 &dev_attr_spi_device_transfer_bytes_histo2.attr,
221 &dev_attr_spi_device_transfer_bytes_histo3.attr,
222 &dev_attr_spi_device_transfer_bytes_histo4.attr,
223 &dev_attr_spi_device_transfer_bytes_histo5.attr,
224 &dev_attr_spi_device_transfer_bytes_histo6.attr,
225 &dev_attr_spi_device_transfer_bytes_histo7.attr,
226 &dev_attr_spi_device_transfer_bytes_histo8.attr,
227 &dev_attr_spi_device_transfer_bytes_histo9.attr,
228 &dev_attr_spi_device_transfer_bytes_histo10.attr,
229 &dev_attr_spi_device_transfer_bytes_histo11.attr,
230 &dev_attr_spi_device_transfer_bytes_histo12.attr,
231 &dev_attr_spi_device_transfer_bytes_histo13.attr,
232 &dev_attr_spi_device_transfer_bytes_histo14.attr,
233 &dev_attr_spi_device_transfer_bytes_histo15.attr,
234 &dev_attr_spi_device_transfer_bytes_histo16.attr,
235 &dev_attr_spi_device_transfers_split_maxsize.attr,
236 NULL,
239 static const struct attribute_group spi_device_statistics_group = {
240 .name = "statistics",
241 .attrs = spi_device_statistics_attrs,
244 static const struct attribute_group *spi_dev_groups[] = {
245 &spi_dev_group,
246 &spi_device_statistics_group,
247 NULL,
250 static struct attribute *spi_controller_statistics_attrs[] = {
251 &dev_attr_spi_controller_messages.attr,
252 &dev_attr_spi_controller_transfers.attr,
253 &dev_attr_spi_controller_errors.attr,
254 &dev_attr_spi_controller_timedout.attr,
255 &dev_attr_spi_controller_spi_sync.attr,
256 &dev_attr_spi_controller_spi_sync_immediate.attr,
257 &dev_attr_spi_controller_spi_async.attr,
258 &dev_attr_spi_controller_bytes.attr,
259 &dev_attr_spi_controller_bytes_rx.attr,
260 &dev_attr_spi_controller_bytes_tx.attr,
261 &dev_attr_spi_controller_transfer_bytes_histo0.attr,
262 &dev_attr_spi_controller_transfer_bytes_histo1.attr,
263 &dev_attr_spi_controller_transfer_bytes_histo2.attr,
264 &dev_attr_spi_controller_transfer_bytes_histo3.attr,
265 &dev_attr_spi_controller_transfer_bytes_histo4.attr,
266 &dev_attr_spi_controller_transfer_bytes_histo5.attr,
267 &dev_attr_spi_controller_transfer_bytes_histo6.attr,
268 &dev_attr_spi_controller_transfer_bytes_histo7.attr,
269 &dev_attr_spi_controller_transfer_bytes_histo8.attr,
270 &dev_attr_spi_controller_transfer_bytes_histo9.attr,
271 &dev_attr_spi_controller_transfer_bytes_histo10.attr,
272 &dev_attr_spi_controller_transfer_bytes_histo11.attr,
273 &dev_attr_spi_controller_transfer_bytes_histo12.attr,
274 &dev_attr_spi_controller_transfer_bytes_histo13.attr,
275 &dev_attr_spi_controller_transfer_bytes_histo14.attr,
276 &dev_attr_spi_controller_transfer_bytes_histo15.attr,
277 &dev_attr_spi_controller_transfer_bytes_histo16.attr,
278 &dev_attr_spi_controller_transfers_split_maxsize.attr,
279 NULL,
282 static const struct attribute_group spi_controller_statistics_group = {
283 .name = "statistics",
284 .attrs = spi_controller_statistics_attrs,
287 static const struct attribute_group *spi_master_groups[] = {
288 &spi_controller_statistics_group,
289 NULL,
292 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
293 struct spi_transfer *xfer,
294 struct spi_controller *ctlr)
296 unsigned long flags;
297 int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
299 if (l2len < 0)
300 l2len = 0;
302 spin_lock_irqsave(&stats->lock, flags);
304 stats->transfers++;
305 stats->transfer_bytes_histo[l2len]++;
307 stats->bytes += xfer->len;
308 if ((xfer->tx_buf) &&
309 (xfer->tx_buf != ctlr->dummy_tx))
310 stats->bytes_tx += xfer->len;
311 if ((xfer->rx_buf) &&
312 (xfer->rx_buf != ctlr->dummy_rx))
313 stats->bytes_rx += xfer->len;
315 spin_unlock_irqrestore(&stats->lock, flags);
317 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
319 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
320 * and the sysfs version makes coldplug work too.
323 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
324 const struct spi_device *sdev)
326 while (id->name[0]) {
327 if (!strcmp(sdev->modalias, id->name))
328 return id;
329 id++;
331 return NULL;
334 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
336 const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
338 return spi_match_id(sdrv->id_table, sdev);
340 EXPORT_SYMBOL_GPL(spi_get_device_id);
342 static int spi_match_device(struct device *dev, struct device_driver *drv)
344 const struct spi_device *spi = to_spi_device(dev);
345 const struct spi_driver *sdrv = to_spi_driver(drv);
347 /* Check override first, and if set, only use the named driver */
348 if (spi->driver_override)
349 return strcmp(spi->driver_override, drv->name) == 0;
351 /* Attempt an OF style match */
352 if (of_driver_match_device(dev, drv))
353 return 1;
355 /* Then try ACPI */
356 if (acpi_driver_match_device(dev, drv))
357 return 1;
359 if (sdrv->id_table)
360 return !!spi_match_id(sdrv->id_table, spi);
362 return strcmp(spi->modalias, drv->name) == 0;
365 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
367 const struct spi_device *spi = to_spi_device(dev);
368 int rc;
370 rc = acpi_device_uevent_modalias(dev, env);
371 if (rc != -ENODEV)
372 return rc;
374 return add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
377 struct bus_type spi_bus_type = {
378 .name = "spi",
379 .dev_groups = spi_dev_groups,
380 .match = spi_match_device,
381 .uevent = spi_uevent,
383 EXPORT_SYMBOL_GPL(spi_bus_type);
386 static int spi_drv_probe(struct device *dev)
388 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
389 struct spi_device *spi = to_spi_device(dev);
390 int ret;
392 ret = of_clk_set_defaults(dev->of_node, false);
393 if (ret)
394 return ret;
396 if (dev->of_node) {
397 spi->irq = of_irq_get(dev->of_node, 0);
398 if (spi->irq == -EPROBE_DEFER)
399 return -EPROBE_DEFER;
400 if (spi->irq < 0)
401 spi->irq = 0;
404 ret = dev_pm_domain_attach(dev, true);
405 if (ret)
406 return ret;
408 ret = sdrv->probe(spi);
409 if (ret)
410 dev_pm_domain_detach(dev, true);
412 return ret;
415 static int spi_drv_remove(struct device *dev)
417 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
418 int ret;
420 ret = sdrv->remove(to_spi_device(dev));
421 dev_pm_domain_detach(dev, true);
423 return ret;
426 static void spi_drv_shutdown(struct device *dev)
428 const struct spi_driver *sdrv = to_spi_driver(dev->driver);
430 sdrv->shutdown(to_spi_device(dev));
434 * __spi_register_driver - register a SPI driver
435 * @owner: owner module of the driver to register
436 * @sdrv: the driver to register
437 * Context: can sleep
439 * Return: zero on success, else a negative error code.
441 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
443 sdrv->driver.owner = owner;
444 sdrv->driver.bus = &spi_bus_type;
445 if (sdrv->probe)
446 sdrv->driver.probe = spi_drv_probe;
447 if (sdrv->remove)
448 sdrv->driver.remove = spi_drv_remove;
449 if (sdrv->shutdown)
450 sdrv->driver.shutdown = spi_drv_shutdown;
451 return driver_register(&sdrv->driver);
453 EXPORT_SYMBOL_GPL(__spi_register_driver);
455 /*-------------------------------------------------------------------------*/
457 /* SPI devices should normally not be created by SPI device drivers; that
458 * would make them board-specific. Similarly with SPI controller drivers.
459 * Device registration normally goes into like arch/.../mach.../board-YYY.c
460 * with other readonly (flashable) information about mainboard devices.
463 struct boardinfo {
464 struct list_head list;
465 struct spi_board_info board_info;
468 static LIST_HEAD(board_list);
469 static LIST_HEAD(spi_controller_list);
472 * Used to protect add/del operation for board_info list and
473 * spi_controller list, and their matching process
474 * also used to protect object of type struct idr
476 static DEFINE_MUTEX(board_lock);
479 * Prevents addition of devices with same chip select and
480 * addition of devices below an unregistering controller.
482 static DEFINE_MUTEX(spi_add_lock);
485 * spi_alloc_device - Allocate a new SPI device
486 * @ctlr: Controller to which device is connected
487 * Context: can sleep
489 * Allows a driver to allocate and initialize a spi_device without
490 * registering it immediately. This allows a driver to directly
491 * fill the spi_device with device parameters before calling
492 * spi_add_device() on it.
494 * Caller is responsible to call spi_add_device() on the returned
495 * spi_device structure to add it to the SPI controller. If the caller
496 * needs to discard the spi_device without adding it, then it should
497 * call spi_dev_put() on it.
499 * Return: a pointer to the new device, or NULL.
501 struct spi_device *spi_alloc_device(struct spi_controller *ctlr)
503 struct spi_device *spi;
505 if (!spi_controller_get(ctlr))
506 return NULL;
508 spi = kzalloc(sizeof(*spi), GFP_KERNEL);
509 if (!spi) {
510 spi_controller_put(ctlr);
511 return NULL;
514 spi->master = spi->controller = ctlr;
515 spi->dev.parent = &ctlr->dev;
516 spi->dev.bus = &spi_bus_type;
517 spi->dev.release = spidev_release;
518 spi->cs_gpio = -ENOENT;
519 spi->mode = ctlr->buswidth_override_bits;
521 spin_lock_init(&spi->statistics.lock);
523 device_initialize(&spi->dev);
524 return spi;
526 EXPORT_SYMBOL_GPL(spi_alloc_device);
528 static void spi_dev_set_name(struct spi_device *spi)
530 struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
532 if (adev) {
533 dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
534 return;
537 dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->controller->dev),
538 spi->chip_select);
541 static int spi_dev_check(struct device *dev, void *data)
543 struct spi_device *spi = to_spi_device(dev);
544 struct spi_device *new_spi = data;
546 if (spi->controller == new_spi->controller &&
547 spi->chip_select == new_spi->chip_select)
548 return -EBUSY;
549 return 0;
553 * spi_add_device - Add spi_device allocated with spi_alloc_device
554 * @spi: spi_device to register
556 * Companion function to spi_alloc_device. Devices allocated with
557 * spi_alloc_device can be added onto the spi bus with this function.
559 * Return: 0 on success; negative errno on failure
561 int spi_add_device(struct spi_device *spi)
563 struct spi_controller *ctlr = spi->controller;
564 struct device *dev = ctlr->dev.parent;
565 int status;
567 /* Chipselects are numbered 0..max; validate. */
568 if (spi->chip_select >= ctlr->num_chipselect) {
569 dev_err(dev, "cs%d >= max %d\n", spi->chip_select,
570 ctlr->num_chipselect);
571 return -EINVAL;
574 /* Set the bus ID string */
575 spi_dev_set_name(spi);
577 /* We need to make sure there's no other device with this
578 * chipselect **BEFORE** we call setup(), else we'll trash
579 * its configuration. Lock against concurrent add() calls.
581 mutex_lock(&spi_add_lock);
583 status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
584 if (status) {
585 dev_err(dev, "chipselect %d already in use\n",
586 spi->chip_select);
587 goto done;
590 /* Controller may unregister concurrently */
591 if (IS_ENABLED(CONFIG_SPI_DYNAMIC) &&
592 !device_is_registered(&ctlr->dev)) {
593 status = -ENODEV;
594 goto done;
597 /* Descriptors take precedence */
598 if (ctlr->cs_gpiods)
599 spi->cs_gpiod = ctlr->cs_gpiods[spi->chip_select];
600 else if (ctlr->cs_gpios)
601 spi->cs_gpio = ctlr->cs_gpios[spi->chip_select];
603 /* Drivers may modify this initial i/o setup, but will
604 * normally rely on the device being setup. Devices
605 * using SPI_CS_HIGH can't coexist well otherwise...
607 status = spi_setup(spi);
608 if (status < 0) {
609 dev_err(dev, "can't setup %s, status %d\n",
610 dev_name(&spi->dev), status);
611 goto done;
614 /* Device may be bound to an active driver when this returns */
615 status = device_add(&spi->dev);
616 if (status < 0)
617 dev_err(dev, "can't add %s, status %d\n",
618 dev_name(&spi->dev), status);
619 else
620 dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
622 done:
623 mutex_unlock(&spi_add_lock);
624 return status;
626 EXPORT_SYMBOL_GPL(spi_add_device);
629 * spi_new_device - instantiate one new SPI device
630 * @ctlr: Controller to which device is connected
631 * @chip: Describes the SPI device
632 * Context: can sleep
634 * On typical mainboards, this is purely internal; and it's not needed
635 * after board init creates the hard-wired devices. Some development
636 * platforms may not be able to use spi_register_board_info though, and
637 * this is exported so that for example a USB or parport based adapter
638 * driver could add devices (which it would learn about out-of-band).
640 * Return: the new device, or NULL.
642 struct spi_device *spi_new_device(struct spi_controller *ctlr,
643 struct spi_board_info *chip)
645 struct spi_device *proxy;
646 int status;
648 /* NOTE: caller did any chip->bus_num checks necessary.
650 * Also, unless we change the return value convention to use
651 * error-or-pointer (not NULL-or-pointer), troubleshootability
652 * suggests syslogged diagnostics are best here (ugh).
655 proxy = spi_alloc_device(ctlr);
656 if (!proxy)
657 return NULL;
659 WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
661 proxy->chip_select = chip->chip_select;
662 proxy->max_speed_hz = chip->max_speed_hz;
663 proxy->mode = chip->mode;
664 proxy->irq = chip->irq;
665 strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
666 proxy->dev.platform_data = (void *) chip->platform_data;
667 proxy->controller_data = chip->controller_data;
668 proxy->controller_state = NULL;
670 if (chip->properties) {
671 status = device_add_properties(&proxy->dev, chip->properties);
672 if (status) {
673 dev_err(&ctlr->dev,
674 "failed to add properties to '%s': %d\n",
675 chip->modalias, status);
676 goto err_dev_put;
680 status = spi_add_device(proxy);
681 if (status < 0)
682 goto err_remove_props;
684 return proxy;
686 err_remove_props:
687 if (chip->properties)
688 device_remove_properties(&proxy->dev);
689 err_dev_put:
690 spi_dev_put(proxy);
691 return NULL;
693 EXPORT_SYMBOL_GPL(spi_new_device);
696 * spi_unregister_device - unregister a single SPI device
697 * @spi: spi_device to unregister
699 * Start making the passed SPI device vanish. Normally this would be handled
700 * by spi_unregister_controller().
702 void spi_unregister_device(struct spi_device *spi)
704 if (!spi)
705 return;
707 if (spi->dev.of_node) {
708 of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
709 of_node_put(spi->dev.of_node);
711 if (ACPI_COMPANION(&spi->dev))
712 acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
713 device_unregister(&spi->dev);
715 EXPORT_SYMBOL_GPL(spi_unregister_device);
717 static void spi_match_controller_to_boardinfo(struct spi_controller *ctlr,
718 struct spi_board_info *bi)
720 struct spi_device *dev;
722 if (ctlr->bus_num != bi->bus_num)
723 return;
725 dev = spi_new_device(ctlr, bi);
726 if (!dev)
727 dev_err(ctlr->dev.parent, "can't create new device for %s\n",
728 bi->modalias);
732 * spi_register_board_info - register SPI devices for a given board
733 * @info: array of chip descriptors
734 * @n: how many descriptors are provided
735 * Context: can sleep
737 * Board-specific early init code calls this (probably during arch_initcall)
738 * with segments of the SPI device table. Any device nodes are created later,
739 * after the relevant parent SPI controller (bus_num) is defined. We keep
740 * this table of devices forever, so that reloading a controller driver will
741 * not make Linux forget about these hard-wired devices.
743 * Other code can also call this, e.g. a particular add-on board might provide
744 * SPI devices through its expansion connector, so code initializing that board
745 * would naturally declare its SPI devices.
747 * The board info passed can safely be __initdata ... but be careful of
748 * any embedded pointers (platform_data, etc), they're copied as-is.
749 * Device properties are deep-copied though.
751 * Return: zero on success, else a negative error code.
753 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
755 struct boardinfo *bi;
756 int i;
758 if (!n)
759 return 0;
761 bi = kcalloc(n, sizeof(*bi), GFP_KERNEL);
762 if (!bi)
763 return -ENOMEM;
765 for (i = 0; i < n; i++, bi++, info++) {
766 struct spi_controller *ctlr;
768 memcpy(&bi->board_info, info, sizeof(*info));
769 if (info->properties) {
770 bi->board_info.properties =
771 property_entries_dup(info->properties);
772 if (IS_ERR(bi->board_info.properties))
773 return PTR_ERR(bi->board_info.properties);
776 mutex_lock(&board_lock);
777 list_add_tail(&bi->list, &board_list);
778 list_for_each_entry(ctlr, &spi_controller_list, list)
779 spi_match_controller_to_boardinfo(ctlr,
780 &bi->board_info);
781 mutex_unlock(&board_lock);
784 return 0;
787 /*-------------------------------------------------------------------------*/
789 static void spi_set_cs(struct spi_device *spi, bool enable)
791 bool enable1 = enable;
794 * Avoid calling into the driver (or doing delays) if the chip select
795 * isn't actually changing from the last time this was called.
797 if ((spi->controller->last_cs_enable == enable) &&
798 (spi->controller->last_cs_mode_high == (spi->mode & SPI_CS_HIGH)))
799 return;
801 spi->controller->last_cs_enable = enable;
802 spi->controller->last_cs_mode_high = spi->mode & SPI_CS_HIGH;
804 if (!spi->controller->set_cs_timing) {
805 if (enable1)
806 spi_delay_exec(&spi->controller->cs_setup, NULL);
807 else
808 spi_delay_exec(&spi->controller->cs_hold, NULL);
811 if (spi->mode & SPI_CS_HIGH)
812 enable = !enable;
814 if (spi->cs_gpiod || gpio_is_valid(spi->cs_gpio)) {
816 * Honour the SPI_NO_CS flag and invert the enable line, as
817 * active low is default for SPI. Execution paths that handle
818 * polarity inversion in gpiolib (such as device tree) will
819 * enforce active high using the SPI_CS_HIGH resulting in a
820 * double inversion through the code above.
822 if (!(spi->mode & SPI_NO_CS)) {
823 if (spi->cs_gpiod)
824 gpiod_set_value_cansleep(spi->cs_gpiod,
825 !enable);
826 else
827 gpio_set_value_cansleep(spi->cs_gpio, !enable);
829 /* Some SPI masters need both GPIO CS & slave_select */
830 if ((spi->controller->flags & SPI_MASTER_GPIO_SS) &&
831 spi->controller->set_cs)
832 spi->controller->set_cs(spi, !enable);
833 } else if (spi->controller->set_cs) {
834 spi->controller->set_cs(spi, !enable);
837 if (!spi->controller->set_cs_timing) {
838 if (!enable1)
839 spi_delay_exec(&spi->controller->cs_inactive, NULL);
843 #ifdef CONFIG_HAS_DMA
844 int spi_map_buf(struct spi_controller *ctlr, struct device *dev,
845 struct sg_table *sgt, void *buf, size_t len,
846 enum dma_data_direction dir)
848 const bool vmalloced_buf = is_vmalloc_addr(buf);
849 unsigned int max_seg_size = dma_get_max_seg_size(dev);
850 #ifdef CONFIG_HIGHMEM
851 const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
852 (unsigned long)buf < (PKMAP_BASE +
853 (LAST_PKMAP * PAGE_SIZE)));
854 #else
855 const bool kmap_buf = false;
856 #endif
857 int desc_len;
858 int sgs;
859 struct page *vm_page;
860 struct scatterlist *sg;
861 void *sg_buf;
862 size_t min;
863 int i, ret;
865 if (vmalloced_buf || kmap_buf) {
866 desc_len = min_t(int, max_seg_size, PAGE_SIZE);
867 sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
868 } else if (virt_addr_valid(buf)) {
869 desc_len = min_t(int, max_seg_size, ctlr->max_dma_len);
870 sgs = DIV_ROUND_UP(len, desc_len);
871 } else {
872 return -EINVAL;
875 ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
876 if (ret != 0)
877 return ret;
879 sg = &sgt->sgl[0];
880 for (i = 0; i < sgs; i++) {
882 if (vmalloced_buf || kmap_buf) {
884 * Next scatterlist entry size is the minimum between
885 * the desc_len and the remaining buffer length that
886 * fits in a page.
888 min = min_t(size_t, desc_len,
889 min_t(size_t, len,
890 PAGE_SIZE - offset_in_page(buf)));
891 if (vmalloced_buf)
892 vm_page = vmalloc_to_page(buf);
893 else
894 vm_page = kmap_to_page(buf);
895 if (!vm_page) {
896 sg_free_table(sgt);
897 return -ENOMEM;
899 sg_set_page(sg, vm_page,
900 min, offset_in_page(buf));
901 } else {
902 min = min_t(size_t, len, desc_len);
903 sg_buf = buf;
904 sg_set_buf(sg, sg_buf, min);
907 buf += min;
908 len -= min;
909 sg = sg_next(sg);
912 ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
913 if (!ret)
914 ret = -ENOMEM;
915 if (ret < 0) {
916 sg_free_table(sgt);
917 return ret;
920 sgt->nents = ret;
922 return 0;
925 void spi_unmap_buf(struct spi_controller *ctlr, struct device *dev,
926 struct sg_table *sgt, enum dma_data_direction dir)
928 if (sgt->orig_nents) {
929 dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
930 sg_free_table(sgt);
934 static int __spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
936 struct device *tx_dev, *rx_dev;
937 struct spi_transfer *xfer;
938 int ret;
940 if (!ctlr->can_dma)
941 return 0;
943 if (ctlr->dma_tx)
944 tx_dev = ctlr->dma_tx->device->dev;
945 else
946 tx_dev = ctlr->dev.parent;
948 if (ctlr->dma_rx)
949 rx_dev = ctlr->dma_rx->device->dev;
950 else
951 rx_dev = ctlr->dev.parent;
953 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
954 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
955 continue;
957 if (xfer->tx_buf != NULL) {
958 ret = spi_map_buf(ctlr, tx_dev, &xfer->tx_sg,
959 (void *)xfer->tx_buf, xfer->len,
960 DMA_TO_DEVICE);
961 if (ret != 0)
962 return ret;
965 if (xfer->rx_buf != NULL) {
966 ret = spi_map_buf(ctlr, rx_dev, &xfer->rx_sg,
967 xfer->rx_buf, xfer->len,
968 DMA_FROM_DEVICE);
969 if (ret != 0) {
970 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg,
971 DMA_TO_DEVICE);
972 return ret;
977 ctlr->cur_msg_mapped = true;
979 return 0;
982 static int __spi_unmap_msg(struct spi_controller *ctlr, struct spi_message *msg)
984 struct spi_transfer *xfer;
985 struct device *tx_dev, *rx_dev;
987 if (!ctlr->cur_msg_mapped || !ctlr->can_dma)
988 return 0;
990 if (ctlr->dma_tx)
991 tx_dev = ctlr->dma_tx->device->dev;
992 else
993 tx_dev = ctlr->dev.parent;
995 if (ctlr->dma_rx)
996 rx_dev = ctlr->dma_rx->device->dev;
997 else
998 rx_dev = ctlr->dev.parent;
1000 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1001 if (!ctlr->can_dma(ctlr, msg->spi, xfer))
1002 continue;
1004 spi_unmap_buf(ctlr, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
1005 spi_unmap_buf(ctlr, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
1008 ctlr->cur_msg_mapped = false;
1010 return 0;
1012 #else /* !CONFIG_HAS_DMA */
1013 static inline int __spi_map_msg(struct spi_controller *ctlr,
1014 struct spi_message *msg)
1016 return 0;
1019 static inline int __spi_unmap_msg(struct spi_controller *ctlr,
1020 struct spi_message *msg)
1022 return 0;
1024 #endif /* !CONFIG_HAS_DMA */
1026 static inline int spi_unmap_msg(struct spi_controller *ctlr,
1027 struct spi_message *msg)
1029 struct spi_transfer *xfer;
1031 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1033 * Restore the original value of tx_buf or rx_buf if they are
1034 * NULL.
1036 if (xfer->tx_buf == ctlr->dummy_tx)
1037 xfer->tx_buf = NULL;
1038 if (xfer->rx_buf == ctlr->dummy_rx)
1039 xfer->rx_buf = NULL;
1042 return __spi_unmap_msg(ctlr, msg);
1045 static int spi_map_msg(struct spi_controller *ctlr, struct spi_message *msg)
1047 struct spi_transfer *xfer;
1048 void *tmp;
1049 unsigned int max_tx, max_rx;
1051 if ((ctlr->flags & (SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX))
1052 && !(msg->spi->mode & SPI_3WIRE)) {
1053 max_tx = 0;
1054 max_rx = 0;
1056 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1057 if ((ctlr->flags & SPI_CONTROLLER_MUST_TX) &&
1058 !xfer->tx_buf)
1059 max_tx = max(xfer->len, max_tx);
1060 if ((ctlr->flags & SPI_CONTROLLER_MUST_RX) &&
1061 !xfer->rx_buf)
1062 max_rx = max(xfer->len, max_rx);
1065 if (max_tx) {
1066 tmp = krealloc(ctlr->dummy_tx, max_tx,
1067 GFP_KERNEL | GFP_DMA);
1068 if (!tmp)
1069 return -ENOMEM;
1070 ctlr->dummy_tx = tmp;
1071 memset(tmp, 0, max_tx);
1074 if (max_rx) {
1075 tmp = krealloc(ctlr->dummy_rx, max_rx,
1076 GFP_KERNEL | GFP_DMA);
1077 if (!tmp)
1078 return -ENOMEM;
1079 ctlr->dummy_rx = tmp;
1082 if (max_tx || max_rx) {
1083 list_for_each_entry(xfer, &msg->transfers,
1084 transfer_list) {
1085 if (!xfer->len)
1086 continue;
1087 if (!xfer->tx_buf)
1088 xfer->tx_buf = ctlr->dummy_tx;
1089 if (!xfer->rx_buf)
1090 xfer->rx_buf = ctlr->dummy_rx;
1095 return __spi_map_msg(ctlr, msg);
1098 static int spi_transfer_wait(struct spi_controller *ctlr,
1099 struct spi_message *msg,
1100 struct spi_transfer *xfer)
1102 struct spi_statistics *statm = &ctlr->statistics;
1103 struct spi_statistics *stats = &msg->spi->statistics;
1104 unsigned long long ms;
1106 if (spi_controller_is_slave(ctlr)) {
1107 if (wait_for_completion_interruptible(&ctlr->xfer_completion)) {
1108 dev_dbg(&msg->spi->dev, "SPI transfer interrupted\n");
1109 return -EINTR;
1111 } else {
1112 ms = 8LL * 1000LL * xfer->len;
1113 do_div(ms, xfer->speed_hz);
1114 ms += ms + 200; /* some tolerance */
1116 if (ms > UINT_MAX)
1117 ms = UINT_MAX;
1119 ms = wait_for_completion_timeout(&ctlr->xfer_completion,
1120 msecs_to_jiffies(ms));
1122 if (ms == 0) {
1123 SPI_STATISTICS_INCREMENT_FIELD(statm, timedout);
1124 SPI_STATISTICS_INCREMENT_FIELD(stats, timedout);
1125 dev_err(&msg->spi->dev,
1126 "SPI transfer timed out\n");
1127 return -ETIMEDOUT;
1131 return 0;
1134 static void _spi_transfer_delay_ns(u32 ns)
1136 if (!ns)
1137 return;
1138 if (ns <= 1000) {
1139 ndelay(ns);
1140 } else {
1141 u32 us = DIV_ROUND_UP(ns, 1000);
1143 if (us <= 10)
1144 udelay(us);
1145 else
1146 usleep_range(us, us + DIV_ROUND_UP(us, 10));
1150 int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer)
1152 u32 delay = _delay->value;
1153 u32 unit = _delay->unit;
1154 u32 hz;
1156 if (!delay)
1157 return 0;
1159 switch (unit) {
1160 case SPI_DELAY_UNIT_USECS:
1161 delay *= 1000;
1162 break;
1163 case SPI_DELAY_UNIT_NSECS: /* nothing to do here */
1164 break;
1165 case SPI_DELAY_UNIT_SCK:
1166 /* clock cycles need to be obtained from spi_transfer */
1167 if (!xfer)
1168 return -EINVAL;
1169 /* if there is no effective speed know, then approximate
1170 * by underestimating with half the requested hz
1172 hz = xfer->effective_speed_hz ?: xfer->speed_hz / 2;
1173 if (!hz)
1174 return -EINVAL;
1175 delay *= DIV_ROUND_UP(1000000000, hz);
1176 break;
1177 default:
1178 return -EINVAL;
1181 return delay;
1183 EXPORT_SYMBOL_GPL(spi_delay_to_ns);
1185 int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer)
1187 int delay;
1189 might_sleep();
1191 if (!_delay)
1192 return -EINVAL;
1194 delay = spi_delay_to_ns(_delay, xfer);
1195 if (delay < 0)
1196 return delay;
1198 _spi_transfer_delay_ns(delay);
1200 return 0;
1202 EXPORT_SYMBOL_GPL(spi_delay_exec);
1204 static void _spi_transfer_cs_change_delay(struct spi_message *msg,
1205 struct spi_transfer *xfer)
1207 u32 delay = xfer->cs_change_delay.value;
1208 u32 unit = xfer->cs_change_delay.unit;
1209 int ret;
1211 /* return early on "fast" mode - for everything but USECS */
1212 if (!delay) {
1213 if (unit == SPI_DELAY_UNIT_USECS)
1214 _spi_transfer_delay_ns(10000);
1215 return;
1218 ret = spi_delay_exec(&xfer->cs_change_delay, xfer);
1219 if (ret) {
1220 dev_err_once(&msg->spi->dev,
1221 "Use of unsupported delay unit %i, using default of 10us\n",
1222 unit);
1223 _spi_transfer_delay_ns(10000);
1228 * spi_transfer_one_message - Default implementation of transfer_one_message()
1230 * This is a standard implementation of transfer_one_message() for
1231 * drivers which implement a transfer_one() operation. It provides
1232 * standard handling of delays and chip select management.
1234 static int spi_transfer_one_message(struct spi_controller *ctlr,
1235 struct spi_message *msg)
1237 struct spi_transfer *xfer;
1238 bool keep_cs = false;
1239 int ret = 0;
1240 struct spi_statistics *statm = &ctlr->statistics;
1241 struct spi_statistics *stats = &msg->spi->statistics;
1243 spi_set_cs(msg->spi, true);
1245 SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
1246 SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
1248 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1249 trace_spi_transfer_start(msg, xfer);
1251 spi_statistics_add_transfer_stats(statm, xfer, ctlr);
1252 spi_statistics_add_transfer_stats(stats, xfer, ctlr);
1254 if (!ctlr->ptp_sts_supported) {
1255 xfer->ptp_sts_word_pre = 0;
1256 ptp_read_system_prets(xfer->ptp_sts);
1259 if (xfer->tx_buf || xfer->rx_buf) {
1260 reinit_completion(&ctlr->xfer_completion);
1262 fallback_pio:
1263 ret = ctlr->transfer_one(ctlr, msg->spi, xfer);
1264 if (ret < 0) {
1265 if (ctlr->cur_msg_mapped &&
1266 (xfer->error & SPI_TRANS_FAIL_NO_START)) {
1267 __spi_unmap_msg(ctlr, msg);
1268 ctlr->fallback = true;
1269 xfer->error &= ~SPI_TRANS_FAIL_NO_START;
1270 goto fallback_pio;
1273 SPI_STATISTICS_INCREMENT_FIELD(statm,
1274 errors);
1275 SPI_STATISTICS_INCREMENT_FIELD(stats,
1276 errors);
1277 dev_err(&msg->spi->dev,
1278 "SPI transfer failed: %d\n", ret);
1279 goto out;
1282 if (ret > 0) {
1283 ret = spi_transfer_wait(ctlr, msg, xfer);
1284 if (ret < 0)
1285 msg->status = ret;
1287 } else {
1288 if (xfer->len)
1289 dev_err(&msg->spi->dev,
1290 "Bufferless transfer has length %u\n",
1291 xfer->len);
1294 if (!ctlr->ptp_sts_supported) {
1295 ptp_read_system_postts(xfer->ptp_sts);
1296 xfer->ptp_sts_word_post = xfer->len;
1299 trace_spi_transfer_stop(msg, xfer);
1301 if (msg->status != -EINPROGRESS)
1302 goto out;
1304 spi_transfer_delay_exec(xfer);
1306 if (xfer->cs_change) {
1307 if (list_is_last(&xfer->transfer_list,
1308 &msg->transfers)) {
1309 keep_cs = true;
1310 } else {
1311 spi_set_cs(msg->spi, false);
1312 _spi_transfer_cs_change_delay(msg, xfer);
1313 spi_set_cs(msg->spi, true);
1317 msg->actual_length += xfer->len;
1320 out:
1321 if (ret != 0 || !keep_cs)
1322 spi_set_cs(msg->spi, false);
1324 if (msg->status == -EINPROGRESS)
1325 msg->status = ret;
1327 if (msg->status && ctlr->handle_err)
1328 ctlr->handle_err(ctlr, msg);
1330 spi_finalize_current_message(ctlr);
1332 return ret;
1336 * spi_finalize_current_transfer - report completion of a transfer
1337 * @ctlr: the controller reporting completion
1339 * Called by SPI drivers using the core transfer_one_message()
1340 * implementation to notify it that the current interrupt driven
1341 * transfer has finished and the next one may be scheduled.
1343 void spi_finalize_current_transfer(struct spi_controller *ctlr)
1345 complete(&ctlr->xfer_completion);
1347 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1349 static void spi_idle_runtime_pm(struct spi_controller *ctlr)
1351 if (ctlr->auto_runtime_pm) {
1352 pm_runtime_mark_last_busy(ctlr->dev.parent);
1353 pm_runtime_put_autosuspend(ctlr->dev.parent);
1358 * __spi_pump_messages - function which processes spi message queue
1359 * @ctlr: controller to process queue for
1360 * @in_kthread: true if we are in the context of the message pump thread
1362 * This function checks if there is any spi message in the queue that
1363 * needs processing and if so call out to the driver to initialize hardware
1364 * and transfer each message.
1366 * Note that it is called both from the kthread itself and also from
1367 * inside spi_sync(); the queue extraction handling at the top of the
1368 * function should deal with this safely.
1370 static void __spi_pump_messages(struct spi_controller *ctlr, bool in_kthread)
1372 struct spi_transfer *xfer;
1373 struct spi_message *msg;
1374 bool was_busy = false;
1375 unsigned long flags;
1376 int ret;
1378 /* Lock queue */
1379 spin_lock_irqsave(&ctlr->queue_lock, flags);
1381 /* Make sure we are not already running a message */
1382 if (ctlr->cur_msg) {
1383 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1384 return;
1387 /* If another context is idling the device then defer */
1388 if (ctlr->idling) {
1389 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1390 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1391 return;
1394 /* Check if the queue is idle */
1395 if (list_empty(&ctlr->queue) || !ctlr->running) {
1396 if (!ctlr->busy) {
1397 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1398 return;
1401 /* Defer any non-atomic teardown to the thread */
1402 if (!in_kthread) {
1403 if (!ctlr->dummy_rx && !ctlr->dummy_tx &&
1404 !ctlr->unprepare_transfer_hardware) {
1405 spi_idle_runtime_pm(ctlr);
1406 ctlr->busy = false;
1407 trace_spi_controller_idle(ctlr);
1408 } else {
1409 kthread_queue_work(ctlr->kworker,
1410 &ctlr->pump_messages);
1412 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1413 return;
1416 ctlr->busy = false;
1417 ctlr->idling = true;
1418 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1420 kfree(ctlr->dummy_rx);
1421 ctlr->dummy_rx = NULL;
1422 kfree(ctlr->dummy_tx);
1423 ctlr->dummy_tx = NULL;
1424 if (ctlr->unprepare_transfer_hardware &&
1425 ctlr->unprepare_transfer_hardware(ctlr))
1426 dev_err(&ctlr->dev,
1427 "failed to unprepare transfer hardware\n");
1428 spi_idle_runtime_pm(ctlr);
1429 trace_spi_controller_idle(ctlr);
1431 spin_lock_irqsave(&ctlr->queue_lock, flags);
1432 ctlr->idling = false;
1433 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1434 return;
1437 /* Extract head of queue */
1438 msg = list_first_entry(&ctlr->queue, struct spi_message, queue);
1439 ctlr->cur_msg = msg;
1441 list_del_init(&msg->queue);
1442 if (ctlr->busy)
1443 was_busy = true;
1444 else
1445 ctlr->busy = true;
1446 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1448 mutex_lock(&ctlr->io_mutex);
1450 if (!was_busy && ctlr->auto_runtime_pm) {
1451 ret = pm_runtime_get_sync(ctlr->dev.parent);
1452 if (ret < 0) {
1453 pm_runtime_put_noidle(ctlr->dev.parent);
1454 dev_err(&ctlr->dev, "Failed to power device: %d\n",
1455 ret);
1456 mutex_unlock(&ctlr->io_mutex);
1457 return;
1461 if (!was_busy)
1462 trace_spi_controller_busy(ctlr);
1464 if (!was_busy && ctlr->prepare_transfer_hardware) {
1465 ret = ctlr->prepare_transfer_hardware(ctlr);
1466 if (ret) {
1467 dev_err(&ctlr->dev,
1468 "failed to prepare transfer hardware: %d\n",
1469 ret);
1471 if (ctlr->auto_runtime_pm)
1472 pm_runtime_put(ctlr->dev.parent);
1474 msg->status = ret;
1475 spi_finalize_current_message(ctlr);
1477 mutex_unlock(&ctlr->io_mutex);
1478 return;
1482 trace_spi_message_start(msg);
1484 if (ctlr->prepare_message) {
1485 ret = ctlr->prepare_message(ctlr, msg);
1486 if (ret) {
1487 dev_err(&ctlr->dev, "failed to prepare message: %d\n",
1488 ret);
1489 msg->status = ret;
1490 spi_finalize_current_message(ctlr);
1491 goto out;
1493 ctlr->cur_msg_prepared = true;
1496 ret = spi_map_msg(ctlr, msg);
1497 if (ret) {
1498 msg->status = ret;
1499 spi_finalize_current_message(ctlr);
1500 goto out;
1503 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1504 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1505 xfer->ptp_sts_word_pre = 0;
1506 ptp_read_system_prets(xfer->ptp_sts);
1510 ret = ctlr->transfer_one_message(ctlr, msg);
1511 if (ret) {
1512 dev_err(&ctlr->dev,
1513 "failed to transfer one message from queue\n");
1514 goto out;
1517 out:
1518 mutex_unlock(&ctlr->io_mutex);
1520 /* Prod the scheduler in case transfer_one() was busy waiting */
1521 if (!ret)
1522 cond_resched();
1526 * spi_pump_messages - kthread work function which processes spi message queue
1527 * @work: pointer to kthread work struct contained in the controller struct
1529 static void spi_pump_messages(struct kthread_work *work)
1531 struct spi_controller *ctlr =
1532 container_of(work, struct spi_controller, pump_messages);
1534 __spi_pump_messages(ctlr, true);
1538 * spi_take_timestamp_pre - helper for drivers to collect the beginning of the
1539 * TX timestamp for the requested byte from the SPI
1540 * transfer. The frequency with which this function
1541 * must be called (once per word, once for the whole
1542 * transfer, once per batch of words etc) is arbitrary
1543 * as long as the @tx buffer offset is greater than or
1544 * equal to the requested byte at the time of the
1545 * call. The timestamp is only taken once, at the
1546 * first such call. It is assumed that the driver
1547 * advances its @tx buffer pointer monotonically.
1548 * @ctlr: Pointer to the spi_controller structure of the driver
1549 * @xfer: Pointer to the transfer being timestamped
1550 * @progress: How many words (not bytes) have been transferred so far
1551 * @irqs_off: If true, will disable IRQs and preemption for the duration of the
1552 * transfer, for less jitter in time measurement. Only compatible
1553 * with PIO drivers. If true, must follow up with
1554 * spi_take_timestamp_post or otherwise system will crash.
1555 * WARNING: for fully predictable results, the CPU frequency must
1556 * also be under control (governor).
1558 void spi_take_timestamp_pre(struct spi_controller *ctlr,
1559 struct spi_transfer *xfer,
1560 size_t progress, bool irqs_off)
1562 if (!xfer->ptp_sts)
1563 return;
1565 if (xfer->timestamped)
1566 return;
1568 if (progress > xfer->ptp_sts_word_pre)
1569 return;
1571 /* Capture the resolution of the timestamp */
1572 xfer->ptp_sts_word_pre = progress;
1574 if (irqs_off) {
1575 local_irq_save(ctlr->irq_flags);
1576 preempt_disable();
1579 ptp_read_system_prets(xfer->ptp_sts);
1581 EXPORT_SYMBOL_GPL(spi_take_timestamp_pre);
1584 * spi_take_timestamp_post - helper for drivers to collect the end of the
1585 * TX timestamp for the requested byte from the SPI
1586 * transfer. Can be called with an arbitrary
1587 * frequency: only the first call where @tx exceeds
1588 * or is equal to the requested word will be
1589 * timestamped.
1590 * @ctlr: Pointer to the spi_controller structure of the driver
1591 * @xfer: Pointer to the transfer being timestamped
1592 * @progress: How many words (not bytes) have been transferred so far
1593 * @irqs_off: If true, will re-enable IRQs and preemption for the local CPU.
1595 void spi_take_timestamp_post(struct spi_controller *ctlr,
1596 struct spi_transfer *xfer,
1597 size_t progress, bool irqs_off)
1599 if (!xfer->ptp_sts)
1600 return;
1602 if (xfer->timestamped)
1603 return;
1605 if (progress < xfer->ptp_sts_word_post)
1606 return;
1608 ptp_read_system_postts(xfer->ptp_sts);
1610 if (irqs_off) {
1611 local_irq_restore(ctlr->irq_flags);
1612 preempt_enable();
1615 /* Capture the resolution of the timestamp */
1616 xfer->ptp_sts_word_post = progress;
1618 xfer->timestamped = true;
1620 EXPORT_SYMBOL_GPL(spi_take_timestamp_post);
1623 * spi_set_thread_rt - set the controller to pump at realtime priority
1624 * @ctlr: controller to boost priority of
1626 * This can be called because the controller requested realtime priority
1627 * (by setting the ->rt value before calling spi_register_controller()) or
1628 * because a device on the bus said that its transfers needed realtime
1629 * priority.
1631 * NOTE: at the moment if any device on a bus says it needs realtime then
1632 * the thread will be at realtime priority for all transfers on that
1633 * controller. If this eventually becomes a problem we may see if we can
1634 * find a way to boost the priority only temporarily during relevant
1635 * transfers.
1637 static void spi_set_thread_rt(struct spi_controller *ctlr)
1639 dev_info(&ctlr->dev,
1640 "will run message pump with realtime priority\n");
1641 sched_set_fifo(ctlr->kworker->task);
1644 static int spi_init_queue(struct spi_controller *ctlr)
1646 ctlr->running = false;
1647 ctlr->busy = false;
1649 ctlr->kworker = kthread_create_worker(0, dev_name(&ctlr->dev));
1650 if (IS_ERR(ctlr->kworker)) {
1651 dev_err(&ctlr->dev, "failed to create message pump kworker\n");
1652 return PTR_ERR(ctlr->kworker);
1655 kthread_init_work(&ctlr->pump_messages, spi_pump_messages);
1658 * Controller config will indicate if this controller should run the
1659 * message pump with high (realtime) priority to reduce the transfer
1660 * latency on the bus by minimising the delay between a transfer
1661 * request and the scheduling of the message pump thread. Without this
1662 * setting the message pump thread will remain at default priority.
1664 if (ctlr->rt)
1665 spi_set_thread_rt(ctlr);
1667 return 0;
1671 * spi_get_next_queued_message() - called by driver to check for queued
1672 * messages
1673 * @ctlr: the controller to check for queued messages
1675 * If there are more messages in the queue, the next message is returned from
1676 * this call.
1678 * Return: the next message in the queue, else NULL if the queue is empty.
1680 struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr)
1682 struct spi_message *next;
1683 unsigned long flags;
1685 /* get a pointer to the next message, if any */
1686 spin_lock_irqsave(&ctlr->queue_lock, flags);
1687 next = list_first_entry_or_null(&ctlr->queue, struct spi_message,
1688 queue);
1689 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1691 return next;
1693 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1696 * spi_finalize_current_message() - the current message is complete
1697 * @ctlr: the controller to return the message to
1699 * Called by the driver to notify the core that the message in the front of the
1700 * queue is complete and can be removed from the queue.
1702 void spi_finalize_current_message(struct spi_controller *ctlr)
1704 struct spi_transfer *xfer;
1705 struct spi_message *mesg;
1706 unsigned long flags;
1707 int ret;
1709 spin_lock_irqsave(&ctlr->queue_lock, flags);
1710 mesg = ctlr->cur_msg;
1711 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1713 if (!ctlr->ptp_sts_supported && !ctlr->transfer_one) {
1714 list_for_each_entry(xfer, &mesg->transfers, transfer_list) {
1715 ptp_read_system_postts(xfer->ptp_sts);
1716 xfer->ptp_sts_word_post = xfer->len;
1720 if (unlikely(ctlr->ptp_sts_supported))
1721 list_for_each_entry(xfer, &mesg->transfers, transfer_list)
1722 WARN_ON_ONCE(xfer->ptp_sts && !xfer->timestamped);
1724 spi_unmap_msg(ctlr, mesg);
1726 /* In the prepare_messages callback the spi bus has the opportunity to
1727 * split a transfer to smaller chunks.
1728 * Release splited transfers here since spi_map_msg is done on the
1729 * splited transfers.
1731 spi_res_release(ctlr, mesg);
1733 if (ctlr->cur_msg_prepared && ctlr->unprepare_message) {
1734 ret = ctlr->unprepare_message(ctlr, mesg);
1735 if (ret) {
1736 dev_err(&ctlr->dev, "failed to unprepare message: %d\n",
1737 ret);
1741 spin_lock_irqsave(&ctlr->queue_lock, flags);
1742 ctlr->cur_msg = NULL;
1743 ctlr->cur_msg_prepared = false;
1744 ctlr->fallback = false;
1745 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1746 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1748 trace_spi_message_done(mesg);
1750 mesg->state = NULL;
1751 if (mesg->complete)
1752 mesg->complete(mesg->context);
1754 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1756 static int spi_start_queue(struct spi_controller *ctlr)
1758 unsigned long flags;
1760 spin_lock_irqsave(&ctlr->queue_lock, flags);
1762 if (ctlr->running || ctlr->busy) {
1763 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1764 return -EBUSY;
1767 ctlr->running = true;
1768 ctlr->cur_msg = NULL;
1769 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1771 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1773 return 0;
1776 static int spi_stop_queue(struct spi_controller *ctlr)
1778 unsigned long flags;
1779 unsigned limit = 500;
1780 int ret = 0;
1782 spin_lock_irqsave(&ctlr->queue_lock, flags);
1785 * This is a bit lame, but is optimized for the common execution path.
1786 * A wait_queue on the ctlr->busy could be used, but then the common
1787 * execution path (pump_messages) would be required to call wake_up or
1788 * friends on every SPI message. Do this instead.
1790 while ((!list_empty(&ctlr->queue) || ctlr->busy) && limit--) {
1791 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1792 usleep_range(10000, 11000);
1793 spin_lock_irqsave(&ctlr->queue_lock, flags);
1796 if (!list_empty(&ctlr->queue) || ctlr->busy)
1797 ret = -EBUSY;
1798 else
1799 ctlr->running = false;
1801 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1803 if (ret) {
1804 dev_warn(&ctlr->dev, "could not stop message queue\n");
1805 return ret;
1807 return ret;
1810 static int spi_destroy_queue(struct spi_controller *ctlr)
1812 int ret;
1814 ret = spi_stop_queue(ctlr);
1817 * kthread_flush_worker will block until all work is done.
1818 * If the reason that stop_queue timed out is that the work will never
1819 * finish, then it does no good to call flush/stop thread, so
1820 * return anyway.
1822 if (ret) {
1823 dev_err(&ctlr->dev, "problem destroying queue\n");
1824 return ret;
1827 kthread_destroy_worker(ctlr->kworker);
1829 return 0;
1832 static int __spi_queued_transfer(struct spi_device *spi,
1833 struct spi_message *msg,
1834 bool need_pump)
1836 struct spi_controller *ctlr = spi->controller;
1837 unsigned long flags;
1839 spin_lock_irqsave(&ctlr->queue_lock, flags);
1841 if (!ctlr->running) {
1842 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1843 return -ESHUTDOWN;
1845 msg->actual_length = 0;
1846 msg->status = -EINPROGRESS;
1848 list_add_tail(&msg->queue, &ctlr->queue);
1849 if (!ctlr->busy && need_pump)
1850 kthread_queue_work(ctlr->kworker, &ctlr->pump_messages);
1852 spin_unlock_irqrestore(&ctlr->queue_lock, flags);
1853 return 0;
1857 * spi_queued_transfer - transfer function for queued transfers
1858 * @spi: spi device which is requesting transfer
1859 * @msg: spi message which is to handled is queued to driver queue
1861 * Return: zero on success, else a negative error code.
1863 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1865 return __spi_queued_transfer(spi, msg, true);
1868 static int spi_controller_initialize_queue(struct spi_controller *ctlr)
1870 int ret;
1872 ctlr->transfer = spi_queued_transfer;
1873 if (!ctlr->transfer_one_message)
1874 ctlr->transfer_one_message = spi_transfer_one_message;
1876 /* Initialize and start queue */
1877 ret = spi_init_queue(ctlr);
1878 if (ret) {
1879 dev_err(&ctlr->dev, "problem initializing queue\n");
1880 goto err_init_queue;
1882 ctlr->queued = true;
1883 ret = spi_start_queue(ctlr);
1884 if (ret) {
1885 dev_err(&ctlr->dev, "problem starting queue\n");
1886 goto err_start_queue;
1889 return 0;
1891 err_start_queue:
1892 spi_destroy_queue(ctlr);
1893 err_init_queue:
1894 return ret;
1898 * spi_flush_queue - Send all pending messages in the queue from the callers'
1899 * context
1900 * @ctlr: controller to process queue for
1902 * This should be used when one wants to ensure all pending messages have been
1903 * sent before doing something. Is used by the spi-mem code to make sure SPI
1904 * memory operations do not preempt regular SPI transfers that have been queued
1905 * before the spi-mem operation.
1907 void spi_flush_queue(struct spi_controller *ctlr)
1909 if (ctlr->transfer == spi_queued_transfer)
1910 __spi_pump_messages(ctlr, false);
1913 /*-------------------------------------------------------------------------*/
1915 #if defined(CONFIG_OF)
1916 static int of_spi_parse_dt(struct spi_controller *ctlr, struct spi_device *spi,
1917 struct device_node *nc)
1919 u32 value;
1920 int rc;
1922 /* Mode (clock phase/polarity/etc.) */
1923 if (of_property_read_bool(nc, "spi-cpha"))
1924 spi->mode |= SPI_CPHA;
1925 if (of_property_read_bool(nc, "spi-cpol"))
1926 spi->mode |= SPI_CPOL;
1927 if (of_property_read_bool(nc, "spi-3wire"))
1928 spi->mode |= SPI_3WIRE;
1929 if (of_property_read_bool(nc, "spi-lsb-first"))
1930 spi->mode |= SPI_LSB_FIRST;
1931 if (of_property_read_bool(nc, "spi-cs-high"))
1932 spi->mode |= SPI_CS_HIGH;
1934 /* Device DUAL/QUAD mode */
1935 if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1936 switch (value) {
1937 case 1:
1938 break;
1939 case 2:
1940 spi->mode |= SPI_TX_DUAL;
1941 break;
1942 case 4:
1943 spi->mode |= SPI_TX_QUAD;
1944 break;
1945 case 8:
1946 spi->mode |= SPI_TX_OCTAL;
1947 break;
1948 default:
1949 dev_warn(&ctlr->dev,
1950 "spi-tx-bus-width %d not supported\n",
1951 value);
1952 break;
1956 if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1957 switch (value) {
1958 case 1:
1959 break;
1960 case 2:
1961 spi->mode |= SPI_RX_DUAL;
1962 break;
1963 case 4:
1964 spi->mode |= SPI_RX_QUAD;
1965 break;
1966 case 8:
1967 spi->mode |= SPI_RX_OCTAL;
1968 break;
1969 default:
1970 dev_warn(&ctlr->dev,
1971 "spi-rx-bus-width %d not supported\n",
1972 value);
1973 break;
1977 if (spi_controller_is_slave(ctlr)) {
1978 if (!of_node_name_eq(nc, "slave")) {
1979 dev_err(&ctlr->dev, "%pOF is not called 'slave'\n",
1980 nc);
1981 return -EINVAL;
1983 return 0;
1986 /* Device address */
1987 rc = of_property_read_u32(nc, "reg", &value);
1988 if (rc) {
1989 dev_err(&ctlr->dev, "%pOF has no valid 'reg' property (%d)\n",
1990 nc, rc);
1991 return rc;
1993 spi->chip_select = value;
1996 * For descriptors associated with the device, polarity inversion is
1997 * handled in the gpiolib, so all gpio chip selects are "active high"
1998 * in the logical sense, the gpiolib will invert the line if need be.
2000 if ((ctlr->use_gpio_descriptors) && ctlr->cs_gpiods &&
2001 ctlr->cs_gpiods[spi->chip_select])
2002 spi->mode |= SPI_CS_HIGH;
2004 /* Device speed */
2005 if (!of_property_read_u32(nc, "spi-max-frequency", &value))
2006 spi->max_speed_hz = value;
2008 return 0;
2011 static struct spi_device *
2012 of_register_spi_device(struct spi_controller *ctlr, struct device_node *nc)
2014 struct spi_device *spi;
2015 int rc;
2017 /* Alloc an spi_device */
2018 spi = spi_alloc_device(ctlr);
2019 if (!spi) {
2020 dev_err(&ctlr->dev, "spi_device alloc error for %pOF\n", nc);
2021 rc = -ENOMEM;
2022 goto err_out;
2025 /* Select device driver */
2026 rc = of_modalias_node(nc, spi->modalias,
2027 sizeof(spi->modalias));
2028 if (rc < 0) {
2029 dev_err(&ctlr->dev, "cannot find modalias for %pOF\n", nc);
2030 goto err_out;
2033 rc = of_spi_parse_dt(ctlr, spi, nc);
2034 if (rc)
2035 goto err_out;
2037 /* Store a pointer to the node in the device structure */
2038 of_node_get(nc);
2039 spi->dev.of_node = nc;
2041 /* Register the new device */
2042 rc = spi_add_device(spi);
2043 if (rc) {
2044 dev_err(&ctlr->dev, "spi_device register error %pOF\n", nc);
2045 goto err_of_node_put;
2048 return spi;
2050 err_of_node_put:
2051 of_node_put(nc);
2052 err_out:
2053 spi_dev_put(spi);
2054 return ERR_PTR(rc);
2058 * of_register_spi_devices() - Register child devices onto the SPI bus
2059 * @ctlr: Pointer to spi_controller device
2061 * Registers an spi_device for each child node of controller node which
2062 * represents a valid SPI slave.
2064 static void of_register_spi_devices(struct spi_controller *ctlr)
2066 struct spi_device *spi;
2067 struct device_node *nc;
2069 if (!ctlr->dev.of_node)
2070 return;
2072 for_each_available_child_of_node(ctlr->dev.of_node, nc) {
2073 if (of_node_test_and_set_flag(nc, OF_POPULATED))
2074 continue;
2075 spi = of_register_spi_device(ctlr, nc);
2076 if (IS_ERR(spi)) {
2077 dev_warn(&ctlr->dev,
2078 "Failed to create SPI device for %pOF\n", nc);
2079 of_node_clear_flag(nc, OF_POPULATED);
2083 #else
2084 static void of_register_spi_devices(struct spi_controller *ctlr) { }
2085 #endif
2087 #ifdef CONFIG_ACPI
2088 struct acpi_spi_lookup {
2089 struct spi_controller *ctlr;
2090 u32 max_speed_hz;
2091 u32 mode;
2092 int irq;
2093 u8 bits_per_word;
2094 u8 chip_select;
2097 static void acpi_spi_parse_apple_properties(struct acpi_device *dev,
2098 struct acpi_spi_lookup *lookup)
2100 const union acpi_object *obj;
2102 if (!x86_apple_machine)
2103 return;
2105 if (!acpi_dev_get_property(dev, "spiSclkPeriod", ACPI_TYPE_BUFFER, &obj)
2106 && obj->buffer.length >= 4)
2107 lookup->max_speed_hz = NSEC_PER_SEC / *(u32 *)obj->buffer.pointer;
2109 if (!acpi_dev_get_property(dev, "spiWordSize", ACPI_TYPE_BUFFER, &obj)
2110 && obj->buffer.length == 8)
2111 lookup->bits_per_word = *(u64 *)obj->buffer.pointer;
2113 if (!acpi_dev_get_property(dev, "spiBitOrder", ACPI_TYPE_BUFFER, &obj)
2114 && obj->buffer.length == 8 && !*(u64 *)obj->buffer.pointer)
2115 lookup->mode |= SPI_LSB_FIRST;
2117 if (!acpi_dev_get_property(dev, "spiSPO", ACPI_TYPE_BUFFER, &obj)
2118 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2119 lookup->mode |= SPI_CPOL;
2121 if (!acpi_dev_get_property(dev, "spiSPH", ACPI_TYPE_BUFFER, &obj)
2122 && obj->buffer.length == 8 && *(u64 *)obj->buffer.pointer)
2123 lookup->mode |= SPI_CPHA;
2126 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
2128 struct acpi_spi_lookup *lookup = data;
2129 struct spi_controller *ctlr = lookup->ctlr;
2131 if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
2132 struct acpi_resource_spi_serialbus *sb;
2133 acpi_handle parent_handle;
2134 acpi_status status;
2136 sb = &ares->data.spi_serial_bus;
2137 if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
2139 status = acpi_get_handle(NULL,
2140 sb->resource_source.string_ptr,
2141 &parent_handle);
2143 if (ACPI_FAILURE(status) ||
2144 ACPI_HANDLE(ctlr->dev.parent) != parent_handle)
2145 return -ENODEV;
2148 * ACPI DeviceSelection numbering is handled by the
2149 * host controller driver in Windows and can vary
2150 * from driver to driver. In Linux we always expect
2151 * 0 .. max - 1 so we need to ask the driver to
2152 * translate between the two schemes.
2154 if (ctlr->fw_translate_cs) {
2155 int cs = ctlr->fw_translate_cs(ctlr,
2156 sb->device_selection);
2157 if (cs < 0)
2158 return cs;
2159 lookup->chip_select = cs;
2160 } else {
2161 lookup->chip_select = sb->device_selection;
2164 lookup->max_speed_hz = sb->connection_speed;
2165 lookup->bits_per_word = sb->data_bit_length;
2167 if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
2168 lookup->mode |= SPI_CPHA;
2169 if (sb->clock_polarity == ACPI_SPI_START_HIGH)
2170 lookup->mode |= SPI_CPOL;
2171 if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
2172 lookup->mode |= SPI_CS_HIGH;
2174 } else if (lookup->irq < 0) {
2175 struct resource r;
2177 if (acpi_dev_resource_interrupt(ares, 0, &r))
2178 lookup->irq = r.start;
2181 /* Always tell the ACPI core to skip this resource */
2182 return 1;
2185 static acpi_status acpi_register_spi_device(struct spi_controller *ctlr,
2186 struct acpi_device *adev)
2188 acpi_handle parent_handle = NULL;
2189 struct list_head resource_list;
2190 struct acpi_spi_lookup lookup = {};
2191 struct spi_device *spi;
2192 int ret;
2194 if (acpi_bus_get_status(adev) || !adev->status.present ||
2195 acpi_device_enumerated(adev))
2196 return AE_OK;
2198 lookup.ctlr = ctlr;
2199 lookup.irq = -1;
2201 INIT_LIST_HEAD(&resource_list);
2202 ret = acpi_dev_get_resources(adev, &resource_list,
2203 acpi_spi_add_resource, &lookup);
2204 acpi_dev_free_resource_list(&resource_list);
2206 if (ret < 0)
2207 /* found SPI in _CRS but it points to another controller */
2208 return AE_OK;
2210 if (!lookup.max_speed_hz &&
2211 !ACPI_FAILURE(acpi_get_parent(adev->handle, &parent_handle)) &&
2212 ACPI_HANDLE(ctlr->dev.parent) == parent_handle) {
2213 /* Apple does not use _CRS but nested devices for SPI slaves */
2214 acpi_spi_parse_apple_properties(adev, &lookup);
2217 if (!lookup.max_speed_hz)
2218 return AE_OK;
2220 spi = spi_alloc_device(ctlr);
2221 if (!spi) {
2222 dev_err(&ctlr->dev, "failed to allocate SPI device for %s\n",
2223 dev_name(&adev->dev));
2224 return AE_NO_MEMORY;
2228 ACPI_COMPANION_SET(&spi->dev, adev);
2229 spi->max_speed_hz = lookup.max_speed_hz;
2230 spi->mode |= lookup.mode;
2231 spi->irq = lookup.irq;
2232 spi->bits_per_word = lookup.bits_per_word;
2233 spi->chip_select = lookup.chip_select;
2235 acpi_set_modalias(adev, acpi_device_hid(adev), spi->modalias,
2236 sizeof(spi->modalias));
2238 if (spi->irq < 0)
2239 spi->irq = acpi_dev_gpio_irq_get(adev, 0);
2241 acpi_device_set_enumerated(adev);
2243 adev->power.flags.ignore_parent = true;
2244 if (spi_add_device(spi)) {
2245 adev->power.flags.ignore_parent = false;
2246 dev_err(&ctlr->dev, "failed to add SPI device %s from ACPI\n",
2247 dev_name(&adev->dev));
2248 spi_dev_put(spi);
2251 return AE_OK;
2254 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
2255 void *data, void **return_value)
2257 struct spi_controller *ctlr = data;
2258 struct acpi_device *adev;
2260 if (acpi_bus_get_device(handle, &adev))
2261 return AE_OK;
2263 return acpi_register_spi_device(ctlr, adev);
2266 #define SPI_ACPI_ENUMERATE_MAX_DEPTH 32
2268 static void acpi_register_spi_devices(struct spi_controller *ctlr)
2270 acpi_status status;
2271 acpi_handle handle;
2273 handle = ACPI_HANDLE(ctlr->dev.parent);
2274 if (!handle)
2275 return;
2277 status = acpi_walk_namespace(ACPI_TYPE_DEVICE, ACPI_ROOT_OBJECT,
2278 SPI_ACPI_ENUMERATE_MAX_DEPTH,
2279 acpi_spi_add_device, NULL, ctlr, NULL);
2280 if (ACPI_FAILURE(status))
2281 dev_warn(&ctlr->dev, "failed to enumerate SPI slaves\n");
2283 #else
2284 static inline void acpi_register_spi_devices(struct spi_controller *ctlr) {}
2285 #endif /* CONFIG_ACPI */
2287 static void spi_controller_release(struct device *dev)
2289 struct spi_controller *ctlr;
2291 ctlr = container_of(dev, struct spi_controller, dev);
2292 kfree(ctlr);
2295 static struct class spi_master_class = {
2296 .name = "spi_master",
2297 .owner = THIS_MODULE,
2298 .dev_release = spi_controller_release,
2299 .dev_groups = spi_master_groups,
2302 #ifdef CONFIG_SPI_SLAVE
2304 * spi_slave_abort - abort the ongoing transfer request on an SPI slave
2305 * controller
2306 * @spi: device used for the current transfer
2308 int spi_slave_abort(struct spi_device *spi)
2310 struct spi_controller *ctlr = spi->controller;
2312 if (spi_controller_is_slave(ctlr) && ctlr->slave_abort)
2313 return ctlr->slave_abort(ctlr);
2315 return -ENOTSUPP;
2317 EXPORT_SYMBOL_GPL(spi_slave_abort);
2319 static int match_true(struct device *dev, void *data)
2321 return 1;
2324 static ssize_t slave_show(struct device *dev, struct device_attribute *attr,
2325 char *buf)
2327 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2328 dev);
2329 struct device *child;
2331 child = device_find_child(&ctlr->dev, NULL, match_true);
2332 return sprintf(buf, "%s\n",
2333 child ? to_spi_device(child)->modalias : NULL);
2336 static ssize_t slave_store(struct device *dev, struct device_attribute *attr,
2337 const char *buf, size_t count)
2339 struct spi_controller *ctlr = container_of(dev, struct spi_controller,
2340 dev);
2341 struct spi_device *spi;
2342 struct device *child;
2343 char name[32];
2344 int rc;
2346 rc = sscanf(buf, "%31s", name);
2347 if (rc != 1 || !name[0])
2348 return -EINVAL;
2350 child = device_find_child(&ctlr->dev, NULL, match_true);
2351 if (child) {
2352 /* Remove registered slave */
2353 device_unregister(child);
2354 put_device(child);
2357 if (strcmp(name, "(null)")) {
2358 /* Register new slave */
2359 spi = spi_alloc_device(ctlr);
2360 if (!spi)
2361 return -ENOMEM;
2363 strlcpy(spi->modalias, name, sizeof(spi->modalias));
2365 rc = spi_add_device(spi);
2366 if (rc) {
2367 spi_dev_put(spi);
2368 return rc;
2372 return count;
2375 static DEVICE_ATTR_RW(slave);
2377 static struct attribute *spi_slave_attrs[] = {
2378 &dev_attr_slave.attr,
2379 NULL,
2382 static const struct attribute_group spi_slave_group = {
2383 .attrs = spi_slave_attrs,
2386 static const struct attribute_group *spi_slave_groups[] = {
2387 &spi_controller_statistics_group,
2388 &spi_slave_group,
2389 NULL,
2392 static struct class spi_slave_class = {
2393 .name = "spi_slave",
2394 .owner = THIS_MODULE,
2395 .dev_release = spi_controller_release,
2396 .dev_groups = spi_slave_groups,
2398 #else
2399 extern struct class spi_slave_class; /* dummy */
2400 #endif
2403 * __spi_alloc_controller - allocate an SPI master or slave controller
2404 * @dev: the controller, possibly using the platform_bus
2405 * @size: how much zeroed driver-private data to allocate; the pointer to this
2406 * memory is in the driver_data field of the returned device, accessible
2407 * with spi_controller_get_devdata(); the memory is cacheline aligned;
2408 * drivers granting DMA access to portions of their private data need to
2409 * round up @size using ALIGN(size, dma_get_cache_alignment()).
2410 * @slave: flag indicating whether to allocate an SPI master (false) or SPI
2411 * slave (true) controller
2412 * Context: can sleep
2414 * This call is used only by SPI controller drivers, which are the
2415 * only ones directly touching chip registers. It's how they allocate
2416 * an spi_controller structure, prior to calling spi_register_controller().
2418 * This must be called from context that can sleep.
2420 * The caller is responsible for assigning the bus number and initializing the
2421 * controller's methods before calling spi_register_controller(); and (after
2422 * errors adding the device) calling spi_controller_put() to prevent a memory
2423 * leak.
2425 * Return: the SPI controller structure on success, else NULL.
2427 struct spi_controller *__spi_alloc_controller(struct device *dev,
2428 unsigned int size, bool slave)
2430 struct spi_controller *ctlr;
2431 size_t ctlr_size = ALIGN(sizeof(*ctlr), dma_get_cache_alignment());
2433 if (!dev)
2434 return NULL;
2436 ctlr = kzalloc(size + ctlr_size, GFP_KERNEL);
2437 if (!ctlr)
2438 return NULL;
2440 device_initialize(&ctlr->dev);
2441 ctlr->bus_num = -1;
2442 ctlr->num_chipselect = 1;
2443 ctlr->slave = slave;
2444 if (IS_ENABLED(CONFIG_SPI_SLAVE) && slave)
2445 ctlr->dev.class = &spi_slave_class;
2446 else
2447 ctlr->dev.class = &spi_master_class;
2448 ctlr->dev.parent = dev;
2449 pm_suspend_ignore_children(&ctlr->dev, true);
2450 spi_controller_set_devdata(ctlr, (void *)ctlr + ctlr_size);
2452 return ctlr;
2454 EXPORT_SYMBOL_GPL(__spi_alloc_controller);
2456 #ifdef CONFIG_OF
2457 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2459 int nb, i, *cs;
2460 struct device_node *np = ctlr->dev.of_node;
2462 if (!np)
2463 return 0;
2465 nb = of_gpio_named_count(np, "cs-gpios");
2466 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2468 /* Return error only for an incorrectly formed cs-gpios property */
2469 if (nb == 0 || nb == -ENOENT)
2470 return 0;
2471 else if (nb < 0)
2472 return nb;
2474 cs = devm_kcalloc(&ctlr->dev, ctlr->num_chipselect, sizeof(int),
2475 GFP_KERNEL);
2476 ctlr->cs_gpios = cs;
2478 if (!ctlr->cs_gpios)
2479 return -ENOMEM;
2481 for (i = 0; i < ctlr->num_chipselect; i++)
2482 cs[i] = -ENOENT;
2484 for (i = 0; i < nb; i++)
2485 cs[i] = of_get_named_gpio(np, "cs-gpios", i);
2487 return 0;
2489 #else
2490 static int of_spi_get_gpio_numbers(struct spi_controller *ctlr)
2492 return 0;
2494 #endif
2497 * spi_get_gpio_descs() - grab chip select GPIOs for the master
2498 * @ctlr: The SPI master to grab GPIO descriptors for
2500 static int spi_get_gpio_descs(struct spi_controller *ctlr)
2502 int nb, i;
2503 struct gpio_desc **cs;
2504 struct device *dev = &ctlr->dev;
2505 unsigned long native_cs_mask = 0;
2506 unsigned int num_cs_gpios = 0;
2508 nb = gpiod_count(dev, "cs");
2509 ctlr->num_chipselect = max_t(int, nb, ctlr->num_chipselect);
2511 /* No GPIOs at all is fine, else return the error */
2512 if (nb == 0 || nb == -ENOENT)
2513 return 0;
2514 else if (nb < 0)
2515 return nb;
2517 cs = devm_kcalloc(dev, ctlr->num_chipselect, sizeof(*cs),
2518 GFP_KERNEL);
2519 if (!cs)
2520 return -ENOMEM;
2521 ctlr->cs_gpiods = cs;
2523 for (i = 0; i < nb; i++) {
2525 * Most chipselects are active low, the inverted
2526 * semantics are handled by special quirks in gpiolib,
2527 * so initializing them GPIOD_OUT_LOW here means
2528 * "unasserted", in most cases this will drive the physical
2529 * line high.
2531 cs[i] = devm_gpiod_get_index_optional(dev, "cs", i,
2532 GPIOD_OUT_LOW);
2533 if (IS_ERR(cs[i]))
2534 return PTR_ERR(cs[i]);
2536 if (cs[i]) {
2538 * If we find a CS GPIO, name it after the device and
2539 * chip select line.
2541 char *gpioname;
2543 gpioname = devm_kasprintf(dev, GFP_KERNEL, "%s CS%d",
2544 dev_name(dev), i);
2545 if (!gpioname)
2546 return -ENOMEM;
2547 gpiod_set_consumer_name(cs[i], gpioname);
2548 num_cs_gpios++;
2549 continue;
2552 if (ctlr->max_native_cs && i >= ctlr->max_native_cs) {
2553 dev_err(dev, "Invalid native chip select %d\n", i);
2554 return -EINVAL;
2556 native_cs_mask |= BIT(i);
2559 ctlr->unused_native_cs = ffz(native_cs_mask);
2560 if (num_cs_gpios && ctlr->max_native_cs &&
2561 ctlr->unused_native_cs >= ctlr->max_native_cs) {
2562 dev_err(dev, "No unused native chip select available\n");
2563 return -EINVAL;
2566 return 0;
2569 static int spi_controller_check_ops(struct spi_controller *ctlr)
2572 * The controller may implement only the high-level SPI-memory like
2573 * operations if it does not support regular SPI transfers, and this is
2574 * valid use case.
2575 * If ->mem_ops is NULL, we request that at least one of the
2576 * ->transfer_xxx() method be implemented.
2578 if (ctlr->mem_ops) {
2579 if (!ctlr->mem_ops->exec_op)
2580 return -EINVAL;
2581 } else if (!ctlr->transfer && !ctlr->transfer_one &&
2582 !ctlr->transfer_one_message) {
2583 return -EINVAL;
2586 return 0;
2590 * spi_register_controller - register SPI master or slave controller
2591 * @ctlr: initialized master, originally from spi_alloc_master() or
2592 * spi_alloc_slave()
2593 * Context: can sleep
2595 * SPI controllers connect to their drivers using some non-SPI bus,
2596 * such as the platform bus. The final stage of probe() in that code
2597 * includes calling spi_register_controller() to hook up to this SPI bus glue.
2599 * SPI controllers use board specific (often SOC specific) bus numbers,
2600 * and board-specific addressing for SPI devices combines those numbers
2601 * with chip select numbers. Since SPI does not directly support dynamic
2602 * device identification, boards need configuration tables telling which
2603 * chip is at which address.
2605 * This must be called from context that can sleep. It returns zero on
2606 * success, else a negative error code (dropping the controller's refcount).
2607 * After a successful return, the caller is responsible for calling
2608 * spi_unregister_controller().
2610 * Return: zero on success, else a negative error code.
2612 int spi_register_controller(struct spi_controller *ctlr)
2614 struct device *dev = ctlr->dev.parent;
2615 struct boardinfo *bi;
2616 int status;
2617 int id, first_dynamic;
2619 if (!dev)
2620 return -ENODEV;
2623 * Make sure all necessary hooks are implemented before registering
2624 * the SPI controller.
2626 status = spi_controller_check_ops(ctlr);
2627 if (status)
2628 return status;
2630 if (ctlr->bus_num >= 0) {
2631 /* devices with a fixed bus num must check-in with the num */
2632 mutex_lock(&board_lock);
2633 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2634 ctlr->bus_num + 1, GFP_KERNEL);
2635 mutex_unlock(&board_lock);
2636 if (WARN(id < 0, "couldn't get idr"))
2637 return id == -ENOSPC ? -EBUSY : id;
2638 ctlr->bus_num = id;
2639 } else if (ctlr->dev.of_node) {
2640 /* allocate dynamic bus number using Linux idr */
2641 id = of_alias_get_id(ctlr->dev.of_node, "spi");
2642 if (id >= 0) {
2643 ctlr->bus_num = id;
2644 mutex_lock(&board_lock);
2645 id = idr_alloc(&spi_master_idr, ctlr, ctlr->bus_num,
2646 ctlr->bus_num + 1, GFP_KERNEL);
2647 mutex_unlock(&board_lock);
2648 if (WARN(id < 0, "couldn't get idr"))
2649 return id == -ENOSPC ? -EBUSY : id;
2652 if (ctlr->bus_num < 0) {
2653 first_dynamic = of_alias_get_highest_id("spi");
2654 if (first_dynamic < 0)
2655 first_dynamic = 0;
2656 else
2657 first_dynamic++;
2659 mutex_lock(&board_lock);
2660 id = idr_alloc(&spi_master_idr, ctlr, first_dynamic,
2661 0, GFP_KERNEL);
2662 mutex_unlock(&board_lock);
2663 if (WARN(id < 0, "couldn't get idr"))
2664 return id;
2665 ctlr->bus_num = id;
2667 INIT_LIST_HEAD(&ctlr->queue);
2668 spin_lock_init(&ctlr->queue_lock);
2669 spin_lock_init(&ctlr->bus_lock_spinlock);
2670 mutex_init(&ctlr->bus_lock_mutex);
2671 mutex_init(&ctlr->io_mutex);
2672 ctlr->bus_lock_flag = 0;
2673 init_completion(&ctlr->xfer_completion);
2674 if (!ctlr->max_dma_len)
2675 ctlr->max_dma_len = INT_MAX;
2677 /* register the device, then userspace will see it.
2678 * registration fails if the bus ID is in use.
2680 dev_set_name(&ctlr->dev, "spi%u", ctlr->bus_num);
2682 if (!spi_controller_is_slave(ctlr)) {
2683 if (ctlr->use_gpio_descriptors) {
2684 status = spi_get_gpio_descs(ctlr);
2685 if (status)
2686 goto free_bus_id;
2688 * A controller using GPIO descriptors always
2689 * supports SPI_CS_HIGH if need be.
2691 ctlr->mode_bits |= SPI_CS_HIGH;
2692 } else {
2693 /* Legacy code path for GPIOs from DT */
2694 status = of_spi_get_gpio_numbers(ctlr);
2695 if (status)
2696 goto free_bus_id;
2701 * Even if it's just one always-selected device, there must
2702 * be at least one chipselect.
2704 if (!ctlr->num_chipselect) {
2705 status = -EINVAL;
2706 goto free_bus_id;
2709 status = device_add(&ctlr->dev);
2710 if (status < 0)
2711 goto free_bus_id;
2712 dev_dbg(dev, "registered %s %s\n",
2713 spi_controller_is_slave(ctlr) ? "slave" : "master",
2714 dev_name(&ctlr->dev));
2717 * If we're using a queued driver, start the queue. Note that we don't
2718 * need the queueing logic if the driver is only supporting high-level
2719 * memory operations.
2721 if (ctlr->transfer) {
2722 dev_info(dev, "controller is unqueued, this is deprecated\n");
2723 } else if (ctlr->transfer_one || ctlr->transfer_one_message) {
2724 status = spi_controller_initialize_queue(ctlr);
2725 if (status) {
2726 device_del(&ctlr->dev);
2727 goto free_bus_id;
2730 /* add statistics */
2731 spin_lock_init(&ctlr->statistics.lock);
2733 mutex_lock(&board_lock);
2734 list_add_tail(&ctlr->list, &spi_controller_list);
2735 list_for_each_entry(bi, &board_list, list)
2736 spi_match_controller_to_boardinfo(ctlr, &bi->board_info);
2737 mutex_unlock(&board_lock);
2739 /* Register devices from the device tree and ACPI */
2740 of_register_spi_devices(ctlr);
2741 acpi_register_spi_devices(ctlr);
2742 return status;
2744 free_bus_id:
2745 mutex_lock(&board_lock);
2746 idr_remove(&spi_master_idr, ctlr->bus_num);
2747 mutex_unlock(&board_lock);
2748 return status;
2750 EXPORT_SYMBOL_GPL(spi_register_controller);
2752 static void devm_spi_unregister(struct device *dev, void *res)
2754 spi_unregister_controller(*(struct spi_controller **)res);
2758 * devm_spi_register_controller - register managed SPI master or slave
2759 * controller
2760 * @dev: device managing SPI controller
2761 * @ctlr: initialized controller, originally from spi_alloc_master() or
2762 * spi_alloc_slave()
2763 * Context: can sleep
2765 * Register a SPI device as with spi_register_controller() which will
2766 * automatically be unregistered and freed.
2768 * Return: zero on success, else a negative error code.
2770 int devm_spi_register_controller(struct device *dev,
2771 struct spi_controller *ctlr)
2773 struct spi_controller **ptr;
2774 int ret;
2776 ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
2777 if (!ptr)
2778 return -ENOMEM;
2780 ret = spi_register_controller(ctlr);
2781 if (!ret) {
2782 *ptr = ctlr;
2783 devres_add(dev, ptr);
2784 } else {
2785 devres_free(ptr);
2788 return ret;
2790 EXPORT_SYMBOL_GPL(devm_spi_register_controller);
2792 static int __unregister(struct device *dev, void *null)
2794 spi_unregister_device(to_spi_device(dev));
2795 return 0;
2799 * spi_unregister_controller - unregister SPI master or slave controller
2800 * @ctlr: the controller being unregistered
2801 * Context: can sleep
2803 * This call is used only by SPI controller drivers, which are the
2804 * only ones directly touching chip registers.
2806 * This must be called from context that can sleep.
2808 * Note that this function also drops a reference to the controller.
2810 void spi_unregister_controller(struct spi_controller *ctlr)
2812 struct spi_controller *found;
2813 int id = ctlr->bus_num;
2815 /* Prevent addition of new devices, unregister existing ones */
2816 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2817 mutex_lock(&spi_add_lock);
2819 device_for_each_child(&ctlr->dev, NULL, __unregister);
2821 /* First make sure that this controller was ever added */
2822 mutex_lock(&board_lock);
2823 found = idr_find(&spi_master_idr, id);
2824 mutex_unlock(&board_lock);
2825 if (ctlr->queued) {
2826 if (spi_destroy_queue(ctlr))
2827 dev_err(&ctlr->dev, "queue remove failed\n");
2829 mutex_lock(&board_lock);
2830 list_del(&ctlr->list);
2831 mutex_unlock(&board_lock);
2833 device_unregister(&ctlr->dev);
2834 /* free bus id */
2835 mutex_lock(&board_lock);
2836 if (found == ctlr)
2837 idr_remove(&spi_master_idr, id);
2838 mutex_unlock(&board_lock);
2840 if (IS_ENABLED(CONFIG_SPI_DYNAMIC))
2841 mutex_unlock(&spi_add_lock);
2843 EXPORT_SYMBOL_GPL(spi_unregister_controller);
2845 int spi_controller_suspend(struct spi_controller *ctlr)
2847 int ret;
2849 /* Basically no-ops for non-queued controllers */
2850 if (!ctlr->queued)
2851 return 0;
2853 ret = spi_stop_queue(ctlr);
2854 if (ret)
2855 dev_err(&ctlr->dev, "queue stop failed\n");
2857 return ret;
2859 EXPORT_SYMBOL_GPL(spi_controller_suspend);
2861 int spi_controller_resume(struct spi_controller *ctlr)
2863 int ret;
2865 if (!ctlr->queued)
2866 return 0;
2868 ret = spi_start_queue(ctlr);
2869 if (ret)
2870 dev_err(&ctlr->dev, "queue restart failed\n");
2872 return ret;
2874 EXPORT_SYMBOL_GPL(spi_controller_resume);
2876 static int __spi_controller_match(struct device *dev, const void *data)
2878 struct spi_controller *ctlr;
2879 const u16 *bus_num = data;
2881 ctlr = container_of(dev, struct spi_controller, dev);
2882 return ctlr->bus_num == *bus_num;
2886 * spi_busnum_to_master - look up master associated with bus_num
2887 * @bus_num: the master's bus number
2888 * Context: can sleep
2890 * This call may be used with devices that are registered after
2891 * arch init time. It returns a refcounted pointer to the relevant
2892 * spi_controller (which the caller must release), or NULL if there is
2893 * no such master registered.
2895 * Return: the SPI master structure on success, else NULL.
2897 struct spi_controller *spi_busnum_to_master(u16 bus_num)
2899 struct device *dev;
2900 struct spi_controller *ctlr = NULL;
2902 dev = class_find_device(&spi_master_class, NULL, &bus_num,
2903 __spi_controller_match);
2904 if (dev)
2905 ctlr = container_of(dev, struct spi_controller, dev);
2906 /* reference got in class_find_device */
2907 return ctlr;
2909 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2911 /*-------------------------------------------------------------------------*/
2913 /* Core methods for SPI resource management */
2916 * spi_res_alloc - allocate a spi resource that is life-cycle managed
2917 * during the processing of a spi_message while using
2918 * spi_transfer_one
2919 * @spi: the spi device for which we allocate memory
2920 * @release: the release code to execute for this resource
2921 * @size: size to alloc and return
2922 * @gfp: GFP allocation flags
2924 * Return: the pointer to the allocated data
2926 * This may get enhanced in the future to allocate from a memory pool
2927 * of the @spi_device or @spi_controller to avoid repeated allocations.
2929 void *spi_res_alloc(struct spi_device *spi,
2930 spi_res_release_t release,
2931 size_t size, gfp_t gfp)
2933 struct spi_res *sres;
2935 sres = kzalloc(sizeof(*sres) + size, gfp);
2936 if (!sres)
2937 return NULL;
2939 INIT_LIST_HEAD(&sres->entry);
2940 sres->release = release;
2942 return sres->data;
2944 EXPORT_SYMBOL_GPL(spi_res_alloc);
2947 * spi_res_free - free an spi resource
2948 * @res: pointer to the custom data of a resource
2951 void spi_res_free(void *res)
2953 struct spi_res *sres = container_of(res, struct spi_res, data);
2955 if (!res)
2956 return;
2958 WARN_ON(!list_empty(&sres->entry));
2959 kfree(sres);
2961 EXPORT_SYMBOL_GPL(spi_res_free);
2964 * spi_res_add - add a spi_res to the spi_message
2965 * @message: the spi message
2966 * @res: the spi_resource
2968 void spi_res_add(struct spi_message *message, void *res)
2970 struct spi_res *sres = container_of(res, struct spi_res, data);
2972 WARN_ON(!list_empty(&sres->entry));
2973 list_add_tail(&sres->entry, &message->resources);
2975 EXPORT_SYMBOL_GPL(spi_res_add);
2978 * spi_res_release - release all spi resources for this message
2979 * @ctlr: the @spi_controller
2980 * @message: the @spi_message
2982 void spi_res_release(struct spi_controller *ctlr, struct spi_message *message)
2984 struct spi_res *res, *tmp;
2986 list_for_each_entry_safe_reverse(res, tmp, &message->resources, entry) {
2987 if (res->release)
2988 res->release(ctlr, message, res->data);
2990 list_del(&res->entry);
2992 kfree(res);
2995 EXPORT_SYMBOL_GPL(spi_res_release);
2997 /*-------------------------------------------------------------------------*/
2999 /* Core methods for spi_message alterations */
3001 static void __spi_replace_transfers_release(struct spi_controller *ctlr,
3002 struct spi_message *msg,
3003 void *res)
3005 struct spi_replaced_transfers *rxfer = res;
3006 size_t i;
3008 /* call extra callback if requested */
3009 if (rxfer->release)
3010 rxfer->release(ctlr, msg, res);
3012 /* insert replaced transfers back into the message */
3013 list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
3015 /* remove the formerly inserted entries */
3016 for (i = 0; i < rxfer->inserted; i++)
3017 list_del(&rxfer->inserted_transfers[i].transfer_list);
3021 * spi_replace_transfers - replace transfers with several transfers
3022 * and register change with spi_message.resources
3023 * @msg: the spi_message we work upon
3024 * @xfer_first: the first spi_transfer we want to replace
3025 * @remove: number of transfers to remove
3026 * @insert: the number of transfers we want to insert instead
3027 * @release: extra release code necessary in some circumstances
3028 * @extradatasize: extra data to allocate (with alignment guarantees
3029 * of struct @spi_transfer)
3030 * @gfp: gfp flags
3032 * Returns: pointer to @spi_replaced_transfers,
3033 * PTR_ERR(...) in case of errors.
3035 struct spi_replaced_transfers *spi_replace_transfers(
3036 struct spi_message *msg,
3037 struct spi_transfer *xfer_first,
3038 size_t remove,
3039 size_t insert,
3040 spi_replaced_release_t release,
3041 size_t extradatasize,
3042 gfp_t gfp)
3044 struct spi_replaced_transfers *rxfer;
3045 struct spi_transfer *xfer;
3046 size_t i;
3048 /* allocate the structure using spi_res */
3049 rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
3050 struct_size(rxfer, inserted_transfers, insert)
3051 + extradatasize,
3052 gfp);
3053 if (!rxfer)
3054 return ERR_PTR(-ENOMEM);
3056 /* the release code to invoke before running the generic release */
3057 rxfer->release = release;
3059 /* assign extradata */
3060 if (extradatasize)
3061 rxfer->extradata =
3062 &rxfer->inserted_transfers[insert];
3064 /* init the replaced_transfers list */
3065 INIT_LIST_HEAD(&rxfer->replaced_transfers);
3067 /* assign the list_entry after which we should reinsert
3068 * the @replaced_transfers - it may be spi_message.messages!
3070 rxfer->replaced_after = xfer_first->transfer_list.prev;
3072 /* remove the requested number of transfers */
3073 for (i = 0; i < remove; i++) {
3074 /* if the entry after replaced_after it is msg->transfers
3075 * then we have been requested to remove more transfers
3076 * than are in the list
3078 if (rxfer->replaced_after->next == &msg->transfers) {
3079 dev_err(&msg->spi->dev,
3080 "requested to remove more spi_transfers than are available\n");
3081 /* insert replaced transfers back into the message */
3082 list_splice(&rxfer->replaced_transfers,
3083 rxfer->replaced_after);
3085 /* free the spi_replace_transfer structure */
3086 spi_res_free(rxfer);
3088 /* and return with an error */
3089 return ERR_PTR(-EINVAL);
3092 /* remove the entry after replaced_after from list of
3093 * transfers and add it to list of replaced_transfers
3095 list_move_tail(rxfer->replaced_after->next,
3096 &rxfer->replaced_transfers);
3099 /* create copy of the given xfer with identical settings
3100 * based on the first transfer to get removed
3102 for (i = 0; i < insert; i++) {
3103 /* we need to run in reverse order */
3104 xfer = &rxfer->inserted_transfers[insert - 1 - i];
3106 /* copy all spi_transfer data */
3107 memcpy(xfer, xfer_first, sizeof(*xfer));
3109 /* add to list */
3110 list_add(&xfer->transfer_list, rxfer->replaced_after);
3112 /* clear cs_change and delay for all but the last */
3113 if (i) {
3114 xfer->cs_change = false;
3115 xfer->delay_usecs = 0;
3116 xfer->delay.value = 0;
3120 /* set up inserted */
3121 rxfer->inserted = insert;
3123 /* and register it with spi_res/spi_message */
3124 spi_res_add(msg, rxfer);
3126 return rxfer;
3128 EXPORT_SYMBOL_GPL(spi_replace_transfers);
3130 static int __spi_split_transfer_maxsize(struct spi_controller *ctlr,
3131 struct spi_message *msg,
3132 struct spi_transfer **xferp,
3133 size_t maxsize,
3134 gfp_t gfp)
3136 struct spi_transfer *xfer = *xferp, *xfers;
3137 struct spi_replaced_transfers *srt;
3138 size_t offset;
3139 size_t count, i;
3141 /* calculate how many we have to replace */
3142 count = DIV_ROUND_UP(xfer->len, maxsize);
3144 /* create replacement */
3145 srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
3146 if (IS_ERR(srt))
3147 return PTR_ERR(srt);
3148 xfers = srt->inserted_transfers;
3150 /* now handle each of those newly inserted spi_transfers
3151 * note that the replacements spi_transfers all are preset
3152 * to the same values as *xferp, so tx_buf, rx_buf and len
3153 * are all identical (as well as most others)
3154 * so we just have to fix up len and the pointers.
3156 * this also includes support for the depreciated
3157 * spi_message.is_dma_mapped interface
3160 /* the first transfer just needs the length modified, so we
3161 * run it outside the loop
3163 xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
3165 /* all the others need rx_buf/tx_buf also set */
3166 for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
3167 /* update rx_buf, tx_buf and dma */
3168 if (xfers[i].rx_buf)
3169 xfers[i].rx_buf += offset;
3170 if (xfers[i].rx_dma)
3171 xfers[i].rx_dma += offset;
3172 if (xfers[i].tx_buf)
3173 xfers[i].tx_buf += offset;
3174 if (xfers[i].tx_dma)
3175 xfers[i].tx_dma += offset;
3177 /* update length */
3178 xfers[i].len = min(maxsize, xfers[i].len - offset);
3181 /* we set up xferp to the last entry we have inserted,
3182 * so that we skip those already split transfers
3184 *xferp = &xfers[count - 1];
3186 /* increment statistics counters */
3187 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3188 transfers_split_maxsize);
3189 SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
3190 transfers_split_maxsize);
3192 return 0;
3196 * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
3197 * when an individual transfer exceeds a
3198 * certain size
3199 * @ctlr: the @spi_controller for this transfer
3200 * @msg: the @spi_message to transform
3201 * @maxsize: the maximum when to apply this
3202 * @gfp: GFP allocation flags
3204 * Return: status of transformation
3206 int spi_split_transfers_maxsize(struct spi_controller *ctlr,
3207 struct spi_message *msg,
3208 size_t maxsize,
3209 gfp_t gfp)
3211 struct spi_transfer *xfer;
3212 int ret;
3214 /* iterate over the transfer_list,
3215 * but note that xfer is advanced to the last transfer inserted
3216 * to avoid checking sizes again unnecessarily (also xfer does
3217 * potentiall belong to a different list by the time the
3218 * replacement has happened
3220 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
3221 if (xfer->len > maxsize) {
3222 ret = __spi_split_transfer_maxsize(ctlr, msg, &xfer,
3223 maxsize, gfp);
3224 if (ret)
3225 return ret;
3229 return 0;
3231 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
3233 /*-------------------------------------------------------------------------*/
3235 /* Core methods for SPI controller protocol drivers. Some of the
3236 * other core methods are currently defined as inline functions.
3239 static int __spi_validate_bits_per_word(struct spi_controller *ctlr,
3240 u8 bits_per_word)
3242 if (ctlr->bits_per_word_mask) {
3243 /* Only 32 bits fit in the mask */
3244 if (bits_per_word > 32)
3245 return -EINVAL;
3246 if (!(ctlr->bits_per_word_mask & SPI_BPW_MASK(bits_per_word)))
3247 return -EINVAL;
3250 return 0;
3254 * spi_setup - setup SPI mode and clock rate
3255 * @spi: the device whose settings are being modified
3256 * Context: can sleep, and no requests are queued to the device
3258 * SPI protocol drivers may need to update the transfer mode if the
3259 * device doesn't work with its default. They may likewise need
3260 * to update clock rates or word sizes from initial values. This function
3261 * changes those settings, and must be called from a context that can sleep.
3262 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
3263 * effect the next time the device is selected and data is transferred to
3264 * or from it. When this function returns, the spi device is deselected.
3266 * Note that this call will fail if the protocol driver specifies an option
3267 * that the underlying controller or its driver does not support. For
3268 * example, not all hardware supports wire transfers using nine bit words,
3269 * LSB-first wire encoding, or active-high chipselects.
3271 * Return: zero on success, else a negative error code.
3273 int spi_setup(struct spi_device *spi)
3275 unsigned bad_bits, ugly_bits;
3276 int status;
3278 /* check mode to prevent that DUAL and QUAD set at the same time
3280 if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
3281 ((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
3282 dev_err(&spi->dev,
3283 "setup: can not select dual and quad at the same time\n");
3284 return -EINVAL;
3286 /* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
3288 if ((spi->mode & SPI_3WIRE) && (spi->mode &
3289 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3290 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL)))
3291 return -EINVAL;
3292 /* help drivers fail *cleanly* when they need options
3293 * that aren't supported with their current controller
3294 * SPI_CS_WORD has a fallback software implementation,
3295 * so it is ignored here.
3297 bad_bits = spi->mode & ~(spi->controller->mode_bits | SPI_CS_WORD);
3298 /* nothing prevents from working with active-high CS in case if it
3299 * is driven by GPIO.
3301 if (gpio_is_valid(spi->cs_gpio))
3302 bad_bits &= ~SPI_CS_HIGH;
3303 ugly_bits = bad_bits &
3304 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL |
3305 SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL);
3306 if (ugly_bits) {
3307 dev_warn(&spi->dev,
3308 "setup: ignoring unsupported mode bits %x\n",
3309 ugly_bits);
3310 spi->mode &= ~ugly_bits;
3311 bad_bits &= ~ugly_bits;
3313 if (bad_bits) {
3314 dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
3315 bad_bits);
3316 return -EINVAL;
3319 if (!spi->bits_per_word)
3320 spi->bits_per_word = 8;
3322 status = __spi_validate_bits_per_word(spi->controller,
3323 spi->bits_per_word);
3324 if (status)
3325 return status;
3327 if (!spi->max_speed_hz)
3328 spi->max_speed_hz = spi->controller->max_speed_hz;
3330 if (spi->controller->setup)
3331 status = spi->controller->setup(spi);
3333 if (spi->controller->auto_runtime_pm && spi->controller->set_cs) {
3334 status = pm_runtime_get_sync(spi->controller->dev.parent);
3335 if (status < 0) {
3336 pm_runtime_put_noidle(spi->controller->dev.parent);
3337 dev_err(&spi->controller->dev, "Failed to power device: %d\n",
3338 status);
3339 return status;
3343 * We do not want to return positive value from pm_runtime_get,
3344 * there are many instances of devices calling spi_setup() and
3345 * checking for a non-zero return value instead of a negative
3346 * return value.
3348 status = 0;
3350 spi_set_cs(spi, false);
3351 pm_runtime_mark_last_busy(spi->controller->dev.parent);
3352 pm_runtime_put_autosuspend(spi->controller->dev.parent);
3353 } else {
3354 spi_set_cs(spi, false);
3357 if (spi->rt && !spi->controller->rt) {
3358 spi->controller->rt = true;
3359 spi_set_thread_rt(spi->controller);
3362 dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
3363 (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
3364 (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
3365 (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
3366 (spi->mode & SPI_3WIRE) ? "3wire, " : "",
3367 (spi->mode & SPI_LOOP) ? "loopback, " : "",
3368 spi->bits_per_word, spi->max_speed_hz,
3369 status);
3371 return status;
3373 EXPORT_SYMBOL_GPL(spi_setup);
3376 * spi_set_cs_timing - configure CS setup, hold, and inactive delays
3377 * @spi: the device that requires specific CS timing configuration
3378 * @setup: CS setup time specified via @spi_delay
3379 * @hold: CS hold time specified via @spi_delay
3380 * @inactive: CS inactive delay between transfers specified via @spi_delay
3382 * Return: zero on success, else a negative error code.
3384 int spi_set_cs_timing(struct spi_device *spi, struct spi_delay *setup,
3385 struct spi_delay *hold, struct spi_delay *inactive)
3387 size_t len;
3389 if (spi->controller->set_cs_timing)
3390 return spi->controller->set_cs_timing(spi, setup, hold,
3391 inactive);
3393 if ((setup && setup->unit == SPI_DELAY_UNIT_SCK) ||
3394 (hold && hold->unit == SPI_DELAY_UNIT_SCK) ||
3395 (inactive && inactive->unit == SPI_DELAY_UNIT_SCK)) {
3396 dev_err(&spi->dev,
3397 "Clock-cycle delays for CS not supported in SW mode\n");
3398 return -ENOTSUPP;
3401 len = sizeof(struct spi_delay);
3403 /* copy delays to controller */
3404 if (setup)
3405 memcpy(&spi->controller->cs_setup, setup, len);
3406 else
3407 memset(&spi->controller->cs_setup, 0, len);
3409 if (hold)
3410 memcpy(&spi->controller->cs_hold, hold, len);
3411 else
3412 memset(&spi->controller->cs_hold, 0, len);
3414 if (inactive)
3415 memcpy(&spi->controller->cs_inactive, inactive, len);
3416 else
3417 memset(&spi->controller->cs_inactive, 0, len);
3419 return 0;
3421 EXPORT_SYMBOL_GPL(spi_set_cs_timing);
3423 static int _spi_xfer_word_delay_update(struct spi_transfer *xfer,
3424 struct spi_device *spi)
3426 int delay1, delay2;
3428 delay1 = spi_delay_to_ns(&xfer->word_delay, xfer);
3429 if (delay1 < 0)
3430 return delay1;
3432 delay2 = spi_delay_to_ns(&spi->word_delay, xfer);
3433 if (delay2 < 0)
3434 return delay2;
3436 if (delay1 < delay2)
3437 memcpy(&xfer->word_delay, &spi->word_delay,
3438 sizeof(xfer->word_delay));
3440 return 0;
3443 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
3445 struct spi_controller *ctlr = spi->controller;
3446 struct spi_transfer *xfer;
3447 int w_size;
3449 if (list_empty(&message->transfers))
3450 return -EINVAL;
3452 /* If an SPI controller does not support toggling the CS line on each
3453 * transfer (indicated by the SPI_CS_WORD flag) or we are using a GPIO
3454 * for the CS line, we can emulate the CS-per-word hardware function by
3455 * splitting transfers into one-word transfers and ensuring that
3456 * cs_change is set for each transfer.
3458 if ((spi->mode & SPI_CS_WORD) && (!(ctlr->mode_bits & SPI_CS_WORD) ||
3459 spi->cs_gpiod ||
3460 gpio_is_valid(spi->cs_gpio))) {
3461 size_t maxsize;
3462 int ret;
3464 maxsize = (spi->bits_per_word + 7) / 8;
3466 /* spi_split_transfers_maxsize() requires message->spi */
3467 message->spi = spi;
3469 ret = spi_split_transfers_maxsize(ctlr, message, maxsize,
3470 GFP_KERNEL);
3471 if (ret)
3472 return ret;
3474 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3475 /* don't change cs_change on the last entry in the list */
3476 if (list_is_last(&xfer->transfer_list, &message->transfers))
3477 break;
3478 xfer->cs_change = 1;
3482 /* Half-duplex links include original MicroWire, and ones with
3483 * only one data pin like SPI_3WIRE (switches direction) or where
3484 * either MOSI or MISO is missing. They can also be caused by
3485 * software limitations.
3487 if ((ctlr->flags & SPI_CONTROLLER_HALF_DUPLEX) ||
3488 (spi->mode & SPI_3WIRE)) {
3489 unsigned flags = ctlr->flags;
3491 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3492 if (xfer->rx_buf && xfer->tx_buf)
3493 return -EINVAL;
3494 if ((flags & SPI_CONTROLLER_NO_TX) && xfer->tx_buf)
3495 return -EINVAL;
3496 if ((flags & SPI_CONTROLLER_NO_RX) && xfer->rx_buf)
3497 return -EINVAL;
3502 * Set transfer bits_per_word and max speed as spi device default if
3503 * it is not set for this transfer.
3504 * Set transfer tx_nbits and rx_nbits as single transfer default
3505 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
3506 * Ensure transfer word_delay is at least as long as that required by
3507 * device itself.
3509 message->frame_length = 0;
3510 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3511 xfer->effective_speed_hz = 0;
3512 message->frame_length += xfer->len;
3513 if (!xfer->bits_per_word)
3514 xfer->bits_per_word = spi->bits_per_word;
3516 if (!xfer->speed_hz)
3517 xfer->speed_hz = spi->max_speed_hz;
3519 if (ctlr->max_speed_hz && xfer->speed_hz > ctlr->max_speed_hz)
3520 xfer->speed_hz = ctlr->max_speed_hz;
3522 if (__spi_validate_bits_per_word(ctlr, xfer->bits_per_word))
3523 return -EINVAL;
3526 * SPI transfer length should be multiple of SPI word size
3527 * where SPI word size should be power-of-two multiple
3529 if (xfer->bits_per_word <= 8)
3530 w_size = 1;
3531 else if (xfer->bits_per_word <= 16)
3532 w_size = 2;
3533 else
3534 w_size = 4;
3536 /* No partial transfers accepted */
3537 if (xfer->len % w_size)
3538 return -EINVAL;
3540 if (xfer->speed_hz && ctlr->min_speed_hz &&
3541 xfer->speed_hz < ctlr->min_speed_hz)
3542 return -EINVAL;
3544 if (xfer->tx_buf && !xfer->tx_nbits)
3545 xfer->tx_nbits = SPI_NBITS_SINGLE;
3546 if (xfer->rx_buf && !xfer->rx_nbits)
3547 xfer->rx_nbits = SPI_NBITS_SINGLE;
3548 /* check transfer tx/rx_nbits:
3549 * 1. check the value matches one of single, dual and quad
3550 * 2. check tx/rx_nbits match the mode in spi_device
3552 if (xfer->tx_buf) {
3553 if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
3554 xfer->tx_nbits != SPI_NBITS_DUAL &&
3555 xfer->tx_nbits != SPI_NBITS_QUAD)
3556 return -EINVAL;
3557 if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
3558 !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
3559 return -EINVAL;
3560 if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
3561 !(spi->mode & SPI_TX_QUAD))
3562 return -EINVAL;
3564 /* check transfer rx_nbits */
3565 if (xfer->rx_buf) {
3566 if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
3567 xfer->rx_nbits != SPI_NBITS_DUAL &&
3568 xfer->rx_nbits != SPI_NBITS_QUAD)
3569 return -EINVAL;
3570 if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
3571 !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
3572 return -EINVAL;
3573 if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
3574 !(spi->mode & SPI_RX_QUAD))
3575 return -EINVAL;
3578 if (_spi_xfer_word_delay_update(xfer, spi))
3579 return -EINVAL;
3582 message->status = -EINPROGRESS;
3584 return 0;
3587 static int __spi_async(struct spi_device *spi, struct spi_message *message)
3589 struct spi_controller *ctlr = spi->controller;
3590 struct spi_transfer *xfer;
3593 * Some controllers do not support doing regular SPI transfers. Return
3594 * ENOTSUPP when this is the case.
3596 if (!ctlr->transfer)
3597 return -ENOTSUPP;
3599 message->spi = spi;
3601 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_async);
3602 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
3604 trace_spi_message_submit(message);
3606 if (!ctlr->ptp_sts_supported) {
3607 list_for_each_entry(xfer, &message->transfers, transfer_list) {
3608 xfer->ptp_sts_word_pre = 0;
3609 ptp_read_system_prets(xfer->ptp_sts);
3613 return ctlr->transfer(spi, message);
3617 * spi_async - asynchronous SPI transfer
3618 * @spi: device with which data will be exchanged
3619 * @message: describes the data transfers, including completion callback
3620 * Context: any (irqs may be blocked, etc)
3622 * This call may be used in_irq and other contexts which can't sleep,
3623 * as well as from task contexts which can sleep.
3625 * The completion callback is invoked in a context which can't sleep.
3626 * Before that invocation, the value of message->status is undefined.
3627 * When the callback is issued, message->status holds either zero (to
3628 * indicate complete success) or a negative error code. After that
3629 * callback returns, the driver which issued the transfer request may
3630 * deallocate the associated memory; it's no longer in use by any SPI
3631 * core or controller driver code.
3633 * Note that although all messages to a spi_device are handled in
3634 * FIFO order, messages may go to different devices in other orders.
3635 * Some device might be higher priority, or have various "hard" access
3636 * time requirements, for example.
3638 * On detection of any fault during the transfer, processing of
3639 * the entire message is aborted, and the device is deselected.
3640 * Until returning from the associated message completion callback,
3641 * no other spi_message queued to that device will be processed.
3642 * (This rule applies equally to all the synchronous transfer calls,
3643 * which are wrappers around this core asynchronous primitive.)
3645 * Return: zero on success, else a negative error code.
3647 int spi_async(struct spi_device *spi, struct spi_message *message)
3649 struct spi_controller *ctlr = spi->controller;
3650 int ret;
3651 unsigned long flags;
3653 ret = __spi_validate(spi, message);
3654 if (ret != 0)
3655 return ret;
3657 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3659 if (ctlr->bus_lock_flag)
3660 ret = -EBUSY;
3661 else
3662 ret = __spi_async(spi, message);
3664 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3666 return ret;
3668 EXPORT_SYMBOL_GPL(spi_async);
3671 * spi_async_locked - version of spi_async with exclusive bus usage
3672 * @spi: device with which data will be exchanged
3673 * @message: describes the data transfers, including completion callback
3674 * Context: any (irqs may be blocked, etc)
3676 * This call may be used in_irq and other contexts which can't sleep,
3677 * as well as from task contexts which can sleep.
3679 * The completion callback is invoked in a context which can't sleep.
3680 * Before that invocation, the value of message->status is undefined.
3681 * When the callback is issued, message->status holds either zero (to
3682 * indicate complete success) or a negative error code. After that
3683 * callback returns, the driver which issued the transfer request may
3684 * deallocate the associated memory; it's no longer in use by any SPI
3685 * core or controller driver code.
3687 * Note that although all messages to a spi_device are handled in
3688 * FIFO order, messages may go to different devices in other orders.
3689 * Some device might be higher priority, or have various "hard" access
3690 * time requirements, for example.
3692 * On detection of any fault during the transfer, processing of
3693 * the entire message is aborted, and the device is deselected.
3694 * Until returning from the associated message completion callback,
3695 * no other spi_message queued to that device will be processed.
3696 * (This rule applies equally to all the synchronous transfer calls,
3697 * which are wrappers around this core asynchronous primitive.)
3699 * Return: zero on success, else a negative error code.
3701 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
3703 struct spi_controller *ctlr = spi->controller;
3704 int ret;
3705 unsigned long flags;
3707 ret = __spi_validate(spi, message);
3708 if (ret != 0)
3709 return ret;
3711 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3713 ret = __spi_async(spi, message);
3715 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3717 return ret;
3720 EXPORT_SYMBOL_GPL(spi_async_locked);
3722 /*-------------------------------------------------------------------------*/
3724 /* Utility methods for SPI protocol drivers, layered on
3725 * top of the core. Some other utility methods are defined as
3726 * inline functions.
3729 static void spi_complete(void *arg)
3731 complete(arg);
3734 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
3736 DECLARE_COMPLETION_ONSTACK(done);
3737 int status;
3738 struct spi_controller *ctlr = spi->controller;
3739 unsigned long flags;
3741 status = __spi_validate(spi, message);
3742 if (status != 0)
3743 return status;
3745 message->complete = spi_complete;
3746 message->context = &done;
3747 message->spi = spi;
3749 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics, spi_sync);
3750 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
3752 /* If we're not using the legacy transfer method then we will
3753 * try to transfer in the calling context so special case.
3754 * This code would be less tricky if we could remove the
3755 * support for driver implemented message queues.
3757 if (ctlr->transfer == spi_queued_transfer) {
3758 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3760 trace_spi_message_submit(message);
3762 status = __spi_queued_transfer(spi, message, false);
3764 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3765 } else {
3766 status = spi_async_locked(spi, message);
3769 if (status == 0) {
3770 /* Push out the messages in the calling context if we
3771 * can.
3773 if (ctlr->transfer == spi_queued_transfer) {
3774 SPI_STATISTICS_INCREMENT_FIELD(&ctlr->statistics,
3775 spi_sync_immediate);
3776 SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
3777 spi_sync_immediate);
3778 __spi_pump_messages(ctlr, false);
3781 wait_for_completion(&done);
3782 status = message->status;
3784 message->context = NULL;
3785 return status;
3789 * spi_sync - blocking/synchronous SPI data transfers
3790 * @spi: device with which data will be exchanged
3791 * @message: describes the data transfers
3792 * Context: can sleep
3794 * This call may only be used from a context that may sleep. The sleep
3795 * is non-interruptible, and has no timeout. Low-overhead controller
3796 * drivers may DMA directly into and out of the message buffers.
3798 * Note that the SPI device's chip select is active during the message,
3799 * and then is normally disabled between messages. Drivers for some
3800 * frequently-used devices may want to minimize costs of selecting a chip,
3801 * by leaving it selected in anticipation that the next message will go
3802 * to the same chip. (That may increase power usage.)
3804 * Also, the caller is guaranteeing that the memory associated with the
3805 * message will not be freed before this call returns.
3807 * Return: zero on success, else a negative error code.
3809 int spi_sync(struct spi_device *spi, struct spi_message *message)
3811 int ret;
3813 mutex_lock(&spi->controller->bus_lock_mutex);
3814 ret = __spi_sync(spi, message);
3815 mutex_unlock(&spi->controller->bus_lock_mutex);
3817 return ret;
3819 EXPORT_SYMBOL_GPL(spi_sync);
3822 * spi_sync_locked - version of spi_sync with exclusive bus usage
3823 * @spi: device with which data will be exchanged
3824 * @message: describes the data transfers
3825 * Context: can sleep
3827 * This call may only be used from a context that may sleep. The sleep
3828 * is non-interruptible, and has no timeout. Low-overhead controller
3829 * drivers may DMA directly into and out of the message buffers.
3831 * This call should be used by drivers that require exclusive access to the
3832 * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
3833 * be released by a spi_bus_unlock call when the exclusive access is over.
3835 * Return: zero on success, else a negative error code.
3837 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
3839 return __spi_sync(spi, message);
3841 EXPORT_SYMBOL_GPL(spi_sync_locked);
3844 * spi_bus_lock - obtain a lock for exclusive SPI bus usage
3845 * @ctlr: SPI bus master that should be locked for exclusive bus access
3846 * Context: can sleep
3848 * This call may only be used from a context that may sleep. The sleep
3849 * is non-interruptible, and has no timeout.
3851 * This call should be used by drivers that require exclusive access to the
3852 * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
3853 * exclusive access is over. Data transfer must be done by spi_sync_locked
3854 * and spi_async_locked calls when the SPI bus lock is held.
3856 * Return: always zero.
3858 int spi_bus_lock(struct spi_controller *ctlr)
3860 unsigned long flags;
3862 mutex_lock(&ctlr->bus_lock_mutex);
3864 spin_lock_irqsave(&ctlr->bus_lock_spinlock, flags);
3865 ctlr->bus_lock_flag = 1;
3866 spin_unlock_irqrestore(&ctlr->bus_lock_spinlock, flags);
3868 /* mutex remains locked until spi_bus_unlock is called */
3870 return 0;
3872 EXPORT_SYMBOL_GPL(spi_bus_lock);
3875 * spi_bus_unlock - release the lock for exclusive SPI bus usage
3876 * @ctlr: SPI bus master that was locked for exclusive bus access
3877 * Context: can sleep
3879 * This call may only be used from a context that may sleep. The sleep
3880 * is non-interruptible, and has no timeout.
3882 * This call releases an SPI bus lock previously obtained by an spi_bus_lock
3883 * call.
3885 * Return: always zero.
3887 int spi_bus_unlock(struct spi_controller *ctlr)
3889 ctlr->bus_lock_flag = 0;
3891 mutex_unlock(&ctlr->bus_lock_mutex);
3893 return 0;
3895 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3897 /* portable code must never pass more than 32 bytes */
3898 #define SPI_BUFSIZ max(32, SMP_CACHE_BYTES)
3900 static u8 *buf;
3903 * spi_write_then_read - SPI synchronous write followed by read
3904 * @spi: device with which data will be exchanged
3905 * @txbuf: data to be written (need not be dma-safe)
3906 * @n_tx: size of txbuf, in bytes
3907 * @rxbuf: buffer into which data will be read (need not be dma-safe)
3908 * @n_rx: size of rxbuf, in bytes
3909 * Context: can sleep
3911 * This performs a half duplex MicroWire style transaction with the
3912 * device, sending txbuf and then reading rxbuf. The return value
3913 * is zero for success, else a negative errno status code.
3914 * This call may only be used from a context that may sleep.
3916 * Parameters to this routine are always copied using a small buffer.
3917 * Performance-sensitive or bulk transfer code should instead use
3918 * spi_{async,sync}() calls with dma-safe buffers.
3920 * Return: zero on success, else a negative error code.
3922 int spi_write_then_read(struct spi_device *spi,
3923 const void *txbuf, unsigned n_tx,
3924 void *rxbuf, unsigned n_rx)
3926 static DEFINE_MUTEX(lock);
3928 int status;
3929 struct spi_message message;
3930 struct spi_transfer x[2];
3931 u8 *local_buf;
3933 /* Use preallocated DMA-safe buffer if we can. We can't avoid
3934 * copying here, (as a pure convenience thing), but we can
3935 * keep heap costs out of the hot path unless someone else is
3936 * using the pre-allocated buffer or the transfer is too large.
3938 if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3939 local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3940 GFP_KERNEL | GFP_DMA);
3941 if (!local_buf)
3942 return -ENOMEM;
3943 } else {
3944 local_buf = buf;
3947 spi_message_init(&message);
3948 memset(x, 0, sizeof(x));
3949 if (n_tx) {
3950 x[0].len = n_tx;
3951 spi_message_add_tail(&x[0], &message);
3953 if (n_rx) {
3954 x[1].len = n_rx;
3955 spi_message_add_tail(&x[1], &message);
3958 memcpy(local_buf, txbuf, n_tx);
3959 x[0].tx_buf = local_buf;
3960 x[1].rx_buf = local_buf + n_tx;
3962 /* do the i/o */
3963 status = spi_sync(spi, &message);
3964 if (status == 0)
3965 memcpy(rxbuf, x[1].rx_buf, n_rx);
3967 if (x[0].tx_buf == buf)
3968 mutex_unlock(&lock);
3969 else
3970 kfree(local_buf);
3972 return status;
3974 EXPORT_SYMBOL_GPL(spi_write_then_read);
3976 /*-------------------------------------------------------------------------*/
3978 #if IS_ENABLED(CONFIG_OF)
3979 /* must call put_device() when done with returned spi_device device */
3980 struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3982 struct device *dev = bus_find_device_by_of_node(&spi_bus_type, node);
3984 return dev ? to_spi_device(dev) : NULL;
3986 EXPORT_SYMBOL_GPL(of_find_spi_device_by_node);
3987 #endif /* IS_ENABLED(CONFIG_OF) */
3989 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3990 /* the spi controllers are not using spi_bus, so we find it with another way */
3991 static struct spi_controller *of_find_spi_controller_by_node(struct device_node *node)
3993 struct device *dev;
3995 dev = class_find_device_by_of_node(&spi_master_class, node);
3996 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
3997 dev = class_find_device_by_of_node(&spi_slave_class, node);
3998 if (!dev)
3999 return NULL;
4001 /* reference got in class_find_device */
4002 return container_of(dev, struct spi_controller, dev);
4005 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
4006 void *arg)
4008 struct of_reconfig_data *rd = arg;
4009 struct spi_controller *ctlr;
4010 struct spi_device *spi;
4012 switch (of_reconfig_get_state_change(action, arg)) {
4013 case OF_RECONFIG_CHANGE_ADD:
4014 ctlr = of_find_spi_controller_by_node(rd->dn->parent);
4015 if (ctlr == NULL)
4016 return NOTIFY_OK; /* not for us */
4018 if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
4019 put_device(&ctlr->dev);
4020 return NOTIFY_OK;
4023 spi = of_register_spi_device(ctlr, rd->dn);
4024 put_device(&ctlr->dev);
4026 if (IS_ERR(spi)) {
4027 pr_err("%s: failed to create for '%pOF'\n",
4028 __func__, rd->dn);
4029 of_node_clear_flag(rd->dn, OF_POPULATED);
4030 return notifier_from_errno(PTR_ERR(spi));
4032 break;
4034 case OF_RECONFIG_CHANGE_REMOVE:
4035 /* already depopulated? */
4036 if (!of_node_check_flag(rd->dn, OF_POPULATED))
4037 return NOTIFY_OK;
4039 /* find our device by node */
4040 spi = of_find_spi_device_by_node(rd->dn);
4041 if (spi == NULL)
4042 return NOTIFY_OK; /* no? not meant for us */
4044 /* unregister takes one ref away */
4045 spi_unregister_device(spi);
4047 /* and put the reference of the find */
4048 put_device(&spi->dev);
4049 break;
4052 return NOTIFY_OK;
4055 static struct notifier_block spi_of_notifier = {
4056 .notifier_call = of_spi_notify,
4058 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4059 extern struct notifier_block spi_of_notifier;
4060 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
4062 #if IS_ENABLED(CONFIG_ACPI)
4063 static int spi_acpi_controller_match(struct device *dev, const void *data)
4065 return ACPI_COMPANION(dev->parent) == data;
4068 static struct spi_controller *acpi_spi_find_controller_by_adev(struct acpi_device *adev)
4070 struct device *dev;
4072 dev = class_find_device(&spi_master_class, NULL, adev,
4073 spi_acpi_controller_match);
4074 if (!dev && IS_ENABLED(CONFIG_SPI_SLAVE))
4075 dev = class_find_device(&spi_slave_class, NULL, adev,
4076 spi_acpi_controller_match);
4077 if (!dev)
4078 return NULL;
4080 return container_of(dev, struct spi_controller, dev);
4083 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
4085 struct device *dev;
4087 dev = bus_find_device_by_acpi_dev(&spi_bus_type, adev);
4088 return to_spi_device(dev);
4091 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
4092 void *arg)
4094 struct acpi_device *adev = arg;
4095 struct spi_controller *ctlr;
4096 struct spi_device *spi;
4098 switch (value) {
4099 case ACPI_RECONFIG_DEVICE_ADD:
4100 ctlr = acpi_spi_find_controller_by_adev(adev->parent);
4101 if (!ctlr)
4102 break;
4104 acpi_register_spi_device(ctlr, adev);
4105 put_device(&ctlr->dev);
4106 break;
4107 case ACPI_RECONFIG_DEVICE_REMOVE:
4108 if (!acpi_device_enumerated(adev))
4109 break;
4111 spi = acpi_spi_find_device_by_adev(adev);
4112 if (!spi)
4113 break;
4115 spi_unregister_device(spi);
4116 put_device(&spi->dev);
4117 break;
4120 return NOTIFY_OK;
4123 static struct notifier_block spi_acpi_notifier = {
4124 .notifier_call = acpi_spi_notify,
4126 #else
4127 extern struct notifier_block spi_acpi_notifier;
4128 #endif
4130 static int __init spi_init(void)
4132 int status;
4134 buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
4135 if (!buf) {
4136 status = -ENOMEM;
4137 goto err0;
4140 status = bus_register(&spi_bus_type);
4141 if (status < 0)
4142 goto err1;
4144 status = class_register(&spi_master_class);
4145 if (status < 0)
4146 goto err2;
4148 if (IS_ENABLED(CONFIG_SPI_SLAVE)) {
4149 status = class_register(&spi_slave_class);
4150 if (status < 0)
4151 goto err3;
4154 if (IS_ENABLED(CONFIG_OF_DYNAMIC))
4155 WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
4156 if (IS_ENABLED(CONFIG_ACPI))
4157 WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
4159 return 0;
4161 err3:
4162 class_unregister(&spi_master_class);
4163 err2:
4164 bus_unregister(&spi_bus_type);
4165 err1:
4166 kfree(buf);
4167 buf = NULL;
4168 err0:
4169 return status;
4172 /* board_info is normally registered in arch_initcall(),
4173 * but even essential drivers wait till later
4175 * REVISIT only boardinfo really needs static linking. the rest (device and
4176 * driver registration) _could_ be dynamically linked (modular) ... costs
4177 * include needing to have boardinfo data structures be much more public.
4179 postcore_initcall(spi_init);