1 // SPDX-License-Identifier: GPL-2.0
3 * USB4 specific functionality
5 * Copyright (C) 2019, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rajmohan Mani <rajmohan.mani@intel.com>
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
16 #define USB4_DATA_DWORDS 16
17 #define USB4_DATA_RETRIES 3
20 USB4_SWITCH_OP_QUERY_DP_RESOURCE
= 0x10,
21 USB4_SWITCH_OP_ALLOC_DP_RESOURCE
= 0x11,
22 USB4_SWITCH_OP_DEALLOC_DP_RESOURCE
= 0x12,
23 USB4_SWITCH_OP_NVM_WRITE
= 0x20,
24 USB4_SWITCH_OP_NVM_AUTH
= 0x21,
25 USB4_SWITCH_OP_NVM_READ
= 0x22,
26 USB4_SWITCH_OP_NVM_SET_OFFSET
= 0x23,
27 USB4_SWITCH_OP_DROM_READ
= 0x24,
28 USB4_SWITCH_OP_NVM_SECTOR_SIZE
= 0x25,
32 USB4_SB_TARGET_ROUTER
,
33 USB4_SB_TARGET_PARTNER
,
34 USB4_SB_TARGET_RETIMER
,
37 #define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2)
38 #define USB4_NVM_READ_OFFSET_SHIFT 2
39 #define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24)
40 #define USB4_NVM_READ_LENGTH_SHIFT 24
42 #define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK
43 #define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT
45 #define USB4_DROM_ADDRESS_MASK GENMASK(14, 2)
46 #define USB4_DROM_ADDRESS_SHIFT 2
47 #define USB4_DROM_SIZE_MASK GENMASK(19, 15)
48 #define USB4_DROM_SIZE_SHIFT 15
50 #define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0)
52 typedef int (*read_block_fn
)(void *, unsigned int, void *, size_t);
53 typedef int (*write_block_fn
)(void *, const void *, size_t);
55 static int usb4_switch_wait_for_bit(struct tb_switch
*sw
, u32 offset
, u32 bit
,
56 u32 value
, int timeout_msec
)
58 ktime_t timeout
= ktime_add_ms(ktime_get(), timeout_msec
);
64 ret
= tb_sw_read(sw
, &val
, TB_CFG_SWITCH
, offset
, 1);
68 if ((val
& bit
) == value
)
71 usleep_range(50, 100);
72 } while (ktime_before(ktime_get(), timeout
));
77 static int usb4_switch_op_read_data(struct tb_switch
*sw
, void *data
,
80 if (dwords
> USB4_DATA_DWORDS
)
83 return tb_sw_read(sw
, data
, TB_CFG_SWITCH
, ROUTER_CS_9
, dwords
);
86 static int usb4_switch_op_write_data(struct tb_switch
*sw
, const void *data
,
89 if (dwords
> USB4_DATA_DWORDS
)
92 return tb_sw_write(sw
, data
, TB_CFG_SWITCH
, ROUTER_CS_9
, dwords
);
95 static int usb4_switch_op_read_metadata(struct tb_switch
*sw
, u32
*metadata
)
97 return tb_sw_read(sw
, metadata
, TB_CFG_SWITCH
, ROUTER_CS_25
, 1);
100 static int usb4_switch_op_write_metadata(struct tb_switch
*sw
, u32 metadata
)
102 return tb_sw_write(sw
, &metadata
, TB_CFG_SWITCH
, ROUTER_CS_25
, 1);
105 static int usb4_do_read_data(u16 address
, void *buf
, size_t size
,
106 read_block_fn read_block
, void *read_block_data
)
108 unsigned int retries
= USB4_DATA_RETRIES
;
111 offset
= address
& 3;
112 address
= address
& ~3;
115 size_t nbytes
= min_t(size_t, size
, USB4_DATA_DWORDS
* 4);
116 unsigned int dwaddress
, dwords
;
117 u8 data
[USB4_DATA_DWORDS
* 4];
120 dwaddress
= address
/ 4;
121 dwords
= ALIGN(nbytes
, 4) / 4;
123 ret
= read_block(read_block_data
, dwaddress
, data
, dwords
);
125 if (ret
!= -ENODEV
&& retries
--)
130 memcpy(buf
, data
+ offset
, nbytes
);
140 static int usb4_do_write_data(unsigned int address
, const void *buf
, size_t size
,
141 write_block_fn write_next_block
, void *write_block_data
)
143 unsigned int retries
= USB4_DATA_RETRIES
;
146 offset
= address
& 3;
147 address
= address
& ~3;
150 u32 nbytes
= min_t(u32
, size
, USB4_DATA_DWORDS
* 4);
151 u8 data
[USB4_DATA_DWORDS
* 4];
154 memcpy(data
+ offset
, buf
, nbytes
);
156 ret
= write_next_block(write_block_data
, data
, nbytes
/ 4);
158 if (ret
== -ETIMEDOUT
) {
174 static int usb4_switch_op(struct tb_switch
*sw
, u16 opcode
, u8
*status
)
179 val
= opcode
| ROUTER_CS_26_OV
;
180 ret
= tb_sw_write(sw
, &val
, TB_CFG_SWITCH
, ROUTER_CS_26
, 1);
184 ret
= usb4_switch_wait_for_bit(sw
, ROUTER_CS_26
, ROUTER_CS_26_OV
, 0, 500);
188 ret
= tb_sw_read(sw
, &val
, TB_CFG_SWITCH
, ROUTER_CS_26
, 1);
192 if (val
& ROUTER_CS_26_ONS
)
195 *status
= (val
& ROUTER_CS_26_STATUS_MASK
) >> ROUTER_CS_26_STATUS_SHIFT
;
199 static bool link_is_usb4(struct tb_port
*port
)
206 if (tb_port_read(port
, &val
, TB_CFG_PORT
,
207 port
->cap_usb4
+ PORT_CS_18
, 1))
210 return !(val
& PORT_CS_18_TCM
);
214 * usb4_switch_setup() - Additional setup for USB4 device
215 * @sw: USB4 router to setup
217 * USB4 routers need additional settings in order to enable all the
218 * tunneling. This function enables USB and PCIe tunneling if it can be
219 * enabled (e.g the parent switch also supports them). If USB tunneling
220 * is not available for some reason (like that there is Thunderbolt 3
221 * switch upstream) then the internal xHCI controller is enabled
224 int usb4_switch_setup(struct tb_switch
*sw
)
226 struct tb_port
*downstream_port
;
227 struct tb_switch
*parent
;
235 ret
= tb_sw_read(sw
, &val
, TB_CFG_SWITCH
, ROUTER_CS_6
, 1);
239 parent
= tb_switch_parent(sw
);
240 downstream_port
= tb_port_at(tb_route(sw
), parent
);
241 sw
->link_usb4
= link_is_usb4(downstream_port
);
242 tb_sw_dbg(sw
, "link: %s\n", sw
->link_usb4
? "USB4" : "TBT3");
244 xhci
= val
& ROUTER_CS_6_HCI
;
245 tbt3
= !(val
& ROUTER_CS_6_TNS
);
247 tb_sw_dbg(sw
, "TBT3 support: %s, xHCI: %s\n",
248 tbt3
? "yes" : "no", xhci
? "yes" : "no");
250 ret
= tb_sw_read(sw
, &val
, TB_CFG_SWITCH
, ROUTER_CS_5
, 1);
254 if (sw
->link_usb4
&& tb_switch_find_port(parent
, TB_TYPE_USB3_DOWN
)) {
255 val
|= ROUTER_CS_5_UTO
;
259 /* Only enable PCIe tunneling if the parent router supports it */
260 if (tb_switch_find_port(parent
, TB_TYPE_PCIE_DOWN
)) {
261 val
|= ROUTER_CS_5_PTO
;
263 * xHCI can be enabled if PCIe tunneling is supported
264 * and the parent does not have any USB3 dowstream
265 * adapters (so we cannot do USB 3.x tunneling).
268 val
|= ROUTER_CS_5_HCO
;
271 /* TBT3 supported by the CM */
272 val
|= ROUTER_CS_5_C3S
;
273 /* Tunneling configuration is ready now */
274 val
|= ROUTER_CS_5_CV
;
276 ret
= tb_sw_write(sw
, &val
, TB_CFG_SWITCH
, ROUTER_CS_5
, 1);
280 return usb4_switch_wait_for_bit(sw
, ROUTER_CS_6
, ROUTER_CS_6_CR
,
285 * usb4_switch_read_uid() - Read UID from USB4 router
287 * @uid: UID is stored here
289 * Reads 64-bit UID from USB4 router config space.
291 int usb4_switch_read_uid(struct tb_switch
*sw
, u64
*uid
)
293 return tb_sw_read(sw
, uid
, TB_CFG_SWITCH
, ROUTER_CS_7
, 2);
296 static int usb4_switch_drom_read_block(void *data
,
297 unsigned int dwaddress
, void *buf
,
300 struct tb_switch
*sw
= data
;
305 metadata
= (dwords
<< USB4_DROM_SIZE_SHIFT
) & USB4_DROM_SIZE_MASK
;
306 metadata
|= (dwaddress
<< USB4_DROM_ADDRESS_SHIFT
) &
307 USB4_DROM_ADDRESS_MASK
;
309 ret
= usb4_switch_op_write_metadata(sw
, metadata
);
313 ret
= usb4_switch_op(sw
, USB4_SWITCH_OP_DROM_READ
, &status
);
320 return usb4_switch_op_read_data(sw
, buf
, dwords
);
324 * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
326 * @address: Byte address inside DROM to start reading
327 * @buf: Buffer where the DROM content is stored
328 * @size: Number of bytes to read from DROM
330 * Uses USB4 router operations to read router DROM. For devices this
331 * should always work but for hosts it may return %-EOPNOTSUPP in which
332 * case the host router does not have DROM.
334 int usb4_switch_drom_read(struct tb_switch
*sw
, unsigned int address
, void *buf
,
337 return usb4_do_read_data(address
, buf
, size
,
338 usb4_switch_drom_read_block
, sw
);
341 static int usb4_set_port_configured(struct tb_port
*port
, bool configured
)
346 ret
= tb_port_read(port
, &val
, TB_CFG_PORT
,
347 port
->cap_usb4
+ PORT_CS_19
, 1);
352 val
|= PORT_CS_19_PC
;
354 val
&= ~PORT_CS_19_PC
;
356 return tb_port_write(port
, &val
, TB_CFG_PORT
,
357 port
->cap_usb4
+ PORT_CS_19
, 1);
361 * usb4_switch_configure_link() - Set upstream USB4 link configured
364 * Sets the upstream USB4 link to be configured for power management
367 int usb4_switch_configure_link(struct tb_switch
*sw
)
374 up
= tb_upstream_port(sw
);
375 return usb4_set_port_configured(up
, true);
379 * usb4_switch_unconfigure_link() - Un-set upstream USB4 link configuration
382 * Reverse of usb4_switch_configure_link().
384 void usb4_switch_unconfigure_link(struct tb_switch
*sw
)
388 if (sw
->is_unplugged
|| !tb_route(sw
))
391 up
= tb_upstream_port(sw
);
392 usb4_set_port_configured(up
, false);
396 * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
399 * Checks whether conditions are met so that lane bonding can be
400 * established with the upstream router. Call only for device routers.
402 bool usb4_switch_lane_bonding_possible(struct tb_switch
*sw
)
408 up
= tb_upstream_port(sw
);
409 ret
= tb_port_read(up
, &val
, TB_CFG_PORT
, up
->cap_usb4
+ PORT_CS_18
, 1);
413 return !!(val
& PORT_CS_18_BE
);
417 * usb4_switch_set_sleep() - Prepare the router to enter sleep
420 * Enables wakes and sets sleep bit for the router. Returns when the
421 * router sleep ready bit has been asserted.
423 int usb4_switch_set_sleep(struct tb_switch
*sw
)
428 /* Set sleep bit and wait for sleep ready to be asserted */
429 ret
= tb_sw_read(sw
, &val
, TB_CFG_SWITCH
, ROUTER_CS_5
, 1);
433 val
|= ROUTER_CS_5_SLP
;
435 ret
= tb_sw_write(sw
, &val
, TB_CFG_SWITCH
, ROUTER_CS_5
, 1);
439 return usb4_switch_wait_for_bit(sw
, ROUTER_CS_6
, ROUTER_CS_6_SLPR
,
440 ROUTER_CS_6_SLPR
, 500);
444 * usb4_switch_nvm_sector_size() - Return router NVM sector size
447 * If the router supports NVM operations this function returns the NVM
448 * sector size in bytes. If NVM operations are not supported returns
451 int usb4_switch_nvm_sector_size(struct tb_switch
*sw
)
457 ret
= usb4_switch_op(sw
, USB4_SWITCH_OP_NVM_SECTOR_SIZE
, &status
);
462 return status
== 0x2 ? -EOPNOTSUPP
: -EIO
;
464 ret
= usb4_switch_op_read_metadata(sw
, &metadata
);
468 return metadata
& USB4_NVM_SECTOR_SIZE_MASK
;
471 static int usb4_switch_nvm_read_block(void *data
,
472 unsigned int dwaddress
, void *buf
, size_t dwords
)
474 struct tb_switch
*sw
= data
;
479 metadata
= (dwords
<< USB4_NVM_READ_LENGTH_SHIFT
) &
480 USB4_NVM_READ_LENGTH_MASK
;
481 metadata
|= (dwaddress
<< USB4_NVM_READ_OFFSET_SHIFT
) &
482 USB4_NVM_READ_OFFSET_MASK
;
484 ret
= usb4_switch_op_write_metadata(sw
, metadata
);
488 ret
= usb4_switch_op(sw
, USB4_SWITCH_OP_NVM_READ
, &status
);
495 return usb4_switch_op_read_data(sw
, buf
, dwords
);
499 * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
501 * @address: Starting address in bytes
502 * @buf: Read data is placed here
503 * @size: How many bytes to read
505 * Reads NVM contents of the router. If NVM is not supported returns
508 int usb4_switch_nvm_read(struct tb_switch
*sw
, unsigned int address
, void *buf
,
511 return usb4_do_read_data(address
, buf
, size
,
512 usb4_switch_nvm_read_block
, sw
);
515 static int usb4_switch_nvm_set_offset(struct tb_switch
*sw
,
516 unsigned int address
)
518 u32 metadata
, dwaddress
;
522 dwaddress
= address
/ 4;
523 metadata
= (dwaddress
<< USB4_NVM_SET_OFFSET_SHIFT
) &
524 USB4_NVM_SET_OFFSET_MASK
;
526 ret
= usb4_switch_op_write_metadata(sw
, metadata
);
530 ret
= usb4_switch_op(sw
, USB4_SWITCH_OP_NVM_SET_OFFSET
, &status
);
534 return status
? -EIO
: 0;
537 static int usb4_switch_nvm_write_next_block(void *data
, const void *buf
,
540 struct tb_switch
*sw
= data
;
544 ret
= usb4_switch_op_write_data(sw
, buf
, dwords
);
548 ret
= usb4_switch_op(sw
, USB4_SWITCH_OP_NVM_WRITE
, &status
);
552 return status
? -EIO
: 0;
556 * usb4_switch_nvm_write() - Write to the router NVM
558 * @address: Start address where to write in bytes
559 * @buf: Pointer to the data to write
560 * @size: Size of @buf in bytes
562 * Writes @buf to the router NVM using USB4 router operations. If NVM
563 * write is not supported returns %-EOPNOTSUPP.
565 int usb4_switch_nvm_write(struct tb_switch
*sw
, unsigned int address
,
566 const void *buf
, size_t size
)
570 ret
= usb4_switch_nvm_set_offset(sw
, address
);
574 return usb4_do_write_data(address
, buf
, size
,
575 usb4_switch_nvm_write_next_block
, sw
);
579 * usb4_switch_nvm_authenticate() - Authenticate new NVM
582 * After the new NVM has been written via usb4_switch_nvm_write(), this
583 * function triggers NVM authentication process. If the authentication
584 * is successful the router is power cycled and the new NVM starts
585 * running. In case of failure returns negative errno.
587 int usb4_switch_nvm_authenticate(struct tb_switch
*sw
)
592 ret
= usb4_switch_op(sw
, USB4_SWITCH_OP_NVM_AUTH
, &status
);
598 tb_sw_dbg(sw
, "NVM authentication successful\n");
612 * usb4_switch_query_dp_resource() - Query availability of DP IN resource
616 * For DP tunneling this function can be used to query availability of
617 * DP IN resource. Returns true if the resource is available for DP
618 * tunneling, false otherwise.
620 bool usb4_switch_query_dp_resource(struct tb_switch
*sw
, struct tb_port
*in
)
625 ret
= usb4_switch_op_write_metadata(sw
, in
->port
);
629 ret
= usb4_switch_op(sw
, USB4_SWITCH_OP_QUERY_DP_RESOURCE
, &status
);
631 * If DP resource allocation is not supported assume it is
634 if (ret
== -EOPNOTSUPP
)
643 * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
647 * Allocates DP IN resource for DP tunneling using USB4 router
648 * operations. If the resource was allocated returns %0. Otherwise
649 * returns negative errno, in particular %-EBUSY if the resource is
652 int usb4_switch_alloc_dp_resource(struct tb_switch
*sw
, struct tb_port
*in
)
657 ret
= usb4_switch_op_write_metadata(sw
, in
->port
);
661 ret
= usb4_switch_op(sw
, USB4_SWITCH_OP_ALLOC_DP_RESOURCE
, &status
);
662 if (ret
== -EOPNOTSUPP
)
667 return status
? -EBUSY
: 0;
671 * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
675 * Releases the previously allocated DP IN resource.
677 int usb4_switch_dealloc_dp_resource(struct tb_switch
*sw
, struct tb_port
*in
)
682 ret
= usb4_switch_op_write_metadata(sw
, in
->port
);
686 ret
= usb4_switch_op(sw
, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE
, &status
);
687 if (ret
== -EOPNOTSUPP
)
692 return status
? -EIO
: 0;
695 static int usb4_port_idx(const struct tb_switch
*sw
, const struct tb_port
*port
)
700 /* Assume port is primary */
701 tb_switch_for_each_port(sw
, p
) {
702 if (!tb_port_is_null(p
))
704 if (tb_is_upstream_port(p
))
717 * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
721 * USB4 routers have direct mapping between USB4 ports and PCIe
722 * downstream adapters where the PCIe topology is extended. This
723 * function returns the corresponding downstream PCIe adapter or %NULL
724 * if no such mapping was possible.
726 struct tb_port
*usb4_switch_map_pcie_down(struct tb_switch
*sw
,
727 const struct tb_port
*port
)
729 int usb4_idx
= usb4_port_idx(sw
, port
);
733 /* Find PCIe down port matching usb4_port */
734 tb_switch_for_each_port(sw
, p
) {
735 if (!tb_port_is_pcie_down(p
))
738 if (pcie_idx
== usb4_idx
)
748 * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
752 * USB4 routers have direct mapping between USB4 ports and USB 3.x
753 * downstream adapters where the USB 3.x topology is extended. This
754 * function returns the corresponding downstream USB 3.x adapter or
755 * %NULL if no such mapping was possible.
757 struct tb_port
*usb4_switch_map_usb3_down(struct tb_switch
*sw
,
758 const struct tb_port
*port
)
760 int usb4_idx
= usb4_port_idx(sw
, port
);
764 /* Find USB3 down port matching usb4_port */
765 tb_switch_for_each_port(sw
, p
) {
766 if (!tb_port_is_usb3_down(p
))
769 if (usb_idx
== usb4_idx
)
779 * usb4_port_unlock() - Unlock USB4 downstream port
780 * @port: USB4 port to unlock
782 * Unlocks USB4 downstream port so that the connection manager can
783 * access the router below this port.
785 int usb4_port_unlock(struct tb_port
*port
)
790 ret
= tb_port_read(port
, &val
, TB_CFG_PORT
, ADP_CS_4
, 1);
794 val
&= ~ADP_CS_4_LCK
;
795 return tb_port_write(port
, &val
, TB_CFG_PORT
, ADP_CS_4
, 1);
798 static int usb4_port_wait_for_bit(struct tb_port
*port
, u32 offset
, u32 bit
,
799 u32 value
, int timeout_msec
)
801 ktime_t timeout
= ktime_add_ms(ktime_get(), timeout_msec
);
807 ret
= tb_port_read(port
, &val
, TB_CFG_PORT
, offset
, 1);
811 if ((val
& bit
) == value
)
814 usleep_range(50, 100);
815 } while (ktime_before(ktime_get(), timeout
));
820 static int usb4_port_read_data(struct tb_port
*port
, void *data
, size_t dwords
)
822 if (dwords
> USB4_DATA_DWORDS
)
825 return tb_port_read(port
, data
, TB_CFG_PORT
, port
->cap_usb4
+ PORT_CS_2
,
829 static int usb4_port_write_data(struct tb_port
*port
, const void *data
,
832 if (dwords
> USB4_DATA_DWORDS
)
835 return tb_port_write(port
, data
, TB_CFG_PORT
, port
->cap_usb4
+ PORT_CS_2
,
839 static int usb4_port_sb_read(struct tb_port
*port
, enum usb4_sb_target target
,
840 u8 index
, u8 reg
, void *buf
, u8 size
)
842 size_t dwords
= DIV_ROUND_UP(size
, 4);
850 val
|= size
<< PORT_CS_1_LENGTH_SHIFT
;
851 val
|= (target
<< PORT_CS_1_TARGET_SHIFT
) & PORT_CS_1_TARGET_MASK
;
852 if (target
== USB4_SB_TARGET_RETIMER
)
853 val
|= (index
<< PORT_CS_1_RETIMER_INDEX_SHIFT
);
854 val
|= PORT_CS_1_PND
;
856 ret
= tb_port_write(port
, &val
, TB_CFG_PORT
,
857 port
->cap_usb4
+ PORT_CS_1
, 1);
861 ret
= usb4_port_wait_for_bit(port
, port
->cap_usb4
+ PORT_CS_1
,
862 PORT_CS_1_PND
, 0, 500);
866 ret
= tb_port_read(port
, &val
, TB_CFG_PORT
,
867 port
->cap_usb4
+ PORT_CS_1
, 1);
871 if (val
& PORT_CS_1_NR
)
873 if (val
& PORT_CS_1_RC
)
876 return buf
? usb4_port_read_data(port
, buf
, dwords
) : 0;
879 static int usb4_port_sb_write(struct tb_port
*port
, enum usb4_sb_target target
,
880 u8 index
, u8 reg
, const void *buf
, u8 size
)
882 size_t dwords
= DIV_ROUND_UP(size
, 4);
890 ret
= usb4_port_write_data(port
, buf
, dwords
);
896 val
|= size
<< PORT_CS_1_LENGTH_SHIFT
;
897 val
|= PORT_CS_1_WNR_WRITE
;
898 val
|= (target
<< PORT_CS_1_TARGET_SHIFT
) & PORT_CS_1_TARGET_MASK
;
899 if (target
== USB4_SB_TARGET_RETIMER
)
900 val
|= (index
<< PORT_CS_1_RETIMER_INDEX_SHIFT
);
901 val
|= PORT_CS_1_PND
;
903 ret
= tb_port_write(port
, &val
, TB_CFG_PORT
,
904 port
->cap_usb4
+ PORT_CS_1
, 1);
908 ret
= usb4_port_wait_for_bit(port
, port
->cap_usb4
+ PORT_CS_1
,
909 PORT_CS_1_PND
, 0, 500);
913 ret
= tb_port_read(port
, &val
, TB_CFG_PORT
,
914 port
->cap_usb4
+ PORT_CS_1
, 1);
918 if (val
& PORT_CS_1_NR
)
920 if (val
& PORT_CS_1_RC
)
926 static int usb4_port_sb_op(struct tb_port
*port
, enum usb4_sb_target target
,
927 u8 index
, enum usb4_sb_opcode opcode
, int timeout_msec
)
934 ret
= usb4_port_sb_write(port
, target
, index
, USB4_SB_OPCODE
, &val
,
939 timeout
= ktime_add_ms(ktime_get(), timeout_msec
);
943 ret
= usb4_port_sb_read(port
, target
, index
, USB4_SB_OPCODE
,
952 case USB4_SB_OPCODE_ERR
:
955 case USB4_SB_OPCODE_ONS
:
963 } while (ktime_before(ktime_get(), timeout
));
969 * usb4_port_enumerate_retimers() - Send RT broadcast transaction
972 * This forces the USB4 port to send broadcast RT transaction which
973 * makes the retimers on the link to assign index to themselves. Returns
974 * %0 in case of success and negative errno if there was an error.
976 int usb4_port_enumerate_retimers(struct tb_port
*port
)
980 val
= USB4_SB_OPCODE_ENUMERATE_RETIMERS
;
981 return usb4_port_sb_write(port
, USB4_SB_TARGET_ROUTER
, 0,
982 USB4_SB_OPCODE
, &val
, sizeof(val
));
985 static inline int usb4_port_retimer_op(struct tb_port
*port
, u8 index
,
986 enum usb4_sb_opcode opcode
,
989 return usb4_port_sb_op(port
, USB4_SB_TARGET_RETIMER
, index
, opcode
,
994 * usb4_port_retimer_read() - Read from retimer sideband registers
996 * @index: Retimer index
997 * @reg: Sideband register to read
998 * @buf: Data from @reg is stored here
999 * @size: Number of bytes to read
1001 * Function reads retimer sideband registers starting from @reg. The
1002 * retimer is connected to @port at @index. Returns %0 in case of
1003 * success, and read data is copied to @buf. If there is no retimer
1004 * present at given @index returns %-ENODEV. In any other failure
1005 * returns negative errno.
1007 int usb4_port_retimer_read(struct tb_port
*port
, u8 index
, u8 reg
, void *buf
,
1010 return usb4_port_sb_read(port
, USB4_SB_TARGET_RETIMER
, index
, reg
, buf
,
1015 * usb4_port_retimer_write() - Write to retimer sideband registers
1017 * @index: Retimer index
1018 * @reg: Sideband register to write
1019 * @buf: Data that is written starting from @reg
1020 * @size: Number of bytes to write
1022 * Writes retimer sideband registers starting from @reg. The retimer is
1023 * connected to @port at @index. Returns %0 in case of success. If there
1024 * is no retimer present at given @index returns %-ENODEV. In any other
1025 * failure returns negative errno.
1027 int usb4_port_retimer_write(struct tb_port
*port
, u8 index
, u8 reg
,
1028 const void *buf
, u8 size
)
1030 return usb4_port_sb_write(port
, USB4_SB_TARGET_RETIMER
, index
, reg
, buf
,
1035 * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1037 * @index: Retimer index
1039 * If the retimer at @index is last one (connected directly to the
1040 * Type-C port) this function returns %1. If it is not returns %0. If
1041 * the retimer is not present returns %-ENODEV. Otherwise returns
1044 int usb4_port_retimer_is_last(struct tb_port
*port
, u8 index
)
1049 ret
= usb4_port_retimer_op(port
, index
, USB4_SB_OPCODE_QUERY_LAST_RETIMER
,
1054 ret
= usb4_port_retimer_read(port
, index
, USB4_SB_METADATA
, &metadata
,
1056 return ret
? ret
: metadata
& 1;
1060 * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1062 * @index: Retimer index
1064 * Reads NVM sector size (in bytes) of a retimer at @index. This
1065 * operation can be used to determine whether the retimer supports NVM
1066 * upgrade for example. Returns sector size in bytes or negative errno
1067 * in case of error. Specifically returns %-ENODEV if there is no
1068 * retimer at @index.
1070 int usb4_port_retimer_nvm_sector_size(struct tb_port
*port
, u8 index
)
1075 ret
= usb4_port_retimer_op(port
, index
, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE
,
1080 ret
= usb4_port_retimer_read(port
, index
, USB4_SB_METADATA
, &metadata
,
1082 return ret
? ret
: metadata
& USB4_NVM_SECTOR_SIZE_MASK
;
1085 static int usb4_port_retimer_nvm_set_offset(struct tb_port
*port
, u8 index
,
1086 unsigned int address
)
1088 u32 metadata
, dwaddress
;
1091 dwaddress
= address
/ 4;
1092 metadata
= (dwaddress
<< USB4_NVM_SET_OFFSET_SHIFT
) &
1093 USB4_NVM_SET_OFFSET_MASK
;
1095 ret
= usb4_port_retimer_write(port
, index
, USB4_SB_METADATA
, &metadata
,
1100 return usb4_port_retimer_op(port
, index
, USB4_SB_OPCODE_NVM_SET_OFFSET
,
1104 struct retimer_info
{
1105 struct tb_port
*port
;
1109 static int usb4_port_retimer_nvm_write_next_block(void *data
, const void *buf
,
1113 const struct retimer_info
*info
= data
;
1114 struct tb_port
*port
= info
->port
;
1115 u8 index
= info
->index
;
1118 ret
= usb4_port_retimer_write(port
, index
, USB4_SB_DATA
,
1123 return usb4_port_retimer_op(port
, index
,
1124 USB4_SB_OPCODE_NVM_BLOCK_WRITE
, 1000);
1128 * usb4_port_retimer_nvm_write() - Write to retimer NVM
1130 * @index: Retimer index
1131 * @address: Byte address where to start the write
1132 * @buf: Data to write
1133 * @size: Size in bytes how much to write
1135 * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1136 * upgrade. Returns %0 if the data was written successfully and negative
1137 * errno in case of failure. Specifically returns %-ENODEV if there is
1138 * no retimer at @index.
1140 int usb4_port_retimer_nvm_write(struct tb_port
*port
, u8 index
, unsigned int address
,
1141 const void *buf
, size_t size
)
1143 struct retimer_info info
= { .port
= port
, .index
= index
};
1146 ret
= usb4_port_retimer_nvm_set_offset(port
, index
, address
);
1150 return usb4_do_write_data(address
, buf
, size
,
1151 usb4_port_retimer_nvm_write_next_block
, &info
);
1155 * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1157 * @index: Retimer index
1159 * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1160 * this function can be used to trigger the NVM upgrade process. If
1161 * successful the retimer restarts with the new NVM and may not have the
1162 * index set so one needs to call usb4_port_enumerate_retimers() to
1163 * force index to be assigned.
1165 int usb4_port_retimer_nvm_authenticate(struct tb_port
*port
, u8 index
)
1170 * We need to use the raw operation here because once the
1171 * authentication completes the retimer index is not set anymore
1172 * so we do not get back the status now.
1174 val
= USB4_SB_OPCODE_NVM_AUTH_WRITE
;
1175 return usb4_port_sb_write(port
, USB4_SB_TARGET_RETIMER
, index
,
1176 USB4_SB_OPCODE
, &val
, sizeof(val
));
1180 * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1182 * @index: Retimer index
1183 * @status: Raw status code read from metadata
1185 * This can be called after usb4_port_retimer_nvm_authenticate() and
1186 * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1188 * Returns %0 if the authentication status was successfully read. The
1189 * completion metadata (the result) is then stored into @status. If
1190 * reading the status fails, returns negative errno.
1192 int usb4_port_retimer_nvm_authenticate_status(struct tb_port
*port
, u8 index
,
1198 ret
= usb4_port_retimer_read(port
, index
, USB4_SB_OPCODE
, &val
,
1208 case USB4_SB_OPCODE_ERR
:
1209 ret
= usb4_port_retimer_read(port
, index
, USB4_SB_METADATA
,
1210 &metadata
, sizeof(metadata
));
1214 *status
= metadata
& USB4_SB_METADATA_NVM_AUTH_WRITE_MASK
;
1217 case USB4_SB_OPCODE_ONS
:
1225 static int usb4_port_retimer_nvm_read_block(void *data
, unsigned int dwaddress
,
1226 void *buf
, size_t dwords
)
1228 const struct retimer_info
*info
= data
;
1229 struct tb_port
*port
= info
->port
;
1230 u8 index
= info
->index
;
1234 metadata
= dwaddress
<< USB4_NVM_READ_OFFSET_SHIFT
;
1235 if (dwords
< USB4_DATA_DWORDS
)
1236 metadata
|= dwords
<< USB4_NVM_READ_LENGTH_SHIFT
;
1238 ret
= usb4_port_retimer_write(port
, index
, USB4_SB_METADATA
, &metadata
,
1243 ret
= usb4_port_retimer_op(port
, index
, USB4_SB_OPCODE_NVM_READ
, 500);
1247 return usb4_port_retimer_read(port
, index
, USB4_SB_DATA
, buf
,
1252 * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
1254 * @index: Retimer index
1255 * @address: NVM address (in bytes) to start reading
1256 * @buf: Data read from NVM is stored here
1257 * @size: Number of bytes to read
1259 * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
1260 * read was successful and negative errno in case of failure.
1261 * Specifically returns %-ENODEV if there is no retimer at @index.
1263 int usb4_port_retimer_nvm_read(struct tb_port
*port
, u8 index
,
1264 unsigned int address
, void *buf
, size_t size
)
1266 struct retimer_info info
= { .port
= port
, .index
= index
};
1268 return usb4_do_read_data(address
, buf
, size
,
1269 usb4_port_retimer_nvm_read_block
, &info
);
1273 * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
1274 * @port: USB3 adapter port
1276 * Return maximum supported link rate of a USB3 adapter in Mb/s.
1277 * Negative errno in case of error.
1279 int usb4_usb3_port_max_link_rate(struct tb_port
*port
)
1284 if (!tb_port_is_usb3_down(port
) && !tb_port_is_usb3_up(port
))
1287 ret
= tb_port_read(port
, &val
, TB_CFG_PORT
,
1288 port
->cap_adap
+ ADP_USB3_CS_4
, 1);
1292 lr
= (val
& ADP_USB3_CS_4_MSLR_MASK
) >> ADP_USB3_CS_4_MSLR_SHIFT
;
1293 return lr
== ADP_USB3_CS_4_MSLR_20G
? 20000 : 10000;
1297 * usb4_usb3_port_actual_link_rate() - Established USB3 link rate
1298 * @port: USB3 adapter port
1300 * Return actual established link rate of a USB3 adapter in Mb/s. If the
1301 * link is not up returns %0 and negative errno in case of failure.
1303 int usb4_usb3_port_actual_link_rate(struct tb_port
*port
)
1308 if (!tb_port_is_usb3_down(port
) && !tb_port_is_usb3_up(port
))
1311 ret
= tb_port_read(port
, &val
, TB_CFG_PORT
,
1312 port
->cap_adap
+ ADP_USB3_CS_4
, 1);
1316 if (!(val
& ADP_USB3_CS_4_ULV
))
1319 lr
= val
& ADP_USB3_CS_4_ALR_MASK
;
1320 return lr
== ADP_USB3_CS_4_ALR_20G
? 20000 : 10000;
1323 static int usb4_usb3_port_cm_request(struct tb_port
*port
, bool request
)
1328 if (!tb_port_is_usb3_down(port
))
1330 if (tb_route(port
->sw
))
1333 ret
= tb_port_read(port
, &val
, TB_CFG_PORT
,
1334 port
->cap_adap
+ ADP_USB3_CS_2
, 1);
1339 val
|= ADP_USB3_CS_2_CMR
;
1341 val
&= ~ADP_USB3_CS_2_CMR
;
1343 ret
= tb_port_write(port
, &val
, TB_CFG_PORT
,
1344 port
->cap_adap
+ ADP_USB3_CS_2
, 1);
1349 * We can use val here directly as the CMR bit is in the same place
1350 * as HCA. Just mask out others.
1352 val
&= ADP_USB3_CS_2_CMR
;
1353 return usb4_port_wait_for_bit(port
, port
->cap_adap
+ ADP_USB3_CS_1
,
1354 ADP_USB3_CS_1_HCA
, val
, 1500);
1357 static inline int usb4_usb3_port_set_cm_request(struct tb_port
*port
)
1359 return usb4_usb3_port_cm_request(port
, true);
1362 static inline int usb4_usb3_port_clear_cm_request(struct tb_port
*port
)
1364 return usb4_usb3_port_cm_request(port
, false);
1367 static unsigned int usb3_bw_to_mbps(u32 bw
, u8 scale
)
1369 unsigned long uframes
;
1371 uframes
= bw
* 512UL << scale
;
1372 return DIV_ROUND_CLOSEST(uframes
* 8000, 1000 * 1000);
1375 static u32
mbps_to_usb3_bw(unsigned int mbps
, u8 scale
)
1377 unsigned long uframes
;
1379 /* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
1380 uframes
= ((unsigned long)mbps
* 1000 * 1000) / 8000;
1381 return DIV_ROUND_UP(uframes
, 512UL << scale
);
1384 static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port
*port
,
1391 ret
= tb_port_read(port
, &val
, TB_CFG_PORT
,
1392 port
->cap_adap
+ ADP_USB3_CS_2
, 1);
1396 ret
= tb_port_read(port
, &scale
, TB_CFG_PORT
,
1397 port
->cap_adap
+ ADP_USB3_CS_3
, 1);
1401 scale
&= ADP_USB3_CS_3_SCALE_MASK
;
1403 bw
= val
& ADP_USB3_CS_2_AUBW_MASK
;
1404 *upstream_bw
= usb3_bw_to_mbps(bw
, scale
);
1406 bw
= (val
& ADP_USB3_CS_2_ADBW_MASK
) >> ADP_USB3_CS_2_ADBW_SHIFT
;
1407 *downstream_bw
= usb3_bw_to_mbps(bw
, scale
);
1413 * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
1414 * @port: USB3 adapter port
1415 * @upstream_bw: Allocated upstream bandwidth is stored here
1416 * @downstream_bw: Allocated downstream bandwidth is stored here
1418 * Stores currently allocated USB3 bandwidth into @upstream_bw and
1419 * @downstream_bw in Mb/s. Returns %0 in case of success and negative
1422 int usb4_usb3_port_allocated_bandwidth(struct tb_port
*port
, int *upstream_bw
,
1427 ret
= usb4_usb3_port_set_cm_request(port
);
1431 ret
= usb4_usb3_port_read_allocated_bandwidth(port
, upstream_bw
,
1433 usb4_usb3_port_clear_cm_request(port
);
1438 static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port
*port
,
1445 ret
= tb_port_read(port
, &val
, TB_CFG_PORT
,
1446 port
->cap_adap
+ ADP_USB3_CS_1
, 1);
1450 ret
= tb_port_read(port
, &scale
, TB_CFG_PORT
,
1451 port
->cap_adap
+ ADP_USB3_CS_3
, 1);
1455 scale
&= ADP_USB3_CS_3_SCALE_MASK
;
1457 bw
= val
& ADP_USB3_CS_1_CUBW_MASK
;
1458 *upstream_bw
= usb3_bw_to_mbps(bw
, scale
);
1460 bw
= (val
& ADP_USB3_CS_1_CDBW_MASK
) >> ADP_USB3_CS_1_CDBW_SHIFT
;
1461 *downstream_bw
= usb3_bw_to_mbps(bw
, scale
);
1466 static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port
*port
,
1470 u32 val
, ubw
, dbw
, scale
;
1473 /* Read the used scale, hardware default is 0 */
1474 ret
= tb_port_read(port
, &scale
, TB_CFG_PORT
,
1475 port
->cap_adap
+ ADP_USB3_CS_3
, 1);
1479 scale
&= ADP_USB3_CS_3_SCALE_MASK
;
1480 ubw
= mbps_to_usb3_bw(upstream_bw
, scale
);
1481 dbw
= mbps_to_usb3_bw(downstream_bw
, scale
);
1483 ret
= tb_port_read(port
, &val
, TB_CFG_PORT
,
1484 port
->cap_adap
+ ADP_USB3_CS_2
, 1);
1488 val
&= ~(ADP_USB3_CS_2_AUBW_MASK
| ADP_USB3_CS_2_ADBW_MASK
);
1489 val
|= dbw
<< ADP_USB3_CS_2_ADBW_SHIFT
;
1492 return tb_port_write(port
, &val
, TB_CFG_PORT
,
1493 port
->cap_adap
+ ADP_USB3_CS_2
, 1);
1497 * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
1498 * @port: USB3 adapter port
1499 * @upstream_bw: New upstream bandwidth
1500 * @downstream_bw: New downstream bandwidth
1502 * This can be used to set how much bandwidth is allocated for the USB3
1503 * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
1504 * new values programmed to the USB3 adapter allocation registers. If
1505 * the values are lower than what is currently consumed the allocation
1506 * is set to what is currently consumed instead (consumed bandwidth
1507 * cannot be taken away by CM). The actual new values are returned in
1508 * @upstream_bw and @downstream_bw.
1510 * Returns %0 in case of success and negative errno if there was a
1513 int usb4_usb3_port_allocate_bandwidth(struct tb_port
*port
, int *upstream_bw
,
1516 int ret
, consumed_up
, consumed_down
, allocate_up
, allocate_down
;
1518 ret
= usb4_usb3_port_set_cm_request(port
);
1522 ret
= usb4_usb3_port_read_consumed_bandwidth(port
, &consumed_up
,
1527 /* Don't allow it go lower than what is consumed */
1528 allocate_up
= max(*upstream_bw
, consumed_up
);
1529 allocate_down
= max(*downstream_bw
, consumed_down
);
1531 ret
= usb4_usb3_port_write_allocated_bandwidth(port
, allocate_up
,
1536 *upstream_bw
= allocate_up
;
1537 *downstream_bw
= allocate_down
;
1540 usb4_usb3_port_clear_cm_request(port
);
1545 * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
1546 * @port: USB3 adapter port
1547 * @upstream_bw: New allocated upstream bandwidth
1548 * @downstream_bw: New allocated downstream bandwidth
1550 * Releases USB3 allocated bandwidth down to what is actually consumed.
1551 * The new bandwidth is returned in @upstream_bw and @downstream_bw.
1553 * Returns 0% in success and negative errno in case of failure.
1555 int usb4_usb3_port_release_bandwidth(struct tb_port
*port
, int *upstream_bw
,
1558 int ret
, consumed_up
, consumed_down
;
1560 ret
= usb4_usb3_port_set_cm_request(port
);
1564 ret
= usb4_usb3_port_read_consumed_bandwidth(port
, &consumed_up
,
1570 * Always keep 1000 Mb/s to make sure xHCI has at least some
1571 * bandwidth available for isochronous traffic.
1573 if (consumed_up
< 1000)
1575 if (consumed_down
< 1000)
1576 consumed_down
= 1000;
1578 ret
= usb4_usb3_port_write_allocated_bandwidth(port
, consumed_up
,
1583 *upstream_bw
= consumed_up
;
1584 *downstream_bw
= consumed_down
;
1587 usb4_usb3_port_clear_cm_request(port
);