1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET An implementation of the SOCKET network access protocol.
5 * Version: @(#)socket.c 1.1.93 18/02/95
7 * Authors: Orest Zborowski, <obz@Kodak.COM>
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
14 * Alan Cox : verify_area() fixes
15 * Alan Cox : Removed DDI
16 * Jonathan Kamens : SOCK_DGRAM reconnect bug
17 * Alan Cox : Moved a load of checks to the very
19 * Alan Cox : Move address structures to/from user
20 * mode above the protocol layers.
21 * Rob Janssen : Allow 0 length sends.
22 * Alan Cox : Asynchronous I/O support (cribbed from the
24 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
25 * Jeff Uphoff : Made max number of sockets command-line
27 * Matti Aarnio : Made the number of sockets dynamic,
28 * to be allocated when needed, and mr.
29 * Uphoff's max is used as max to be
30 * allowed to allocate.
31 * Linus : Argh. removed all the socket allocation
32 * altogether: it's in the inode now.
33 * Alan Cox : Made sock_alloc()/sock_release() public
34 * for NetROM and future kernel nfsd type
36 * Alan Cox : sendmsg/recvmsg basics.
37 * Tom Dyas : Export net symbols.
38 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
39 * Alan Cox : Added thread locking to sys_* calls
40 * for sockets. May have errors at the
42 * Kevin Buhr : Fixed the dumb errors in the above.
43 * Andi Kleen : Some small cleanups, optimizations,
44 * and fixed a copy_from_user() bug.
45 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
46 * Tigran Aivazian : Made listen(2) backlog sanity checks
47 * protocol-independent
49 * This module is effectively the top level interface to the BSD socket
52 * Based upon Swansea University Computer Society NET3.039
56 #include <linux/socket.h>
57 #include <linux/file.h>
58 #include <linux/net.h>
59 #include <linux/interrupt.h>
60 #include <linux/thread_info.h>
61 #include <linux/rcupdate.h>
62 #include <linux/netdevice.h>
63 #include <linux/proc_fs.h>
64 #include <linux/seq_file.h>
65 #include <linux/mutex.h>
66 #include <linux/if_bridge.h>
67 #include <linux/if_frad.h>
68 #include <linux/if_vlan.h>
69 #include <linux/ptp_classify.h>
70 #include <linux/init.h>
71 #include <linux/poll.h>
72 #include <linux/cache.h>
73 #include <linux/module.h>
74 #include <linux/highmem.h>
75 #include <linux/mount.h>
76 #include <linux/pseudo_fs.h>
77 #include <linux/security.h>
78 #include <linux/syscalls.h>
79 #include <linux/compat.h>
80 #include <linux/kmod.h>
81 #include <linux/audit.h>
82 #include <linux/wireless.h>
83 #include <linux/nsproxy.h>
84 #include <linux/magic.h>
85 #include <linux/slab.h>
86 #include <linux/xattr.h>
87 #include <linux/nospec.h>
88 #include <linux/indirect_call_wrapper.h>
90 #include <linux/uaccess.h>
91 #include <asm/unistd.h>
93 #include <net/compat.h>
95 #include <net/cls_cgroup.h>
98 #include <linux/netfilter.h>
100 #include <linux/if_tun.h>
101 #include <linux/ipv6_route.h>
102 #include <linux/route.h>
103 #include <linux/termios.h>
104 #include <linux/sockios.h>
105 #include <net/busy_poll.h>
106 #include <linux/errqueue.h>
108 #ifdef CONFIG_NET_RX_BUSY_POLL
109 unsigned int sysctl_net_busy_read __read_mostly
;
110 unsigned int sysctl_net_busy_poll __read_mostly
;
113 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
);
114 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
);
115 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
);
117 static int sock_close(struct inode
*inode
, struct file
*file
);
118 static __poll_t
sock_poll(struct file
*file
,
119 struct poll_table_struct
*wait
);
120 static long sock_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
);
122 static long compat_sock_ioctl(struct file
*file
,
123 unsigned int cmd
, unsigned long arg
);
125 static int sock_fasync(int fd
, struct file
*filp
, int on
);
126 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
127 int offset
, size_t size
, loff_t
*ppos
, int more
);
128 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
129 struct pipe_inode_info
*pipe
, size_t len
,
132 #ifdef CONFIG_PROC_FS
133 static void sock_show_fdinfo(struct seq_file
*m
, struct file
*f
)
135 struct socket
*sock
= f
->private_data
;
137 if (sock
->ops
->show_fdinfo
)
138 sock
->ops
->show_fdinfo(m
, sock
);
141 #define sock_show_fdinfo NULL
145 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
146 * in the operation structures but are done directly via the socketcall() multiplexor.
149 static const struct file_operations socket_file_ops
= {
150 .owner
= THIS_MODULE
,
152 .read_iter
= sock_read_iter
,
153 .write_iter
= sock_write_iter
,
155 .unlocked_ioctl
= sock_ioctl
,
157 .compat_ioctl
= compat_sock_ioctl
,
160 .release
= sock_close
,
161 .fasync
= sock_fasync
,
162 .sendpage
= sock_sendpage
,
163 .splice_write
= generic_splice_sendpage
,
164 .splice_read
= sock_splice_read
,
165 .show_fdinfo
= sock_show_fdinfo
,
169 * The protocol list. Each protocol is registered in here.
172 static DEFINE_SPINLOCK(net_family_lock
);
173 static const struct net_proto_family __rcu
*net_families
[NPROTO
] __read_mostly
;
177 * Move socket addresses back and forth across the kernel/user
178 * divide and look after the messy bits.
182 * move_addr_to_kernel - copy a socket address into kernel space
183 * @uaddr: Address in user space
184 * @kaddr: Address in kernel space
185 * @ulen: Length in user space
187 * The address is copied into kernel space. If the provided address is
188 * too long an error code of -EINVAL is returned. If the copy gives
189 * invalid addresses -EFAULT is returned. On a success 0 is returned.
192 int move_addr_to_kernel(void __user
*uaddr
, int ulen
, struct sockaddr_storage
*kaddr
)
194 if (ulen
< 0 || ulen
> sizeof(struct sockaddr_storage
))
198 if (copy_from_user(kaddr
, uaddr
, ulen
))
200 return audit_sockaddr(ulen
, kaddr
);
204 * move_addr_to_user - copy an address to user space
205 * @kaddr: kernel space address
206 * @klen: length of address in kernel
207 * @uaddr: user space address
208 * @ulen: pointer to user length field
210 * The value pointed to by ulen on entry is the buffer length available.
211 * This is overwritten with the buffer space used. -EINVAL is returned
212 * if an overlong buffer is specified or a negative buffer size. -EFAULT
213 * is returned if either the buffer or the length field are not
215 * After copying the data up to the limit the user specifies, the true
216 * length of the data is written over the length limit the user
217 * specified. Zero is returned for a success.
220 static int move_addr_to_user(struct sockaddr_storage
*kaddr
, int klen
,
221 void __user
*uaddr
, int __user
*ulen
)
226 BUG_ON(klen
> sizeof(struct sockaddr_storage
));
227 err
= get_user(len
, ulen
);
235 if (audit_sockaddr(klen
, kaddr
))
237 if (copy_to_user(uaddr
, kaddr
, len
))
241 * "fromlen shall refer to the value before truncation.."
244 return __put_user(klen
, ulen
);
247 static struct kmem_cache
*sock_inode_cachep __ro_after_init
;
249 static struct inode
*sock_alloc_inode(struct super_block
*sb
)
251 struct socket_alloc
*ei
;
253 ei
= kmem_cache_alloc(sock_inode_cachep
, GFP_KERNEL
);
256 init_waitqueue_head(&ei
->socket
.wq
.wait
);
257 ei
->socket
.wq
.fasync_list
= NULL
;
258 ei
->socket
.wq
.flags
= 0;
260 ei
->socket
.state
= SS_UNCONNECTED
;
261 ei
->socket
.flags
= 0;
262 ei
->socket
.ops
= NULL
;
263 ei
->socket
.sk
= NULL
;
264 ei
->socket
.file
= NULL
;
266 return &ei
->vfs_inode
;
269 static void sock_free_inode(struct inode
*inode
)
271 struct socket_alloc
*ei
;
273 ei
= container_of(inode
, struct socket_alloc
, vfs_inode
);
274 kmem_cache_free(sock_inode_cachep
, ei
);
277 static void init_once(void *foo
)
279 struct socket_alloc
*ei
= (struct socket_alloc
*)foo
;
281 inode_init_once(&ei
->vfs_inode
);
284 static void init_inodecache(void)
286 sock_inode_cachep
= kmem_cache_create("sock_inode_cache",
287 sizeof(struct socket_alloc
),
289 (SLAB_HWCACHE_ALIGN
|
290 SLAB_RECLAIM_ACCOUNT
|
291 SLAB_MEM_SPREAD
| SLAB_ACCOUNT
),
293 BUG_ON(sock_inode_cachep
== NULL
);
296 static const struct super_operations sockfs_ops
= {
297 .alloc_inode
= sock_alloc_inode
,
298 .free_inode
= sock_free_inode
,
299 .statfs
= simple_statfs
,
303 * sockfs_dname() is called from d_path().
305 static char *sockfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
307 return dynamic_dname(dentry
, buffer
, buflen
, "socket:[%lu]",
308 d_inode(dentry
)->i_ino
);
311 static const struct dentry_operations sockfs_dentry_operations
= {
312 .d_dname
= sockfs_dname
,
315 static int sockfs_xattr_get(const struct xattr_handler
*handler
,
316 struct dentry
*dentry
, struct inode
*inode
,
317 const char *suffix
, void *value
, size_t size
)
320 if (dentry
->d_name
.len
+ 1 > size
)
322 memcpy(value
, dentry
->d_name
.name
, dentry
->d_name
.len
+ 1);
324 return dentry
->d_name
.len
+ 1;
327 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
328 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
329 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
331 static const struct xattr_handler sockfs_xattr_handler
= {
332 .name
= XATTR_NAME_SOCKPROTONAME
,
333 .get
= sockfs_xattr_get
,
336 static int sockfs_security_xattr_set(const struct xattr_handler
*handler
,
337 struct dentry
*dentry
, struct inode
*inode
,
338 const char *suffix
, const void *value
,
339 size_t size
, int flags
)
341 /* Handled by LSM. */
345 static const struct xattr_handler sockfs_security_xattr_handler
= {
346 .prefix
= XATTR_SECURITY_PREFIX
,
347 .set
= sockfs_security_xattr_set
,
350 static const struct xattr_handler
*sockfs_xattr_handlers
[] = {
351 &sockfs_xattr_handler
,
352 &sockfs_security_xattr_handler
,
356 static int sockfs_init_fs_context(struct fs_context
*fc
)
358 struct pseudo_fs_context
*ctx
= init_pseudo(fc
, SOCKFS_MAGIC
);
361 ctx
->ops
= &sockfs_ops
;
362 ctx
->dops
= &sockfs_dentry_operations
;
363 ctx
->xattr
= sockfs_xattr_handlers
;
367 static struct vfsmount
*sock_mnt __read_mostly
;
369 static struct file_system_type sock_fs_type
= {
371 .init_fs_context
= sockfs_init_fs_context
,
372 .kill_sb
= kill_anon_super
,
376 * Obtains the first available file descriptor and sets it up for use.
378 * These functions create file structures and maps them to fd space
379 * of the current process. On success it returns file descriptor
380 * and file struct implicitly stored in sock->file.
381 * Note that another thread may close file descriptor before we return
382 * from this function. We use the fact that now we do not refer
383 * to socket after mapping. If one day we will need it, this
384 * function will increment ref. count on file by 1.
386 * In any case returned fd MAY BE not valid!
387 * This race condition is unavoidable
388 * with shared fd spaces, we cannot solve it inside kernel,
389 * but we take care of internal coherence yet.
393 * sock_alloc_file - Bind a &socket to a &file
395 * @flags: file status flags
396 * @dname: protocol name
398 * Returns the &file bound with @sock, implicitly storing it
399 * in sock->file. If dname is %NULL, sets to "".
400 * On failure the return is a ERR pointer (see linux/err.h).
401 * This function uses GFP_KERNEL internally.
404 struct file
*sock_alloc_file(struct socket
*sock
, int flags
, const char *dname
)
409 dname
= sock
->sk
? sock
->sk
->sk_prot_creator
->name
: "";
411 file
= alloc_file_pseudo(SOCK_INODE(sock
), sock_mnt
, dname
,
412 O_RDWR
| (flags
& O_NONBLOCK
),
420 file
->private_data
= sock
;
421 stream_open(SOCK_INODE(sock
), file
);
424 EXPORT_SYMBOL(sock_alloc_file
);
426 static int sock_map_fd(struct socket
*sock
, int flags
)
428 struct file
*newfile
;
429 int fd
= get_unused_fd_flags(flags
);
430 if (unlikely(fd
< 0)) {
435 newfile
= sock_alloc_file(sock
, flags
, NULL
);
436 if (!IS_ERR(newfile
)) {
437 fd_install(fd
, newfile
);
442 return PTR_ERR(newfile
);
446 * sock_from_file - Return the &socket bounded to @file.
448 * @err: pointer to an error code return
450 * On failure returns %NULL and assigns -ENOTSOCK to @err.
453 struct socket
*sock_from_file(struct file
*file
, int *err
)
455 if (file
->f_op
== &socket_file_ops
)
456 return file
->private_data
; /* set in sock_map_fd */
461 EXPORT_SYMBOL(sock_from_file
);
464 * sockfd_lookup - Go from a file number to its socket slot
466 * @err: pointer to an error code return
468 * The file handle passed in is locked and the socket it is bound
469 * to is returned. If an error occurs the err pointer is overwritten
470 * with a negative errno code and NULL is returned. The function checks
471 * for both invalid handles and passing a handle which is not a socket.
473 * On a success the socket object pointer is returned.
476 struct socket
*sockfd_lookup(int fd
, int *err
)
487 sock
= sock_from_file(file
, err
);
492 EXPORT_SYMBOL(sockfd_lookup
);
494 static struct socket
*sockfd_lookup_light(int fd
, int *err
, int *fput_needed
)
496 struct fd f
= fdget(fd
);
501 sock
= sock_from_file(f
.file
, err
);
503 *fput_needed
= f
.flags
& FDPUT_FPUT
;
511 static ssize_t
sockfs_listxattr(struct dentry
*dentry
, char *buffer
,
517 len
= security_inode_listsecurity(d_inode(dentry
), buffer
, size
);
527 len
= (XATTR_NAME_SOCKPROTONAME_LEN
+ 1);
532 memcpy(buffer
, XATTR_NAME_SOCKPROTONAME
, len
);
539 static int sockfs_setattr(struct dentry
*dentry
, struct iattr
*iattr
)
541 int err
= simple_setattr(dentry
, iattr
);
543 if (!err
&& (iattr
->ia_valid
& ATTR_UID
)) {
544 struct socket
*sock
= SOCKET_I(d_inode(dentry
));
547 sock
->sk
->sk_uid
= iattr
->ia_uid
;
555 static const struct inode_operations sockfs_inode_ops
= {
556 .listxattr
= sockfs_listxattr
,
557 .setattr
= sockfs_setattr
,
561 * sock_alloc - allocate a socket
563 * Allocate a new inode and socket object. The two are bound together
564 * and initialised. The socket is then returned. If we are out of inodes
565 * NULL is returned. This functions uses GFP_KERNEL internally.
568 struct socket
*sock_alloc(void)
573 inode
= new_inode_pseudo(sock_mnt
->mnt_sb
);
577 sock
= SOCKET_I(inode
);
579 inode
->i_ino
= get_next_ino();
580 inode
->i_mode
= S_IFSOCK
| S_IRWXUGO
;
581 inode
->i_uid
= current_fsuid();
582 inode
->i_gid
= current_fsgid();
583 inode
->i_op
= &sockfs_inode_ops
;
587 EXPORT_SYMBOL(sock_alloc
);
589 static void __sock_release(struct socket
*sock
, struct inode
*inode
)
592 struct module
*owner
= sock
->ops
->owner
;
596 sock
->ops
->release(sock
);
604 if (sock
->wq
.fasync_list
)
605 pr_err("%s: fasync list not empty!\n", __func__
);
608 iput(SOCK_INODE(sock
));
615 * sock_release - close a socket
616 * @sock: socket to close
618 * The socket is released from the protocol stack if it has a release
619 * callback, and the inode is then released if the socket is bound to
620 * an inode not a file.
622 void sock_release(struct socket
*sock
)
624 __sock_release(sock
, NULL
);
626 EXPORT_SYMBOL(sock_release
);
628 void __sock_tx_timestamp(__u16 tsflags
, __u8
*tx_flags
)
630 u8 flags
= *tx_flags
;
632 if (tsflags
& SOF_TIMESTAMPING_TX_HARDWARE
)
633 flags
|= SKBTX_HW_TSTAMP
;
635 if (tsflags
& SOF_TIMESTAMPING_TX_SOFTWARE
)
636 flags
|= SKBTX_SW_TSTAMP
;
638 if (tsflags
& SOF_TIMESTAMPING_TX_SCHED
)
639 flags
|= SKBTX_SCHED_TSTAMP
;
643 EXPORT_SYMBOL(__sock_tx_timestamp
);
645 INDIRECT_CALLABLE_DECLARE(int inet_sendmsg(struct socket
*, struct msghdr
*,
647 INDIRECT_CALLABLE_DECLARE(int inet6_sendmsg(struct socket
*, struct msghdr
*,
649 static inline int sock_sendmsg_nosec(struct socket
*sock
, struct msghdr
*msg
)
651 int ret
= INDIRECT_CALL_INET(sock
->ops
->sendmsg
, inet6_sendmsg
,
652 inet_sendmsg
, sock
, msg
,
654 BUG_ON(ret
== -EIOCBQUEUED
);
659 * sock_sendmsg - send a message through @sock
661 * @msg: message to send
663 * Sends @msg through @sock, passing through LSM.
664 * Returns the number of bytes sent, or an error code.
666 int sock_sendmsg(struct socket
*sock
, struct msghdr
*msg
)
668 int err
= security_socket_sendmsg(sock
, msg
,
671 return err
?: sock_sendmsg_nosec(sock
, msg
);
673 EXPORT_SYMBOL(sock_sendmsg
);
676 * kernel_sendmsg - send a message through @sock (kernel-space)
678 * @msg: message header
680 * @num: vec array length
681 * @size: total message data size
683 * Builds the message data with @vec and sends it through @sock.
684 * Returns the number of bytes sent, or an error code.
687 int kernel_sendmsg(struct socket
*sock
, struct msghdr
*msg
,
688 struct kvec
*vec
, size_t num
, size_t size
)
690 iov_iter_kvec(&msg
->msg_iter
, WRITE
, vec
, num
, size
);
691 return sock_sendmsg(sock
, msg
);
693 EXPORT_SYMBOL(kernel_sendmsg
);
696 * kernel_sendmsg_locked - send a message through @sock (kernel-space)
698 * @msg: message header
699 * @vec: output s/g array
700 * @num: output s/g array length
701 * @size: total message data size
703 * Builds the message data with @vec and sends it through @sock.
704 * Returns the number of bytes sent, or an error code.
705 * Caller must hold @sk.
708 int kernel_sendmsg_locked(struct sock
*sk
, struct msghdr
*msg
,
709 struct kvec
*vec
, size_t num
, size_t size
)
711 struct socket
*sock
= sk
->sk_socket
;
713 if (!sock
->ops
->sendmsg_locked
)
714 return sock_no_sendmsg_locked(sk
, msg
, size
);
716 iov_iter_kvec(&msg
->msg_iter
, WRITE
, vec
, num
, size
);
718 return sock
->ops
->sendmsg_locked(sk
, msg
, msg_data_left(msg
));
720 EXPORT_SYMBOL(kernel_sendmsg_locked
);
722 static bool skb_is_err_queue(const struct sk_buff
*skb
)
724 /* pkt_type of skbs enqueued on the error queue are set to
725 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
726 * in recvmsg, since skbs received on a local socket will never
727 * have a pkt_type of PACKET_OUTGOING.
729 return skb
->pkt_type
== PACKET_OUTGOING
;
732 /* On transmit, software and hardware timestamps are returned independently.
733 * As the two skb clones share the hardware timestamp, which may be updated
734 * before the software timestamp is received, a hardware TX timestamp may be
735 * returned only if there is no software TX timestamp. Ignore false software
736 * timestamps, which may be made in the __sock_recv_timestamp() call when the
737 * option SO_TIMESTAMP_OLD(NS) is enabled on the socket, even when the skb has a
738 * hardware timestamp.
740 static bool skb_is_swtx_tstamp(const struct sk_buff
*skb
, int false_tstamp
)
742 return skb
->tstamp
&& !false_tstamp
&& skb_is_err_queue(skb
);
745 static void put_ts_pktinfo(struct msghdr
*msg
, struct sk_buff
*skb
)
747 struct scm_ts_pktinfo ts_pktinfo
;
748 struct net_device
*orig_dev
;
750 if (!skb_mac_header_was_set(skb
))
753 memset(&ts_pktinfo
, 0, sizeof(ts_pktinfo
));
756 orig_dev
= dev_get_by_napi_id(skb_napi_id(skb
));
758 ts_pktinfo
.if_index
= orig_dev
->ifindex
;
761 ts_pktinfo
.pkt_length
= skb
->len
- skb_mac_offset(skb
);
762 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_PKTINFO
,
763 sizeof(ts_pktinfo
), &ts_pktinfo
);
767 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
769 void __sock_recv_timestamp(struct msghdr
*msg
, struct sock
*sk
,
772 int need_software_tstamp
= sock_flag(sk
, SOCK_RCVTSTAMP
);
773 int new_tstamp
= sock_flag(sk
, SOCK_TSTAMP_NEW
);
774 struct scm_timestamping_internal tss
;
776 int empty
= 1, false_tstamp
= 0;
777 struct skb_shared_hwtstamps
*shhwtstamps
=
780 /* Race occurred between timestamp enabling and packet
781 receiving. Fill in the current time for now. */
782 if (need_software_tstamp
&& skb
->tstamp
== 0) {
783 __net_timestamp(skb
);
787 if (need_software_tstamp
) {
788 if (!sock_flag(sk
, SOCK_RCVTSTAMPNS
)) {
790 struct __kernel_sock_timeval tv
;
792 skb_get_new_timestamp(skb
, &tv
);
793 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMP_NEW
,
796 struct __kernel_old_timeval tv
;
798 skb_get_timestamp(skb
, &tv
);
799 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMP_OLD
,
804 struct __kernel_timespec ts
;
806 skb_get_new_timestampns(skb
, &ts
);
807 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMPNS_NEW
,
810 struct __kernel_old_timespec ts
;
812 skb_get_timestampns(skb
, &ts
);
813 put_cmsg(msg
, SOL_SOCKET
, SO_TIMESTAMPNS_OLD
,
819 memset(&tss
, 0, sizeof(tss
));
820 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_SOFTWARE
) &&
821 ktime_to_timespec64_cond(skb
->tstamp
, tss
.ts
+ 0))
824 (sk
->sk_tsflags
& SOF_TIMESTAMPING_RAW_HARDWARE
) &&
825 !skb_is_swtx_tstamp(skb
, false_tstamp
) &&
826 ktime_to_timespec64_cond(shhwtstamps
->hwtstamp
, tss
.ts
+ 2)) {
828 if ((sk
->sk_tsflags
& SOF_TIMESTAMPING_OPT_PKTINFO
) &&
829 !skb_is_err_queue(skb
))
830 put_ts_pktinfo(msg
, skb
);
833 if (sock_flag(sk
, SOCK_TSTAMP_NEW
))
834 put_cmsg_scm_timestamping64(msg
, &tss
);
836 put_cmsg_scm_timestamping(msg
, &tss
);
838 if (skb_is_err_queue(skb
) && skb
->len
&&
839 SKB_EXT_ERR(skb
)->opt_stats
)
840 put_cmsg(msg
, SOL_SOCKET
, SCM_TIMESTAMPING_OPT_STATS
,
841 skb
->len
, skb
->data
);
844 EXPORT_SYMBOL_GPL(__sock_recv_timestamp
);
846 void __sock_recv_wifi_status(struct msghdr
*msg
, struct sock
*sk
,
851 if (!sock_flag(sk
, SOCK_WIFI_STATUS
))
853 if (!skb
->wifi_acked_valid
)
856 ack
= skb
->wifi_acked
;
858 put_cmsg(msg
, SOL_SOCKET
, SCM_WIFI_STATUS
, sizeof(ack
), &ack
);
860 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status
);
862 static inline void sock_recv_drops(struct msghdr
*msg
, struct sock
*sk
,
865 if (sock_flag(sk
, SOCK_RXQ_OVFL
) && skb
&& SOCK_SKB_CB(skb
)->dropcount
)
866 put_cmsg(msg
, SOL_SOCKET
, SO_RXQ_OVFL
,
867 sizeof(__u32
), &SOCK_SKB_CB(skb
)->dropcount
);
870 void __sock_recv_ts_and_drops(struct msghdr
*msg
, struct sock
*sk
,
873 sock_recv_timestamp(msg
, sk
, skb
);
874 sock_recv_drops(msg
, sk
, skb
);
876 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops
);
878 INDIRECT_CALLABLE_DECLARE(int inet_recvmsg(struct socket
*, struct msghdr
*,
880 INDIRECT_CALLABLE_DECLARE(int inet6_recvmsg(struct socket
*, struct msghdr
*,
882 static inline int sock_recvmsg_nosec(struct socket
*sock
, struct msghdr
*msg
,
885 return INDIRECT_CALL_INET(sock
->ops
->recvmsg
, inet6_recvmsg
,
886 inet_recvmsg
, sock
, msg
, msg_data_left(msg
),
891 * sock_recvmsg - receive a message from @sock
893 * @msg: message to receive
894 * @flags: message flags
896 * Receives @msg from @sock, passing through LSM. Returns the total number
897 * of bytes received, or an error.
899 int sock_recvmsg(struct socket
*sock
, struct msghdr
*msg
, int flags
)
901 int err
= security_socket_recvmsg(sock
, msg
, msg_data_left(msg
), flags
);
903 return err
?: sock_recvmsg_nosec(sock
, msg
, flags
);
905 EXPORT_SYMBOL(sock_recvmsg
);
908 * kernel_recvmsg - Receive a message from a socket (kernel space)
909 * @sock: The socket to receive the message from
910 * @msg: Received message
911 * @vec: Input s/g array for message data
912 * @num: Size of input s/g array
913 * @size: Number of bytes to read
914 * @flags: Message flags (MSG_DONTWAIT, etc...)
916 * On return the msg structure contains the scatter/gather array passed in the
917 * vec argument. The array is modified so that it consists of the unfilled
918 * portion of the original array.
920 * The returned value is the total number of bytes received, or an error.
923 int kernel_recvmsg(struct socket
*sock
, struct msghdr
*msg
,
924 struct kvec
*vec
, size_t num
, size_t size
, int flags
)
926 msg
->msg_control_is_user
= false;
927 iov_iter_kvec(&msg
->msg_iter
, READ
, vec
, num
, size
);
928 return sock_recvmsg(sock
, msg
, flags
);
930 EXPORT_SYMBOL(kernel_recvmsg
);
932 static ssize_t
sock_sendpage(struct file
*file
, struct page
*page
,
933 int offset
, size_t size
, loff_t
*ppos
, int more
)
938 sock
= file
->private_data
;
940 flags
= (file
->f_flags
& O_NONBLOCK
) ? MSG_DONTWAIT
: 0;
941 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
944 return kernel_sendpage(sock
, page
, offset
, size
, flags
);
947 static ssize_t
sock_splice_read(struct file
*file
, loff_t
*ppos
,
948 struct pipe_inode_info
*pipe
, size_t len
,
951 struct socket
*sock
= file
->private_data
;
953 if (unlikely(!sock
->ops
->splice_read
))
954 return generic_file_splice_read(file
, ppos
, pipe
, len
, flags
);
956 return sock
->ops
->splice_read(sock
, ppos
, pipe
, len
, flags
);
959 static ssize_t
sock_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
961 struct file
*file
= iocb
->ki_filp
;
962 struct socket
*sock
= file
->private_data
;
963 struct msghdr msg
= {.msg_iter
= *to
,
967 if (file
->f_flags
& O_NONBLOCK
|| (iocb
->ki_flags
& IOCB_NOWAIT
))
968 msg
.msg_flags
= MSG_DONTWAIT
;
970 if (iocb
->ki_pos
!= 0)
973 if (!iov_iter_count(to
)) /* Match SYS5 behaviour */
976 res
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
981 static ssize_t
sock_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
983 struct file
*file
= iocb
->ki_filp
;
984 struct socket
*sock
= file
->private_data
;
985 struct msghdr msg
= {.msg_iter
= *from
,
989 if (iocb
->ki_pos
!= 0)
992 if (file
->f_flags
& O_NONBLOCK
|| (iocb
->ki_flags
& IOCB_NOWAIT
))
993 msg
.msg_flags
= MSG_DONTWAIT
;
995 if (sock
->type
== SOCK_SEQPACKET
)
996 msg
.msg_flags
|= MSG_EOR
;
998 res
= sock_sendmsg(sock
, &msg
);
999 *from
= msg
.msg_iter
;
1004 * Atomic setting of ioctl hooks to avoid race
1005 * with module unload.
1008 static DEFINE_MUTEX(br_ioctl_mutex
);
1009 static int (*br_ioctl_hook
) (struct net
*, unsigned int cmd
, void __user
*arg
);
1011 void brioctl_set(int (*hook
) (struct net
*, unsigned int, void __user
*))
1013 mutex_lock(&br_ioctl_mutex
);
1014 br_ioctl_hook
= hook
;
1015 mutex_unlock(&br_ioctl_mutex
);
1017 EXPORT_SYMBOL(brioctl_set
);
1019 static DEFINE_MUTEX(vlan_ioctl_mutex
);
1020 static int (*vlan_ioctl_hook
) (struct net
*, void __user
*arg
);
1022 void vlan_ioctl_set(int (*hook
) (struct net
*, void __user
*))
1024 mutex_lock(&vlan_ioctl_mutex
);
1025 vlan_ioctl_hook
= hook
;
1026 mutex_unlock(&vlan_ioctl_mutex
);
1028 EXPORT_SYMBOL(vlan_ioctl_set
);
1030 static DEFINE_MUTEX(dlci_ioctl_mutex
);
1031 static int (*dlci_ioctl_hook
) (unsigned int, void __user
*);
1033 void dlci_ioctl_set(int (*hook
) (unsigned int, void __user
*))
1035 mutex_lock(&dlci_ioctl_mutex
);
1036 dlci_ioctl_hook
= hook
;
1037 mutex_unlock(&dlci_ioctl_mutex
);
1039 EXPORT_SYMBOL(dlci_ioctl_set
);
1041 static long sock_do_ioctl(struct net
*net
, struct socket
*sock
,
1042 unsigned int cmd
, unsigned long arg
)
1045 void __user
*argp
= (void __user
*)arg
;
1047 err
= sock
->ops
->ioctl(sock
, cmd
, arg
);
1050 * If this ioctl is unknown try to hand it down
1051 * to the NIC driver.
1053 if (err
!= -ENOIOCTLCMD
)
1056 if (cmd
== SIOCGIFCONF
) {
1058 if (copy_from_user(&ifc
, argp
, sizeof(struct ifconf
)))
1061 err
= dev_ifconf(net
, &ifc
, sizeof(struct ifreq
));
1063 if (!err
&& copy_to_user(argp
, &ifc
, sizeof(struct ifconf
)))
1068 if (copy_from_user(&ifr
, argp
, sizeof(struct ifreq
)))
1070 err
= dev_ioctl(net
, cmd
, &ifr
, &need_copyout
);
1071 if (!err
&& need_copyout
)
1072 if (copy_to_user(argp
, &ifr
, sizeof(struct ifreq
)))
1079 * With an ioctl, arg may well be a user mode pointer, but we don't know
1080 * what to do with it - that's up to the protocol still.
1084 * get_net_ns - increment the refcount of the network namespace
1085 * @ns: common namespace (net)
1087 * Returns the net's common namespace.
1090 struct ns_common
*get_net_ns(struct ns_common
*ns
)
1092 return &get_net(container_of(ns
, struct net
, ns
))->ns
;
1094 EXPORT_SYMBOL_GPL(get_net_ns
);
1096 static long sock_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
1098 struct socket
*sock
;
1100 void __user
*argp
= (void __user
*)arg
;
1104 sock
= file
->private_data
;
1107 if (unlikely(cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))) {
1110 if (copy_from_user(&ifr
, argp
, sizeof(struct ifreq
)))
1112 err
= dev_ioctl(net
, cmd
, &ifr
, &need_copyout
);
1113 if (!err
&& need_copyout
)
1114 if (copy_to_user(argp
, &ifr
, sizeof(struct ifreq
)))
1117 #ifdef CONFIG_WEXT_CORE
1118 if (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
) {
1119 err
= wext_handle_ioctl(net
, cmd
, argp
);
1126 if (get_user(pid
, (int __user
*)argp
))
1128 err
= f_setown(sock
->file
, pid
, 1);
1132 err
= put_user(f_getown(sock
->file
),
1133 (int __user
*)argp
);
1141 request_module("bridge");
1143 mutex_lock(&br_ioctl_mutex
);
1145 err
= br_ioctl_hook(net
, cmd
, argp
);
1146 mutex_unlock(&br_ioctl_mutex
);
1151 if (!vlan_ioctl_hook
)
1152 request_module("8021q");
1154 mutex_lock(&vlan_ioctl_mutex
);
1155 if (vlan_ioctl_hook
)
1156 err
= vlan_ioctl_hook(net
, argp
);
1157 mutex_unlock(&vlan_ioctl_mutex
);
1162 if (!dlci_ioctl_hook
)
1163 request_module("dlci");
1165 mutex_lock(&dlci_ioctl_mutex
);
1166 if (dlci_ioctl_hook
)
1167 err
= dlci_ioctl_hook(cmd
, argp
);
1168 mutex_unlock(&dlci_ioctl_mutex
);
1172 if (!ns_capable(net
->user_ns
, CAP_NET_ADMIN
))
1175 err
= open_related_ns(&net
->ns
, get_net_ns
);
1177 case SIOCGSTAMP_OLD
:
1178 case SIOCGSTAMPNS_OLD
:
1179 if (!sock
->ops
->gettstamp
) {
1183 err
= sock
->ops
->gettstamp(sock
, argp
,
1184 cmd
== SIOCGSTAMP_OLD
,
1185 !IS_ENABLED(CONFIG_64BIT
));
1187 case SIOCGSTAMP_NEW
:
1188 case SIOCGSTAMPNS_NEW
:
1189 if (!sock
->ops
->gettstamp
) {
1193 err
= sock
->ops
->gettstamp(sock
, argp
,
1194 cmd
== SIOCGSTAMP_NEW
,
1198 err
= sock_do_ioctl(net
, sock
, cmd
, arg
);
1205 * sock_create_lite - creates a socket
1206 * @family: protocol family (AF_INET, ...)
1207 * @type: communication type (SOCK_STREAM, ...)
1208 * @protocol: protocol (0, ...)
1211 * Creates a new socket and assigns it to @res, passing through LSM.
1212 * The new socket initialization is not complete, see kernel_accept().
1213 * Returns 0 or an error. On failure @res is set to %NULL.
1214 * This function internally uses GFP_KERNEL.
1217 int sock_create_lite(int family
, int type
, int protocol
, struct socket
**res
)
1220 struct socket
*sock
= NULL
;
1222 err
= security_socket_create(family
, type
, protocol
, 1);
1226 sock
= sock_alloc();
1233 err
= security_socket_post_create(sock
, family
, type
, protocol
, 1);
1245 EXPORT_SYMBOL(sock_create_lite
);
1247 /* No kernel lock held - perfect */
1248 static __poll_t
sock_poll(struct file
*file
, poll_table
*wait
)
1250 struct socket
*sock
= file
->private_data
;
1251 __poll_t events
= poll_requested_events(wait
), flag
= 0;
1253 if (!sock
->ops
->poll
)
1256 if (sk_can_busy_loop(sock
->sk
)) {
1257 /* poll once if requested by the syscall */
1258 if (events
& POLL_BUSY_LOOP
)
1259 sk_busy_loop(sock
->sk
, 1);
1261 /* if this socket can poll_ll, tell the system call */
1262 flag
= POLL_BUSY_LOOP
;
1265 return sock
->ops
->poll(file
, sock
, wait
) | flag
;
1268 static int sock_mmap(struct file
*file
, struct vm_area_struct
*vma
)
1270 struct socket
*sock
= file
->private_data
;
1272 return sock
->ops
->mmap(file
, sock
, vma
);
1275 static int sock_close(struct inode
*inode
, struct file
*filp
)
1277 __sock_release(SOCKET_I(inode
), inode
);
1282 * Update the socket async list
1284 * Fasync_list locking strategy.
1286 * 1. fasync_list is modified only under process context socket lock
1287 * i.e. under semaphore.
1288 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1289 * or under socket lock
1292 static int sock_fasync(int fd
, struct file
*filp
, int on
)
1294 struct socket
*sock
= filp
->private_data
;
1295 struct sock
*sk
= sock
->sk
;
1296 struct socket_wq
*wq
= &sock
->wq
;
1302 fasync_helper(fd
, filp
, on
, &wq
->fasync_list
);
1304 if (!wq
->fasync_list
)
1305 sock_reset_flag(sk
, SOCK_FASYNC
);
1307 sock_set_flag(sk
, SOCK_FASYNC
);
1313 /* This function may be called only under rcu_lock */
1315 int sock_wake_async(struct socket_wq
*wq
, int how
, int band
)
1317 if (!wq
|| !wq
->fasync_list
)
1321 case SOCK_WAKE_WAITD
:
1322 if (test_bit(SOCKWQ_ASYNC_WAITDATA
, &wq
->flags
))
1325 case SOCK_WAKE_SPACE
:
1326 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE
, &wq
->flags
))
1331 kill_fasync(&wq
->fasync_list
, SIGIO
, band
);
1334 kill_fasync(&wq
->fasync_list
, SIGURG
, band
);
1339 EXPORT_SYMBOL(sock_wake_async
);
1342 * __sock_create - creates a socket
1343 * @net: net namespace
1344 * @family: protocol family (AF_INET, ...)
1345 * @type: communication type (SOCK_STREAM, ...)
1346 * @protocol: protocol (0, ...)
1348 * @kern: boolean for kernel space sockets
1350 * Creates a new socket and assigns it to @res, passing through LSM.
1351 * Returns 0 or an error. On failure @res is set to %NULL. @kern must
1352 * be set to true if the socket resides in kernel space.
1353 * This function internally uses GFP_KERNEL.
1356 int __sock_create(struct net
*net
, int family
, int type
, int protocol
,
1357 struct socket
**res
, int kern
)
1360 struct socket
*sock
;
1361 const struct net_proto_family
*pf
;
1364 * Check protocol is in range
1366 if (family
< 0 || family
>= NPROTO
)
1367 return -EAFNOSUPPORT
;
1368 if (type
< 0 || type
>= SOCK_MAX
)
1373 This uglymoron is moved from INET layer to here to avoid
1374 deadlock in module load.
1376 if (family
== PF_INET
&& type
== SOCK_PACKET
) {
1377 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1382 err
= security_socket_create(family
, type
, protocol
, kern
);
1387 * Allocate the socket and allow the family to set things up. if
1388 * the protocol is 0, the family is instructed to select an appropriate
1391 sock
= sock_alloc();
1393 net_warn_ratelimited("socket: no more sockets\n");
1394 return -ENFILE
; /* Not exactly a match, but its the
1395 closest posix thing */
1400 #ifdef CONFIG_MODULES
1401 /* Attempt to load a protocol module if the find failed.
1403 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1404 * requested real, full-featured networking support upon configuration.
1405 * Otherwise module support will break!
1407 if (rcu_access_pointer(net_families
[family
]) == NULL
)
1408 request_module("net-pf-%d", family
);
1412 pf
= rcu_dereference(net_families
[family
]);
1413 err
= -EAFNOSUPPORT
;
1418 * We will call the ->create function, that possibly is in a loadable
1419 * module, so we have to bump that loadable module refcnt first.
1421 if (!try_module_get(pf
->owner
))
1424 /* Now protected by module ref count */
1427 err
= pf
->create(net
, sock
, protocol
, kern
);
1429 goto out_module_put
;
1432 * Now to bump the refcnt of the [loadable] module that owns this
1433 * socket at sock_release time we decrement its refcnt.
1435 if (!try_module_get(sock
->ops
->owner
))
1436 goto out_module_busy
;
1439 * Now that we're done with the ->create function, the [loadable]
1440 * module can have its refcnt decremented
1442 module_put(pf
->owner
);
1443 err
= security_socket_post_create(sock
, family
, type
, protocol
, kern
);
1445 goto out_sock_release
;
1451 err
= -EAFNOSUPPORT
;
1454 module_put(pf
->owner
);
1461 goto out_sock_release
;
1463 EXPORT_SYMBOL(__sock_create
);
1466 * sock_create - creates a socket
1467 * @family: protocol family (AF_INET, ...)
1468 * @type: communication type (SOCK_STREAM, ...)
1469 * @protocol: protocol (0, ...)
1472 * A wrapper around __sock_create().
1473 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1476 int sock_create(int family
, int type
, int protocol
, struct socket
**res
)
1478 return __sock_create(current
->nsproxy
->net_ns
, family
, type
, protocol
, res
, 0);
1480 EXPORT_SYMBOL(sock_create
);
1483 * sock_create_kern - creates a socket (kernel space)
1484 * @net: net namespace
1485 * @family: protocol family (AF_INET, ...)
1486 * @type: communication type (SOCK_STREAM, ...)
1487 * @protocol: protocol (0, ...)
1490 * A wrapper around __sock_create().
1491 * Returns 0 or an error. This function internally uses GFP_KERNEL.
1494 int sock_create_kern(struct net
*net
, int family
, int type
, int protocol
, struct socket
**res
)
1496 return __sock_create(net
, family
, type
, protocol
, res
, 1);
1498 EXPORT_SYMBOL(sock_create_kern
);
1500 int __sys_socket(int family
, int type
, int protocol
)
1503 struct socket
*sock
;
1506 /* Check the SOCK_* constants for consistency. */
1507 BUILD_BUG_ON(SOCK_CLOEXEC
!= O_CLOEXEC
);
1508 BUILD_BUG_ON((SOCK_MAX
| SOCK_TYPE_MASK
) != SOCK_TYPE_MASK
);
1509 BUILD_BUG_ON(SOCK_CLOEXEC
& SOCK_TYPE_MASK
);
1510 BUILD_BUG_ON(SOCK_NONBLOCK
& SOCK_TYPE_MASK
);
1512 flags
= type
& ~SOCK_TYPE_MASK
;
1513 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1515 type
&= SOCK_TYPE_MASK
;
1517 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1518 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1520 retval
= sock_create(family
, type
, protocol
, &sock
);
1524 return sock_map_fd(sock
, flags
& (O_CLOEXEC
| O_NONBLOCK
));
1527 SYSCALL_DEFINE3(socket
, int, family
, int, type
, int, protocol
)
1529 return __sys_socket(family
, type
, protocol
);
1533 * Create a pair of connected sockets.
1536 int __sys_socketpair(int family
, int type
, int protocol
, int __user
*usockvec
)
1538 struct socket
*sock1
, *sock2
;
1540 struct file
*newfile1
, *newfile2
;
1543 flags
= type
& ~SOCK_TYPE_MASK
;
1544 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1546 type
&= SOCK_TYPE_MASK
;
1548 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1549 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1552 * reserve descriptors and make sure we won't fail
1553 * to return them to userland.
1555 fd1
= get_unused_fd_flags(flags
);
1556 if (unlikely(fd1
< 0))
1559 fd2
= get_unused_fd_flags(flags
);
1560 if (unlikely(fd2
< 0)) {
1565 err
= put_user(fd1
, &usockvec
[0]);
1569 err
= put_user(fd2
, &usockvec
[1]);
1574 * Obtain the first socket and check if the underlying protocol
1575 * supports the socketpair call.
1578 err
= sock_create(family
, type
, protocol
, &sock1
);
1579 if (unlikely(err
< 0))
1582 err
= sock_create(family
, type
, protocol
, &sock2
);
1583 if (unlikely(err
< 0)) {
1584 sock_release(sock1
);
1588 err
= security_socket_socketpair(sock1
, sock2
);
1589 if (unlikely(err
)) {
1590 sock_release(sock2
);
1591 sock_release(sock1
);
1595 err
= sock1
->ops
->socketpair(sock1
, sock2
);
1596 if (unlikely(err
< 0)) {
1597 sock_release(sock2
);
1598 sock_release(sock1
);
1602 newfile1
= sock_alloc_file(sock1
, flags
, NULL
);
1603 if (IS_ERR(newfile1
)) {
1604 err
= PTR_ERR(newfile1
);
1605 sock_release(sock2
);
1609 newfile2
= sock_alloc_file(sock2
, flags
, NULL
);
1610 if (IS_ERR(newfile2
)) {
1611 err
= PTR_ERR(newfile2
);
1616 audit_fd_pair(fd1
, fd2
);
1618 fd_install(fd1
, newfile1
);
1619 fd_install(fd2
, newfile2
);
1628 SYSCALL_DEFINE4(socketpair
, int, family
, int, type
, int, protocol
,
1629 int __user
*, usockvec
)
1631 return __sys_socketpair(family
, type
, protocol
, usockvec
);
1635 * Bind a name to a socket. Nothing much to do here since it's
1636 * the protocol's responsibility to handle the local address.
1638 * We move the socket address to kernel space before we call
1639 * the protocol layer (having also checked the address is ok).
1642 int __sys_bind(int fd
, struct sockaddr __user
*umyaddr
, int addrlen
)
1644 struct socket
*sock
;
1645 struct sockaddr_storage address
;
1646 int err
, fput_needed
;
1648 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1650 err
= move_addr_to_kernel(umyaddr
, addrlen
, &address
);
1652 err
= security_socket_bind(sock
,
1653 (struct sockaddr
*)&address
,
1656 err
= sock
->ops
->bind(sock
,
1660 fput_light(sock
->file
, fput_needed
);
1665 SYSCALL_DEFINE3(bind
, int, fd
, struct sockaddr __user
*, umyaddr
, int, addrlen
)
1667 return __sys_bind(fd
, umyaddr
, addrlen
);
1671 * Perform a listen. Basically, we allow the protocol to do anything
1672 * necessary for a listen, and if that works, we mark the socket as
1673 * ready for listening.
1676 int __sys_listen(int fd
, int backlog
)
1678 struct socket
*sock
;
1679 int err
, fput_needed
;
1682 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1684 somaxconn
= sock_net(sock
->sk
)->core
.sysctl_somaxconn
;
1685 if ((unsigned int)backlog
> somaxconn
)
1686 backlog
= somaxconn
;
1688 err
= security_socket_listen(sock
, backlog
);
1690 err
= sock
->ops
->listen(sock
, backlog
);
1692 fput_light(sock
->file
, fput_needed
);
1697 SYSCALL_DEFINE2(listen
, int, fd
, int, backlog
)
1699 return __sys_listen(fd
, backlog
);
1702 int __sys_accept4_file(struct file
*file
, unsigned file_flags
,
1703 struct sockaddr __user
*upeer_sockaddr
,
1704 int __user
*upeer_addrlen
, int flags
,
1705 unsigned long nofile
)
1707 struct socket
*sock
, *newsock
;
1708 struct file
*newfile
;
1709 int err
, len
, newfd
;
1710 struct sockaddr_storage address
;
1712 if (flags
& ~(SOCK_CLOEXEC
| SOCK_NONBLOCK
))
1715 if (SOCK_NONBLOCK
!= O_NONBLOCK
&& (flags
& SOCK_NONBLOCK
))
1716 flags
= (flags
& ~SOCK_NONBLOCK
) | O_NONBLOCK
;
1718 sock
= sock_from_file(file
, &err
);
1723 newsock
= sock_alloc();
1727 newsock
->type
= sock
->type
;
1728 newsock
->ops
= sock
->ops
;
1731 * We don't need try_module_get here, as the listening socket (sock)
1732 * has the protocol module (sock->ops->owner) held.
1734 __module_get(newsock
->ops
->owner
);
1736 newfd
= __get_unused_fd_flags(flags
, nofile
);
1737 if (unlikely(newfd
< 0)) {
1739 sock_release(newsock
);
1742 newfile
= sock_alloc_file(newsock
, flags
, sock
->sk
->sk_prot_creator
->name
);
1743 if (IS_ERR(newfile
)) {
1744 err
= PTR_ERR(newfile
);
1745 put_unused_fd(newfd
);
1749 err
= security_socket_accept(sock
, newsock
);
1753 err
= sock
->ops
->accept(sock
, newsock
, sock
->file
->f_flags
| file_flags
,
1758 if (upeer_sockaddr
) {
1759 len
= newsock
->ops
->getname(newsock
,
1760 (struct sockaddr
*)&address
, 2);
1762 err
= -ECONNABORTED
;
1765 err
= move_addr_to_user(&address
,
1766 len
, upeer_sockaddr
, upeer_addrlen
);
1771 /* File flags are not inherited via accept() unlike another OSes. */
1773 fd_install(newfd
, newfile
);
1779 put_unused_fd(newfd
);
1785 * For accept, we attempt to create a new socket, set up the link
1786 * with the client, wake up the client, then return the new
1787 * connected fd. We collect the address of the connector in kernel
1788 * space and move it to user at the very end. This is unclean because
1789 * we open the socket then return an error.
1791 * 1003.1g adds the ability to recvmsg() to query connection pending
1792 * status to recvmsg. We need to add that support in a way thats
1793 * clean when we restructure accept also.
1796 int __sys_accept4(int fd
, struct sockaddr __user
*upeer_sockaddr
,
1797 int __user
*upeer_addrlen
, int flags
)
1804 ret
= __sys_accept4_file(f
.file
, 0, upeer_sockaddr
,
1805 upeer_addrlen
, flags
,
1806 rlimit(RLIMIT_NOFILE
));
1813 SYSCALL_DEFINE4(accept4
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1814 int __user
*, upeer_addrlen
, int, flags
)
1816 return __sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, flags
);
1819 SYSCALL_DEFINE3(accept
, int, fd
, struct sockaddr __user
*, upeer_sockaddr
,
1820 int __user
*, upeer_addrlen
)
1822 return __sys_accept4(fd
, upeer_sockaddr
, upeer_addrlen
, 0);
1826 * Attempt to connect to a socket with the server address. The address
1827 * is in user space so we verify it is OK and move it to kernel space.
1829 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1832 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1833 * other SEQPACKET protocols that take time to connect() as it doesn't
1834 * include the -EINPROGRESS status for such sockets.
1837 int __sys_connect_file(struct file
*file
, struct sockaddr_storage
*address
,
1838 int addrlen
, int file_flags
)
1840 struct socket
*sock
;
1843 sock
= sock_from_file(file
, &err
);
1848 security_socket_connect(sock
, (struct sockaddr
*)address
, addrlen
);
1852 err
= sock
->ops
->connect(sock
, (struct sockaddr
*)address
, addrlen
,
1853 sock
->file
->f_flags
| file_flags
);
1858 int __sys_connect(int fd
, struct sockaddr __user
*uservaddr
, int addrlen
)
1865 struct sockaddr_storage address
;
1867 ret
= move_addr_to_kernel(uservaddr
, addrlen
, &address
);
1869 ret
= __sys_connect_file(f
.file
, &address
, addrlen
, 0);
1876 SYSCALL_DEFINE3(connect
, int, fd
, struct sockaddr __user
*, uservaddr
,
1879 return __sys_connect(fd
, uservaddr
, addrlen
);
1883 * Get the local address ('name') of a socket object. Move the obtained
1884 * name to user space.
1887 int __sys_getsockname(int fd
, struct sockaddr __user
*usockaddr
,
1888 int __user
*usockaddr_len
)
1890 struct socket
*sock
;
1891 struct sockaddr_storage address
;
1892 int err
, fput_needed
;
1894 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1898 err
= security_socket_getsockname(sock
);
1902 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, 0);
1905 /* "err" is actually length in this case */
1906 err
= move_addr_to_user(&address
, err
, usockaddr
, usockaddr_len
);
1909 fput_light(sock
->file
, fput_needed
);
1914 SYSCALL_DEFINE3(getsockname
, int, fd
, struct sockaddr __user
*, usockaddr
,
1915 int __user
*, usockaddr_len
)
1917 return __sys_getsockname(fd
, usockaddr
, usockaddr_len
);
1921 * Get the remote address ('name') of a socket object. Move the obtained
1922 * name to user space.
1925 int __sys_getpeername(int fd
, struct sockaddr __user
*usockaddr
,
1926 int __user
*usockaddr_len
)
1928 struct socket
*sock
;
1929 struct sockaddr_storage address
;
1930 int err
, fput_needed
;
1932 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1934 err
= security_socket_getpeername(sock
);
1936 fput_light(sock
->file
, fput_needed
);
1940 err
= sock
->ops
->getname(sock
, (struct sockaddr
*)&address
, 1);
1942 /* "err" is actually length in this case */
1943 err
= move_addr_to_user(&address
, err
, usockaddr
,
1945 fput_light(sock
->file
, fput_needed
);
1950 SYSCALL_DEFINE3(getpeername
, int, fd
, struct sockaddr __user
*, usockaddr
,
1951 int __user
*, usockaddr_len
)
1953 return __sys_getpeername(fd
, usockaddr
, usockaddr_len
);
1957 * Send a datagram to a given address. We move the address into kernel
1958 * space and check the user space data area is readable before invoking
1961 int __sys_sendto(int fd
, void __user
*buff
, size_t len
, unsigned int flags
,
1962 struct sockaddr __user
*addr
, int addr_len
)
1964 struct socket
*sock
;
1965 struct sockaddr_storage address
;
1971 err
= import_single_range(WRITE
, buff
, len
, &iov
, &msg
.msg_iter
);
1974 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
1978 msg
.msg_name
= NULL
;
1979 msg
.msg_control
= NULL
;
1980 msg
.msg_controllen
= 0;
1981 msg
.msg_namelen
= 0;
1983 err
= move_addr_to_kernel(addr
, addr_len
, &address
);
1986 msg
.msg_name
= (struct sockaddr
*)&address
;
1987 msg
.msg_namelen
= addr_len
;
1989 if (sock
->file
->f_flags
& O_NONBLOCK
)
1990 flags
|= MSG_DONTWAIT
;
1991 msg
.msg_flags
= flags
;
1992 err
= sock_sendmsg(sock
, &msg
);
1995 fput_light(sock
->file
, fput_needed
);
2000 SYSCALL_DEFINE6(sendto
, int, fd
, void __user
*, buff
, size_t, len
,
2001 unsigned int, flags
, struct sockaddr __user
*, addr
,
2004 return __sys_sendto(fd
, buff
, len
, flags
, addr
, addr_len
);
2008 * Send a datagram down a socket.
2011 SYSCALL_DEFINE4(send
, int, fd
, void __user
*, buff
, size_t, len
,
2012 unsigned int, flags
)
2014 return __sys_sendto(fd
, buff
, len
, flags
, NULL
, 0);
2018 * Receive a frame from the socket and optionally record the address of the
2019 * sender. We verify the buffers are writable and if needed move the
2020 * sender address from kernel to user space.
2022 int __sys_recvfrom(int fd
, void __user
*ubuf
, size_t size
, unsigned int flags
,
2023 struct sockaddr __user
*addr
, int __user
*addr_len
)
2025 struct socket
*sock
;
2028 struct sockaddr_storage address
;
2032 err
= import_single_range(READ
, ubuf
, size
, &iov
, &msg
.msg_iter
);
2035 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2039 msg
.msg_control
= NULL
;
2040 msg
.msg_controllen
= 0;
2041 /* Save some cycles and don't copy the address if not needed */
2042 msg
.msg_name
= addr
? (struct sockaddr
*)&address
: NULL
;
2043 /* We assume all kernel code knows the size of sockaddr_storage */
2044 msg
.msg_namelen
= 0;
2045 msg
.msg_iocb
= NULL
;
2047 if (sock
->file
->f_flags
& O_NONBLOCK
)
2048 flags
|= MSG_DONTWAIT
;
2049 err
= sock_recvmsg(sock
, &msg
, flags
);
2051 if (err
>= 0 && addr
!= NULL
) {
2052 err2
= move_addr_to_user(&address
,
2053 msg
.msg_namelen
, addr
, addr_len
);
2058 fput_light(sock
->file
, fput_needed
);
2063 SYSCALL_DEFINE6(recvfrom
, int, fd
, void __user
*, ubuf
, size_t, size
,
2064 unsigned int, flags
, struct sockaddr __user
*, addr
,
2065 int __user
*, addr_len
)
2067 return __sys_recvfrom(fd
, ubuf
, size
, flags
, addr
, addr_len
);
2071 * Receive a datagram from a socket.
2074 SYSCALL_DEFINE4(recv
, int, fd
, void __user
*, ubuf
, size_t, size
,
2075 unsigned int, flags
)
2077 return __sys_recvfrom(fd
, ubuf
, size
, flags
, NULL
, NULL
);
2080 static bool sock_use_custom_sol_socket(const struct socket
*sock
)
2082 const struct sock
*sk
= sock
->sk
;
2084 /* Use sock->ops->setsockopt() for MPTCP */
2085 return IS_ENABLED(CONFIG_MPTCP
) &&
2086 sk
->sk_protocol
== IPPROTO_MPTCP
&&
2087 sk
->sk_type
== SOCK_STREAM
&&
2088 (sk
->sk_family
== AF_INET
|| sk
->sk_family
== AF_INET6
);
2092 * Set a socket option. Because we don't know the option lengths we have
2093 * to pass the user mode parameter for the protocols to sort out.
2095 int __sys_setsockopt(int fd
, int level
, int optname
, char __user
*user_optval
,
2098 sockptr_t optval
= USER_SOCKPTR(user_optval
);
2099 char *kernel_optval
= NULL
;
2100 int err
, fput_needed
;
2101 struct socket
*sock
;
2106 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2110 err
= security_socket_setsockopt(sock
, level
, optname
);
2114 if (!in_compat_syscall())
2115 err
= BPF_CGROUP_RUN_PROG_SETSOCKOPT(sock
->sk
, &level
, &optname
,
2116 user_optval
, &optlen
,
2126 optval
= KERNEL_SOCKPTR(kernel_optval
);
2127 if (level
== SOL_SOCKET
&& !sock_use_custom_sol_socket(sock
))
2128 err
= sock_setsockopt(sock
, level
, optname
, optval
, optlen
);
2129 else if (unlikely(!sock
->ops
->setsockopt
))
2132 err
= sock
->ops
->setsockopt(sock
, level
, optname
, optval
,
2134 kfree(kernel_optval
);
2136 fput_light(sock
->file
, fput_needed
);
2140 SYSCALL_DEFINE5(setsockopt
, int, fd
, int, level
, int, optname
,
2141 char __user
*, optval
, int, optlen
)
2143 return __sys_setsockopt(fd
, level
, optname
, optval
, optlen
);
2147 * Get a socket option. Because we don't know the option lengths we have
2148 * to pass a user mode parameter for the protocols to sort out.
2150 int __sys_getsockopt(int fd
, int level
, int optname
, char __user
*optval
,
2153 int err
, fput_needed
;
2154 struct socket
*sock
;
2157 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2161 err
= security_socket_getsockopt(sock
, level
, optname
);
2165 if (!in_compat_syscall())
2166 max_optlen
= BPF_CGROUP_GETSOCKOPT_MAX_OPTLEN(optlen
);
2168 if (level
== SOL_SOCKET
)
2169 err
= sock_getsockopt(sock
, level
, optname
, optval
, optlen
);
2170 else if (unlikely(!sock
->ops
->getsockopt
))
2173 err
= sock
->ops
->getsockopt(sock
, level
, optname
, optval
,
2176 if (!in_compat_syscall())
2177 err
= BPF_CGROUP_RUN_PROG_GETSOCKOPT(sock
->sk
, level
, optname
,
2178 optval
, optlen
, max_optlen
,
2181 fput_light(sock
->file
, fput_needed
);
2185 SYSCALL_DEFINE5(getsockopt
, int, fd
, int, level
, int, optname
,
2186 char __user
*, optval
, int __user
*, optlen
)
2188 return __sys_getsockopt(fd
, level
, optname
, optval
, optlen
);
2192 * Shutdown a socket.
2195 int __sys_shutdown(int fd
, int how
)
2197 int err
, fput_needed
;
2198 struct socket
*sock
;
2200 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2202 err
= security_socket_shutdown(sock
, how
);
2204 err
= sock
->ops
->shutdown(sock
, how
);
2205 fput_light(sock
->file
, fput_needed
);
2210 SYSCALL_DEFINE2(shutdown
, int, fd
, int, how
)
2212 return __sys_shutdown(fd
, how
);
2215 /* A couple of helpful macros for getting the address of the 32/64 bit
2216 * fields which are the same type (int / unsigned) on our platforms.
2218 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
2219 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
2220 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
2222 struct used_address
{
2223 struct sockaddr_storage name
;
2224 unsigned int name_len
;
2227 int __copy_msghdr_from_user(struct msghdr
*kmsg
,
2228 struct user_msghdr __user
*umsg
,
2229 struct sockaddr __user
**save_addr
,
2230 struct iovec __user
**uiov
, size_t *nsegs
)
2232 struct user_msghdr msg
;
2235 if (copy_from_user(&msg
, umsg
, sizeof(*umsg
)))
2238 kmsg
->msg_control_is_user
= true;
2239 kmsg
->msg_control_user
= msg
.msg_control
;
2240 kmsg
->msg_controllen
= msg
.msg_controllen
;
2241 kmsg
->msg_flags
= msg
.msg_flags
;
2243 kmsg
->msg_namelen
= msg
.msg_namelen
;
2245 kmsg
->msg_namelen
= 0;
2247 if (kmsg
->msg_namelen
< 0)
2250 if (kmsg
->msg_namelen
> sizeof(struct sockaddr_storage
))
2251 kmsg
->msg_namelen
= sizeof(struct sockaddr_storage
);
2254 *save_addr
= msg
.msg_name
;
2256 if (msg
.msg_name
&& kmsg
->msg_namelen
) {
2258 err
= move_addr_to_kernel(msg
.msg_name
,
2265 kmsg
->msg_name
= NULL
;
2266 kmsg
->msg_namelen
= 0;
2269 if (msg
.msg_iovlen
> UIO_MAXIOV
)
2272 kmsg
->msg_iocb
= NULL
;
2273 *uiov
= msg
.msg_iov
;
2274 *nsegs
= msg
.msg_iovlen
;
2278 static int copy_msghdr_from_user(struct msghdr
*kmsg
,
2279 struct user_msghdr __user
*umsg
,
2280 struct sockaddr __user
**save_addr
,
2283 struct user_msghdr msg
;
2286 err
= __copy_msghdr_from_user(kmsg
, umsg
, save_addr
, &msg
.msg_iov
,
2291 err
= import_iovec(save_addr
? READ
: WRITE
,
2292 msg
.msg_iov
, msg
.msg_iovlen
,
2293 UIO_FASTIOV
, iov
, &kmsg
->msg_iter
);
2294 return err
< 0 ? err
: 0;
2297 static int ____sys_sendmsg(struct socket
*sock
, struct msghdr
*msg_sys
,
2298 unsigned int flags
, struct used_address
*used_address
,
2299 unsigned int allowed_msghdr_flags
)
2301 unsigned char ctl
[sizeof(struct cmsghdr
) + 20]
2302 __aligned(sizeof(__kernel_size_t
));
2303 /* 20 is size of ipv6_pktinfo */
2304 unsigned char *ctl_buf
= ctl
;
2310 if (msg_sys
->msg_controllen
> INT_MAX
)
2312 flags
|= (msg_sys
->msg_flags
& allowed_msghdr_flags
);
2313 ctl_len
= msg_sys
->msg_controllen
;
2314 if ((MSG_CMSG_COMPAT
& flags
) && ctl_len
) {
2316 cmsghdr_from_user_compat_to_kern(msg_sys
, sock
->sk
, ctl
,
2320 ctl_buf
= msg_sys
->msg_control
;
2321 ctl_len
= msg_sys
->msg_controllen
;
2322 } else if (ctl_len
) {
2323 BUILD_BUG_ON(sizeof(struct cmsghdr
) !=
2324 CMSG_ALIGN(sizeof(struct cmsghdr
)));
2325 if (ctl_len
> sizeof(ctl
)) {
2326 ctl_buf
= sock_kmalloc(sock
->sk
, ctl_len
, GFP_KERNEL
);
2327 if (ctl_buf
== NULL
)
2331 if (copy_from_user(ctl_buf
, msg_sys
->msg_control_user
, ctl_len
))
2333 msg_sys
->msg_control
= ctl_buf
;
2334 msg_sys
->msg_control_is_user
= false;
2336 msg_sys
->msg_flags
= flags
;
2338 if (sock
->file
->f_flags
& O_NONBLOCK
)
2339 msg_sys
->msg_flags
|= MSG_DONTWAIT
;
2341 * If this is sendmmsg() and current destination address is same as
2342 * previously succeeded address, omit asking LSM's decision.
2343 * used_address->name_len is initialized to UINT_MAX so that the first
2344 * destination address never matches.
2346 if (used_address
&& msg_sys
->msg_name
&&
2347 used_address
->name_len
== msg_sys
->msg_namelen
&&
2348 !memcmp(&used_address
->name
, msg_sys
->msg_name
,
2349 used_address
->name_len
)) {
2350 err
= sock_sendmsg_nosec(sock
, msg_sys
);
2353 err
= sock_sendmsg(sock
, msg_sys
);
2355 * If this is sendmmsg() and sending to current destination address was
2356 * successful, remember it.
2358 if (used_address
&& err
>= 0) {
2359 used_address
->name_len
= msg_sys
->msg_namelen
;
2360 if (msg_sys
->msg_name
)
2361 memcpy(&used_address
->name
, msg_sys
->msg_name
,
2362 used_address
->name_len
);
2367 sock_kfree_s(sock
->sk
, ctl_buf
, ctl_len
);
2372 int sendmsg_copy_msghdr(struct msghdr
*msg
,
2373 struct user_msghdr __user
*umsg
, unsigned flags
,
2378 if (flags
& MSG_CMSG_COMPAT
) {
2379 struct compat_msghdr __user
*msg_compat
;
2381 msg_compat
= (struct compat_msghdr __user
*) umsg
;
2382 err
= get_compat_msghdr(msg
, msg_compat
, NULL
, iov
);
2384 err
= copy_msghdr_from_user(msg
, umsg
, NULL
, iov
);
2392 static int ___sys_sendmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2393 struct msghdr
*msg_sys
, unsigned int flags
,
2394 struct used_address
*used_address
,
2395 unsigned int allowed_msghdr_flags
)
2397 struct sockaddr_storage address
;
2398 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
2401 msg_sys
->msg_name
= &address
;
2403 err
= sendmsg_copy_msghdr(msg_sys
, msg
, flags
, &iov
);
2407 err
= ____sys_sendmsg(sock
, msg_sys
, flags
, used_address
,
2408 allowed_msghdr_flags
);
2414 * BSD sendmsg interface
2416 long __sys_sendmsg_sock(struct socket
*sock
, struct msghdr
*msg
,
2419 /* disallow ancillary data requests from this path */
2420 if (msg
->msg_control
|| msg
->msg_controllen
)
2423 return ____sys_sendmsg(sock
, msg
, flags
, NULL
, 0);
2426 long __sys_sendmsg(int fd
, struct user_msghdr __user
*msg
, unsigned int flags
,
2427 bool forbid_cmsg_compat
)
2429 int fput_needed
, err
;
2430 struct msghdr msg_sys
;
2431 struct socket
*sock
;
2433 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2436 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2440 err
= ___sys_sendmsg(sock
, msg
, &msg_sys
, flags
, NULL
, 0);
2442 fput_light(sock
->file
, fput_needed
);
2447 SYSCALL_DEFINE3(sendmsg
, int, fd
, struct user_msghdr __user
*, msg
, unsigned int, flags
)
2449 return __sys_sendmsg(fd
, msg
, flags
, true);
2453 * Linux sendmmsg interface
2456 int __sys_sendmmsg(int fd
, struct mmsghdr __user
*mmsg
, unsigned int vlen
,
2457 unsigned int flags
, bool forbid_cmsg_compat
)
2459 int fput_needed
, err
, datagrams
;
2460 struct socket
*sock
;
2461 struct mmsghdr __user
*entry
;
2462 struct compat_mmsghdr __user
*compat_entry
;
2463 struct msghdr msg_sys
;
2464 struct used_address used_address
;
2465 unsigned int oflags
= flags
;
2467 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2470 if (vlen
> UIO_MAXIOV
)
2475 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2479 used_address
.name_len
= UINT_MAX
;
2481 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2485 while (datagrams
< vlen
) {
2486 if (datagrams
== vlen
- 1)
2489 if (MSG_CMSG_COMPAT
& flags
) {
2490 err
= ___sys_sendmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2491 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2494 err
= __put_user(err
, &compat_entry
->msg_len
);
2497 err
= ___sys_sendmsg(sock
,
2498 (struct user_msghdr __user
*)entry
,
2499 &msg_sys
, flags
, &used_address
, MSG_EOR
);
2502 err
= put_user(err
, &entry
->msg_len
);
2509 if (msg_data_left(&msg_sys
))
2514 fput_light(sock
->file
, fput_needed
);
2516 /* We only return an error if no datagrams were able to be sent */
2523 SYSCALL_DEFINE4(sendmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2524 unsigned int, vlen
, unsigned int, flags
)
2526 return __sys_sendmmsg(fd
, mmsg
, vlen
, flags
, true);
2529 int recvmsg_copy_msghdr(struct msghdr
*msg
,
2530 struct user_msghdr __user
*umsg
, unsigned flags
,
2531 struct sockaddr __user
**uaddr
,
2536 if (MSG_CMSG_COMPAT
& flags
) {
2537 struct compat_msghdr __user
*msg_compat
;
2539 msg_compat
= (struct compat_msghdr __user
*) umsg
;
2540 err
= get_compat_msghdr(msg
, msg_compat
, uaddr
, iov
);
2542 err
= copy_msghdr_from_user(msg
, umsg
, uaddr
, iov
);
2550 static int ____sys_recvmsg(struct socket
*sock
, struct msghdr
*msg_sys
,
2551 struct user_msghdr __user
*msg
,
2552 struct sockaddr __user
*uaddr
,
2553 unsigned int flags
, int nosec
)
2555 struct compat_msghdr __user
*msg_compat
=
2556 (struct compat_msghdr __user
*) msg
;
2557 int __user
*uaddr_len
= COMPAT_NAMELEN(msg
);
2558 struct sockaddr_storage addr
;
2559 unsigned long cmsg_ptr
;
2563 msg_sys
->msg_name
= &addr
;
2564 cmsg_ptr
= (unsigned long)msg_sys
->msg_control
;
2565 msg_sys
->msg_flags
= flags
& (MSG_CMSG_CLOEXEC
|MSG_CMSG_COMPAT
);
2567 /* We assume all kernel code knows the size of sockaddr_storage */
2568 msg_sys
->msg_namelen
= 0;
2570 if (sock
->file
->f_flags
& O_NONBLOCK
)
2571 flags
|= MSG_DONTWAIT
;
2573 if (unlikely(nosec
))
2574 err
= sock_recvmsg_nosec(sock
, msg_sys
, flags
);
2576 err
= sock_recvmsg(sock
, msg_sys
, flags
);
2582 if (uaddr
!= NULL
) {
2583 err
= move_addr_to_user(&addr
,
2584 msg_sys
->msg_namelen
, uaddr
,
2589 err
= __put_user((msg_sys
->msg_flags
& ~MSG_CMSG_COMPAT
),
2593 if (MSG_CMSG_COMPAT
& flags
)
2594 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2595 &msg_compat
->msg_controllen
);
2597 err
= __put_user((unsigned long)msg_sys
->msg_control
- cmsg_ptr
,
2598 &msg
->msg_controllen
);
2606 static int ___sys_recvmsg(struct socket
*sock
, struct user_msghdr __user
*msg
,
2607 struct msghdr
*msg_sys
, unsigned int flags
, int nosec
)
2609 struct iovec iovstack
[UIO_FASTIOV
], *iov
= iovstack
;
2610 /* user mode address pointers */
2611 struct sockaddr __user
*uaddr
;
2614 err
= recvmsg_copy_msghdr(msg_sys
, msg
, flags
, &uaddr
, &iov
);
2618 err
= ____sys_recvmsg(sock
, msg_sys
, msg
, uaddr
, flags
, nosec
);
2624 * BSD recvmsg interface
2627 long __sys_recvmsg_sock(struct socket
*sock
, struct msghdr
*msg
,
2628 struct user_msghdr __user
*umsg
,
2629 struct sockaddr __user
*uaddr
, unsigned int flags
)
2631 /* disallow ancillary data requests from this path */
2632 if (msg
->msg_control
|| msg
->msg_controllen
)
2635 return ____sys_recvmsg(sock
, msg
, umsg
, uaddr
, flags
, 0);
2638 long __sys_recvmsg(int fd
, struct user_msghdr __user
*msg
, unsigned int flags
,
2639 bool forbid_cmsg_compat
)
2641 int fput_needed
, err
;
2642 struct msghdr msg_sys
;
2643 struct socket
*sock
;
2645 if (forbid_cmsg_compat
&& (flags
& MSG_CMSG_COMPAT
))
2648 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2652 err
= ___sys_recvmsg(sock
, msg
, &msg_sys
, flags
, 0);
2654 fput_light(sock
->file
, fput_needed
);
2659 SYSCALL_DEFINE3(recvmsg
, int, fd
, struct user_msghdr __user
*, msg
,
2660 unsigned int, flags
)
2662 return __sys_recvmsg(fd
, msg
, flags
, true);
2666 * Linux recvmmsg interface
2669 static int do_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
,
2670 unsigned int vlen
, unsigned int flags
,
2671 struct timespec64
*timeout
)
2673 int fput_needed
, err
, datagrams
;
2674 struct socket
*sock
;
2675 struct mmsghdr __user
*entry
;
2676 struct compat_mmsghdr __user
*compat_entry
;
2677 struct msghdr msg_sys
;
2678 struct timespec64 end_time
;
2679 struct timespec64 timeout64
;
2682 poll_select_set_timeout(&end_time
, timeout
->tv_sec
,
2688 sock
= sockfd_lookup_light(fd
, &err
, &fput_needed
);
2692 if (likely(!(flags
& MSG_ERRQUEUE
))) {
2693 err
= sock_error(sock
->sk
);
2701 compat_entry
= (struct compat_mmsghdr __user
*)mmsg
;
2703 while (datagrams
< vlen
) {
2705 * No need to ask LSM for more than the first datagram.
2707 if (MSG_CMSG_COMPAT
& flags
) {
2708 err
= ___sys_recvmsg(sock
, (struct user_msghdr __user
*)compat_entry
,
2709 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2713 err
= __put_user(err
, &compat_entry
->msg_len
);
2716 err
= ___sys_recvmsg(sock
,
2717 (struct user_msghdr __user
*)entry
,
2718 &msg_sys
, flags
& ~MSG_WAITFORONE
,
2722 err
= put_user(err
, &entry
->msg_len
);
2730 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2731 if (flags
& MSG_WAITFORONE
)
2732 flags
|= MSG_DONTWAIT
;
2735 ktime_get_ts64(&timeout64
);
2736 *timeout
= timespec64_sub(end_time
, timeout64
);
2737 if (timeout
->tv_sec
< 0) {
2738 timeout
->tv_sec
= timeout
->tv_nsec
= 0;
2742 /* Timeout, return less than vlen datagrams */
2743 if (timeout
->tv_nsec
== 0 && timeout
->tv_sec
== 0)
2747 /* Out of band data, return right away */
2748 if (msg_sys
.msg_flags
& MSG_OOB
)
2756 if (datagrams
== 0) {
2762 * We may return less entries than requested (vlen) if the
2763 * sock is non block and there aren't enough datagrams...
2765 if (err
!= -EAGAIN
) {
2767 * ... or if recvmsg returns an error after we
2768 * received some datagrams, where we record the
2769 * error to return on the next call or if the
2770 * app asks about it using getsockopt(SO_ERROR).
2772 sock
->sk
->sk_err
= -err
;
2775 fput_light(sock
->file
, fput_needed
);
2780 int __sys_recvmmsg(int fd
, struct mmsghdr __user
*mmsg
,
2781 unsigned int vlen
, unsigned int flags
,
2782 struct __kernel_timespec __user
*timeout
,
2783 struct old_timespec32 __user
*timeout32
)
2786 struct timespec64 timeout_sys
;
2788 if (timeout
&& get_timespec64(&timeout_sys
, timeout
))
2791 if (timeout32
&& get_old_timespec32(&timeout_sys
, timeout32
))
2794 if (!timeout
&& !timeout32
)
2795 return do_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
);
2797 datagrams
= do_recvmmsg(fd
, mmsg
, vlen
, flags
, &timeout_sys
);
2802 if (timeout
&& put_timespec64(&timeout_sys
, timeout
))
2803 datagrams
= -EFAULT
;
2805 if (timeout32
&& put_old_timespec32(&timeout_sys
, timeout32
))
2806 datagrams
= -EFAULT
;
2811 SYSCALL_DEFINE5(recvmmsg
, int, fd
, struct mmsghdr __user
*, mmsg
,
2812 unsigned int, vlen
, unsigned int, flags
,
2813 struct __kernel_timespec __user
*, timeout
)
2815 if (flags
& MSG_CMSG_COMPAT
)
2818 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, timeout
, NULL
);
2821 #ifdef CONFIG_COMPAT_32BIT_TIME
2822 SYSCALL_DEFINE5(recvmmsg_time32
, int, fd
, struct mmsghdr __user
*, mmsg
,
2823 unsigned int, vlen
, unsigned int, flags
,
2824 struct old_timespec32 __user
*, timeout
)
2826 if (flags
& MSG_CMSG_COMPAT
)
2829 return __sys_recvmmsg(fd
, mmsg
, vlen
, flags
, NULL
, timeout
);
2833 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2834 /* Argument list sizes for sys_socketcall */
2835 #define AL(x) ((x) * sizeof(unsigned long))
2836 static const unsigned char nargs
[21] = {
2837 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2838 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2839 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2846 * System call vectors.
2848 * Argument checking cleaned up. Saved 20% in size.
2849 * This function doesn't need to set the kernel lock because
2850 * it is set by the callees.
2853 SYSCALL_DEFINE2(socketcall
, int, call
, unsigned long __user
*, args
)
2855 unsigned long a
[AUDITSC_ARGS
];
2856 unsigned long a0
, a1
;
2860 if (call
< 1 || call
> SYS_SENDMMSG
)
2862 call
= array_index_nospec(call
, SYS_SENDMMSG
+ 1);
2865 if (len
> sizeof(a
))
2868 /* copy_from_user should be SMP safe. */
2869 if (copy_from_user(a
, args
, len
))
2872 err
= audit_socketcall(nargs
[call
] / sizeof(unsigned long), a
);
2881 err
= __sys_socket(a0
, a1
, a
[2]);
2884 err
= __sys_bind(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2887 err
= __sys_connect(a0
, (struct sockaddr __user
*)a1
, a
[2]);
2890 err
= __sys_listen(a0
, a1
);
2893 err
= __sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2894 (int __user
*)a
[2], 0);
2896 case SYS_GETSOCKNAME
:
2898 __sys_getsockname(a0
, (struct sockaddr __user
*)a1
,
2899 (int __user
*)a
[2]);
2901 case SYS_GETPEERNAME
:
2903 __sys_getpeername(a0
, (struct sockaddr __user
*)a1
,
2904 (int __user
*)a
[2]);
2906 case SYS_SOCKETPAIR
:
2907 err
= __sys_socketpair(a0
, a1
, a
[2], (int __user
*)a
[3]);
2910 err
= __sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2914 err
= __sys_sendto(a0
, (void __user
*)a1
, a
[2], a
[3],
2915 (struct sockaddr __user
*)a
[4], a
[5]);
2918 err
= __sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2922 err
= __sys_recvfrom(a0
, (void __user
*)a1
, a
[2], a
[3],
2923 (struct sockaddr __user
*)a
[4],
2924 (int __user
*)a
[5]);
2927 err
= __sys_shutdown(a0
, a1
);
2929 case SYS_SETSOCKOPT
:
2930 err
= __sys_setsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2933 case SYS_GETSOCKOPT
:
2935 __sys_getsockopt(a0
, a1
, a
[2], (char __user
*)a
[3],
2936 (int __user
*)a
[4]);
2939 err
= __sys_sendmsg(a0
, (struct user_msghdr __user
*)a1
,
2943 err
= __sys_sendmmsg(a0
, (struct mmsghdr __user
*)a1
, a
[2],
2947 err
= __sys_recvmsg(a0
, (struct user_msghdr __user
*)a1
,
2951 if (IS_ENABLED(CONFIG_64BIT
))
2952 err
= __sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
,
2954 (struct __kernel_timespec __user
*)a
[4],
2957 err
= __sys_recvmmsg(a0
, (struct mmsghdr __user
*)a1
,
2959 (struct old_timespec32 __user
*)a
[4]);
2962 err
= __sys_accept4(a0
, (struct sockaddr __user
*)a1
,
2963 (int __user
*)a
[2], a
[3]);
2972 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2975 * sock_register - add a socket protocol handler
2976 * @ops: description of protocol
2978 * This function is called by a protocol handler that wants to
2979 * advertise its address family, and have it linked into the
2980 * socket interface. The value ops->family corresponds to the
2981 * socket system call protocol family.
2983 int sock_register(const struct net_proto_family
*ops
)
2987 if (ops
->family
>= NPROTO
) {
2988 pr_crit("protocol %d >= NPROTO(%d)\n", ops
->family
, NPROTO
);
2992 spin_lock(&net_family_lock
);
2993 if (rcu_dereference_protected(net_families
[ops
->family
],
2994 lockdep_is_held(&net_family_lock
)))
2997 rcu_assign_pointer(net_families
[ops
->family
], ops
);
3000 spin_unlock(&net_family_lock
);
3002 pr_info("NET: Registered protocol family %d\n", ops
->family
);
3005 EXPORT_SYMBOL(sock_register
);
3008 * sock_unregister - remove a protocol handler
3009 * @family: protocol family to remove
3011 * This function is called by a protocol handler that wants to
3012 * remove its address family, and have it unlinked from the
3013 * new socket creation.
3015 * If protocol handler is a module, then it can use module reference
3016 * counts to protect against new references. If protocol handler is not
3017 * a module then it needs to provide its own protection in
3018 * the ops->create routine.
3020 void sock_unregister(int family
)
3022 BUG_ON(family
< 0 || family
>= NPROTO
);
3024 spin_lock(&net_family_lock
);
3025 RCU_INIT_POINTER(net_families
[family
], NULL
);
3026 spin_unlock(&net_family_lock
);
3030 pr_info("NET: Unregistered protocol family %d\n", family
);
3032 EXPORT_SYMBOL(sock_unregister
);
3034 bool sock_is_registered(int family
)
3036 return family
< NPROTO
&& rcu_access_pointer(net_families
[family
]);
3039 static int __init
sock_init(void)
3043 * Initialize the network sysctl infrastructure.
3045 err
= net_sysctl_init();
3050 * Initialize skbuff SLAB cache
3055 * Initialize the protocols module.
3060 err
= register_filesystem(&sock_fs_type
);
3063 sock_mnt
= kern_mount(&sock_fs_type
);
3064 if (IS_ERR(sock_mnt
)) {
3065 err
= PTR_ERR(sock_mnt
);
3069 /* The real protocol initialization is performed in later initcalls.
3072 #ifdef CONFIG_NETFILTER
3073 err
= netfilter_init();
3078 ptp_classifier_init();
3084 unregister_filesystem(&sock_fs_type
);
3088 core_initcall(sock_init
); /* early initcall */
3090 #ifdef CONFIG_PROC_FS
3091 void socket_seq_show(struct seq_file
*seq
)
3093 seq_printf(seq
, "sockets: used %d\n",
3094 sock_inuse_get(seq
->private));
3096 #endif /* CONFIG_PROC_FS */
3098 #ifdef CONFIG_COMPAT
3099 static int compat_dev_ifconf(struct net
*net
, struct compat_ifconf __user
*uifc32
)
3101 struct compat_ifconf ifc32
;
3105 if (copy_from_user(&ifc32
, uifc32
, sizeof(struct compat_ifconf
)))
3108 ifc
.ifc_len
= ifc32
.ifc_len
;
3109 ifc
.ifc_req
= compat_ptr(ifc32
.ifcbuf
);
3112 err
= dev_ifconf(net
, &ifc
, sizeof(struct compat_ifreq
));
3117 ifc32
.ifc_len
= ifc
.ifc_len
;
3118 if (copy_to_user(uifc32
, &ifc32
, sizeof(struct compat_ifconf
)))
3124 static int ethtool_ioctl(struct net
*net
, struct compat_ifreq __user
*ifr32
)
3126 struct compat_ethtool_rxnfc __user
*compat_rxnfc
;
3127 bool convert_in
= false, convert_out
= false;
3128 size_t buf_size
= 0;
3129 struct ethtool_rxnfc __user
*rxnfc
= NULL
;
3131 u32 rule_cnt
= 0, actual_rule_cnt
;
3136 if (get_user(data
, &ifr32
->ifr_ifru
.ifru_data
))
3139 compat_rxnfc
= compat_ptr(data
);
3141 if (get_user(ethcmd
, &compat_rxnfc
->cmd
))
3144 /* Most ethtool structures are defined without padding.
3145 * Unfortunately struct ethtool_rxnfc is an exception.
3150 case ETHTOOL_GRXCLSRLALL
:
3151 /* Buffer size is variable */
3152 if (get_user(rule_cnt
, &compat_rxnfc
->rule_cnt
))
3154 if (rule_cnt
> KMALLOC_MAX_SIZE
/ sizeof(u32
))
3156 buf_size
+= rule_cnt
* sizeof(u32
);
3158 case ETHTOOL_GRXRINGS
:
3159 case ETHTOOL_GRXCLSRLCNT
:
3160 case ETHTOOL_GRXCLSRULE
:
3161 case ETHTOOL_SRXCLSRLINS
:
3164 case ETHTOOL_SRXCLSRLDEL
:
3165 buf_size
+= sizeof(struct ethtool_rxnfc
);
3167 rxnfc
= compat_alloc_user_space(buf_size
);
3171 if (copy_from_user(&ifr
.ifr_name
, &ifr32
->ifr_name
, IFNAMSIZ
))
3174 ifr
.ifr_data
= convert_in
? rxnfc
: (void __user
*)compat_rxnfc
;
3177 /* We expect there to be holes between fs.m_ext and
3178 * fs.ring_cookie and at the end of fs, but nowhere else.
3180 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc
, fs
.m_ext
) +
3181 sizeof(compat_rxnfc
->fs
.m_ext
) !=
3182 offsetof(struct ethtool_rxnfc
, fs
.m_ext
) +
3183 sizeof(rxnfc
->fs
.m_ext
));
3185 offsetof(struct compat_ethtool_rxnfc
, fs
.location
) -
3186 offsetof(struct compat_ethtool_rxnfc
, fs
.ring_cookie
) !=
3187 offsetof(struct ethtool_rxnfc
, fs
.location
) -
3188 offsetof(struct ethtool_rxnfc
, fs
.ring_cookie
));
3190 if (copy_in_user(rxnfc
, compat_rxnfc
,
3191 (void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
3192 (void __user
*)rxnfc
) ||
3193 copy_in_user(&rxnfc
->fs
.ring_cookie
,
3194 &compat_rxnfc
->fs
.ring_cookie
,
3195 (void __user
*)(&rxnfc
->fs
.location
+ 1) -
3196 (void __user
*)&rxnfc
->fs
.ring_cookie
))
3198 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
3199 if (put_user(rule_cnt
, &rxnfc
->rule_cnt
))
3201 } else if (copy_in_user(&rxnfc
->rule_cnt
,
3202 &compat_rxnfc
->rule_cnt
,
3203 sizeof(rxnfc
->rule_cnt
)))
3207 ret
= dev_ioctl(net
, SIOCETHTOOL
, &ifr
, NULL
);
3212 if (copy_in_user(compat_rxnfc
, rxnfc
,
3213 (const void __user
*)(&rxnfc
->fs
.m_ext
+ 1) -
3214 (const void __user
*)rxnfc
) ||
3215 copy_in_user(&compat_rxnfc
->fs
.ring_cookie
,
3216 &rxnfc
->fs
.ring_cookie
,
3217 (const void __user
*)(&rxnfc
->fs
.location
+ 1) -
3218 (const void __user
*)&rxnfc
->fs
.ring_cookie
) ||
3219 copy_in_user(&compat_rxnfc
->rule_cnt
, &rxnfc
->rule_cnt
,
3220 sizeof(rxnfc
->rule_cnt
)))
3223 if (ethcmd
== ETHTOOL_GRXCLSRLALL
) {
3224 /* As an optimisation, we only copy the actual
3225 * number of rules that the underlying
3226 * function returned. Since Mallory might
3227 * change the rule count in user memory, we
3228 * check that it is less than the rule count
3229 * originally given (as the user buffer size),
3230 * which has been range-checked.
3232 if (get_user(actual_rule_cnt
, &rxnfc
->rule_cnt
))
3234 if (actual_rule_cnt
< rule_cnt
)
3235 rule_cnt
= actual_rule_cnt
;
3236 if (copy_in_user(&compat_rxnfc
->rule_locs
[0],
3237 &rxnfc
->rule_locs
[0],
3238 rule_cnt
* sizeof(u32
)))
3246 static int compat_siocwandev(struct net
*net
, struct compat_ifreq __user
*uifr32
)
3248 compat_uptr_t uptr32
;
3253 if (copy_from_user(&ifr
, uifr32
, sizeof(struct compat_ifreq
)))
3256 if (get_user(uptr32
, &uifr32
->ifr_settings
.ifs_ifsu
))
3259 saved
= ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
;
3260 ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
= compat_ptr(uptr32
);
3262 err
= dev_ioctl(net
, SIOCWANDEV
, &ifr
, NULL
);
3264 ifr
.ifr_settings
.ifs_ifsu
.raw_hdlc
= saved
;
3265 if (copy_to_user(uifr32
, &ifr
, sizeof(struct compat_ifreq
)))
3271 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
3272 static int compat_ifr_data_ioctl(struct net
*net
, unsigned int cmd
,
3273 struct compat_ifreq __user
*u_ifreq32
)
3278 if (copy_from_user(ifreq
.ifr_name
, u_ifreq32
->ifr_name
, IFNAMSIZ
))
3280 if (get_user(data32
, &u_ifreq32
->ifr_data
))
3282 ifreq
.ifr_data
= compat_ptr(data32
);
3284 return dev_ioctl(net
, cmd
, &ifreq
, NULL
);
3287 static int compat_ifreq_ioctl(struct net
*net
, struct socket
*sock
,
3289 struct compat_ifreq __user
*uifr32
)
3291 struct ifreq __user
*uifr
;
3294 /* Handle the fact that while struct ifreq has the same *layout* on
3295 * 32/64 for everything but ifreq::ifru_ifmap and ifreq::ifru_data,
3296 * which are handled elsewhere, it still has different *size* due to
3297 * ifreq::ifru_ifmap (which is 16 bytes on 32 bit, 24 bytes on 64-bit,
3298 * resulting in struct ifreq being 32 and 40 bytes respectively).
3299 * As a result, if the struct happens to be at the end of a page and
3300 * the next page isn't readable/writable, we get a fault. To prevent
3301 * that, copy back and forth to the full size.
3304 uifr
= compat_alloc_user_space(sizeof(*uifr
));
3305 if (copy_in_user(uifr
, uifr32
, sizeof(*uifr32
)))
3308 err
= sock_do_ioctl(net
, sock
, cmd
, (unsigned long)uifr
);
3319 case SIOCGIFBRDADDR
:
3320 case SIOCGIFDSTADDR
:
3321 case SIOCGIFNETMASK
:
3327 if (copy_in_user(uifr32
, uifr
, sizeof(*uifr32
)))
3335 static int compat_sioc_ifmap(struct net
*net
, unsigned int cmd
,
3336 struct compat_ifreq __user
*uifr32
)
3339 struct compat_ifmap __user
*uifmap32
;
3342 uifmap32
= &uifr32
->ifr_ifru
.ifru_map
;
3343 err
= copy_from_user(&ifr
, uifr32
, sizeof(ifr
.ifr_name
));
3344 err
|= get_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3345 err
|= get_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3346 err
|= get_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3347 err
|= get_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3348 err
|= get_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3349 err
|= get_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3353 err
= dev_ioctl(net
, cmd
, &ifr
, NULL
);
3355 if (cmd
== SIOCGIFMAP
&& !err
) {
3356 err
= copy_to_user(uifr32
, &ifr
, sizeof(ifr
.ifr_name
));
3357 err
|= put_user(ifr
.ifr_map
.mem_start
, &uifmap32
->mem_start
);
3358 err
|= put_user(ifr
.ifr_map
.mem_end
, &uifmap32
->mem_end
);
3359 err
|= put_user(ifr
.ifr_map
.base_addr
, &uifmap32
->base_addr
);
3360 err
|= put_user(ifr
.ifr_map
.irq
, &uifmap32
->irq
);
3361 err
|= put_user(ifr
.ifr_map
.dma
, &uifmap32
->dma
);
3362 err
|= put_user(ifr
.ifr_map
.port
, &uifmap32
->port
);
3369 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3370 * for some operations; this forces use of the newer bridge-utils that
3371 * use compatible ioctls
3373 static int old_bridge_ioctl(compat_ulong_t __user
*argp
)
3377 if (get_user(tmp
, argp
))
3379 if (tmp
== BRCTL_GET_VERSION
)
3380 return BRCTL_VERSION
+ 1;
3384 static int compat_sock_ioctl_trans(struct file
*file
, struct socket
*sock
,
3385 unsigned int cmd
, unsigned long arg
)
3387 void __user
*argp
= compat_ptr(arg
);
3388 struct sock
*sk
= sock
->sk
;
3389 struct net
*net
= sock_net(sk
);
3391 if (cmd
>= SIOCDEVPRIVATE
&& cmd
<= (SIOCDEVPRIVATE
+ 15))
3392 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3397 return old_bridge_ioctl(argp
);
3399 return compat_dev_ifconf(net
, argp
);
3401 return ethtool_ioctl(net
, argp
);
3403 return compat_siocwandev(net
, argp
);
3406 return compat_sioc_ifmap(net
, cmd
, argp
);
3407 case SIOCGSTAMP_OLD
:
3408 case SIOCGSTAMPNS_OLD
:
3409 if (!sock
->ops
->gettstamp
)
3410 return -ENOIOCTLCMD
;
3411 return sock
->ops
->gettstamp(sock
, argp
, cmd
== SIOCGSTAMP_OLD
,
3412 !COMPAT_USE_64BIT_TIME
);
3414 case SIOCBONDSLAVEINFOQUERY
:
3415 case SIOCBONDINFOQUERY
:
3418 return compat_ifr_data_ioctl(net
, cmd
, argp
);
3431 case SIOCGSTAMP_NEW
:
3432 case SIOCGSTAMPNS_NEW
:
3433 return sock_ioctl(file
, cmd
, arg
);
3450 case SIOCSIFHWBROADCAST
:
3452 case SIOCGIFBRDADDR
:
3453 case SIOCSIFBRDADDR
:
3454 case SIOCGIFDSTADDR
:
3455 case SIOCSIFDSTADDR
:
3456 case SIOCGIFNETMASK
:
3457 case SIOCSIFNETMASK
:
3469 case SIOCBONDENSLAVE
:
3470 case SIOCBONDRELEASE
:
3471 case SIOCBONDSETHWADDR
:
3472 case SIOCBONDCHANGEACTIVE
:
3473 return compat_ifreq_ioctl(net
, sock
, cmd
, argp
);
3481 return sock_do_ioctl(net
, sock
, cmd
, arg
);
3484 return -ENOIOCTLCMD
;
3487 static long compat_sock_ioctl(struct file
*file
, unsigned int cmd
,
3490 struct socket
*sock
= file
->private_data
;
3491 int ret
= -ENOIOCTLCMD
;
3498 if (sock
->ops
->compat_ioctl
)
3499 ret
= sock
->ops
->compat_ioctl(sock
, cmd
, arg
);
3501 if (ret
== -ENOIOCTLCMD
&&
3502 (cmd
>= SIOCIWFIRST
&& cmd
<= SIOCIWLAST
))
3503 ret
= compat_wext_handle_ioctl(net
, cmd
, arg
);
3505 if (ret
== -ENOIOCTLCMD
)
3506 ret
= compat_sock_ioctl_trans(file
, sock
, cmd
, arg
);
3513 * kernel_bind - bind an address to a socket (kernel space)
3516 * @addrlen: length of address
3518 * Returns 0 or an error.
3521 int kernel_bind(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
)
3523 return sock
->ops
->bind(sock
, addr
, addrlen
);
3525 EXPORT_SYMBOL(kernel_bind
);
3528 * kernel_listen - move socket to listening state (kernel space)
3530 * @backlog: pending connections queue size
3532 * Returns 0 or an error.
3535 int kernel_listen(struct socket
*sock
, int backlog
)
3537 return sock
->ops
->listen(sock
, backlog
);
3539 EXPORT_SYMBOL(kernel_listen
);
3542 * kernel_accept - accept a connection (kernel space)
3543 * @sock: listening socket
3544 * @newsock: new connected socket
3547 * @flags must be SOCK_CLOEXEC, SOCK_NONBLOCK or 0.
3548 * If it fails, @newsock is guaranteed to be %NULL.
3549 * Returns 0 or an error.
3552 int kernel_accept(struct socket
*sock
, struct socket
**newsock
, int flags
)
3554 struct sock
*sk
= sock
->sk
;
3557 err
= sock_create_lite(sk
->sk_family
, sk
->sk_type
, sk
->sk_protocol
,
3562 err
= sock
->ops
->accept(sock
, *newsock
, flags
, true);
3564 sock_release(*newsock
);
3569 (*newsock
)->ops
= sock
->ops
;
3570 __module_get((*newsock
)->ops
->owner
);
3575 EXPORT_SYMBOL(kernel_accept
);
3578 * kernel_connect - connect a socket (kernel space)
3581 * @addrlen: address length
3582 * @flags: flags (O_NONBLOCK, ...)
3584 * For datagram sockets, @addr is the addres to which datagrams are sent
3585 * by default, and the only address from which datagrams are received.
3586 * For stream sockets, attempts to connect to @addr.
3587 * Returns 0 or an error code.
3590 int kernel_connect(struct socket
*sock
, struct sockaddr
*addr
, int addrlen
,
3593 return sock
->ops
->connect(sock
, addr
, addrlen
, flags
);
3595 EXPORT_SYMBOL(kernel_connect
);
3598 * kernel_getsockname - get the address which the socket is bound (kernel space)
3600 * @addr: address holder
3602 * Fills the @addr pointer with the address which the socket is bound.
3603 * Returns 0 or an error code.
3606 int kernel_getsockname(struct socket
*sock
, struct sockaddr
*addr
)
3608 return sock
->ops
->getname(sock
, addr
, 0);
3610 EXPORT_SYMBOL(kernel_getsockname
);
3613 * kernel_getpeername - get the address which the socket is connected (kernel space)
3615 * @addr: address holder
3617 * Fills the @addr pointer with the address which the socket is connected.
3618 * Returns 0 or an error code.
3621 int kernel_getpeername(struct socket
*sock
, struct sockaddr
*addr
)
3623 return sock
->ops
->getname(sock
, addr
, 1);
3625 EXPORT_SYMBOL(kernel_getpeername
);
3628 * kernel_sendpage - send a &page through a socket (kernel space)
3631 * @offset: page offset
3632 * @size: total size in bytes
3633 * @flags: flags (MSG_DONTWAIT, ...)
3635 * Returns the total amount sent in bytes or an error.
3638 int kernel_sendpage(struct socket
*sock
, struct page
*page
, int offset
,
3639 size_t size
, int flags
)
3641 if (sock
->ops
->sendpage
) {
3642 /* Warn in case the improper page to zero-copy send */
3643 WARN_ONCE(!sendpage_ok(page
), "improper page for zero-copy send");
3644 return sock
->ops
->sendpage(sock
, page
, offset
, size
, flags
);
3646 return sock_no_sendpage(sock
, page
, offset
, size
, flags
);
3648 EXPORT_SYMBOL(kernel_sendpage
);
3651 * kernel_sendpage_locked - send a &page through the locked sock (kernel space)
3654 * @offset: page offset
3655 * @size: total size in bytes
3656 * @flags: flags (MSG_DONTWAIT, ...)
3658 * Returns the total amount sent in bytes or an error.
3659 * Caller must hold @sk.
3662 int kernel_sendpage_locked(struct sock
*sk
, struct page
*page
, int offset
,
3663 size_t size
, int flags
)
3665 struct socket
*sock
= sk
->sk_socket
;
3667 if (sock
->ops
->sendpage_locked
)
3668 return sock
->ops
->sendpage_locked(sk
, page
, offset
, size
,
3671 return sock_no_sendpage_locked(sk
, page
, offset
, size
, flags
);
3673 EXPORT_SYMBOL(kernel_sendpage_locked
);
3676 * kernel_sock_shutdown - shut down part of a full-duplex connection (kernel space)
3678 * @how: connection part
3680 * Returns 0 or an error.
3683 int kernel_sock_shutdown(struct socket
*sock
, enum sock_shutdown_cmd how
)
3685 return sock
->ops
->shutdown(sock
, how
);
3687 EXPORT_SYMBOL(kernel_sock_shutdown
);
3690 * kernel_sock_ip_overhead - returns the IP overhead imposed by a socket
3693 * This routine returns the IP overhead imposed by a socket i.e.
3694 * the length of the underlying IP header, depending on whether
3695 * this is an IPv4 or IPv6 socket and the length from IP options turned
3696 * on at the socket. Assumes that the caller has a lock on the socket.
3699 u32
kernel_sock_ip_overhead(struct sock
*sk
)
3701 struct inet_sock
*inet
;
3702 struct ip_options_rcu
*opt
;
3704 #if IS_ENABLED(CONFIG_IPV6)
3705 struct ipv6_pinfo
*np
;
3706 struct ipv6_txoptions
*optv6
= NULL
;
3707 #endif /* IS_ENABLED(CONFIG_IPV6) */
3712 switch (sk
->sk_family
) {
3715 overhead
+= sizeof(struct iphdr
);
3716 opt
= rcu_dereference_protected(inet
->inet_opt
,
3717 sock_owned_by_user(sk
));
3719 overhead
+= opt
->opt
.optlen
;
3721 #if IS_ENABLED(CONFIG_IPV6)
3724 overhead
+= sizeof(struct ipv6hdr
);
3726 optv6
= rcu_dereference_protected(np
->opt
,
3727 sock_owned_by_user(sk
));
3729 overhead
+= (optv6
->opt_flen
+ optv6
->opt_nflen
);
3731 #endif /* IS_ENABLED(CONFIG_IPV6) */
3732 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3736 EXPORT_SYMBOL(kernel_sock_ip_overhead
);