2 * Functions related to setting various queue properties from drivers
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
11 #include <linux/lcm.h>
12 #include <linux/jiffies.h>
13 #include <linux/gfp.h>
18 unsigned long blk_max_low_pfn
;
19 EXPORT_SYMBOL(blk_max_low_pfn
);
21 unsigned long blk_max_pfn
;
24 * blk_queue_prep_rq - set a prepare_request function for queue
26 * @pfn: prepare_request function
28 * It's possible for a queue to register a prepare_request callback which
29 * is invoked before the request is handed to the request_fn. The goal of
30 * the function is to prepare a request for I/O, it can be used to build a
31 * cdb from the request data for instance.
34 void blk_queue_prep_rq(struct request_queue
*q
, prep_rq_fn
*pfn
)
38 EXPORT_SYMBOL(blk_queue_prep_rq
);
41 * blk_queue_unprep_rq - set an unprepare_request function for queue
43 * @ufn: unprepare_request function
45 * It's possible for a queue to register an unprepare_request callback
46 * which is invoked before the request is finally completed. The goal
47 * of the function is to deallocate any data that was allocated in the
48 * prepare_request callback.
51 void blk_queue_unprep_rq(struct request_queue
*q
, unprep_rq_fn
*ufn
)
53 q
->unprep_rq_fn
= ufn
;
55 EXPORT_SYMBOL(blk_queue_unprep_rq
);
57 void blk_queue_softirq_done(struct request_queue
*q
, softirq_done_fn
*fn
)
59 q
->softirq_done_fn
= fn
;
61 EXPORT_SYMBOL(blk_queue_softirq_done
);
63 void blk_queue_rq_timeout(struct request_queue
*q
, unsigned int timeout
)
65 q
->rq_timeout
= timeout
;
67 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout
);
69 void blk_queue_rq_timed_out(struct request_queue
*q
, rq_timed_out_fn
*fn
)
71 q
->rq_timed_out_fn
= fn
;
73 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out
);
75 void blk_queue_lld_busy(struct request_queue
*q
, lld_busy_fn
*fn
)
79 EXPORT_SYMBOL_GPL(blk_queue_lld_busy
);
82 * blk_set_default_limits - reset limits to default values
83 * @lim: the queue_limits structure to reset
86 * Returns a queue_limit struct to its default state.
88 void blk_set_default_limits(struct queue_limits
*lim
)
90 lim
->max_segments
= BLK_MAX_SEGMENTS
;
91 lim
->max_integrity_segments
= 0;
92 lim
->seg_boundary_mask
= BLK_SEG_BOUNDARY_MASK
;
93 lim
->virt_boundary_mask
= 0;
94 lim
->max_segment_size
= BLK_MAX_SEGMENT_SIZE
;
95 lim
->max_sectors
= lim
->max_hw_sectors
= BLK_SAFE_MAX_SECTORS
;
96 lim
->max_dev_sectors
= 0;
97 lim
->chunk_sectors
= 0;
98 lim
->max_write_same_sectors
= 0;
99 lim
->max_write_zeroes_sectors
= 0;
100 lim
->max_discard_sectors
= 0;
101 lim
->max_hw_discard_sectors
= 0;
102 lim
->discard_granularity
= 0;
103 lim
->discard_alignment
= 0;
104 lim
->discard_misaligned
= 0;
105 lim
->discard_zeroes_data
= 0;
106 lim
->logical_block_size
= lim
->physical_block_size
= lim
->io_min
= 512;
107 lim
->bounce_pfn
= (unsigned long)(BLK_BOUNCE_ANY
>> PAGE_SHIFT
);
108 lim
->alignment_offset
= 0;
112 lim
->zoned
= BLK_ZONED_NONE
;
114 EXPORT_SYMBOL(blk_set_default_limits
);
117 * blk_set_stacking_limits - set default limits for stacking devices
118 * @lim: the queue_limits structure to reset
121 * Returns a queue_limit struct to its default state. Should be used
122 * by stacking drivers like DM that have no internal limits.
124 void blk_set_stacking_limits(struct queue_limits
*lim
)
126 blk_set_default_limits(lim
);
128 /* Inherit limits from component devices */
129 lim
->discard_zeroes_data
= 1;
130 lim
->max_segments
= USHRT_MAX
;
131 lim
->max_hw_sectors
= UINT_MAX
;
132 lim
->max_segment_size
= UINT_MAX
;
133 lim
->max_sectors
= UINT_MAX
;
134 lim
->max_dev_sectors
= UINT_MAX
;
135 lim
->max_write_same_sectors
= UINT_MAX
;
136 lim
->max_write_zeroes_sectors
= UINT_MAX
;
138 EXPORT_SYMBOL(blk_set_stacking_limits
);
141 * blk_queue_make_request - define an alternate make_request function for a device
142 * @q: the request queue for the device to be affected
143 * @mfn: the alternate make_request function
146 * The normal way for &struct bios to be passed to a device
147 * driver is for them to be collected into requests on a request
148 * queue, and then to allow the device driver to select requests
149 * off that queue when it is ready. This works well for many block
150 * devices. However some block devices (typically virtual devices
151 * such as md or lvm) do not benefit from the processing on the
152 * request queue, and are served best by having the requests passed
153 * directly to them. This can be achieved by providing a function
154 * to blk_queue_make_request().
157 * The driver that does this *must* be able to deal appropriately
158 * with buffers in "highmemory". This can be accomplished by either calling
159 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
160 * blk_queue_bounce() to create a buffer in normal memory.
162 void blk_queue_make_request(struct request_queue
*q
, make_request_fn
*mfn
)
167 q
->nr_requests
= BLKDEV_MAX_RQ
;
169 q
->make_request_fn
= mfn
;
170 blk_queue_dma_alignment(q
, 511);
171 blk_queue_congestion_threshold(q
);
172 q
->nr_batching
= BLK_BATCH_REQ
;
174 blk_set_default_limits(&q
->limits
);
177 * by default assume old behaviour and bounce for any highmem page
179 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
181 EXPORT_SYMBOL(blk_queue_make_request
);
184 * blk_queue_bounce_limit - set bounce buffer limit for queue
185 * @q: the request queue for the device
186 * @max_addr: the maximum address the device can handle
189 * Different hardware can have different requirements as to what pages
190 * it can do I/O directly to. A low level driver can call
191 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
192 * buffers for doing I/O to pages residing above @max_addr.
194 void blk_queue_bounce_limit(struct request_queue
*q
, u64 max_addr
)
196 unsigned long b_pfn
= max_addr
>> PAGE_SHIFT
;
199 q
->bounce_gfp
= GFP_NOIO
;
200 #if BITS_PER_LONG == 64
202 * Assume anything <= 4GB can be handled by IOMMU. Actually
203 * some IOMMUs can handle everything, but I don't know of a
204 * way to test this here.
206 if (b_pfn
< (min_t(u64
, 0xffffffffUL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
208 q
->limits
.bounce_pfn
= max(max_low_pfn
, b_pfn
);
210 if (b_pfn
< blk_max_low_pfn
)
212 q
->limits
.bounce_pfn
= b_pfn
;
215 init_emergency_isa_pool();
216 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
217 q
->limits
.bounce_pfn
= b_pfn
;
220 EXPORT_SYMBOL(blk_queue_bounce_limit
);
223 * blk_queue_max_hw_sectors - set max sectors for a request for this queue
224 * @q: the request queue for the device
225 * @max_hw_sectors: max hardware sectors in the usual 512b unit
228 * Enables a low level driver to set a hard upper limit,
229 * max_hw_sectors, on the size of requests. max_hw_sectors is set by
230 * the device driver based upon the capabilities of the I/O
233 * max_dev_sectors is a hard limit imposed by the storage device for
234 * READ/WRITE requests. It is set by the disk driver.
236 * max_sectors is a soft limit imposed by the block layer for
237 * filesystem type requests. This value can be overridden on a
238 * per-device basis in /sys/block/<device>/queue/max_sectors_kb.
239 * The soft limit can not exceed max_hw_sectors.
241 void blk_queue_max_hw_sectors(struct request_queue
*q
, unsigned int max_hw_sectors
)
243 struct queue_limits
*limits
= &q
->limits
;
244 unsigned int max_sectors
;
246 if ((max_hw_sectors
<< 9) < PAGE_SIZE
) {
247 max_hw_sectors
= 1 << (PAGE_SHIFT
- 9);
248 printk(KERN_INFO
"%s: set to minimum %d\n",
249 __func__
, max_hw_sectors
);
252 limits
->max_hw_sectors
= max_hw_sectors
;
253 max_sectors
= min_not_zero(max_hw_sectors
, limits
->max_dev_sectors
);
254 max_sectors
= min_t(unsigned int, max_sectors
, BLK_DEF_MAX_SECTORS
);
255 limits
->max_sectors
= max_sectors
;
256 q
->backing_dev_info
.io_pages
= max_sectors
>> (PAGE_SHIFT
- 9);
258 EXPORT_SYMBOL(blk_queue_max_hw_sectors
);
261 * blk_queue_chunk_sectors - set size of the chunk for this queue
262 * @q: the request queue for the device
263 * @chunk_sectors: chunk sectors in the usual 512b unit
266 * If a driver doesn't want IOs to cross a given chunk size, it can set
267 * this limit and prevent merging across chunks. Note that the chunk size
268 * must currently be a power-of-2 in sectors. Also note that the block
269 * layer must accept a page worth of data at any offset. So if the
270 * crossing of chunks is a hard limitation in the driver, it must still be
271 * prepared to split single page bios.
273 void blk_queue_chunk_sectors(struct request_queue
*q
, unsigned int chunk_sectors
)
275 BUG_ON(!is_power_of_2(chunk_sectors
));
276 q
->limits
.chunk_sectors
= chunk_sectors
;
278 EXPORT_SYMBOL(blk_queue_chunk_sectors
);
281 * blk_queue_max_discard_sectors - set max sectors for a single discard
282 * @q: the request queue for the device
283 * @max_discard_sectors: maximum number of sectors to discard
285 void blk_queue_max_discard_sectors(struct request_queue
*q
,
286 unsigned int max_discard_sectors
)
288 q
->limits
.max_hw_discard_sectors
= max_discard_sectors
;
289 q
->limits
.max_discard_sectors
= max_discard_sectors
;
291 EXPORT_SYMBOL(blk_queue_max_discard_sectors
);
294 * blk_queue_max_write_same_sectors - set max sectors for a single write same
295 * @q: the request queue for the device
296 * @max_write_same_sectors: maximum number of sectors to write per command
298 void blk_queue_max_write_same_sectors(struct request_queue
*q
,
299 unsigned int max_write_same_sectors
)
301 q
->limits
.max_write_same_sectors
= max_write_same_sectors
;
303 EXPORT_SYMBOL(blk_queue_max_write_same_sectors
);
306 * blk_queue_max_write_zeroes_sectors - set max sectors for a single
308 * @q: the request queue for the device
309 * @max_write_zeroes_sectors: maximum number of sectors to write per command
311 void blk_queue_max_write_zeroes_sectors(struct request_queue
*q
,
312 unsigned int max_write_zeroes_sectors
)
314 q
->limits
.max_write_zeroes_sectors
= max_write_zeroes_sectors
;
316 EXPORT_SYMBOL(blk_queue_max_write_zeroes_sectors
);
319 * blk_queue_max_segments - set max hw segments for a request for this queue
320 * @q: the request queue for the device
321 * @max_segments: max number of segments
324 * Enables a low level driver to set an upper limit on the number of
325 * hw data segments in a request.
327 void blk_queue_max_segments(struct request_queue
*q
, unsigned short max_segments
)
331 printk(KERN_INFO
"%s: set to minimum %d\n",
332 __func__
, max_segments
);
335 q
->limits
.max_segments
= max_segments
;
337 EXPORT_SYMBOL(blk_queue_max_segments
);
340 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
341 * @q: the request queue for the device
342 * @max_size: max size of segment in bytes
345 * Enables a low level driver to set an upper limit on the size of a
348 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
350 if (max_size
< PAGE_SIZE
) {
351 max_size
= PAGE_SIZE
;
352 printk(KERN_INFO
"%s: set to minimum %d\n",
356 q
->limits
.max_segment_size
= max_size
;
358 EXPORT_SYMBOL(blk_queue_max_segment_size
);
361 * blk_queue_logical_block_size - set logical block size for the queue
362 * @q: the request queue for the device
363 * @size: the logical block size, in bytes
366 * This should be set to the lowest possible block size that the
367 * storage device can address. The default of 512 covers most
370 void blk_queue_logical_block_size(struct request_queue
*q
, unsigned short size
)
372 q
->limits
.logical_block_size
= size
;
374 if (q
->limits
.physical_block_size
< size
)
375 q
->limits
.physical_block_size
= size
;
377 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
378 q
->limits
.io_min
= q
->limits
.physical_block_size
;
380 EXPORT_SYMBOL(blk_queue_logical_block_size
);
383 * blk_queue_physical_block_size - set physical block size for the queue
384 * @q: the request queue for the device
385 * @size: the physical block size, in bytes
388 * This should be set to the lowest possible sector size that the
389 * hardware can operate on without reverting to read-modify-write
392 void blk_queue_physical_block_size(struct request_queue
*q
, unsigned int size
)
394 q
->limits
.physical_block_size
= size
;
396 if (q
->limits
.physical_block_size
< q
->limits
.logical_block_size
)
397 q
->limits
.physical_block_size
= q
->limits
.logical_block_size
;
399 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
400 q
->limits
.io_min
= q
->limits
.physical_block_size
;
402 EXPORT_SYMBOL(blk_queue_physical_block_size
);
405 * blk_queue_alignment_offset - set physical block alignment offset
406 * @q: the request queue for the device
407 * @offset: alignment offset in bytes
410 * Some devices are naturally misaligned to compensate for things like
411 * the legacy DOS partition table 63-sector offset. Low-level drivers
412 * should call this function for devices whose first sector is not
415 void blk_queue_alignment_offset(struct request_queue
*q
, unsigned int offset
)
417 q
->limits
.alignment_offset
=
418 offset
& (q
->limits
.physical_block_size
- 1);
419 q
->limits
.misaligned
= 0;
421 EXPORT_SYMBOL(blk_queue_alignment_offset
);
424 * blk_limits_io_min - set minimum request size for a device
425 * @limits: the queue limits
426 * @min: smallest I/O size in bytes
429 * Some devices have an internal block size bigger than the reported
430 * hardware sector size. This function can be used to signal the
431 * smallest I/O the device can perform without incurring a performance
434 void blk_limits_io_min(struct queue_limits
*limits
, unsigned int min
)
436 limits
->io_min
= min
;
438 if (limits
->io_min
< limits
->logical_block_size
)
439 limits
->io_min
= limits
->logical_block_size
;
441 if (limits
->io_min
< limits
->physical_block_size
)
442 limits
->io_min
= limits
->physical_block_size
;
444 EXPORT_SYMBOL(blk_limits_io_min
);
447 * blk_queue_io_min - set minimum request size for the queue
448 * @q: the request queue for the device
449 * @min: smallest I/O size in bytes
452 * Storage devices may report a granularity or preferred minimum I/O
453 * size which is the smallest request the device can perform without
454 * incurring a performance penalty. For disk drives this is often the
455 * physical block size. For RAID arrays it is often the stripe chunk
456 * size. A properly aligned multiple of minimum_io_size is the
457 * preferred request size for workloads where a high number of I/O
458 * operations is desired.
460 void blk_queue_io_min(struct request_queue
*q
, unsigned int min
)
462 blk_limits_io_min(&q
->limits
, min
);
464 EXPORT_SYMBOL(blk_queue_io_min
);
467 * blk_limits_io_opt - set optimal request size for a device
468 * @limits: the queue limits
469 * @opt: smallest I/O size in bytes
472 * Storage devices may report an optimal I/O size, which is the
473 * device's preferred unit for sustained I/O. This is rarely reported
474 * for disk drives. For RAID arrays it is usually the stripe width or
475 * the internal track size. A properly aligned multiple of
476 * optimal_io_size is the preferred request size for workloads where
477 * sustained throughput is desired.
479 void blk_limits_io_opt(struct queue_limits
*limits
, unsigned int opt
)
481 limits
->io_opt
= opt
;
483 EXPORT_SYMBOL(blk_limits_io_opt
);
486 * blk_queue_io_opt - set optimal request size for the queue
487 * @q: the request queue for the device
488 * @opt: optimal request size in bytes
491 * Storage devices may report an optimal I/O size, which is the
492 * device's preferred unit for sustained I/O. This is rarely reported
493 * for disk drives. For RAID arrays it is usually the stripe width or
494 * the internal track size. A properly aligned multiple of
495 * optimal_io_size is the preferred request size for workloads where
496 * sustained throughput is desired.
498 void blk_queue_io_opt(struct request_queue
*q
, unsigned int opt
)
500 blk_limits_io_opt(&q
->limits
, opt
);
502 EXPORT_SYMBOL(blk_queue_io_opt
);
505 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
506 * @t: the stacking driver (top)
507 * @b: the underlying device (bottom)
509 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
511 blk_stack_limits(&t
->limits
, &b
->limits
, 0);
513 EXPORT_SYMBOL(blk_queue_stack_limits
);
516 * blk_stack_limits - adjust queue_limits for stacked devices
517 * @t: the stacking driver limits (top device)
518 * @b: the underlying queue limits (bottom, component device)
519 * @start: first data sector within component device
522 * This function is used by stacking drivers like MD and DM to ensure
523 * that all component devices have compatible block sizes and
524 * alignments. The stacking driver must provide a queue_limits
525 * struct (top) and then iteratively call the stacking function for
526 * all component (bottom) devices. The stacking function will
527 * attempt to combine the values and ensure proper alignment.
529 * Returns 0 if the top and bottom queue_limits are compatible. The
530 * top device's block sizes and alignment offsets may be adjusted to
531 * ensure alignment with the bottom device. If no compatible sizes
532 * and alignments exist, -1 is returned and the resulting top
533 * queue_limits will have the misaligned flag set to indicate that
534 * the alignment_offset is undefined.
536 int blk_stack_limits(struct queue_limits
*t
, struct queue_limits
*b
,
539 unsigned int top
, bottom
, alignment
, ret
= 0;
541 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
542 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
543 t
->max_dev_sectors
= min_not_zero(t
->max_dev_sectors
, b
->max_dev_sectors
);
544 t
->max_write_same_sectors
= min(t
->max_write_same_sectors
,
545 b
->max_write_same_sectors
);
546 t
->max_write_zeroes_sectors
= min(t
->max_write_zeroes_sectors
,
547 b
->max_write_zeroes_sectors
);
548 t
->bounce_pfn
= min_not_zero(t
->bounce_pfn
, b
->bounce_pfn
);
550 t
->seg_boundary_mask
= min_not_zero(t
->seg_boundary_mask
,
551 b
->seg_boundary_mask
);
552 t
->virt_boundary_mask
= min_not_zero(t
->virt_boundary_mask
,
553 b
->virt_boundary_mask
);
555 t
->max_segments
= min_not_zero(t
->max_segments
, b
->max_segments
);
556 t
->max_integrity_segments
= min_not_zero(t
->max_integrity_segments
,
557 b
->max_integrity_segments
);
559 t
->max_segment_size
= min_not_zero(t
->max_segment_size
,
560 b
->max_segment_size
);
562 t
->misaligned
|= b
->misaligned
;
564 alignment
= queue_limit_alignment_offset(b
, start
);
566 /* Bottom device has different alignment. Check that it is
567 * compatible with the current top alignment.
569 if (t
->alignment_offset
!= alignment
) {
571 top
= max(t
->physical_block_size
, t
->io_min
)
572 + t
->alignment_offset
;
573 bottom
= max(b
->physical_block_size
, b
->io_min
) + alignment
;
575 /* Verify that top and bottom intervals line up */
576 if (max(top
, bottom
) % min(top
, bottom
)) {
582 t
->logical_block_size
= max(t
->logical_block_size
,
583 b
->logical_block_size
);
585 t
->physical_block_size
= max(t
->physical_block_size
,
586 b
->physical_block_size
);
588 t
->io_min
= max(t
->io_min
, b
->io_min
);
589 t
->io_opt
= lcm_not_zero(t
->io_opt
, b
->io_opt
);
591 t
->cluster
&= b
->cluster
;
592 t
->discard_zeroes_data
&= b
->discard_zeroes_data
;
594 /* Physical block size a multiple of the logical block size? */
595 if (t
->physical_block_size
& (t
->logical_block_size
- 1)) {
596 t
->physical_block_size
= t
->logical_block_size
;
601 /* Minimum I/O a multiple of the physical block size? */
602 if (t
->io_min
& (t
->physical_block_size
- 1)) {
603 t
->io_min
= t
->physical_block_size
;
608 /* Optimal I/O a multiple of the physical block size? */
609 if (t
->io_opt
& (t
->physical_block_size
- 1)) {
615 t
->raid_partial_stripes_expensive
=
616 max(t
->raid_partial_stripes_expensive
,
617 b
->raid_partial_stripes_expensive
);
619 /* Find lowest common alignment_offset */
620 t
->alignment_offset
= lcm_not_zero(t
->alignment_offset
, alignment
)
621 % max(t
->physical_block_size
, t
->io_min
);
623 /* Verify that new alignment_offset is on a logical block boundary */
624 if (t
->alignment_offset
& (t
->logical_block_size
- 1)) {
629 /* Discard alignment and granularity */
630 if (b
->discard_granularity
) {
631 alignment
= queue_limit_discard_alignment(b
, start
);
633 if (t
->discard_granularity
!= 0 &&
634 t
->discard_alignment
!= alignment
) {
635 top
= t
->discard_granularity
+ t
->discard_alignment
;
636 bottom
= b
->discard_granularity
+ alignment
;
638 /* Verify that top and bottom intervals line up */
639 if ((max(top
, bottom
) % min(top
, bottom
)) != 0)
640 t
->discard_misaligned
= 1;
643 t
->max_discard_sectors
= min_not_zero(t
->max_discard_sectors
,
644 b
->max_discard_sectors
);
645 t
->max_hw_discard_sectors
= min_not_zero(t
->max_hw_discard_sectors
,
646 b
->max_hw_discard_sectors
);
647 t
->discard_granularity
= max(t
->discard_granularity
,
648 b
->discard_granularity
);
649 t
->discard_alignment
= lcm_not_zero(t
->discard_alignment
, alignment
) %
650 t
->discard_granularity
;
653 if (b
->chunk_sectors
)
654 t
->chunk_sectors
= min_not_zero(t
->chunk_sectors
,
659 EXPORT_SYMBOL(blk_stack_limits
);
662 * bdev_stack_limits - adjust queue limits for stacked drivers
663 * @t: the stacking driver limits (top device)
664 * @bdev: the component block_device (bottom)
665 * @start: first data sector within component device
668 * Merges queue limits for a top device and a block_device. Returns
669 * 0 if alignment didn't change. Returns -1 if adding the bottom
670 * device caused misalignment.
672 int bdev_stack_limits(struct queue_limits
*t
, struct block_device
*bdev
,
675 struct request_queue
*bq
= bdev_get_queue(bdev
);
677 start
+= get_start_sect(bdev
);
679 return blk_stack_limits(t
, &bq
->limits
, start
);
681 EXPORT_SYMBOL(bdev_stack_limits
);
684 * disk_stack_limits - adjust queue limits for stacked drivers
685 * @disk: MD/DM gendisk (top)
686 * @bdev: the underlying block device (bottom)
687 * @offset: offset to beginning of data within component device
690 * Merges the limits for a top level gendisk and a bottom level
693 void disk_stack_limits(struct gendisk
*disk
, struct block_device
*bdev
,
696 struct request_queue
*t
= disk
->queue
;
698 if (bdev_stack_limits(&t
->limits
, bdev
, offset
>> 9) < 0) {
699 char top
[BDEVNAME_SIZE
], bottom
[BDEVNAME_SIZE
];
701 disk_name(disk
, 0, top
);
702 bdevname(bdev
, bottom
);
704 printk(KERN_NOTICE
"%s: Warning: Device %s is misaligned\n",
708 EXPORT_SYMBOL(disk_stack_limits
);
711 * blk_queue_dma_pad - set pad mask
712 * @q: the request queue for the device
717 * Appending pad buffer to a request modifies the last entry of a
718 * scatter list such that it includes the pad buffer.
720 void blk_queue_dma_pad(struct request_queue
*q
, unsigned int mask
)
722 q
->dma_pad_mask
= mask
;
724 EXPORT_SYMBOL(blk_queue_dma_pad
);
727 * blk_queue_update_dma_pad - update pad mask
728 * @q: the request queue for the device
731 * Update dma pad mask.
733 * Appending pad buffer to a request modifies the last entry of a
734 * scatter list such that it includes the pad buffer.
736 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
738 if (mask
> q
->dma_pad_mask
)
739 q
->dma_pad_mask
= mask
;
741 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
744 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
745 * @q: the request queue for the device
746 * @dma_drain_needed: fn which returns non-zero if drain is necessary
747 * @buf: physically contiguous buffer
748 * @size: size of the buffer in bytes
750 * Some devices have excess DMA problems and can't simply discard (or
751 * zero fill) the unwanted piece of the transfer. They have to have a
752 * real area of memory to transfer it into. The use case for this is
753 * ATAPI devices in DMA mode. If the packet command causes a transfer
754 * bigger than the transfer size some HBAs will lock up if there
755 * aren't DMA elements to contain the excess transfer. What this API
756 * does is adjust the queue so that the buf is always appended
757 * silently to the scatterlist.
759 * Note: This routine adjusts max_hw_segments to make room for appending
760 * the drain buffer. If you call blk_queue_max_segments() after calling
761 * this routine, you must set the limit to one fewer than your device
762 * can support otherwise there won't be room for the drain buffer.
764 int blk_queue_dma_drain(struct request_queue
*q
,
765 dma_drain_needed_fn
*dma_drain_needed
,
766 void *buf
, unsigned int size
)
768 if (queue_max_segments(q
) < 2)
770 /* make room for appending the drain */
771 blk_queue_max_segments(q
, queue_max_segments(q
) - 1);
772 q
->dma_drain_needed
= dma_drain_needed
;
773 q
->dma_drain_buffer
= buf
;
774 q
->dma_drain_size
= size
;
778 EXPORT_SYMBOL_GPL(blk_queue_dma_drain
);
781 * blk_queue_segment_boundary - set boundary rules for segment merging
782 * @q: the request queue for the device
783 * @mask: the memory boundary mask
785 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
787 if (mask
< PAGE_SIZE
- 1) {
788 mask
= PAGE_SIZE
- 1;
789 printk(KERN_INFO
"%s: set to minimum %lx\n",
793 q
->limits
.seg_boundary_mask
= mask
;
795 EXPORT_SYMBOL(blk_queue_segment_boundary
);
798 * blk_queue_virt_boundary - set boundary rules for bio merging
799 * @q: the request queue for the device
800 * @mask: the memory boundary mask
802 void blk_queue_virt_boundary(struct request_queue
*q
, unsigned long mask
)
804 q
->limits
.virt_boundary_mask
= mask
;
806 EXPORT_SYMBOL(blk_queue_virt_boundary
);
809 * blk_queue_dma_alignment - set dma length and memory alignment
810 * @q: the request queue for the device
811 * @mask: alignment mask
814 * set required memory and length alignment for direct dma transactions.
815 * this is used when building direct io requests for the queue.
818 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
820 q
->dma_alignment
= mask
;
822 EXPORT_SYMBOL(blk_queue_dma_alignment
);
825 * blk_queue_update_dma_alignment - update dma length and memory alignment
826 * @q: the request queue for the device
827 * @mask: alignment mask
830 * update required memory and length alignment for direct dma transactions.
831 * If the requested alignment is larger than the current alignment, then
832 * the current queue alignment is updated to the new value, otherwise it
833 * is left alone. The design of this is to allow multiple objects
834 * (driver, device, transport etc) to set their respective
835 * alignments without having them interfere.
838 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
840 BUG_ON(mask
> PAGE_SIZE
);
842 if (mask
> q
->dma_alignment
)
843 q
->dma_alignment
= mask
;
845 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
847 void blk_queue_flush_queueable(struct request_queue
*q
, bool queueable
)
849 spin_lock_irq(q
->queue_lock
);
851 clear_bit(QUEUE_FLAG_FLUSH_NQ
, &q
->queue_flags
);
853 set_bit(QUEUE_FLAG_FLUSH_NQ
, &q
->queue_flags
);
854 spin_unlock_irq(q
->queue_lock
);
856 EXPORT_SYMBOL_GPL(blk_queue_flush_queueable
);
859 * blk_set_queue_depth - tell the block layer about the device queue depth
860 * @q: the request queue for the device
861 * @depth: queue depth
864 void blk_set_queue_depth(struct request_queue
*q
, unsigned int depth
)
866 q
->queue_depth
= depth
;
867 wbt_set_queue_depth(q
->rq_wb
, depth
);
869 EXPORT_SYMBOL(blk_set_queue_depth
);
872 * blk_queue_write_cache - configure queue's write cache
873 * @q: the request queue for the device
874 * @wc: write back cache on or off
875 * @fua: device supports FUA writes, if true
877 * Tell the block layer about the write cache of @q.
879 void blk_queue_write_cache(struct request_queue
*q
, bool wc
, bool fua
)
881 spin_lock_irq(q
->queue_lock
);
883 queue_flag_set(QUEUE_FLAG_WC
, q
);
885 queue_flag_clear(QUEUE_FLAG_WC
, q
);
887 queue_flag_set(QUEUE_FLAG_FUA
, q
);
889 queue_flag_clear(QUEUE_FLAG_FUA
, q
);
890 spin_unlock_irq(q
->queue_lock
);
892 wbt_set_write_cache(q
->rq_wb
, test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
));
894 EXPORT_SYMBOL_GPL(blk_queue_write_cache
);
896 static int __init
blk_settings_init(void)
898 blk_max_low_pfn
= max_low_pfn
- 1;
899 blk_max_pfn
= max_pfn
- 1;
902 subsys_initcall(blk_settings_init
);