2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/ktime.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include <linux/blk-cgroup.h>
24 /* max queue in one round of service */
25 static const int cfq_quantum
= 8;
26 static const u64 cfq_fifo_expire
[2] = { NSEC_PER_SEC
/ 4, NSEC_PER_SEC
/ 8 };
27 /* maximum backwards seek, in KiB */
28 static const int cfq_back_max
= 16 * 1024;
29 /* penalty of a backwards seek */
30 static const int cfq_back_penalty
= 2;
31 static const u64 cfq_slice_sync
= NSEC_PER_SEC
/ 10;
32 static u64 cfq_slice_async
= NSEC_PER_SEC
/ 25;
33 static const int cfq_slice_async_rq
= 2;
34 static u64 cfq_slice_idle
= NSEC_PER_SEC
/ 125;
35 static u64 cfq_group_idle
= NSEC_PER_SEC
/ 125;
36 static const u64 cfq_target_latency
= (u64
)NSEC_PER_SEC
* 3/10; /* 300 ms */
37 static const int cfq_hist_divisor
= 4;
40 * offset from end of service tree
42 #define CFQ_IDLE_DELAY (NSEC_PER_SEC / 5)
45 * below this threshold, we consider thinktime immediate
47 #define CFQ_MIN_TT (2 * NSEC_PER_SEC / HZ)
49 #define CFQ_SLICE_SCALE (5)
50 #define CFQ_HW_QUEUE_MIN (5)
51 #define CFQ_SERVICE_SHIFT 12
53 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
54 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
55 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
56 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
58 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
59 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
60 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
62 static struct kmem_cache
*cfq_pool
;
64 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
65 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
66 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68 #define sample_valid(samples) ((samples) > 80)
69 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
71 /* blkio-related constants */
72 #define CFQ_WEIGHT_LEGACY_MIN 10
73 #define CFQ_WEIGHT_LEGACY_DFL 500
74 #define CFQ_WEIGHT_LEGACY_MAX 1000
81 unsigned long ttime_samples
;
85 * Most of our rbtree usage is for sorting with min extraction, so
86 * if we cache the leftmost node we don't have to walk down the tree
87 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
88 * move this into the elevator for the rq sorting as well.
95 struct cfq_ttime ttime
;
97 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
98 .ttime = {.last_end_request = ktime_get_ns(),},}
101 * Per process-grouping structure
104 /* reference count */
106 /* various state flags, see below */
108 /* parent cfq_data */
109 struct cfq_data
*cfqd
;
110 /* service_tree member */
111 struct rb_node rb_node
;
112 /* service_tree key */
114 /* prio tree member */
115 struct rb_node p_node
;
116 /* prio tree root we belong to, if any */
117 struct rb_root
*p_root
;
118 /* sorted list of pending requests */
119 struct rb_root sort_list
;
120 /* if fifo isn't expired, next request to serve */
121 struct request
*next_rq
;
122 /* requests queued in sort_list */
124 /* currently allocated requests */
126 /* fifo list of requests in sort_list */
127 struct list_head fifo
;
129 /* time when queue got scheduled in to dispatch first request. */
133 /* time when first request from queue completed and slice started. */
138 /* pending priority requests */
140 /* number of requests that are on the dispatch list or inside driver */
143 /* io prio of this group */
144 unsigned short ioprio
, org_ioprio
;
145 unsigned short ioprio_class
, org_ioprio_class
;
150 sector_t last_request_pos
;
152 struct cfq_rb_root
*service_tree
;
153 struct cfq_queue
*new_cfqq
;
154 struct cfq_group
*cfqg
;
155 /* Number of sectors dispatched from queue in single dispatch round */
156 unsigned long nr_sectors
;
160 * First index in the service_trees.
161 * IDLE is handled separately, so it has negative index
171 * Second index in the service_trees.
175 SYNC_NOIDLE_WORKLOAD
= 1,
180 #ifdef CONFIG_CFQ_GROUP_IOSCHED
181 /* number of ios merged */
182 struct blkg_rwstat merged
;
183 /* total time spent on device in ns, may not be accurate w/ queueing */
184 struct blkg_rwstat service_time
;
185 /* total time spent waiting in scheduler queue in ns */
186 struct blkg_rwstat wait_time
;
187 /* number of IOs queued up */
188 struct blkg_rwstat queued
;
189 /* total disk time and nr sectors dispatched by this group */
190 struct blkg_stat time
;
191 #ifdef CONFIG_DEBUG_BLK_CGROUP
192 /* time not charged to this cgroup */
193 struct blkg_stat unaccounted_time
;
194 /* sum of number of ios queued across all samples */
195 struct blkg_stat avg_queue_size_sum
;
196 /* count of samples taken for average */
197 struct blkg_stat avg_queue_size_samples
;
198 /* how many times this group has been removed from service tree */
199 struct blkg_stat dequeue
;
200 /* total time spent waiting for it to be assigned a timeslice. */
201 struct blkg_stat group_wait_time
;
202 /* time spent idling for this blkcg_gq */
203 struct blkg_stat idle_time
;
204 /* total time with empty current active q with other requests queued */
205 struct blkg_stat empty_time
;
206 /* fields after this shouldn't be cleared on stat reset */
207 uint64_t start_group_wait_time
;
208 uint64_t start_idle_time
;
209 uint64_t start_empty_time
;
211 #endif /* CONFIG_DEBUG_BLK_CGROUP */
212 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
215 /* Per-cgroup data */
216 struct cfq_group_data
{
217 /* must be the first member */
218 struct blkcg_policy_data cpd
;
221 unsigned int leaf_weight
;
224 /* This is per cgroup per device grouping structure */
226 /* must be the first member */
227 struct blkg_policy_data pd
;
229 /* group service_tree member */
230 struct rb_node rb_node
;
232 /* group service_tree key */
236 * The number of active cfqgs and sum of their weights under this
237 * cfqg. This covers this cfqg's leaf_weight and all children's
238 * weights, but does not cover weights of further descendants.
240 * If a cfqg is on the service tree, it's active. An active cfqg
241 * also activates its parent and contributes to the children_weight
245 unsigned int children_weight
;
248 * vfraction is the fraction of vdisktime that the tasks in this
249 * cfqg are entitled to. This is determined by compounding the
250 * ratios walking up from this cfqg to the root.
252 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
253 * vfractions on a service tree is approximately 1. The sum may
254 * deviate a bit due to rounding errors and fluctuations caused by
255 * cfqgs entering and leaving the service tree.
257 unsigned int vfraction
;
260 * There are two weights - (internal) weight is the weight of this
261 * cfqg against the sibling cfqgs. leaf_weight is the wight of
262 * this cfqg against the child cfqgs. For the root cfqg, both
263 * weights are kept in sync for backward compatibility.
266 unsigned int new_weight
;
267 unsigned int dev_weight
;
269 unsigned int leaf_weight
;
270 unsigned int new_leaf_weight
;
271 unsigned int dev_leaf_weight
;
273 /* number of cfqq currently on this group */
277 * Per group busy queues average. Useful for workload slice calc. We
278 * create the array for each prio class but at run time it is used
279 * only for RT and BE class and slot for IDLE class remains unused.
280 * This is primarily done to avoid confusion and a gcc warning.
282 unsigned int busy_queues_avg
[CFQ_PRIO_NR
];
284 * rr lists of queues with requests. We maintain service trees for
285 * RT and BE classes. These trees are subdivided in subclasses
286 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
287 * class there is no subclassification and all the cfq queues go on
288 * a single tree service_tree_idle.
289 * Counts are embedded in the cfq_rb_root
291 struct cfq_rb_root service_trees
[2][3];
292 struct cfq_rb_root service_tree_idle
;
295 enum wl_type_t saved_wl_type
;
296 enum wl_class_t saved_wl_class
;
298 /* number of requests that are on the dispatch list or inside driver */
300 struct cfq_ttime ttime
;
301 struct cfqg_stats stats
; /* stats for this cfqg */
303 /* async queue for each priority case */
304 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
305 struct cfq_queue
*async_idle_cfqq
;
310 struct io_cq icq
; /* must be the first member */
311 struct cfq_queue
*cfqq
[2];
312 struct cfq_ttime ttime
;
313 int ioprio
; /* the current ioprio */
314 #ifdef CONFIG_CFQ_GROUP_IOSCHED
315 uint64_t blkcg_serial_nr
; /* the current blkcg serial */
320 * Per block device queue structure
323 struct request_queue
*queue
;
324 /* Root service tree for cfq_groups */
325 struct cfq_rb_root grp_service_tree
;
326 struct cfq_group
*root_group
;
329 * The priority currently being served
331 enum wl_class_t serving_wl_class
;
332 enum wl_type_t serving_wl_type
;
333 u64 workload_expires
;
334 struct cfq_group
*serving_group
;
337 * Each priority tree is sorted by next_request position. These
338 * trees are used when determining if two or more queues are
339 * interleaving requests (see cfq_close_cooperator).
341 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
343 unsigned int busy_queues
;
344 unsigned int busy_sync_queues
;
350 * queue-depth detection
356 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
357 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
360 int hw_tag_est_depth
;
361 unsigned int hw_tag_samples
;
364 * idle window management
366 struct hrtimer idle_slice_timer
;
367 struct work_struct unplug_work
;
369 struct cfq_queue
*active_queue
;
370 struct cfq_io_cq
*active_cic
;
372 sector_t last_position
;
375 * tunables, see top of file
377 unsigned int cfq_quantum
;
378 unsigned int cfq_back_penalty
;
379 unsigned int cfq_back_max
;
380 unsigned int cfq_slice_async_rq
;
381 unsigned int cfq_latency
;
382 u64 cfq_fifo_expire
[2];
386 u64 cfq_target_latency
;
389 * Fallback dummy cfqq for extreme OOM conditions
391 struct cfq_queue oom_cfqq
;
393 u64 last_delayed_sync
;
396 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
397 static void cfq_put_queue(struct cfq_queue
*cfqq
);
399 static struct cfq_rb_root
*st_for(struct cfq_group
*cfqg
,
400 enum wl_class_t
class,
406 if (class == IDLE_WORKLOAD
)
407 return &cfqg
->service_tree_idle
;
409 return &cfqg
->service_trees
[class][type
];
412 enum cfqq_state_flags
{
413 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
414 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
415 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
416 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
417 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
418 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
419 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
420 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
421 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
422 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
423 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
424 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
425 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
428 #define CFQ_CFQQ_FNS(name) \
429 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
431 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
433 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
435 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
437 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
439 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
443 CFQ_CFQQ_FNS(wait_request
);
444 CFQ_CFQQ_FNS(must_dispatch
);
445 CFQ_CFQQ_FNS(must_alloc_slice
);
446 CFQ_CFQQ_FNS(fifo_expire
);
447 CFQ_CFQQ_FNS(idle_window
);
448 CFQ_CFQQ_FNS(prio_changed
);
449 CFQ_CFQQ_FNS(slice_new
);
452 CFQ_CFQQ_FNS(split_coop
);
454 CFQ_CFQQ_FNS(wait_busy
);
457 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
459 /* cfqg stats flags */
460 enum cfqg_stats_flags
{
461 CFQG_stats_waiting
= 0,
466 #define CFQG_FLAG_FNS(name) \
467 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
469 stats->flags |= (1 << CFQG_stats_##name); \
471 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
473 stats->flags &= ~(1 << CFQG_stats_##name); \
475 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
477 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
480 CFQG_FLAG_FNS(waiting)
481 CFQG_FLAG_FNS(idling
)
485 /* This should be called with the queue_lock held. */
486 static void cfqg_stats_update_group_wait_time(struct cfqg_stats
*stats
)
488 unsigned long long now
;
490 if (!cfqg_stats_waiting(stats
))
494 if (time_after64(now
, stats
->start_group_wait_time
))
495 blkg_stat_add(&stats
->group_wait_time
,
496 now
- stats
->start_group_wait_time
);
497 cfqg_stats_clear_waiting(stats
);
500 /* This should be called with the queue_lock held. */
501 static void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
,
502 struct cfq_group
*curr_cfqg
)
504 struct cfqg_stats
*stats
= &cfqg
->stats
;
506 if (cfqg_stats_waiting(stats
))
508 if (cfqg
== curr_cfqg
)
510 stats
->start_group_wait_time
= sched_clock();
511 cfqg_stats_mark_waiting(stats
);
514 /* This should be called with the queue_lock held. */
515 static void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
)
517 unsigned long long now
;
519 if (!cfqg_stats_empty(stats
))
523 if (time_after64(now
, stats
->start_empty_time
))
524 blkg_stat_add(&stats
->empty_time
,
525 now
- stats
->start_empty_time
);
526 cfqg_stats_clear_empty(stats
);
529 static void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
)
531 blkg_stat_add(&cfqg
->stats
.dequeue
, 1);
534 static void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
)
536 struct cfqg_stats
*stats
= &cfqg
->stats
;
538 if (blkg_rwstat_total(&stats
->queued
))
542 * group is already marked empty. This can happen if cfqq got new
543 * request in parent group and moved to this group while being added
544 * to service tree. Just ignore the event and move on.
546 if (cfqg_stats_empty(stats
))
549 stats
->start_empty_time
= sched_clock();
550 cfqg_stats_mark_empty(stats
);
553 static void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
)
555 struct cfqg_stats
*stats
= &cfqg
->stats
;
557 if (cfqg_stats_idling(stats
)) {
558 unsigned long long now
= sched_clock();
560 if (time_after64(now
, stats
->start_idle_time
))
561 blkg_stat_add(&stats
->idle_time
,
562 now
- stats
->start_idle_time
);
563 cfqg_stats_clear_idling(stats
);
567 static void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
)
569 struct cfqg_stats
*stats
= &cfqg
->stats
;
571 BUG_ON(cfqg_stats_idling(stats
));
573 stats
->start_idle_time
= sched_clock();
574 cfqg_stats_mark_idling(stats
);
577 static void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
)
579 struct cfqg_stats
*stats
= &cfqg
->stats
;
581 blkg_stat_add(&stats
->avg_queue_size_sum
,
582 blkg_rwstat_total(&stats
->queued
));
583 blkg_stat_add(&stats
->avg_queue_size_samples
, 1);
584 cfqg_stats_update_group_wait_time(stats
);
587 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
589 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
, struct cfq_group
*curr_cfqg
) { }
590 static inline void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
) { }
591 static inline void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
) { }
592 static inline void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
) { }
593 static inline void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
) { }
594 static inline void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
) { }
595 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
) { }
597 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
599 #ifdef CONFIG_CFQ_GROUP_IOSCHED
601 static inline struct cfq_group
*pd_to_cfqg(struct blkg_policy_data
*pd
)
603 return pd
? container_of(pd
, struct cfq_group
, pd
) : NULL
;
606 static struct cfq_group_data
607 *cpd_to_cfqgd(struct blkcg_policy_data
*cpd
)
609 return cpd
? container_of(cpd
, struct cfq_group_data
, cpd
) : NULL
;
612 static inline struct blkcg_gq
*cfqg_to_blkg(struct cfq_group
*cfqg
)
614 return pd_to_blkg(&cfqg
->pd
);
617 static struct blkcg_policy blkcg_policy_cfq
;
619 static inline struct cfq_group
*blkg_to_cfqg(struct blkcg_gq
*blkg
)
621 return pd_to_cfqg(blkg_to_pd(blkg
, &blkcg_policy_cfq
));
624 static struct cfq_group_data
*blkcg_to_cfqgd(struct blkcg
*blkcg
)
626 return cpd_to_cfqgd(blkcg_to_cpd(blkcg
, &blkcg_policy_cfq
));
629 static inline struct cfq_group
*cfqg_parent(struct cfq_group
*cfqg
)
631 struct blkcg_gq
*pblkg
= cfqg_to_blkg(cfqg
)->parent
;
633 return pblkg
? blkg_to_cfqg(pblkg
) : NULL
;
636 static inline bool cfqg_is_descendant(struct cfq_group
*cfqg
,
637 struct cfq_group
*ancestor
)
639 return cgroup_is_descendant(cfqg_to_blkg(cfqg
)->blkcg
->css
.cgroup
,
640 cfqg_to_blkg(ancestor
)->blkcg
->css
.cgroup
);
643 static inline void cfqg_get(struct cfq_group
*cfqg
)
645 return blkg_get(cfqg_to_blkg(cfqg
));
648 static inline void cfqg_put(struct cfq_group
*cfqg
)
650 return blkg_put(cfqg_to_blkg(cfqg
));
653 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
656 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
657 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
658 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
659 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
663 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
666 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
667 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
670 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
671 struct cfq_group
*curr_cfqg
,
674 blkg_rwstat_add(&cfqg
->stats
.queued
, op
, 1);
675 cfqg_stats_end_empty_time(&cfqg
->stats
);
676 cfqg_stats_set_start_group_wait_time(cfqg
, curr_cfqg
);
679 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
680 uint64_t time
, unsigned long unaccounted_time
)
682 blkg_stat_add(&cfqg
->stats
.time
, time
);
683 #ifdef CONFIG_DEBUG_BLK_CGROUP
684 blkg_stat_add(&cfqg
->stats
.unaccounted_time
, unaccounted_time
);
688 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
,
691 blkg_rwstat_add(&cfqg
->stats
.queued
, op
, -1);
694 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
,
697 blkg_rwstat_add(&cfqg
->stats
.merged
, op
, 1);
700 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
701 uint64_t start_time
, uint64_t io_start_time
,
704 struct cfqg_stats
*stats
= &cfqg
->stats
;
705 unsigned long long now
= sched_clock();
707 if (time_after64(now
, io_start_time
))
708 blkg_rwstat_add(&stats
->service_time
, op
, now
- io_start_time
);
709 if (time_after64(io_start_time
, start_time
))
710 blkg_rwstat_add(&stats
->wait_time
, op
,
711 io_start_time
- start_time
);
715 static void cfqg_stats_reset(struct cfqg_stats
*stats
)
717 /* queued stats shouldn't be cleared */
718 blkg_rwstat_reset(&stats
->merged
);
719 blkg_rwstat_reset(&stats
->service_time
);
720 blkg_rwstat_reset(&stats
->wait_time
);
721 blkg_stat_reset(&stats
->time
);
722 #ifdef CONFIG_DEBUG_BLK_CGROUP
723 blkg_stat_reset(&stats
->unaccounted_time
);
724 blkg_stat_reset(&stats
->avg_queue_size_sum
);
725 blkg_stat_reset(&stats
->avg_queue_size_samples
);
726 blkg_stat_reset(&stats
->dequeue
);
727 blkg_stat_reset(&stats
->group_wait_time
);
728 blkg_stat_reset(&stats
->idle_time
);
729 blkg_stat_reset(&stats
->empty_time
);
734 static void cfqg_stats_add_aux(struct cfqg_stats
*to
, struct cfqg_stats
*from
)
736 /* queued stats shouldn't be cleared */
737 blkg_rwstat_add_aux(&to
->merged
, &from
->merged
);
738 blkg_rwstat_add_aux(&to
->service_time
, &from
->service_time
);
739 blkg_rwstat_add_aux(&to
->wait_time
, &from
->wait_time
);
740 blkg_stat_add_aux(&from
->time
, &from
->time
);
741 #ifdef CONFIG_DEBUG_BLK_CGROUP
742 blkg_stat_add_aux(&to
->unaccounted_time
, &from
->unaccounted_time
);
743 blkg_stat_add_aux(&to
->avg_queue_size_sum
, &from
->avg_queue_size_sum
);
744 blkg_stat_add_aux(&to
->avg_queue_size_samples
, &from
->avg_queue_size_samples
);
745 blkg_stat_add_aux(&to
->dequeue
, &from
->dequeue
);
746 blkg_stat_add_aux(&to
->group_wait_time
, &from
->group_wait_time
);
747 blkg_stat_add_aux(&to
->idle_time
, &from
->idle_time
);
748 blkg_stat_add_aux(&to
->empty_time
, &from
->empty_time
);
753 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
754 * recursive stats can still account for the amount used by this cfqg after
757 static void cfqg_stats_xfer_dead(struct cfq_group
*cfqg
)
759 struct cfq_group
*parent
= cfqg_parent(cfqg
);
761 lockdep_assert_held(cfqg_to_blkg(cfqg
)->q
->queue_lock
);
763 if (unlikely(!parent
))
766 cfqg_stats_add_aux(&parent
->stats
, &cfqg
->stats
);
767 cfqg_stats_reset(&cfqg
->stats
);
770 #else /* CONFIG_CFQ_GROUP_IOSCHED */
772 static inline struct cfq_group
*cfqg_parent(struct cfq_group
*cfqg
) { return NULL
; }
773 static inline bool cfqg_is_descendant(struct cfq_group
*cfqg
,
774 struct cfq_group
*ancestor
)
778 static inline void cfqg_get(struct cfq_group
*cfqg
) { }
779 static inline void cfqg_put(struct cfq_group
*cfqg
) { }
781 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
782 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
783 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
784 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
786 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
788 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
789 struct cfq_group
*curr_cfqg
, unsigned int op
) { }
790 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
791 uint64_t time
, unsigned long unaccounted_time
) { }
792 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
,
794 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
,
796 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
797 uint64_t start_time
, uint64_t io_start_time
,
800 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
802 #define cfq_log(cfqd, fmt, args...) \
803 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
805 /* Traverses through cfq group service trees */
806 #define for_each_cfqg_st(cfqg, i, j, st) \
807 for (i = 0; i <= IDLE_WORKLOAD; i++) \
808 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
809 : &cfqg->service_tree_idle; \
810 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
811 (i == IDLE_WORKLOAD && j == 0); \
812 j++, st = i < IDLE_WORKLOAD ? \
813 &cfqg->service_trees[i][j]: NULL) \
815 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
816 struct cfq_ttime
*ttime
, bool group_idle
)
819 if (!sample_valid(ttime
->ttime_samples
))
822 slice
= cfqd
->cfq_group_idle
;
824 slice
= cfqd
->cfq_slice_idle
;
825 return ttime
->ttime_mean
> slice
;
828 static inline bool iops_mode(struct cfq_data
*cfqd
)
831 * If we are not idling on queues and it is a NCQ drive, parallel
832 * execution of requests is on and measuring time is not possible
833 * in most of the cases until and unless we drive shallower queue
834 * depths and that becomes a performance bottleneck. In such cases
835 * switch to start providing fairness in terms of number of IOs.
837 if (!cfqd
->cfq_slice_idle
&& cfqd
->hw_tag
)
843 static inline enum wl_class_t
cfqq_class(struct cfq_queue
*cfqq
)
845 if (cfq_class_idle(cfqq
))
846 return IDLE_WORKLOAD
;
847 if (cfq_class_rt(cfqq
))
853 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
855 if (!cfq_cfqq_sync(cfqq
))
856 return ASYNC_WORKLOAD
;
857 if (!cfq_cfqq_idle_window(cfqq
))
858 return SYNC_NOIDLE_WORKLOAD
;
859 return SYNC_WORKLOAD
;
862 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class
,
863 struct cfq_data
*cfqd
,
864 struct cfq_group
*cfqg
)
866 if (wl_class
== IDLE_WORKLOAD
)
867 return cfqg
->service_tree_idle
.count
;
869 return cfqg
->service_trees
[wl_class
][ASYNC_WORKLOAD
].count
+
870 cfqg
->service_trees
[wl_class
][SYNC_NOIDLE_WORKLOAD
].count
+
871 cfqg
->service_trees
[wl_class
][SYNC_WORKLOAD
].count
;
874 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
875 struct cfq_group
*cfqg
)
877 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
+
878 cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
881 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
882 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
,
883 struct cfq_io_cq
*cic
, struct bio
*bio
);
885 static inline struct cfq_io_cq
*icq_to_cic(struct io_cq
*icq
)
887 /* cic->icq is the first member, %NULL will convert to %NULL */
888 return container_of(icq
, struct cfq_io_cq
, icq
);
891 static inline struct cfq_io_cq
*cfq_cic_lookup(struct cfq_data
*cfqd
,
892 struct io_context
*ioc
)
895 return icq_to_cic(ioc_lookup_icq(ioc
, cfqd
->queue
));
899 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_cq
*cic
, bool is_sync
)
901 return cic
->cfqq
[is_sync
];
904 static inline void cic_set_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
,
907 cic
->cfqq
[is_sync
] = cfqq
;
910 static inline struct cfq_data
*cic_to_cfqd(struct cfq_io_cq
*cic
)
912 return cic
->icq
.q
->elevator
->elevator_data
;
916 * scheduler run of queue, if there are requests pending and no one in the
917 * driver that will restart queueing
919 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
921 if (cfqd
->busy_queues
) {
922 cfq_log(cfqd
, "schedule dispatch");
923 kblockd_schedule_work(&cfqd
->unplug_work
);
928 * Scale schedule slice based on io priority. Use the sync time slice only
929 * if a queue is marked sync and has sync io queued. A sync queue with async
930 * io only, should not get full sync slice length.
932 static inline u64
cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
935 u64 base_slice
= cfqd
->cfq_slice
[sync
];
936 u64 slice
= div_u64(base_slice
, CFQ_SLICE_SCALE
);
938 WARN_ON(prio
>= IOPRIO_BE_NR
);
940 return base_slice
+ (slice
* (4 - prio
));
944 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
946 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
950 * cfqg_scale_charge - scale disk time charge according to cfqg weight
951 * @charge: disk time being charged
952 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
954 * Scale @charge according to @vfraction, which is in range (0, 1]. The
955 * scaling is inversely proportional.
957 * scaled = charge / vfraction
959 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
961 static inline u64
cfqg_scale_charge(u64 charge
,
962 unsigned int vfraction
)
964 u64 c
= charge
<< CFQ_SERVICE_SHIFT
; /* make it fixed point */
966 /* charge / vfraction */
967 c
<<= CFQ_SERVICE_SHIFT
;
968 return div_u64(c
, vfraction
);
971 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
973 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
975 min_vdisktime
= vdisktime
;
977 return min_vdisktime
;
980 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
982 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
984 min_vdisktime
= vdisktime
;
986 return min_vdisktime
;
989 static void update_min_vdisktime(struct cfq_rb_root
*st
)
991 struct cfq_group
*cfqg
;
994 cfqg
= rb_entry_cfqg(st
->left
);
995 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
,
1001 * get averaged number of queues of RT/BE priority.
1002 * average is updated, with a formula that gives more weight to higher numbers,
1003 * to quickly follows sudden increases and decrease slowly
1006 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
1007 struct cfq_group
*cfqg
, bool rt
)
1009 unsigned min_q
, max_q
;
1010 unsigned mult
= cfq_hist_divisor
- 1;
1011 unsigned round
= cfq_hist_divisor
/ 2;
1012 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
1014 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
1015 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
1016 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
1018 return cfqg
->busy_queues_avg
[rt
];
1022 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1024 return cfqd
->cfq_target_latency
* cfqg
->vfraction
>> CFQ_SERVICE_SHIFT
;
1028 cfq_scaled_cfqq_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1030 u64 slice
= cfq_prio_to_slice(cfqd
, cfqq
);
1031 if (cfqd
->cfq_latency
) {
1033 * interested queues (we consider only the ones with the same
1034 * priority class in the cfq group)
1036 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
1037 cfq_class_rt(cfqq
));
1038 u64 sync_slice
= cfqd
->cfq_slice
[1];
1039 u64 expect_latency
= sync_slice
* iq
;
1040 u64 group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
1042 if (expect_latency
> group_slice
) {
1043 u64 base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
1046 /* scale low_slice according to IO priority
1047 * and sync vs async */
1048 low_slice
= div64_u64(base_low_slice
*slice
, sync_slice
);
1049 low_slice
= min(slice
, low_slice
);
1050 /* the adapted slice value is scaled to fit all iqs
1051 * into the target latency */
1052 slice
= div64_u64(slice
*group_slice
, expect_latency
);
1053 slice
= max(slice
, low_slice
);
1060 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1062 u64 slice
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
1063 u64 now
= ktime_get_ns();
1065 cfqq
->slice_start
= now
;
1066 cfqq
->slice_end
= now
+ slice
;
1067 cfqq
->allocated_slice
= slice
;
1068 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%llu", cfqq
->slice_end
- now
);
1072 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1073 * isn't valid until the first request from the dispatch is activated
1074 * and the slice time set.
1076 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
1078 if (cfq_cfqq_slice_new(cfqq
))
1080 if (ktime_get_ns() < cfqq
->slice_end
)
1087 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1088 * We choose the request that is closest to the head right now. Distance
1089 * behind the head is penalized and only allowed to a certain extent.
1091 static struct request
*
1092 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
1094 sector_t s1
, s2
, d1
= 0, d2
= 0;
1095 unsigned long back_max
;
1096 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1097 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1098 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
1100 if (rq1
== NULL
|| rq1
== rq2
)
1105 if (rq_is_sync(rq1
) != rq_is_sync(rq2
))
1106 return rq_is_sync(rq1
) ? rq1
: rq2
;
1108 if ((rq1
->cmd_flags
^ rq2
->cmd_flags
) & REQ_PRIO
)
1109 return rq1
->cmd_flags
& REQ_PRIO
? rq1
: rq2
;
1111 s1
= blk_rq_pos(rq1
);
1112 s2
= blk_rq_pos(rq2
);
1115 * by definition, 1KiB is 2 sectors
1117 back_max
= cfqd
->cfq_back_max
* 2;
1120 * Strict one way elevator _except_ in the case where we allow
1121 * short backward seeks which are biased as twice the cost of a
1122 * similar forward seek.
1126 else if (s1
+ back_max
>= last
)
1127 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
1129 wrap
|= CFQ_RQ1_WRAP
;
1133 else if (s2
+ back_max
>= last
)
1134 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
1136 wrap
|= CFQ_RQ2_WRAP
;
1138 /* Found required data */
1141 * By doing switch() on the bit mask "wrap" we avoid having to
1142 * check two variables for all permutations: --> faster!
1145 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1161 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
1164 * Since both rqs are wrapped,
1165 * start with the one that's further behind head
1166 * (--> only *one* back seek required),
1167 * since back seek takes more time than forward.
1177 * The below is leftmost cache rbtree addon
1179 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
1181 /* Service tree is empty */
1186 root
->left
= rb_first(&root
->rb
);
1189 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
1194 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
1197 root
->left
= rb_first(&root
->rb
);
1200 return rb_entry_cfqg(root
->left
);
1205 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
1211 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
1213 if (root
->left
== n
)
1215 rb_erase_init(n
, &root
->rb
);
1220 * would be nice to take fifo expire time into account as well
1222 static struct request
*
1223 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1224 struct request
*last
)
1226 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
1227 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
1228 struct request
*next
= NULL
, *prev
= NULL
;
1230 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
1233 prev
= rb_entry_rq(rbprev
);
1236 next
= rb_entry_rq(rbnext
);
1238 rbnext
= rb_first(&cfqq
->sort_list
);
1239 if (rbnext
&& rbnext
!= &last
->rb_node
)
1240 next
= rb_entry_rq(rbnext
);
1243 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
1246 static u64
cfq_slice_offset(struct cfq_data
*cfqd
,
1247 struct cfq_queue
*cfqq
)
1250 * just an approximation, should be ok.
1252 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
1253 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
1257 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1259 return cfqg
->vdisktime
- st
->min_vdisktime
;
1263 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1265 struct rb_node
**node
= &st
->rb
.rb_node
;
1266 struct rb_node
*parent
= NULL
;
1267 struct cfq_group
*__cfqg
;
1268 s64 key
= cfqg_key(st
, cfqg
);
1271 while (*node
!= NULL
) {
1273 __cfqg
= rb_entry_cfqg(parent
);
1275 if (key
< cfqg_key(st
, __cfqg
))
1276 node
= &parent
->rb_left
;
1278 node
= &parent
->rb_right
;
1284 st
->left
= &cfqg
->rb_node
;
1286 rb_link_node(&cfqg
->rb_node
, parent
, node
);
1287 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
1291 * This has to be called only on activation of cfqg
1294 cfq_update_group_weight(struct cfq_group
*cfqg
)
1296 if (cfqg
->new_weight
) {
1297 cfqg
->weight
= cfqg
->new_weight
;
1298 cfqg
->new_weight
= 0;
1303 cfq_update_group_leaf_weight(struct cfq_group
*cfqg
)
1305 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1307 if (cfqg
->new_leaf_weight
) {
1308 cfqg
->leaf_weight
= cfqg
->new_leaf_weight
;
1309 cfqg
->new_leaf_weight
= 0;
1314 cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1316 unsigned int vfr
= 1 << CFQ_SERVICE_SHIFT
; /* start with 1 */
1317 struct cfq_group
*pos
= cfqg
;
1318 struct cfq_group
*parent
;
1321 /* add to the service tree */
1322 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1325 * Update leaf_weight. We cannot update weight at this point
1326 * because cfqg might already have been activated and is
1327 * contributing its current weight to the parent's child_weight.
1329 cfq_update_group_leaf_weight(cfqg
);
1330 __cfq_group_service_tree_add(st
, cfqg
);
1333 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1334 * entitled to. vfraction is calculated by walking the tree
1335 * towards the root calculating the fraction it has at each level.
1336 * The compounded ratio is how much vfraction @cfqg owns.
1338 * Start with the proportion tasks in this cfqg has against active
1339 * children cfqgs - its leaf_weight against children_weight.
1341 propagate
= !pos
->nr_active
++;
1342 pos
->children_weight
+= pos
->leaf_weight
;
1343 vfr
= vfr
* pos
->leaf_weight
/ pos
->children_weight
;
1346 * Compound ->weight walking up the tree. Both activation and
1347 * vfraction calculation are done in the same loop. Propagation
1348 * stops once an already activated node is met. vfraction
1349 * calculation should always continue to the root.
1351 while ((parent
= cfqg_parent(pos
))) {
1353 cfq_update_group_weight(pos
);
1354 propagate
= !parent
->nr_active
++;
1355 parent
->children_weight
+= pos
->weight
;
1357 vfr
= vfr
* pos
->weight
/ parent
->children_weight
;
1361 cfqg
->vfraction
= max_t(unsigned, vfr
, 1);
1365 cfq_group_notify_queue_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1367 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1368 struct cfq_group
*__cfqg
;
1372 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1376 * Currently put the group at the end. Later implement something
1377 * so that groups get lesser vtime based on their weights, so that
1378 * if group does not loose all if it was not continuously backlogged.
1380 n
= rb_last(&st
->rb
);
1382 __cfqg
= rb_entry_cfqg(n
);
1383 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
1385 cfqg
->vdisktime
= st
->min_vdisktime
;
1386 cfq_group_service_tree_add(st
, cfqg
);
1390 cfq_group_service_tree_del(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1392 struct cfq_group
*pos
= cfqg
;
1396 * Undo activation from cfq_group_service_tree_add(). Deactivate
1397 * @cfqg and propagate deactivation upwards.
1399 propagate
= !--pos
->nr_active
;
1400 pos
->children_weight
-= pos
->leaf_weight
;
1403 struct cfq_group
*parent
= cfqg_parent(pos
);
1405 /* @pos has 0 nr_active at this point */
1406 WARN_ON_ONCE(pos
->children_weight
);
1412 propagate
= !--parent
->nr_active
;
1413 parent
->children_weight
-= pos
->weight
;
1417 /* remove from the service tree */
1418 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1419 cfq_rb_erase(&cfqg
->rb_node
, st
);
1423 cfq_group_notify_queue_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1425 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1427 BUG_ON(cfqg
->nr_cfqq
< 1);
1430 /* If there are other cfq queues under this group, don't delete it */
1434 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
1435 cfq_group_service_tree_del(st
, cfqg
);
1436 cfqg
->saved_wl_slice
= 0;
1437 cfqg_stats_update_dequeue(cfqg
);
1440 static inline u64
cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
,
1441 u64
*unaccounted_time
)
1444 u64 now
= ktime_get_ns();
1447 * Queue got expired before even a single request completed or
1448 * got expired immediately after first request completion.
1450 if (!cfqq
->slice_start
|| cfqq
->slice_start
== now
) {
1452 * Also charge the seek time incurred to the group, otherwise
1453 * if there are mutiple queues in the group, each can dispatch
1454 * a single request on seeky media and cause lots of seek time
1455 * and group will never know it.
1457 slice_used
= max_t(u64
, (now
- cfqq
->dispatch_start
),
1458 jiffies_to_nsecs(1));
1460 slice_used
= now
- cfqq
->slice_start
;
1461 if (slice_used
> cfqq
->allocated_slice
) {
1462 *unaccounted_time
= slice_used
- cfqq
->allocated_slice
;
1463 slice_used
= cfqq
->allocated_slice
;
1465 if (cfqq
->slice_start
> cfqq
->dispatch_start
)
1466 *unaccounted_time
+= cfqq
->slice_start
-
1467 cfqq
->dispatch_start
;
1473 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
1474 struct cfq_queue
*cfqq
)
1476 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1477 u64 used_sl
, charge
, unaccounted_sl
= 0;
1478 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
1479 - cfqg
->service_tree_idle
.count
;
1481 u64 now
= ktime_get_ns();
1483 BUG_ON(nr_sync
< 0);
1484 used_sl
= charge
= cfq_cfqq_slice_usage(cfqq
, &unaccounted_sl
);
1486 if (iops_mode(cfqd
))
1487 charge
= cfqq
->slice_dispatch
;
1488 else if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
1489 charge
= cfqq
->allocated_slice
;
1492 * Can't update vdisktime while on service tree and cfqg->vfraction
1493 * is valid only while on it. Cache vfr, leave the service tree,
1494 * update vdisktime and go back on. The re-addition to the tree
1495 * will also update the weights as necessary.
1497 vfr
= cfqg
->vfraction
;
1498 cfq_group_service_tree_del(st
, cfqg
);
1499 cfqg
->vdisktime
+= cfqg_scale_charge(charge
, vfr
);
1500 cfq_group_service_tree_add(st
, cfqg
);
1502 /* This group is being expired. Save the context */
1503 if (cfqd
->workload_expires
> now
) {
1504 cfqg
->saved_wl_slice
= cfqd
->workload_expires
- now
;
1505 cfqg
->saved_wl_type
= cfqd
->serving_wl_type
;
1506 cfqg
->saved_wl_class
= cfqd
->serving_wl_class
;
1508 cfqg
->saved_wl_slice
= 0;
1510 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
1512 cfq_log_cfqq(cfqq
->cfqd
, cfqq
,
1513 "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu",
1514 used_sl
, cfqq
->slice_dispatch
, charge
,
1515 iops_mode(cfqd
), cfqq
->nr_sectors
);
1516 cfqg_stats_update_timeslice_used(cfqg
, used_sl
, unaccounted_sl
);
1517 cfqg_stats_set_start_empty_time(cfqg
);
1521 * cfq_init_cfqg_base - initialize base part of a cfq_group
1522 * @cfqg: cfq_group to initialize
1524 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1525 * is enabled or not.
1527 static void cfq_init_cfqg_base(struct cfq_group
*cfqg
)
1529 struct cfq_rb_root
*st
;
1532 for_each_cfqg_st(cfqg
, i
, j
, st
)
1534 RB_CLEAR_NODE(&cfqg
->rb_node
);
1536 cfqg
->ttime
.last_end_request
= ktime_get_ns();
1539 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1540 static int __cfq_set_weight(struct cgroup_subsys_state
*css
, u64 val
,
1541 bool on_dfl
, bool reset_dev
, bool is_leaf_weight
);
1543 static void cfqg_stats_exit(struct cfqg_stats
*stats
)
1545 blkg_rwstat_exit(&stats
->merged
);
1546 blkg_rwstat_exit(&stats
->service_time
);
1547 blkg_rwstat_exit(&stats
->wait_time
);
1548 blkg_rwstat_exit(&stats
->queued
);
1549 blkg_stat_exit(&stats
->time
);
1550 #ifdef CONFIG_DEBUG_BLK_CGROUP
1551 blkg_stat_exit(&stats
->unaccounted_time
);
1552 blkg_stat_exit(&stats
->avg_queue_size_sum
);
1553 blkg_stat_exit(&stats
->avg_queue_size_samples
);
1554 blkg_stat_exit(&stats
->dequeue
);
1555 blkg_stat_exit(&stats
->group_wait_time
);
1556 blkg_stat_exit(&stats
->idle_time
);
1557 blkg_stat_exit(&stats
->empty_time
);
1561 static int cfqg_stats_init(struct cfqg_stats
*stats
, gfp_t gfp
)
1563 if (blkg_rwstat_init(&stats
->merged
, gfp
) ||
1564 blkg_rwstat_init(&stats
->service_time
, gfp
) ||
1565 blkg_rwstat_init(&stats
->wait_time
, gfp
) ||
1566 blkg_rwstat_init(&stats
->queued
, gfp
) ||
1567 blkg_stat_init(&stats
->time
, gfp
))
1570 #ifdef CONFIG_DEBUG_BLK_CGROUP
1571 if (blkg_stat_init(&stats
->unaccounted_time
, gfp
) ||
1572 blkg_stat_init(&stats
->avg_queue_size_sum
, gfp
) ||
1573 blkg_stat_init(&stats
->avg_queue_size_samples
, gfp
) ||
1574 blkg_stat_init(&stats
->dequeue
, gfp
) ||
1575 blkg_stat_init(&stats
->group_wait_time
, gfp
) ||
1576 blkg_stat_init(&stats
->idle_time
, gfp
) ||
1577 blkg_stat_init(&stats
->empty_time
, gfp
))
1582 cfqg_stats_exit(stats
);
1586 static struct blkcg_policy_data
*cfq_cpd_alloc(gfp_t gfp
)
1588 struct cfq_group_data
*cgd
;
1590 cgd
= kzalloc(sizeof(*cgd
), gfp
);
1596 static void cfq_cpd_init(struct blkcg_policy_data
*cpd
)
1598 struct cfq_group_data
*cgd
= cpd_to_cfqgd(cpd
);
1599 unsigned int weight
= cgroup_subsys_on_dfl(io_cgrp_subsys
) ?
1600 CGROUP_WEIGHT_DFL
: CFQ_WEIGHT_LEGACY_DFL
;
1602 if (cpd_to_blkcg(cpd
) == &blkcg_root
)
1605 cgd
->weight
= weight
;
1606 cgd
->leaf_weight
= weight
;
1609 static void cfq_cpd_free(struct blkcg_policy_data
*cpd
)
1611 kfree(cpd_to_cfqgd(cpd
));
1614 static void cfq_cpd_bind(struct blkcg_policy_data
*cpd
)
1616 struct blkcg
*blkcg
= cpd_to_blkcg(cpd
);
1617 bool on_dfl
= cgroup_subsys_on_dfl(io_cgrp_subsys
);
1618 unsigned int weight
= on_dfl
? CGROUP_WEIGHT_DFL
: CFQ_WEIGHT_LEGACY_DFL
;
1620 if (blkcg
== &blkcg_root
)
1623 WARN_ON_ONCE(__cfq_set_weight(&blkcg
->css
, weight
, on_dfl
, true, false));
1624 WARN_ON_ONCE(__cfq_set_weight(&blkcg
->css
, weight
, on_dfl
, true, true));
1627 static struct blkg_policy_data
*cfq_pd_alloc(gfp_t gfp
, int node
)
1629 struct cfq_group
*cfqg
;
1631 cfqg
= kzalloc_node(sizeof(*cfqg
), gfp
, node
);
1635 cfq_init_cfqg_base(cfqg
);
1636 if (cfqg_stats_init(&cfqg
->stats
, gfp
)) {
1644 static void cfq_pd_init(struct blkg_policy_data
*pd
)
1646 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1647 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(pd
->blkg
->blkcg
);
1649 cfqg
->weight
= cgd
->weight
;
1650 cfqg
->leaf_weight
= cgd
->leaf_weight
;
1653 static void cfq_pd_offline(struct blkg_policy_data
*pd
)
1655 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1658 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
1659 if (cfqg
->async_cfqq
[0][i
])
1660 cfq_put_queue(cfqg
->async_cfqq
[0][i
]);
1661 if (cfqg
->async_cfqq
[1][i
])
1662 cfq_put_queue(cfqg
->async_cfqq
[1][i
]);
1665 if (cfqg
->async_idle_cfqq
)
1666 cfq_put_queue(cfqg
->async_idle_cfqq
);
1669 * @blkg is going offline and will be ignored by
1670 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1671 * that they don't get lost. If IOs complete after this point, the
1672 * stats for them will be lost. Oh well...
1674 cfqg_stats_xfer_dead(cfqg
);
1677 static void cfq_pd_free(struct blkg_policy_data
*pd
)
1679 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1681 cfqg_stats_exit(&cfqg
->stats
);
1685 static void cfq_pd_reset_stats(struct blkg_policy_data
*pd
)
1687 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1689 cfqg_stats_reset(&cfqg
->stats
);
1692 static struct cfq_group
*cfq_lookup_cfqg(struct cfq_data
*cfqd
,
1693 struct blkcg
*blkcg
)
1695 struct blkcg_gq
*blkg
;
1697 blkg
= blkg_lookup(blkcg
, cfqd
->queue
);
1699 return blkg_to_cfqg(blkg
);
1703 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1706 /* cfqq reference on cfqg */
1710 static u64
cfqg_prfill_weight_device(struct seq_file
*sf
,
1711 struct blkg_policy_data
*pd
, int off
)
1713 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1715 if (!cfqg
->dev_weight
)
1717 return __blkg_prfill_u64(sf
, pd
, cfqg
->dev_weight
);
1720 static int cfqg_print_weight_device(struct seq_file
*sf
, void *v
)
1722 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1723 cfqg_prfill_weight_device
, &blkcg_policy_cfq
,
1728 static u64
cfqg_prfill_leaf_weight_device(struct seq_file
*sf
,
1729 struct blkg_policy_data
*pd
, int off
)
1731 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1733 if (!cfqg
->dev_leaf_weight
)
1735 return __blkg_prfill_u64(sf
, pd
, cfqg
->dev_leaf_weight
);
1738 static int cfqg_print_leaf_weight_device(struct seq_file
*sf
, void *v
)
1740 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1741 cfqg_prfill_leaf_weight_device
, &blkcg_policy_cfq
,
1746 static int cfq_print_weight(struct seq_file
*sf
, void *v
)
1748 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
1749 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
1750 unsigned int val
= 0;
1755 seq_printf(sf
, "%u\n", val
);
1759 static int cfq_print_leaf_weight(struct seq_file
*sf
, void *v
)
1761 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
1762 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
1763 unsigned int val
= 0;
1766 val
= cgd
->leaf_weight
;
1768 seq_printf(sf
, "%u\n", val
);
1772 static ssize_t
__cfqg_set_weight_device(struct kernfs_open_file
*of
,
1773 char *buf
, size_t nbytes
, loff_t off
,
1774 bool on_dfl
, bool is_leaf_weight
)
1776 unsigned int min
= on_dfl
? CGROUP_WEIGHT_MIN
: CFQ_WEIGHT_LEGACY_MIN
;
1777 unsigned int max
= on_dfl
? CGROUP_WEIGHT_MAX
: CFQ_WEIGHT_LEGACY_MAX
;
1778 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1779 struct blkg_conf_ctx ctx
;
1780 struct cfq_group
*cfqg
;
1781 struct cfq_group_data
*cfqgd
;
1785 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_cfq
, buf
, &ctx
);
1789 if (sscanf(ctx
.body
, "%llu", &v
) == 1) {
1790 /* require "default" on dfl */
1794 } else if (!strcmp(strim(ctx
.body
), "default")) {
1801 cfqg
= blkg_to_cfqg(ctx
.blkg
);
1802 cfqgd
= blkcg_to_cfqgd(blkcg
);
1805 if (!v
|| (v
>= min
&& v
<= max
)) {
1806 if (!is_leaf_weight
) {
1807 cfqg
->dev_weight
= v
;
1808 cfqg
->new_weight
= v
?: cfqgd
->weight
;
1810 cfqg
->dev_leaf_weight
= v
;
1811 cfqg
->new_leaf_weight
= v
?: cfqgd
->leaf_weight
;
1816 blkg_conf_finish(&ctx
);
1817 return ret
?: nbytes
;
1820 static ssize_t
cfqg_set_weight_device(struct kernfs_open_file
*of
,
1821 char *buf
, size_t nbytes
, loff_t off
)
1823 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, false, false);
1826 static ssize_t
cfqg_set_leaf_weight_device(struct kernfs_open_file
*of
,
1827 char *buf
, size_t nbytes
, loff_t off
)
1829 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, false, true);
1832 static int __cfq_set_weight(struct cgroup_subsys_state
*css
, u64 val
,
1833 bool on_dfl
, bool reset_dev
, bool is_leaf_weight
)
1835 unsigned int min
= on_dfl
? CGROUP_WEIGHT_MIN
: CFQ_WEIGHT_LEGACY_MIN
;
1836 unsigned int max
= on_dfl
? CGROUP_WEIGHT_MAX
: CFQ_WEIGHT_LEGACY_MAX
;
1837 struct blkcg
*blkcg
= css_to_blkcg(css
);
1838 struct blkcg_gq
*blkg
;
1839 struct cfq_group_data
*cfqgd
;
1842 if (val
< min
|| val
> max
)
1845 spin_lock_irq(&blkcg
->lock
);
1846 cfqgd
= blkcg_to_cfqgd(blkcg
);
1852 if (!is_leaf_weight
)
1853 cfqgd
->weight
= val
;
1855 cfqgd
->leaf_weight
= val
;
1857 hlist_for_each_entry(blkg
, &blkcg
->blkg_list
, blkcg_node
) {
1858 struct cfq_group
*cfqg
= blkg_to_cfqg(blkg
);
1863 if (!is_leaf_weight
) {
1865 cfqg
->dev_weight
= 0;
1866 if (!cfqg
->dev_weight
)
1867 cfqg
->new_weight
= cfqgd
->weight
;
1870 cfqg
->dev_leaf_weight
= 0;
1871 if (!cfqg
->dev_leaf_weight
)
1872 cfqg
->new_leaf_weight
= cfqgd
->leaf_weight
;
1877 spin_unlock_irq(&blkcg
->lock
);
1881 static int cfq_set_weight(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1884 return __cfq_set_weight(css
, val
, false, false, false);
1887 static int cfq_set_leaf_weight(struct cgroup_subsys_state
*css
,
1888 struct cftype
*cft
, u64 val
)
1890 return __cfq_set_weight(css
, val
, false, false, true);
1893 static int cfqg_print_stat(struct seq_file
*sf
, void *v
)
1895 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), blkg_prfill_stat
,
1896 &blkcg_policy_cfq
, seq_cft(sf
)->private, false);
1900 static int cfqg_print_rwstat(struct seq_file
*sf
, void *v
)
1902 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), blkg_prfill_rwstat
,
1903 &blkcg_policy_cfq
, seq_cft(sf
)->private, true);
1907 static u64
cfqg_prfill_stat_recursive(struct seq_file
*sf
,
1908 struct blkg_policy_data
*pd
, int off
)
1910 u64 sum
= blkg_stat_recursive_sum(pd_to_blkg(pd
),
1911 &blkcg_policy_cfq
, off
);
1912 return __blkg_prfill_u64(sf
, pd
, sum
);
1915 static u64
cfqg_prfill_rwstat_recursive(struct seq_file
*sf
,
1916 struct blkg_policy_data
*pd
, int off
)
1918 struct blkg_rwstat sum
= blkg_rwstat_recursive_sum(pd_to_blkg(pd
),
1919 &blkcg_policy_cfq
, off
);
1920 return __blkg_prfill_rwstat(sf
, pd
, &sum
);
1923 static int cfqg_print_stat_recursive(struct seq_file
*sf
, void *v
)
1925 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1926 cfqg_prfill_stat_recursive
, &blkcg_policy_cfq
,
1927 seq_cft(sf
)->private, false);
1931 static int cfqg_print_rwstat_recursive(struct seq_file
*sf
, void *v
)
1933 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1934 cfqg_prfill_rwstat_recursive
, &blkcg_policy_cfq
,
1935 seq_cft(sf
)->private, true);
1939 static u64
cfqg_prfill_sectors(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1942 u64 sum
= blkg_rwstat_total(&pd
->blkg
->stat_bytes
);
1944 return __blkg_prfill_u64(sf
, pd
, sum
>> 9);
1947 static int cfqg_print_stat_sectors(struct seq_file
*sf
, void *v
)
1949 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1950 cfqg_prfill_sectors
, &blkcg_policy_cfq
, 0, false);
1954 static u64
cfqg_prfill_sectors_recursive(struct seq_file
*sf
,
1955 struct blkg_policy_data
*pd
, int off
)
1957 struct blkg_rwstat tmp
= blkg_rwstat_recursive_sum(pd
->blkg
, NULL
,
1958 offsetof(struct blkcg_gq
, stat_bytes
));
1959 u64 sum
= atomic64_read(&tmp
.aux_cnt
[BLKG_RWSTAT_READ
]) +
1960 atomic64_read(&tmp
.aux_cnt
[BLKG_RWSTAT_WRITE
]);
1962 return __blkg_prfill_u64(sf
, pd
, sum
>> 9);
1965 static int cfqg_print_stat_sectors_recursive(struct seq_file
*sf
, void *v
)
1967 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1968 cfqg_prfill_sectors_recursive
, &blkcg_policy_cfq
, 0,
1973 #ifdef CONFIG_DEBUG_BLK_CGROUP
1974 static u64
cfqg_prfill_avg_queue_size(struct seq_file
*sf
,
1975 struct blkg_policy_data
*pd
, int off
)
1977 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1978 u64 samples
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_samples
);
1982 v
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_sum
);
1983 v
= div64_u64(v
, samples
);
1985 __blkg_prfill_u64(sf
, pd
, v
);
1989 /* print avg_queue_size */
1990 static int cfqg_print_avg_queue_size(struct seq_file
*sf
, void *v
)
1992 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1993 cfqg_prfill_avg_queue_size
, &blkcg_policy_cfq
,
1997 #endif /* CONFIG_DEBUG_BLK_CGROUP */
1999 static struct cftype cfq_blkcg_legacy_files
[] = {
2000 /* on root, weight is mapped to leaf_weight */
2002 .name
= "weight_device",
2003 .flags
= CFTYPE_ONLY_ON_ROOT
,
2004 .seq_show
= cfqg_print_leaf_weight_device
,
2005 .write
= cfqg_set_leaf_weight_device
,
2009 .flags
= CFTYPE_ONLY_ON_ROOT
,
2010 .seq_show
= cfq_print_leaf_weight
,
2011 .write_u64
= cfq_set_leaf_weight
,
2014 /* no such mapping necessary for !roots */
2016 .name
= "weight_device",
2017 .flags
= CFTYPE_NOT_ON_ROOT
,
2018 .seq_show
= cfqg_print_weight_device
,
2019 .write
= cfqg_set_weight_device
,
2023 .flags
= CFTYPE_NOT_ON_ROOT
,
2024 .seq_show
= cfq_print_weight
,
2025 .write_u64
= cfq_set_weight
,
2029 .name
= "leaf_weight_device",
2030 .seq_show
= cfqg_print_leaf_weight_device
,
2031 .write
= cfqg_set_leaf_weight_device
,
2034 .name
= "leaf_weight",
2035 .seq_show
= cfq_print_leaf_weight
,
2036 .write_u64
= cfq_set_leaf_weight
,
2039 /* statistics, covers only the tasks in the cfqg */
2042 .private = offsetof(struct cfq_group
, stats
.time
),
2043 .seq_show
= cfqg_print_stat
,
2047 .seq_show
= cfqg_print_stat_sectors
,
2050 .name
= "io_service_bytes",
2051 .private = (unsigned long)&blkcg_policy_cfq
,
2052 .seq_show
= blkg_print_stat_bytes
,
2055 .name
= "io_serviced",
2056 .private = (unsigned long)&blkcg_policy_cfq
,
2057 .seq_show
= blkg_print_stat_ios
,
2060 .name
= "io_service_time",
2061 .private = offsetof(struct cfq_group
, stats
.service_time
),
2062 .seq_show
= cfqg_print_rwstat
,
2065 .name
= "io_wait_time",
2066 .private = offsetof(struct cfq_group
, stats
.wait_time
),
2067 .seq_show
= cfqg_print_rwstat
,
2070 .name
= "io_merged",
2071 .private = offsetof(struct cfq_group
, stats
.merged
),
2072 .seq_show
= cfqg_print_rwstat
,
2075 .name
= "io_queued",
2076 .private = offsetof(struct cfq_group
, stats
.queued
),
2077 .seq_show
= cfqg_print_rwstat
,
2080 /* the same statictics which cover the cfqg and its descendants */
2082 .name
= "time_recursive",
2083 .private = offsetof(struct cfq_group
, stats
.time
),
2084 .seq_show
= cfqg_print_stat_recursive
,
2087 .name
= "sectors_recursive",
2088 .seq_show
= cfqg_print_stat_sectors_recursive
,
2091 .name
= "io_service_bytes_recursive",
2092 .private = (unsigned long)&blkcg_policy_cfq
,
2093 .seq_show
= blkg_print_stat_bytes_recursive
,
2096 .name
= "io_serviced_recursive",
2097 .private = (unsigned long)&blkcg_policy_cfq
,
2098 .seq_show
= blkg_print_stat_ios_recursive
,
2101 .name
= "io_service_time_recursive",
2102 .private = offsetof(struct cfq_group
, stats
.service_time
),
2103 .seq_show
= cfqg_print_rwstat_recursive
,
2106 .name
= "io_wait_time_recursive",
2107 .private = offsetof(struct cfq_group
, stats
.wait_time
),
2108 .seq_show
= cfqg_print_rwstat_recursive
,
2111 .name
= "io_merged_recursive",
2112 .private = offsetof(struct cfq_group
, stats
.merged
),
2113 .seq_show
= cfqg_print_rwstat_recursive
,
2116 .name
= "io_queued_recursive",
2117 .private = offsetof(struct cfq_group
, stats
.queued
),
2118 .seq_show
= cfqg_print_rwstat_recursive
,
2120 #ifdef CONFIG_DEBUG_BLK_CGROUP
2122 .name
= "avg_queue_size",
2123 .seq_show
= cfqg_print_avg_queue_size
,
2126 .name
= "group_wait_time",
2127 .private = offsetof(struct cfq_group
, stats
.group_wait_time
),
2128 .seq_show
= cfqg_print_stat
,
2131 .name
= "idle_time",
2132 .private = offsetof(struct cfq_group
, stats
.idle_time
),
2133 .seq_show
= cfqg_print_stat
,
2136 .name
= "empty_time",
2137 .private = offsetof(struct cfq_group
, stats
.empty_time
),
2138 .seq_show
= cfqg_print_stat
,
2142 .private = offsetof(struct cfq_group
, stats
.dequeue
),
2143 .seq_show
= cfqg_print_stat
,
2146 .name
= "unaccounted_time",
2147 .private = offsetof(struct cfq_group
, stats
.unaccounted_time
),
2148 .seq_show
= cfqg_print_stat
,
2150 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2154 static int cfq_print_weight_on_dfl(struct seq_file
*sf
, void *v
)
2156 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
2157 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
2159 seq_printf(sf
, "default %u\n", cgd
->weight
);
2160 blkcg_print_blkgs(sf
, blkcg
, cfqg_prfill_weight_device
,
2161 &blkcg_policy_cfq
, 0, false);
2165 static ssize_t
cfq_set_weight_on_dfl(struct kernfs_open_file
*of
,
2166 char *buf
, size_t nbytes
, loff_t off
)
2174 /* "WEIGHT" or "default WEIGHT" sets the default weight */
2175 v
= simple_strtoull(buf
, &endp
, 0);
2176 if (*endp
== '\0' || sscanf(buf
, "default %llu", &v
) == 1) {
2177 ret
= __cfq_set_weight(of_css(of
), v
, true, false, false);
2178 return ret
?: nbytes
;
2181 /* "MAJ:MIN WEIGHT" */
2182 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, true, false);
2185 static struct cftype cfq_blkcg_files
[] = {
2188 .flags
= CFTYPE_NOT_ON_ROOT
,
2189 .seq_show
= cfq_print_weight_on_dfl
,
2190 .write
= cfq_set_weight_on_dfl
,
2195 #else /* GROUP_IOSCHED */
2196 static struct cfq_group
*cfq_lookup_cfqg(struct cfq_data
*cfqd
,
2197 struct blkcg
*blkcg
)
2199 return cfqd
->root_group
;
2203 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
2207 #endif /* GROUP_IOSCHED */
2210 * The cfqd->service_trees holds all pending cfq_queue's that have
2211 * requests waiting to be processed. It is sorted in the order that
2212 * we will service the queues.
2214 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2217 struct rb_node
**p
, *parent
;
2218 struct cfq_queue
*__cfqq
;
2220 struct cfq_rb_root
*st
;
2223 u64 now
= ktime_get_ns();
2225 st
= st_for(cfqq
->cfqg
, cfqq_class(cfqq
), cfqq_type(cfqq
));
2226 if (cfq_class_idle(cfqq
)) {
2227 rb_key
= CFQ_IDLE_DELAY
;
2228 parent
= rb_last(&st
->rb
);
2229 if (parent
&& parent
!= &cfqq
->rb_node
) {
2230 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
2231 rb_key
+= __cfqq
->rb_key
;
2234 } else if (!add_front
) {
2236 * Get our rb key offset. Subtract any residual slice
2237 * value carried from last service. A negative resid
2238 * count indicates slice overrun, and this should position
2239 * the next service time further away in the tree.
2241 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + now
;
2242 rb_key
-= cfqq
->slice_resid
;
2243 cfqq
->slice_resid
= 0;
2245 rb_key
= -NSEC_PER_SEC
;
2246 __cfqq
= cfq_rb_first(st
);
2247 rb_key
+= __cfqq
? __cfqq
->rb_key
: now
;
2250 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
2253 * same position, nothing more to do
2255 if (rb_key
== cfqq
->rb_key
&& cfqq
->service_tree
== st
)
2258 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
2259 cfqq
->service_tree
= NULL
;
2264 cfqq
->service_tree
= st
;
2265 p
= &st
->rb
.rb_node
;
2268 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
2271 * sort by key, that represents service time.
2273 if (rb_key
< __cfqq
->rb_key
)
2274 p
= &parent
->rb_left
;
2276 p
= &parent
->rb_right
;
2282 st
->left
= &cfqq
->rb_node
;
2284 cfqq
->rb_key
= rb_key
;
2285 rb_link_node(&cfqq
->rb_node
, parent
, p
);
2286 rb_insert_color(&cfqq
->rb_node
, &st
->rb
);
2288 if (add_front
|| !new_cfqq
)
2290 cfq_group_notify_queue_add(cfqd
, cfqq
->cfqg
);
2293 static struct cfq_queue
*
2294 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
2295 sector_t sector
, struct rb_node
**ret_parent
,
2296 struct rb_node
***rb_link
)
2298 struct rb_node
**p
, *parent
;
2299 struct cfq_queue
*cfqq
= NULL
;
2307 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
2310 * Sort strictly based on sector. Smallest to the left,
2311 * largest to the right.
2313 if (sector
> blk_rq_pos(cfqq
->next_rq
))
2314 n
= &(*p
)->rb_right
;
2315 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
2323 *ret_parent
= parent
;
2329 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2331 struct rb_node
**p
, *parent
;
2332 struct cfq_queue
*__cfqq
;
2335 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2336 cfqq
->p_root
= NULL
;
2339 if (cfq_class_idle(cfqq
))
2344 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
2345 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
2346 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
2348 rb_link_node(&cfqq
->p_node
, parent
, p
);
2349 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
2351 cfqq
->p_root
= NULL
;
2355 * Update cfqq's position in the service tree.
2357 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2360 * Resorting requires the cfqq to be on the RR list already.
2362 if (cfq_cfqq_on_rr(cfqq
)) {
2363 cfq_service_tree_add(cfqd
, cfqq
, 0);
2364 cfq_prio_tree_add(cfqd
, cfqq
);
2369 * add to busy list of queues for service, trying to be fair in ordering
2370 * the pending list according to last request service
2372 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2374 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
2375 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2376 cfq_mark_cfqq_on_rr(cfqq
);
2377 cfqd
->busy_queues
++;
2378 if (cfq_cfqq_sync(cfqq
))
2379 cfqd
->busy_sync_queues
++;
2381 cfq_resort_rr_list(cfqd
, cfqq
);
2385 * Called when the cfqq no longer has requests pending, remove it from
2388 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2390 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
2391 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
2392 cfq_clear_cfqq_on_rr(cfqq
);
2394 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
2395 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
2396 cfqq
->service_tree
= NULL
;
2399 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2400 cfqq
->p_root
= NULL
;
2403 cfq_group_notify_queue_del(cfqd
, cfqq
->cfqg
);
2404 BUG_ON(!cfqd
->busy_queues
);
2405 cfqd
->busy_queues
--;
2406 if (cfq_cfqq_sync(cfqq
))
2407 cfqd
->busy_sync_queues
--;
2411 * rb tree support functions
2413 static void cfq_del_rq_rb(struct request
*rq
)
2415 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2416 const int sync
= rq_is_sync(rq
);
2418 BUG_ON(!cfqq
->queued
[sync
]);
2419 cfqq
->queued
[sync
]--;
2421 elv_rb_del(&cfqq
->sort_list
, rq
);
2423 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
2425 * Queue will be deleted from service tree when we actually
2426 * expire it later. Right now just remove it from prio tree
2430 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2431 cfqq
->p_root
= NULL
;
2436 static void cfq_add_rq_rb(struct request
*rq
)
2438 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2439 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2440 struct request
*prev
;
2442 cfqq
->queued
[rq_is_sync(rq
)]++;
2444 elv_rb_add(&cfqq
->sort_list
, rq
);
2446 if (!cfq_cfqq_on_rr(cfqq
))
2447 cfq_add_cfqq_rr(cfqd
, cfqq
);
2450 * check if this request is a better next-serve candidate
2452 prev
= cfqq
->next_rq
;
2453 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
2456 * adjust priority tree position, if ->next_rq changes
2458 if (prev
!= cfqq
->next_rq
)
2459 cfq_prio_tree_add(cfqd
, cfqq
);
2461 BUG_ON(!cfqq
->next_rq
);
2464 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
2466 elv_rb_del(&cfqq
->sort_list
, rq
);
2467 cfqq
->queued
[rq_is_sync(rq
)]--;
2468 cfqg_stats_update_io_remove(RQ_CFQG(rq
), rq
->cmd_flags
);
2470 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqq
->cfqd
->serving_group
,
2474 static struct request
*
2475 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
2477 struct task_struct
*tsk
= current
;
2478 struct cfq_io_cq
*cic
;
2479 struct cfq_queue
*cfqq
;
2481 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2485 cfqq
= cic_to_cfqq(cic
, op_is_sync(bio
->bi_opf
));
2487 return elv_rb_find(&cfqq
->sort_list
, bio_end_sector(bio
));
2492 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
2494 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2496 cfqd
->rq_in_driver
++;
2497 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
2498 cfqd
->rq_in_driver
);
2500 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
2503 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
2505 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2507 WARN_ON(!cfqd
->rq_in_driver
);
2508 cfqd
->rq_in_driver
--;
2509 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
2510 cfqd
->rq_in_driver
);
2513 static void cfq_remove_request(struct request
*rq
)
2515 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2517 if (cfqq
->next_rq
== rq
)
2518 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
2520 list_del_init(&rq
->queuelist
);
2523 cfqq
->cfqd
->rq_queued
--;
2524 cfqg_stats_update_io_remove(RQ_CFQG(rq
), rq
->cmd_flags
);
2525 if (rq
->cmd_flags
& REQ_PRIO
) {
2526 WARN_ON(!cfqq
->prio_pending
);
2527 cfqq
->prio_pending
--;
2531 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
2534 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2535 struct request
*__rq
;
2537 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
2538 if (__rq
&& elv_bio_merge_ok(__rq
, bio
)) {
2540 return ELEVATOR_FRONT_MERGE
;
2543 return ELEVATOR_NO_MERGE
;
2546 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
2549 if (type
== ELEVATOR_FRONT_MERGE
) {
2550 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
2552 cfq_reposition_rq_rb(cfqq
, req
);
2556 static void cfq_bio_merged(struct request_queue
*q
, struct request
*req
,
2559 cfqg_stats_update_io_merged(RQ_CFQG(req
), bio
->bi_opf
);
2563 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
2564 struct request
*next
)
2566 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2567 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2570 * reposition in fifo if next is older than rq
2572 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
2573 next
->fifo_time
< rq
->fifo_time
&&
2574 cfqq
== RQ_CFQQ(next
)) {
2575 list_move(&rq
->queuelist
, &next
->queuelist
);
2576 rq
->fifo_time
= next
->fifo_time
;
2579 if (cfqq
->next_rq
== next
)
2581 cfq_remove_request(next
);
2582 cfqg_stats_update_io_merged(RQ_CFQG(rq
), next
->cmd_flags
);
2584 cfqq
= RQ_CFQQ(next
);
2586 * all requests of this queue are merged to other queues, delete it
2587 * from the service tree. If it's the active_queue,
2588 * cfq_dispatch_requests() will choose to expire it or do idle
2590 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
) &&
2591 cfqq
!= cfqd
->active_queue
)
2592 cfq_del_cfqq_rr(cfqd
, cfqq
);
2595 static int cfq_allow_bio_merge(struct request_queue
*q
, struct request
*rq
,
2598 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2599 bool is_sync
= op_is_sync(bio
->bi_opf
);
2600 struct cfq_io_cq
*cic
;
2601 struct cfq_queue
*cfqq
;
2604 * Disallow merge of a sync bio into an async request.
2606 if (is_sync
&& !rq_is_sync(rq
))
2610 * Lookup the cfqq that this bio will be queued with and allow
2611 * merge only if rq is queued there.
2613 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
2617 cfqq
= cic_to_cfqq(cic
, is_sync
);
2618 return cfqq
== RQ_CFQQ(rq
);
2621 static int cfq_allow_rq_merge(struct request_queue
*q
, struct request
*rq
,
2622 struct request
*next
)
2624 return RQ_CFQQ(rq
) == RQ_CFQQ(next
);
2627 static inline void cfq_del_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2629 hrtimer_try_to_cancel(&cfqd
->idle_slice_timer
);
2630 cfqg_stats_update_idle_time(cfqq
->cfqg
);
2633 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
2634 struct cfq_queue
*cfqq
)
2637 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_class:%d wl_type:%d",
2638 cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
2639 cfqg_stats_update_avg_queue_size(cfqq
->cfqg
);
2640 cfqq
->slice_start
= 0;
2641 cfqq
->dispatch_start
= ktime_get_ns();
2642 cfqq
->allocated_slice
= 0;
2643 cfqq
->slice_end
= 0;
2644 cfqq
->slice_dispatch
= 0;
2645 cfqq
->nr_sectors
= 0;
2647 cfq_clear_cfqq_wait_request(cfqq
);
2648 cfq_clear_cfqq_must_dispatch(cfqq
);
2649 cfq_clear_cfqq_must_alloc_slice(cfqq
);
2650 cfq_clear_cfqq_fifo_expire(cfqq
);
2651 cfq_mark_cfqq_slice_new(cfqq
);
2653 cfq_del_timer(cfqd
, cfqq
);
2656 cfqd
->active_queue
= cfqq
;
2660 * current cfqq expired its slice (or was too idle), select new one
2663 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2666 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
2668 if (cfq_cfqq_wait_request(cfqq
))
2669 cfq_del_timer(cfqd
, cfqq
);
2671 cfq_clear_cfqq_wait_request(cfqq
);
2672 cfq_clear_cfqq_wait_busy(cfqq
);
2675 * If this cfqq is shared between multiple processes, check to
2676 * make sure that those processes are still issuing I/Os within
2677 * the mean seek distance. If not, it may be time to break the
2678 * queues apart again.
2680 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
2681 cfq_mark_cfqq_split_coop(cfqq
);
2684 * store what was left of this slice, if the queue idled/timed out
2687 if (cfq_cfqq_slice_new(cfqq
))
2688 cfqq
->slice_resid
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
2690 cfqq
->slice_resid
= cfqq
->slice_end
- ktime_get_ns();
2691 cfq_log_cfqq(cfqd
, cfqq
, "resid=%lld", cfqq
->slice_resid
);
2694 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
2696 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
2697 cfq_del_cfqq_rr(cfqd
, cfqq
);
2699 cfq_resort_rr_list(cfqd
, cfqq
);
2701 if (cfqq
== cfqd
->active_queue
)
2702 cfqd
->active_queue
= NULL
;
2704 if (cfqd
->active_cic
) {
2705 put_io_context(cfqd
->active_cic
->icq
.ioc
);
2706 cfqd
->active_cic
= NULL
;
2710 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
2712 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2715 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
2719 * Get next queue for service. Unless we have a queue preemption,
2720 * we'll simply select the first cfqq in the service tree.
2722 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
2724 struct cfq_rb_root
*st
= st_for(cfqd
->serving_group
,
2725 cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
2727 if (!cfqd
->rq_queued
)
2730 /* There is nothing to dispatch */
2733 if (RB_EMPTY_ROOT(&st
->rb
))
2735 return cfq_rb_first(st
);
2738 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
2740 struct cfq_group
*cfqg
;
2741 struct cfq_queue
*cfqq
;
2743 struct cfq_rb_root
*st
;
2745 if (!cfqd
->rq_queued
)
2748 cfqg
= cfq_get_next_cfqg(cfqd
);
2752 for_each_cfqg_st(cfqg
, i
, j
, st
)
2753 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
2759 * Get and set a new active queue for service.
2761 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
2762 struct cfq_queue
*cfqq
)
2765 cfqq
= cfq_get_next_queue(cfqd
);
2767 __cfq_set_active_queue(cfqd
, cfqq
);
2771 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
2774 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
2775 return blk_rq_pos(rq
) - cfqd
->last_position
;
2777 return cfqd
->last_position
- blk_rq_pos(rq
);
2780 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2783 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
2786 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
2787 struct cfq_queue
*cur_cfqq
)
2789 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
2790 struct rb_node
*parent
, *node
;
2791 struct cfq_queue
*__cfqq
;
2792 sector_t sector
= cfqd
->last_position
;
2794 if (RB_EMPTY_ROOT(root
))
2798 * First, if we find a request starting at the end of the last
2799 * request, choose it.
2801 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
2806 * If the exact sector wasn't found, the parent of the NULL leaf
2807 * will contain the closest sector.
2809 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
2810 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2813 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
2814 node
= rb_next(&__cfqq
->p_node
);
2816 node
= rb_prev(&__cfqq
->p_node
);
2820 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
2821 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2829 * cur_cfqq - passed in so that we don't decide that the current queue is
2830 * closely cooperating with itself.
2832 * So, basically we're assuming that that cur_cfqq has dispatched at least
2833 * one request, and that cfqd->last_position reflects a position on the disk
2834 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2837 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
2838 struct cfq_queue
*cur_cfqq
)
2840 struct cfq_queue
*cfqq
;
2842 if (cfq_class_idle(cur_cfqq
))
2844 if (!cfq_cfqq_sync(cur_cfqq
))
2846 if (CFQQ_SEEKY(cur_cfqq
))
2850 * Don't search priority tree if it's the only queue in the group.
2852 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
2856 * We should notice if some of the queues are cooperating, eg
2857 * working closely on the same area of the disk. In that case,
2858 * we can group them together and don't waste time idling.
2860 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
2864 /* If new queue belongs to different cfq_group, don't choose it */
2865 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
2869 * It only makes sense to merge sync queues.
2871 if (!cfq_cfqq_sync(cfqq
))
2873 if (CFQQ_SEEKY(cfqq
))
2877 * Do not merge queues of different priority classes
2879 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
2886 * Determine whether we should enforce idle window for this queue.
2889 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2891 enum wl_class_t wl_class
= cfqq_class(cfqq
);
2892 struct cfq_rb_root
*st
= cfqq
->service_tree
;
2897 if (!cfqd
->cfq_slice_idle
)
2900 /* We never do for idle class queues. */
2901 if (wl_class
== IDLE_WORKLOAD
)
2904 /* We do for queues that were marked with idle window flag. */
2905 if (cfq_cfqq_idle_window(cfqq
) &&
2906 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
2910 * Otherwise, we do only if they are the last ones
2911 * in their service tree.
2913 if (st
->count
== 1 && cfq_cfqq_sync(cfqq
) &&
2914 !cfq_io_thinktime_big(cfqd
, &st
->ttime
, false))
2916 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d", st
->count
);
2920 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
2922 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2923 struct cfq_rb_root
*st
= cfqq
->service_tree
;
2924 struct cfq_io_cq
*cic
;
2925 u64 sl
, group_idle
= 0;
2926 u64 now
= ktime_get_ns();
2929 * SSD device without seek penalty, disable idling. But only do so
2930 * for devices that support queuing, otherwise we still have a problem
2931 * with sync vs async workloads.
2933 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
2936 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
2937 WARN_ON(cfq_cfqq_slice_new(cfqq
));
2940 * idle is disabled, either manually or by past process history
2942 if (!cfq_should_idle(cfqd
, cfqq
)) {
2943 /* no queue idling. Check for group idling */
2944 if (cfqd
->cfq_group_idle
)
2945 group_idle
= cfqd
->cfq_group_idle
;
2951 * still active requests from this queue, don't idle
2953 if (cfqq
->dispatched
)
2957 * task has exited, don't wait
2959 cic
= cfqd
->active_cic
;
2960 if (!cic
|| !atomic_read(&cic
->icq
.ioc
->active_ref
))
2964 * If our average think time is larger than the remaining time
2965 * slice, then don't idle. This avoids overrunning the allotted
2968 if (sample_valid(cic
->ttime
.ttime_samples
) &&
2969 (cfqq
->slice_end
- now
< cic
->ttime
.ttime_mean
)) {
2970 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%llu",
2971 cic
->ttime
.ttime_mean
);
2976 * There are other queues in the group or this is the only group and
2977 * it has too big thinktime, don't do group idle.
2980 (cfqq
->cfqg
->nr_cfqq
> 1 ||
2981 cfq_io_thinktime_big(cfqd
, &st
->ttime
, true)))
2984 cfq_mark_cfqq_wait_request(cfqq
);
2987 sl
= cfqd
->cfq_group_idle
;
2989 sl
= cfqd
->cfq_slice_idle
;
2991 hrtimer_start(&cfqd
->idle_slice_timer
, ns_to_ktime(sl
),
2993 cfqg_stats_set_start_idle_time(cfqq
->cfqg
);
2994 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %llu group_idle: %d", sl
,
2995 group_idle
? 1 : 0);
2999 * Move request from internal lists to the request queue dispatch list.
3001 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
3003 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3004 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3006 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
3008 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
3009 cfq_remove_request(rq
);
3011 (RQ_CFQG(rq
))->dispatched
++;
3012 elv_dispatch_sort(q
, rq
);
3014 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
3015 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
3019 * return expired entry, or NULL to just start from scratch in rbtree
3021 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
3023 struct request
*rq
= NULL
;
3025 if (cfq_cfqq_fifo_expire(cfqq
))
3028 cfq_mark_cfqq_fifo_expire(cfqq
);
3030 if (list_empty(&cfqq
->fifo
))
3033 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
3034 if (ktime_get_ns() < rq
->fifo_time
)
3041 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3043 const int base_rq
= cfqd
->cfq_slice_async_rq
;
3045 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
3047 return 2 * base_rq
* (IOPRIO_BE_NR
- cfqq
->ioprio
);
3051 * Must be called with the queue_lock held.
3053 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
3055 int process_refs
, io_refs
;
3057 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
3058 process_refs
= cfqq
->ref
- io_refs
;
3059 BUG_ON(process_refs
< 0);
3060 return process_refs
;
3063 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
3065 int process_refs
, new_process_refs
;
3066 struct cfq_queue
*__cfqq
;
3069 * If there are no process references on the new_cfqq, then it is
3070 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3071 * chain may have dropped their last reference (not just their
3072 * last process reference).
3074 if (!cfqq_process_refs(new_cfqq
))
3077 /* Avoid a circular list and skip interim queue merges */
3078 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
3084 process_refs
= cfqq_process_refs(cfqq
);
3085 new_process_refs
= cfqq_process_refs(new_cfqq
);
3087 * If the process for the cfqq has gone away, there is no
3088 * sense in merging the queues.
3090 if (process_refs
== 0 || new_process_refs
== 0)
3094 * Merge in the direction of the lesser amount of work.
3096 if (new_process_refs
>= process_refs
) {
3097 cfqq
->new_cfqq
= new_cfqq
;
3098 new_cfqq
->ref
+= process_refs
;
3100 new_cfqq
->new_cfqq
= cfqq
;
3101 cfqq
->ref
+= new_process_refs
;
3105 static enum wl_type_t
cfq_choose_wl_type(struct cfq_data
*cfqd
,
3106 struct cfq_group
*cfqg
, enum wl_class_t wl_class
)
3108 struct cfq_queue
*queue
;
3110 bool key_valid
= false;
3112 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
3114 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
3115 /* select the one with lowest rb_key */
3116 queue
= cfq_rb_first(st_for(cfqg
, wl_class
, i
));
3118 (!key_valid
|| queue
->rb_key
< lowest_key
)) {
3119 lowest_key
= queue
->rb_key
;
3129 choose_wl_class_and_type(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
3133 struct cfq_rb_root
*st
;
3135 enum wl_class_t original_class
= cfqd
->serving_wl_class
;
3136 u64 now
= ktime_get_ns();
3138 /* Choose next priority. RT > BE > IDLE */
3139 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
3140 cfqd
->serving_wl_class
= RT_WORKLOAD
;
3141 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
3142 cfqd
->serving_wl_class
= BE_WORKLOAD
;
3144 cfqd
->serving_wl_class
= IDLE_WORKLOAD
;
3145 cfqd
->workload_expires
= now
+ jiffies_to_nsecs(1);
3149 if (original_class
!= cfqd
->serving_wl_class
)
3153 * For RT and BE, we have to choose also the type
3154 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3157 st
= st_for(cfqg
, cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
3161 * check workload expiration, and that we still have other queues ready
3163 if (count
&& !(now
> cfqd
->workload_expires
))
3167 /* otherwise select new workload type */
3168 cfqd
->serving_wl_type
= cfq_choose_wl_type(cfqd
, cfqg
,
3169 cfqd
->serving_wl_class
);
3170 st
= st_for(cfqg
, cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
3174 * the workload slice is computed as a fraction of target latency
3175 * proportional to the number of queues in that workload, over
3176 * all the queues in the same priority class
3178 group_slice
= cfq_group_slice(cfqd
, cfqg
);
3180 slice
= div_u64(group_slice
* count
,
3181 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_wl_class
],
3182 cfq_group_busy_queues_wl(cfqd
->serving_wl_class
, cfqd
,
3185 if (cfqd
->serving_wl_type
== ASYNC_WORKLOAD
) {
3189 * Async queues are currently system wide. Just taking
3190 * proportion of queues with-in same group will lead to higher
3191 * async ratio system wide as generally root group is going
3192 * to have higher weight. A more accurate thing would be to
3193 * calculate system wide asnc/sync ratio.
3195 tmp
= cfqd
->cfq_target_latency
*
3196 cfqg_busy_async_queues(cfqd
, cfqg
);
3197 tmp
= div_u64(tmp
, cfqd
->busy_queues
);
3198 slice
= min_t(u64
, slice
, tmp
);
3200 /* async workload slice is scaled down according to
3201 * the sync/async slice ratio. */
3202 slice
= div64_u64(slice
*cfqd
->cfq_slice
[0], cfqd
->cfq_slice
[1]);
3204 /* sync workload slice is at least 2 * cfq_slice_idle */
3205 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
3207 slice
= max_t(u64
, slice
, CFQ_MIN_TT
);
3208 cfq_log(cfqd
, "workload slice:%llu", slice
);
3209 cfqd
->workload_expires
= now
+ slice
;
3212 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
3214 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
3215 struct cfq_group
*cfqg
;
3217 if (RB_EMPTY_ROOT(&st
->rb
))
3219 cfqg
= cfq_rb_first_group(st
);
3220 update_min_vdisktime(st
);
3224 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
3226 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
3227 u64 now
= ktime_get_ns();
3229 cfqd
->serving_group
= cfqg
;
3231 /* Restore the workload type data */
3232 if (cfqg
->saved_wl_slice
) {
3233 cfqd
->workload_expires
= now
+ cfqg
->saved_wl_slice
;
3234 cfqd
->serving_wl_type
= cfqg
->saved_wl_type
;
3235 cfqd
->serving_wl_class
= cfqg
->saved_wl_class
;
3237 cfqd
->workload_expires
= now
- 1;
3239 choose_wl_class_and_type(cfqd
, cfqg
);
3243 * Select a queue for service. If we have a current active queue,
3244 * check whether to continue servicing it, or retrieve and set a new one.
3246 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
3248 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
3249 u64 now
= ktime_get_ns();
3251 cfqq
= cfqd
->active_queue
;
3255 if (!cfqd
->rq_queued
)
3259 * We were waiting for group to get backlogged. Expire the queue
3261 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
3265 * The active queue has run out of time, expire it and select new.
3267 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
3269 * If slice had not expired at the completion of last request
3270 * we might not have turned on wait_busy flag. Don't expire
3271 * the queue yet. Allow the group to get backlogged.
3273 * The very fact that we have used the slice, that means we
3274 * have been idling all along on this queue and it should be
3275 * ok to wait for this request to complete.
3277 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
3278 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
3282 goto check_group_idle
;
3286 * The active queue has requests and isn't expired, allow it to
3289 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3293 * If another queue has a request waiting within our mean seek
3294 * distance, let it run. The expire code will check for close
3295 * cooperators and put the close queue at the front of the service
3296 * tree. If possible, merge the expiring queue with the new cfqq.
3298 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
3300 if (!cfqq
->new_cfqq
)
3301 cfq_setup_merge(cfqq
, new_cfqq
);
3306 * No requests pending. If the active queue still has requests in
3307 * flight or is idling for a new request, allow either of these
3308 * conditions to happen (or time out) before selecting a new queue.
3310 if (hrtimer_active(&cfqd
->idle_slice_timer
)) {
3316 * This is a deep seek queue, but the device is much faster than
3317 * the queue can deliver, don't idle
3319 if (CFQQ_SEEKY(cfqq
) && cfq_cfqq_idle_window(cfqq
) &&
3320 (cfq_cfqq_slice_new(cfqq
) ||
3321 (cfqq
->slice_end
- now
> now
- cfqq
->slice_start
))) {
3322 cfq_clear_cfqq_deep(cfqq
);
3323 cfq_clear_cfqq_idle_window(cfqq
);
3326 if (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
3332 * If group idle is enabled and there are requests dispatched from
3333 * this group, wait for requests to complete.
3336 if (cfqd
->cfq_group_idle
&& cfqq
->cfqg
->nr_cfqq
== 1 &&
3337 cfqq
->cfqg
->dispatched
&&
3338 !cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true)) {
3344 cfq_slice_expired(cfqd
, 0);
3347 * Current queue expired. Check if we have to switch to a new
3351 cfq_choose_cfqg(cfqd
);
3353 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
3358 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
3362 while (cfqq
->next_rq
) {
3363 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
3367 BUG_ON(!list_empty(&cfqq
->fifo
));
3369 /* By default cfqq is not expired if it is empty. Do it explicitly */
3370 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
3375 * Drain our current requests. Used for barriers and when switching
3376 * io schedulers on-the-fly.
3378 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
3380 struct cfq_queue
*cfqq
;
3383 /* Expire the timeslice of the current active queue first */
3384 cfq_slice_expired(cfqd
, 0);
3385 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
3386 __cfq_set_active_queue(cfqd
, cfqq
);
3387 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
3390 BUG_ON(cfqd
->busy_queues
);
3392 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
3396 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
3397 struct cfq_queue
*cfqq
)
3399 u64 now
= ktime_get_ns();
3401 /* the queue hasn't finished any request, can't estimate */
3402 if (cfq_cfqq_slice_new(cfqq
))
3404 if (now
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
> cfqq
->slice_end
)
3410 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3412 unsigned int max_dispatch
;
3414 if (cfq_cfqq_must_dispatch(cfqq
))
3418 * Drain async requests before we start sync IO
3420 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
3424 * If this is an async queue and we have sync IO in flight, let it wait
3426 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
3429 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
3430 if (cfq_class_idle(cfqq
))
3434 * Does this cfqq already have too much IO in flight?
3436 if (cfqq
->dispatched
>= max_dispatch
) {
3437 bool promote_sync
= false;
3439 * idle queue must always only have a single IO in flight
3441 if (cfq_class_idle(cfqq
))
3445 * If there is only one sync queue
3446 * we can ignore async queue here and give the sync
3447 * queue no dispatch limit. The reason is a sync queue can
3448 * preempt async queue, limiting the sync queue doesn't make
3449 * sense. This is useful for aiostress test.
3451 if (cfq_cfqq_sync(cfqq
) && cfqd
->busy_sync_queues
== 1)
3452 promote_sync
= true;
3455 * We have other queues, don't allow more IO from this one
3457 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
) &&
3462 * Sole queue user, no limit
3464 if (cfqd
->busy_queues
== 1 || promote_sync
)
3468 * Normally we start throttling cfqq when cfq_quantum/2
3469 * requests have been dispatched. But we can drive
3470 * deeper queue depths at the beginning of slice
3471 * subjected to upper limit of cfq_quantum.
3473 max_dispatch
= cfqd
->cfq_quantum
;
3477 * Async queues must wait a bit before being allowed dispatch.
3478 * We also ramp up the dispatch depth gradually for async IO,
3479 * based on the last sync IO we serviced
3481 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
3482 u64 last_sync
= ktime_get_ns() - cfqd
->last_delayed_sync
;
3485 depth
= div64_u64(last_sync
, cfqd
->cfq_slice
[1]);
3486 if (!depth
&& !cfqq
->dispatched
)
3488 if (depth
< max_dispatch
)
3489 max_dispatch
= depth
;
3493 * If we're below the current max, allow a dispatch
3495 return cfqq
->dispatched
< max_dispatch
;
3499 * Dispatch a request from cfqq, moving them to the request queue
3502 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3506 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
3508 rq
= cfq_check_fifo(cfqq
);
3510 cfq_mark_cfqq_must_dispatch(cfqq
);
3512 if (!cfq_may_dispatch(cfqd
, cfqq
))
3516 * follow expired path, else get first next available
3521 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
3524 * insert request into driver dispatch list
3526 cfq_dispatch_insert(cfqd
->queue
, rq
);
3528 if (!cfqd
->active_cic
) {
3529 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
3531 atomic_long_inc(&cic
->icq
.ioc
->refcount
);
3532 cfqd
->active_cic
= cic
;
3539 * Find the cfqq that we need to service and move a request from that to the
3542 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
3544 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3545 struct cfq_queue
*cfqq
;
3547 if (!cfqd
->busy_queues
)
3550 if (unlikely(force
))
3551 return cfq_forced_dispatch(cfqd
);
3553 cfqq
= cfq_select_queue(cfqd
);
3558 * Dispatch a request from this cfqq, if it is allowed
3560 if (!cfq_dispatch_request(cfqd
, cfqq
))
3563 cfqq
->slice_dispatch
++;
3564 cfq_clear_cfqq_must_dispatch(cfqq
);
3567 * expire an async queue immediately if it has used up its slice. idle
3568 * queue always expire after 1 dispatch round.
3570 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
3571 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
3572 cfq_class_idle(cfqq
))) {
3573 cfqq
->slice_end
= ktime_get_ns() + 1;
3574 cfq_slice_expired(cfqd
, 0);
3577 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
3582 * task holds one reference to the queue, dropped when task exits. each rq
3583 * in-flight on this queue also holds a reference, dropped when rq is freed.
3585 * Each cfq queue took a reference on the parent group. Drop it now.
3586 * queue lock must be held here.
3588 static void cfq_put_queue(struct cfq_queue
*cfqq
)
3590 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3591 struct cfq_group
*cfqg
;
3593 BUG_ON(cfqq
->ref
<= 0);
3599 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
3600 BUG_ON(rb_first(&cfqq
->sort_list
));
3601 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
3604 if (unlikely(cfqd
->active_queue
== cfqq
)) {
3605 __cfq_slice_expired(cfqd
, cfqq
, 0);
3606 cfq_schedule_dispatch(cfqd
);
3609 BUG_ON(cfq_cfqq_on_rr(cfqq
));
3610 kmem_cache_free(cfq_pool
, cfqq
);
3614 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
3616 struct cfq_queue
*__cfqq
, *next
;
3619 * If this queue was scheduled to merge with another queue, be
3620 * sure to drop the reference taken on that queue (and others in
3621 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3623 __cfqq
= cfqq
->new_cfqq
;
3625 if (__cfqq
== cfqq
) {
3626 WARN(1, "cfqq->new_cfqq loop detected\n");
3629 next
= __cfqq
->new_cfqq
;
3630 cfq_put_queue(__cfqq
);
3635 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3637 if (unlikely(cfqq
== cfqd
->active_queue
)) {
3638 __cfq_slice_expired(cfqd
, cfqq
, 0);
3639 cfq_schedule_dispatch(cfqd
);
3642 cfq_put_cooperator(cfqq
);
3644 cfq_put_queue(cfqq
);
3647 static void cfq_init_icq(struct io_cq
*icq
)
3649 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3651 cic
->ttime
.last_end_request
= ktime_get_ns();
3654 static void cfq_exit_icq(struct io_cq
*icq
)
3656 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3657 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3659 if (cic_to_cfqq(cic
, false)) {
3660 cfq_exit_cfqq(cfqd
, cic_to_cfqq(cic
, false));
3661 cic_set_cfqq(cic
, NULL
, false);
3664 if (cic_to_cfqq(cic
, true)) {
3665 cfq_exit_cfqq(cfqd
, cic_to_cfqq(cic
, true));
3666 cic_set_cfqq(cic
, NULL
, true);
3670 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct cfq_io_cq
*cic
)
3672 struct task_struct
*tsk
= current
;
3675 if (!cfq_cfqq_prio_changed(cfqq
))
3678 ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3679 switch (ioprio_class
) {
3681 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
3682 case IOPRIO_CLASS_NONE
:
3684 * no prio set, inherit CPU scheduling settings
3686 cfqq
->ioprio
= task_nice_ioprio(tsk
);
3687 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
3689 case IOPRIO_CLASS_RT
:
3690 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3691 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
3693 case IOPRIO_CLASS_BE
:
3694 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3695 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3697 case IOPRIO_CLASS_IDLE
:
3698 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
3700 cfq_clear_cfqq_idle_window(cfqq
);
3705 * keep track of original prio settings in case we have to temporarily
3706 * elevate the priority of this queue
3708 cfqq
->org_ioprio
= cfqq
->ioprio
;
3709 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
3710 cfq_clear_cfqq_prio_changed(cfqq
);
3713 static void check_ioprio_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3715 int ioprio
= cic
->icq
.ioc
->ioprio
;
3716 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3717 struct cfq_queue
*cfqq
;
3720 * Check whether ioprio has changed. The condition may trigger
3721 * spuriously on a newly created cic but there's no harm.
3723 if (unlikely(!cfqd
) || likely(cic
->ioprio
== ioprio
))
3726 cfqq
= cic_to_cfqq(cic
, false);
3728 cfq_put_queue(cfqq
);
3729 cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
, bio
);
3730 cic_set_cfqq(cic
, cfqq
, false);
3733 cfqq
= cic_to_cfqq(cic
, true);
3735 cfq_mark_cfqq_prio_changed(cfqq
);
3737 cic
->ioprio
= ioprio
;
3740 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3741 pid_t pid
, bool is_sync
)
3743 RB_CLEAR_NODE(&cfqq
->rb_node
);
3744 RB_CLEAR_NODE(&cfqq
->p_node
);
3745 INIT_LIST_HEAD(&cfqq
->fifo
);
3750 cfq_mark_cfqq_prio_changed(cfqq
);
3753 if (!cfq_class_idle(cfqq
))
3754 cfq_mark_cfqq_idle_window(cfqq
);
3755 cfq_mark_cfqq_sync(cfqq
);
3760 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3761 static void check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3763 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3764 struct cfq_queue
*cfqq
;
3769 serial_nr
= bio_blkcg(bio
)->css
.serial_nr
;
3770 nonroot_cg
= bio_blkcg(bio
) != &blkcg_root
;
3774 * Check whether blkcg has changed. The condition may trigger
3775 * spuriously on a newly created cic but there's no harm.
3777 if (unlikely(!cfqd
) || likely(cic
->blkcg_serial_nr
== serial_nr
))
3781 * If we have a non-root cgroup, we can depend on that to
3782 * do proper throttling of writes. Turn off wbt for that
3783 * case, if it was enabled by default.
3786 wbt_disable_default(cfqd
->queue
);
3789 * Drop reference to queues. New queues will be assigned in new
3790 * group upon arrival of fresh requests.
3792 cfqq
= cic_to_cfqq(cic
, false);
3794 cfq_log_cfqq(cfqd
, cfqq
, "changed cgroup");
3795 cic_set_cfqq(cic
, NULL
, false);
3796 cfq_put_queue(cfqq
);
3799 cfqq
= cic_to_cfqq(cic
, true);
3801 cfq_log_cfqq(cfqd
, cfqq
, "changed cgroup");
3802 cic_set_cfqq(cic
, NULL
, true);
3803 cfq_put_queue(cfqq
);
3806 cic
->blkcg_serial_nr
= serial_nr
;
3809 static inline void check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
) { }
3810 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3812 static struct cfq_queue
**
3813 cfq_async_queue_prio(struct cfq_group
*cfqg
, int ioprio_class
, int ioprio
)
3815 switch (ioprio_class
) {
3816 case IOPRIO_CLASS_RT
:
3817 return &cfqg
->async_cfqq
[0][ioprio
];
3818 case IOPRIO_CLASS_NONE
:
3819 ioprio
= IOPRIO_NORM
;
3821 case IOPRIO_CLASS_BE
:
3822 return &cfqg
->async_cfqq
[1][ioprio
];
3823 case IOPRIO_CLASS_IDLE
:
3824 return &cfqg
->async_idle_cfqq
;
3830 static struct cfq_queue
*
3831 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct cfq_io_cq
*cic
,
3834 int ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3835 int ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3836 struct cfq_queue
**async_cfqq
= NULL
;
3837 struct cfq_queue
*cfqq
;
3838 struct cfq_group
*cfqg
;
3841 cfqg
= cfq_lookup_cfqg(cfqd
, bio_blkcg(bio
));
3843 cfqq
= &cfqd
->oom_cfqq
;
3848 if (!ioprio_valid(cic
->ioprio
)) {
3849 struct task_struct
*tsk
= current
;
3850 ioprio
= task_nice_ioprio(tsk
);
3851 ioprio_class
= task_nice_ioclass(tsk
);
3853 async_cfqq
= cfq_async_queue_prio(cfqg
, ioprio_class
, ioprio
);
3859 cfqq
= kmem_cache_alloc_node(cfq_pool
,
3860 GFP_NOWAIT
| __GFP_ZERO
| __GFP_NOWARN
,
3863 cfqq
= &cfqd
->oom_cfqq
;
3867 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
3868 cfq_init_prio_data(cfqq
, cic
);
3869 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
3870 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
3873 /* a new async queue is created, pin and remember */
3884 __cfq_update_io_thinktime(struct cfq_ttime
*ttime
, u64 slice_idle
)
3886 u64 elapsed
= ktime_get_ns() - ttime
->last_end_request
;
3887 elapsed
= min(elapsed
, 2UL * slice_idle
);
3889 ttime
->ttime_samples
= (7*ttime
->ttime_samples
+ 256) / 8;
3890 ttime
->ttime_total
= div_u64(7*ttime
->ttime_total
+ 256*elapsed
, 8);
3891 ttime
->ttime_mean
= div64_ul(ttime
->ttime_total
+ 128,
3892 ttime
->ttime_samples
);
3896 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3897 struct cfq_io_cq
*cic
)
3899 if (cfq_cfqq_sync(cfqq
)) {
3900 __cfq_update_io_thinktime(&cic
->ttime
, cfqd
->cfq_slice_idle
);
3901 __cfq_update_io_thinktime(&cfqq
->service_tree
->ttime
,
3902 cfqd
->cfq_slice_idle
);
3904 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3905 __cfq_update_io_thinktime(&cfqq
->cfqg
->ttime
, cfqd
->cfq_group_idle
);
3910 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3914 sector_t n_sec
= blk_rq_sectors(rq
);
3915 if (cfqq
->last_request_pos
) {
3916 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3917 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3919 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3922 cfqq
->seek_history
<<= 1;
3923 if (blk_queue_nonrot(cfqd
->queue
))
3924 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
3926 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3929 static inline bool req_noidle(struct request
*req
)
3931 return req_op(req
) == REQ_OP_WRITE
&&
3932 (req
->cmd_flags
& (REQ_SYNC
| REQ_IDLE
)) == REQ_SYNC
;
3936 * Disable idle window if the process thinks too long or seeks so much that
3940 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3941 struct cfq_io_cq
*cic
)
3943 int old_idle
, enable_idle
;
3946 * Don't idle for async or idle io prio class
3948 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3951 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3953 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3954 cfq_mark_cfqq_deep(cfqq
);
3956 if (cfqq
->next_rq
&& req_noidle(cfqq
->next_rq
))
3958 else if (!atomic_read(&cic
->icq
.ioc
->active_ref
) ||
3959 !cfqd
->cfq_slice_idle
||
3960 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3962 else if (sample_valid(cic
->ttime
.ttime_samples
)) {
3963 if (cic
->ttime
.ttime_mean
> cfqd
->cfq_slice_idle
)
3969 if (old_idle
!= enable_idle
) {
3970 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3972 cfq_mark_cfqq_idle_window(cfqq
);
3974 cfq_clear_cfqq_idle_window(cfqq
);
3979 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3980 * no or if we aren't sure, a 1 will cause a preempt.
3983 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3986 struct cfq_queue
*cfqq
;
3988 cfqq
= cfqd
->active_queue
;
3992 if (cfq_class_idle(new_cfqq
))
3995 if (cfq_class_idle(cfqq
))
3999 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
4001 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
4005 * if the new request is sync, but the currently running queue is
4006 * not, let the sync request have priority.
4008 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
))
4012 * Treat ancestors of current cgroup the same way as current cgroup.
4013 * For anybody else we disallow preemption to guarantee service
4014 * fairness among cgroups.
4016 if (!cfqg_is_descendant(cfqq
->cfqg
, new_cfqq
->cfqg
))
4019 if (cfq_slice_used(cfqq
))
4023 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
4025 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
4028 WARN_ON_ONCE(cfqq
->ioprio_class
!= new_cfqq
->ioprio_class
);
4029 /* Allow preemption only if we are idling on sync-noidle tree */
4030 if (cfqd
->serving_wl_type
== SYNC_NOIDLE_WORKLOAD
&&
4031 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
4032 RB_EMPTY_ROOT(&cfqq
->sort_list
))
4036 * So both queues are sync. Let the new request get disk time if
4037 * it's a metadata request and the current queue is doing regular IO.
4039 if ((rq
->cmd_flags
& REQ_PRIO
) && !cfqq
->prio_pending
)
4042 /* An idle queue should not be idle now for some reason */
4043 if (RB_EMPTY_ROOT(&cfqq
->sort_list
) && !cfq_should_idle(cfqd
, cfqq
))
4046 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
4050 * if this request is as-good as one we would expect from the
4051 * current cfqq, let it preempt
4053 if (cfq_rq_close(cfqd
, cfqq
, rq
))
4060 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4061 * let it have half of its nominal slice.
4063 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
4065 enum wl_type_t old_type
= cfqq_type(cfqd
->active_queue
);
4067 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
4068 cfq_slice_expired(cfqd
, 1);
4071 * workload type is changed, don't save slice, otherwise preempt
4074 if (old_type
!= cfqq_type(cfqq
))
4075 cfqq
->cfqg
->saved_wl_slice
= 0;
4078 * Put the new queue at the front of the of the current list,
4079 * so we know that it will be selected next.
4081 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
4083 cfq_service_tree_add(cfqd
, cfqq
, 1);
4085 cfqq
->slice_end
= 0;
4086 cfq_mark_cfqq_slice_new(cfqq
);
4090 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4091 * something we should do about it
4094 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
4097 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
4100 if (rq
->cmd_flags
& REQ_PRIO
)
4101 cfqq
->prio_pending
++;
4103 cfq_update_io_thinktime(cfqd
, cfqq
, cic
);
4104 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
4105 cfq_update_idle_window(cfqd
, cfqq
, cic
);
4107 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
4109 if (cfqq
== cfqd
->active_queue
) {
4111 * Remember that we saw a request from this process, but
4112 * don't start queuing just yet. Otherwise we risk seeing lots
4113 * of tiny requests, because we disrupt the normal plugging
4114 * and merging. If the request is already larger than a single
4115 * page, let it rip immediately. For that case we assume that
4116 * merging is already done. Ditto for a busy system that
4117 * has other work pending, don't risk delaying until the
4118 * idle timer unplug to continue working.
4120 if (cfq_cfqq_wait_request(cfqq
)) {
4121 if (blk_rq_bytes(rq
) > PAGE_SIZE
||
4122 cfqd
->busy_queues
> 1) {
4123 cfq_del_timer(cfqd
, cfqq
);
4124 cfq_clear_cfqq_wait_request(cfqq
);
4125 __blk_run_queue(cfqd
->queue
);
4127 cfqg_stats_update_idle_time(cfqq
->cfqg
);
4128 cfq_mark_cfqq_must_dispatch(cfqq
);
4131 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
4133 * not the active queue - expire current slice if it is
4134 * idle and has expired it's mean thinktime or this new queue
4135 * has some old slice time left and is of higher priority or
4136 * this new queue is RT and the current one is BE
4138 cfq_preempt_queue(cfqd
, cfqq
);
4139 __blk_run_queue(cfqd
->queue
);
4143 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
4145 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4146 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4148 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
4149 cfq_init_prio_data(cfqq
, RQ_CIC(rq
));
4151 rq
->fifo_time
= ktime_get_ns() + cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)];
4152 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
4154 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqd
->serving_group
,
4156 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
4160 * Update hw_tag based on peak queue depth over 50 samples under
4163 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
4165 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
4167 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
4168 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
4170 if (cfqd
->hw_tag
== 1)
4173 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
4174 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
4178 * If active queue hasn't enough requests and can idle, cfq might not
4179 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4182 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
4183 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
4184 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
4187 if (cfqd
->hw_tag_samples
++ < 50)
4190 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
4196 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
4198 struct cfq_io_cq
*cic
= cfqd
->active_cic
;
4199 u64 now
= ktime_get_ns();
4201 /* If the queue already has requests, don't wait */
4202 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
4205 /* If there are other queues in the group, don't wait */
4206 if (cfqq
->cfqg
->nr_cfqq
> 1)
4209 /* the only queue in the group, but think time is big */
4210 if (cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true))
4213 if (cfq_slice_used(cfqq
))
4216 /* if slice left is less than think time, wait busy */
4217 if (cic
&& sample_valid(cic
->ttime
.ttime_samples
)
4218 && (cfqq
->slice_end
- now
< cic
->ttime
.ttime_mean
))
4222 * If think times is less than a jiffy than ttime_mean=0 and above
4223 * will not be true. It might happen that slice has not expired yet
4224 * but will expire soon (4-5 ns) during select_queue(). To cover the
4225 * case where think time is less than a jiffy, mark the queue wait
4226 * busy if only 1 jiffy is left in the slice.
4228 if (cfqq
->slice_end
- now
<= jiffies_to_nsecs(1))
4234 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
4236 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4237 struct cfq_data
*cfqd
= cfqq
->cfqd
;
4238 const int sync
= rq_is_sync(rq
);
4239 u64 now
= ktime_get_ns();
4241 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d", req_noidle(rq
));
4243 cfq_update_hw_tag(cfqd
);
4245 WARN_ON(!cfqd
->rq_in_driver
);
4246 WARN_ON(!cfqq
->dispatched
);
4247 cfqd
->rq_in_driver
--;
4249 (RQ_CFQG(rq
))->dispatched
--;
4250 cfqg_stats_update_completion(cfqq
->cfqg
, rq_start_time_ns(rq
),
4251 rq_io_start_time_ns(rq
), rq
->cmd_flags
);
4253 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
4256 struct cfq_rb_root
*st
;
4258 RQ_CIC(rq
)->ttime
.last_end_request
= now
;
4260 if (cfq_cfqq_on_rr(cfqq
))
4261 st
= cfqq
->service_tree
;
4263 st
= st_for(cfqq
->cfqg
, cfqq_class(cfqq
),
4266 st
->ttime
.last_end_request
= now
;
4268 * We have to do this check in jiffies since start_time is in
4269 * jiffies and it is not trivial to convert to ns. If
4270 * cfq_fifo_expire[1] ever comes close to 1 jiffie, this test
4271 * will become problematic but so far we are fine (the default
4274 if (!time_after(rq
->start_time
+
4275 nsecs_to_jiffies(cfqd
->cfq_fifo_expire
[1]),
4277 cfqd
->last_delayed_sync
= now
;
4280 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4281 cfqq
->cfqg
->ttime
.last_end_request
= now
;
4285 * If this is the active queue, check if it needs to be expired,
4286 * or if we want to idle in case it has no pending requests.
4288 if (cfqd
->active_queue
== cfqq
) {
4289 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
4291 if (cfq_cfqq_slice_new(cfqq
)) {
4292 cfq_set_prio_slice(cfqd
, cfqq
);
4293 cfq_clear_cfqq_slice_new(cfqq
);
4297 * Should we wait for next request to come in before we expire
4300 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
4301 u64 extend_sl
= cfqd
->cfq_slice_idle
;
4302 if (!cfqd
->cfq_slice_idle
)
4303 extend_sl
= cfqd
->cfq_group_idle
;
4304 cfqq
->slice_end
= now
+ extend_sl
;
4305 cfq_mark_cfqq_wait_busy(cfqq
);
4306 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
4310 * Idling is not enabled on:
4312 * - idle-priority queues
4314 * - queues with still some requests queued
4315 * - when there is a close cooperator
4317 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
4318 cfq_slice_expired(cfqd
, 1);
4319 else if (sync
&& cfqq_empty
&&
4320 !cfq_close_cooperator(cfqd
, cfqq
)) {
4321 cfq_arm_slice_timer(cfqd
);
4325 if (!cfqd
->rq_in_driver
)
4326 cfq_schedule_dispatch(cfqd
);
4329 static void cfqq_boost_on_prio(struct cfq_queue
*cfqq
, unsigned int op
)
4332 * If REQ_PRIO is set, boost class and prio level, if it's below
4333 * BE/NORM. If prio is not set, restore the potentially boosted
4336 if (!(op
& REQ_PRIO
)) {
4337 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
4338 cfqq
->ioprio
= cfqq
->org_ioprio
;
4340 if (cfq_class_idle(cfqq
))
4341 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
4342 if (cfqq
->ioprio
> IOPRIO_NORM
)
4343 cfqq
->ioprio
= IOPRIO_NORM
;
4347 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
4349 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
4350 cfq_mark_cfqq_must_alloc_slice(cfqq
);
4351 return ELV_MQUEUE_MUST
;
4354 return ELV_MQUEUE_MAY
;
4357 static int cfq_may_queue(struct request_queue
*q
, unsigned int op
)
4359 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4360 struct task_struct
*tsk
= current
;
4361 struct cfq_io_cq
*cic
;
4362 struct cfq_queue
*cfqq
;
4365 * don't force setup of a queue from here, as a call to may_queue
4366 * does not necessarily imply that a request actually will be queued.
4367 * so just lookup a possibly existing queue, or return 'may queue'
4370 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
4372 return ELV_MQUEUE_MAY
;
4374 cfqq
= cic_to_cfqq(cic
, op_is_sync(op
));
4376 cfq_init_prio_data(cfqq
, cic
);
4377 cfqq_boost_on_prio(cfqq
, op
);
4379 return __cfq_may_queue(cfqq
);
4382 return ELV_MQUEUE_MAY
;
4386 * queue lock held here
4388 static void cfq_put_request(struct request
*rq
)
4390 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4393 const int rw
= rq_data_dir(rq
);
4395 BUG_ON(!cfqq
->allocated
[rw
]);
4396 cfqq
->allocated
[rw
]--;
4398 /* Put down rq reference on cfqg */
4399 cfqg_put(RQ_CFQG(rq
));
4400 rq
->elv
.priv
[0] = NULL
;
4401 rq
->elv
.priv
[1] = NULL
;
4403 cfq_put_queue(cfqq
);
4407 static struct cfq_queue
*
4408 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_cq
*cic
,
4409 struct cfq_queue
*cfqq
)
4411 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
4412 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
4413 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
4414 cfq_put_queue(cfqq
);
4415 return cic_to_cfqq(cic
, 1);
4419 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4420 * was the last process referring to said cfqq.
4422 static struct cfq_queue
*
4423 split_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
)
4425 if (cfqq_process_refs(cfqq
) == 1) {
4426 cfqq
->pid
= current
->pid
;
4427 cfq_clear_cfqq_coop(cfqq
);
4428 cfq_clear_cfqq_split_coop(cfqq
);
4432 cic_set_cfqq(cic
, NULL
, 1);
4434 cfq_put_cooperator(cfqq
);
4436 cfq_put_queue(cfqq
);
4440 * Allocate cfq data structures associated with this request.
4443 cfq_set_request(struct request_queue
*q
, struct request
*rq
, struct bio
*bio
,
4446 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4447 struct cfq_io_cq
*cic
= icq_to_cic(rq
->elv
.icq
);
4448 const int rw
= rq_data_dir(rq
);
4449 const bool is_sync
= rq_is_sync(rq
);
4450 struct cfq_queue
*cfqq
;
4452 spin_lock_irq(q
->queue_lock
);
4454 check_ioprio_changed(cic
, bio
);
4455 check_blkcg_changed(cic
, bio
);
4457 cfqq
= cic_to_cfqq(cic
, is_sync
);
4458 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
4460 cfq_put_queue(cfqq
);
4461 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
, bio
);
4462 cic_set_cfqq(cic
, cfqq
, is_sync
);
4465 * If the queue was seeky for too long, break it apart.
4467 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
4468 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
4469 cfqq
= split_cfqq(cic
, cfqq
);
4475 * Check to see if this queue is scheduled to merge with
4476 * another, closely cooperating queue. The merging of
4477 * queues happens here as it must be done in process context.
4478 * The reference on new_cfqq was taken in merge_cfqqs.
4481 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
4484 cfqq
->allocated
[rw
]++;
4487 cfqg_get(cfqq
->cfqg
);
4488 rq
->elv
.priv
[0] = cfqq
;
4489 rq
->elv
.priv
[1] = cfqq
->cfqg
;
4490 spin_unlock_irq(q
->queue_lock
);
4494 static void cfq_kick_queue(struct work_struct
*work
)
4496 struct cfq_data
*cfqd
=
4497 container_of(work
, struct cfq_data
, unplug_work
);
4498 struct request_queue
*q
= cfqd
->queue
;
4500 spin_lock_irq(q
->queue_lock
);
4501 __blk_run_queue(cfqd
->queue
);
4502 spin_unlock_irq(q
->queue_lock
);
4506 * Timer running if the active_queue is currently idling inside its time slice
4508 static enum hrtimer_restart
cfq_idle_slice_timer(struct hrtimer
*timer
)
4510 struct cfq_data
*cfqd
= container_of(timer
, struct cfq_data
,
4512 struct cfq_queue
*cfqq
;
4513 unsigned long flags
;
4516 cfq_log(cfqd
, "idle timer fired");
4518 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
4520 cfqq
= cfqd
->active_queue
;
4525 * We saw a request before the queue expired, let it through
4527 if (cfq_cfqq_must_dispatch(cfqq
))
4533 if (cfq_slice_used(cfqq
))
4537 * only expire and reinvoke request handler, if there are
4538 * other queues with pending requests
4540 if (!cfqd
->busy_queues
)
4544 * not expired and it has a request pending, let it dispatch
4546 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
4550 * Queue depth flag is reset only when the idle didn't succeed
4552 cfq_clear_cfqq_deep(cfqq
);
4555 cfq_slice_expired(cfqd
, timed_out
);
4557 cfq_schedule_dispatch(cfqd
);
4559 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
4560 return HRTIMER_NORESTART
;
4563 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
4565 hrtimer_cancel(&cfqd
->idle_slice_timer
);
4566 cancel_work_sync(&cfqd
->unplug_work
);
4569 static void cfq_exit_queue(struct elevator_queue
*e
)
4571 struct cfq_data
*cfqd
= e
->elevator_data
;
4572 struct request_queue
*q
= cfqd
->queue
;
4574 cfq_shutdown_timer_wq(cfqd
);
4576 spin_lock_irq(q
->queue_lock
);
4578 if (cfqd
->active_queue
)
4579 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
4581 spin_unlock_irq(q
->queue_lock
);
4583 cfq_shutdown_timer_wq(cfqd
);
4585 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4586 blkcg_deactivate_policy(q
, &blkcg_policy_cfq
);
4588 kfree(cfqd
->root_group
);
4593 static int cfq_init_queue(struct request_queue
*q
, struct elevator_type
*e
)
4595 struct cfq_data
*cfqd
;
4596 struct blkcg_gq
*blkg __maybe_unused
;
4598 struct elevator_queue
*eq
;
4600 eq
= elevator_alloc(q
, e
);
4604 cfqd
= kzalloc_node(sizeof(*cfqd
), GFP_KERNEL
, q
->node
);
4606 kobject_put(&eq
->kobj
);
4609 eq
->elevator_data
= cfqd
;
4612 spin_lock_irq(q
->queue_lock
);
4614 spin_unlock_irq(q
->queue_lock
);
4616 /* Init root service tree */
4617 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
4619 /* Init root group and prefer root group over other groups by default */
4620 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4621 ret
= blkcg_activate_policy(q
, &blkcg_policy_cfq
);
4625 cfqd
->root_group
= blkg_to_cfqg(q
->root_blkg
);
4628 cfqd
->root_group
= kzalloc_node(sizeof(*cfqd
->root_group
),
4629 GFP_KERNEL
, cfqd
->queue
->node
);
4630 if (!cfqd
->root_group
)
4633 cfq_init_cfqg_base(cfqd
->root_group
);
4634 cfqd
->root_group
->weight
= 2 * CFQ_WEIGHT_LEGACY_DFL
;
4635 cfqd
->root_group
->leaf_weight
= 2 * CFQ_WEIGHT_LEGACY_DFL
;
4639 * Not strictly needed (since RB_ROOT just clears the node and we
4640 * zeroed cfqd on alloc), but better be safe in case someone decides
4641 * to add magic to the rb code
4643 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
4644 cfqd
->prio_trees
[i
] = RB_ROOT
;
4647 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4648 * Grab a permanent reference to it, so that the normal code flow
4649 * will not attempt to free it. oom_cfqq is linked to root_group
4650 * but shouldn't hold a reference as it'll never be unlinked. Lose
4651 * the reference from linking right away.
4653 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
4654 cfqd
->oom_cfqq
.ref
++;
4656 spin_lock_irq(q
->queue_lock
);
4657 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, cfqd
->root_group
);
4658 cfqg_put(cfqd
->root_group
);
4659 spin_unlock_irq(q
->queue_lock
);
4661 hrtimer_init(&cfqd
->idle_slice_timer
, CLOCK_MONOTONIC
,
4663 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
4665 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
4667 cfqd
->cfq_quantum
= cfq_quantum
;
4668 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
4669 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
4670 cfqd
->cfq_back_max
= cfq_back_max
;
4671 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
4672 cfqd
->cfq_slice
[0] = cfq_slice_async
;
4673 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
4674 cfqd
->cfq_target_latency
= cfq_target_latency
;
4675 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
4676 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
4677 cfqd
->cfq_group_idle
= cfq_group_idle
;
4678 cfqd
->cfq_latency
= 1;
4681 * we optimistically start assuming sync ops weren't delayed in last
4682 * second, in order to have larger depth for async operations.
4684 cfqd
->last_delayed_sync
= ktime_get_ns() - NSEC_PER_SEC
;
4689 kobject_put(&eq
->kobj
);
4693 static void cfq_registered_queue(struct request_queue
*q
)
4695 struct elevator_queue
*e
= q
->elevator
;
4696 struct cfq_data
*cfqd
= e
->elevator_data
;
4699 * Default to IOPS mode with no idling for SSDs
4701 if (blk_queue_nonrot(q
))
4702 cfqd
->cfq_slice_idle
= 0;
4706 * sysfs parts below -->
4709 cfq_var_show(unsigned int var
, char *page
)
4711 return sprintf(page
, "%u\n", var
);
4715 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
4717 char *p
= (char *) page
;
4719 *var
= simple_strtoul(p
, &p
, 10);
4723 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4724 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4726 struct cfq_data *cfqd = e->elevator_data; \
4727 u64 __data = __VAR; \
4729 __data = div_u64(__data, NSEC_PER_MSEC); \
4730 return cfq_var_show(__data, (page)); \
4732 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
4733 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
4734 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
4735 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
4736 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
4737 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
4738 SHOW_FUNCTION(cfq_group_idle_show
, cfqd
->cfq_group_idle
, 1);
4739 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
4740 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
4741 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
4742 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
4743 SHOW_FUNCTION(cfq_target_latency_show
, cfqd
->cfq_target_latency
, 1);
4744 #undef SHOW_FUNCTION
4746 #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
4747 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4749 struct cfq_data *cfqd = e->elevator_data; \
4750 u64 __data = __VAR; \
4751 __data = div_u64(__data, NSEC_PER_USEC); \
4752 return cfq_var_show(__data, (page)); \
4754 USEC_SHOW_FUNCTION(cfq_slice_idle_us_show
, cfqd
->cfq_slice_idle
);
4755 USEC_SHOW_FUNCTION(cfq_group_idle_us_show
, cfqd
->cfq_group_idle
);
4756 USEC_SHOW_FUNCTION(cfq_slice_sync_us_show
, cfqd
->cfq_slice
[1]);
4757 USEC_SHOW_FUNCTION(cfq_slice_async_us_show
, cfqd
->cfq_slice
[0]);
4758 USEC_SHOW_FUNCTION(cfq_target_latency_us_show
, cfqd
->cfq_target_latency
);
4759 #undef USEC_SHOW_FUNCTION
4761 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4762 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4764 struct cfq_data *cfqd = e->elevator_data; \
4765 unsigned int __data; \
4766 int ret = cfq_var_store(&__data, (page), count); \
4767 if (__data < (MIN)) \
4769 else if (__data > (MAX)) \
4772 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
4774 *(__PTR) = __data; \
4777 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
4778 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
4780 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
4782 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
4783 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
4785 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
4786 STORE_FUNCTION(cfq_group_idle_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
, 1);
4787 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
4788 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
4789 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
4791 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
4792 STORE_FUNCTION(cfq_target_latency_store
, &cfqd
->cfq_target_latency
, 1, UINT_MAX
, 1);
4793 #undef STORE_FUNCTION
4795 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
4796 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4798 struct cfq_data *cfqd = e->elevator_data; \
4799 unsigned int __data; \
4800 int ret = cfq_var_store(&__data, (page), count); \
4801 if (__data < (MIN)) \
4803 else if (__data > (MAX)) \
4805 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
4808 USEC_STORE_FUNCTION(cfq_slice_idle_us_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
);
4809 USEC_STORE_FUNCTION(cfq_group_idle_us_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
);
4810 USEC_STORE_FUNCTION(cfq_slice_sync_us_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
);
4811 USEC_STORE_FUNCTION(cfq_slice_async_us_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
);
4812 USEC_STORE_FUNCTION(cfq_target_latency_us_store
, &cfqd
->cfq_target_latency
, 1, UINT_MAX
);
4813 #undef USEC_STORE_FUNCTION
4815 #define CFQ_ATTR(name) \
4816 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4818 static struct elv_fs_entry cfq_attrs
[] = {
4820 CFQ_ATTR(fifo_expire_sync
),
4821 CFQ_ATTR(fifo_expire_async
),
4822 CFQ_ATTR(back_seek_max
),
4823 CFQ_ATTR(back_seek_penalty
),
4824 CFQ_ATTR(slice_sync
),
4825 CFQ_ATTR(slice_sync_us
),
4826 CFQ_ATTR(slice_async
),
4827 CFQ_ATTR(slice_async_us
),
4828 CFQ_ATTR(slice_async_rq
),
4829 CFQ_ATTR(slice_idle
),
4830 CFQ_ATTR(slice_idle_us
),
4831 CFQ_ATTR(group_idle
),
4832 CFQ_ATTR(group_idle_us
),
4833 CFQ_ATTR(low_latency
),
4834 CFQ_ATTR(target_latency
),
4835 CFQ_ATTR(target_latency_us
),
4839 static struct elevator_type iosched_cfq
= {
4841 .elevator_merge_fn
= cfq_merge
,
4842 .elevator_merged_fn
= cfq_merged_request
,
4843 .elevator_merge_req_fn
= cfq_merged_requests
,
4844 .elevator_allow_bio_merge_fn
= cfq_allow_bio_merge
,
4845 .elevator_allow_rq_merge_fn
= cfq_allow_rq_merge
,
4846 .elevator_bio_merged_fn
= cfq_bio_merged
,
4847 .elevator_dispatch_fn
= cfq_dispatch_requests
,
4848 .elevator_add_req_fn
= cfq_insert_request
,
4849 .elevator_activate_req_fn
= cfq_activate_request
,
4850 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
4851 .elevator_completed_req_fn
= cfq_completed_request
,
4852 .elevator_former_req_fn
= elv_rb_former_request
,
4853 .elevator_latter_req_fn
= elv_rb_latter_request
,
4854 .elevator_init_icq_fn
= cfq_init_icq
,
4855 .elevator_exit_icq_fn
= cfq_exit_icq
,
4856 .elevator_set_req_fn
= cfq_set_request
,
4857 .elevator_put_req_fn
= cfq_put_request
,
4858 .elevator_may_queue_fn
= cfq_may_queue
,
4859 .elevator_init_fn
= cfq_init_queue
,
4860 .elevator_exit_fn
= cfq_exit_queue
,
4861 .elevator_registered_fn
= cfq_registered_queue
,
4863 .icq_size
= sizeof(struct cfq_io_cq
),
4864 .icq_align
= __alignof__(struct cfq_io_cq
),
4865 .elevator_attrs
= cfq_attrs
,
4866 .elevator_name
= "cfq",
4867 .elevator_owner
= THIS_MODULE
,
4870 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4871 static struct blkcg_policy blkcg_policy_cfq
= {
4872 .dfl_cftypes
= cfq_blkcg_files
,
4873 .legacy_cftypes
= cfq_blkcg_legacy_files
,
4875 .cpd_alloc_fn
= cfq_cpd_alloc
,
4876 .cpd_init_fn
= cfq_cpd_init
,
4877 .cpd_free_fn
= cfq_cpd_free
,
4878 .cpd_bind_fn
= cfq_cpd_bind
,
4880 .pd_alloc_fn
= cfq_pd_alloc
,
4881 .pd_init_fn
= cfq_pd_init
,
4882 .pd_offline_fn
= cfq_pd_offline
,
4883 .pd_free_fn
= cfq_pd_free
,
4884 .pd_reset_stats_fn
= cfq_pd_reset_stats
,
4888 static int __init
cfq_init(void)
4892 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4893 ret
= blkcg_policy_register(&blkcg_policy_cfq
);
4901 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
4905 ret
= elv_register(&iosched_cfq
);
4912 kmem_cache_destroy(cfq_pool
);
4914 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4915 blkcg_policy_unregister(&blkcg_policy_cfq
);
4920 static void __exit
cfq_exit(void)
4922 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4923 blkcg_policy_unregister(&blkcg_policy_cfq
);
4925 elv_unregister(&iosched_cfq
);
4926 kmem_cache_destroy(cfq_pool
);
4929 module_init(cfq_init
);
4930 module_exit(cfq_exit
);
4932 MODULE_AUTHOR("Jens Axboe");
4933 MODULE_LICENSE("GPL");
4934 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");