2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/ktime.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include <linux/blk-cgroup.h>
23 /* max queue in one round of service */
24 static const int cfq_quantum
= 8;
25 static const u64 cfq_fifo_expire
[2] = { NSEC_PER_SEC
/ 4, NSEC_PER_SEC
/ 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max
= 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty
= 2;
30 static const u64 cfq_slice_sync
= NSEC_PER_SEC
/ 10;
31 static u64 cfq_slice_async
= NSEC_PER_SEC
/ 25;
32 static const int cfq_slice_async_rq
= 2;
33 static u64 cfq_slice_idle
= NSEC_PER_SEC
/ 125;
34 static u64 cfq_group_idle
= NSEC_PER_SEC
/ 125;
35 static const u64 cfq_target_latency
= (u64
)NSEC_PER_SEC
* 3/10; /* 300 ms */
36 static const int cfq_hist_divisor
= 4;
39 * offset from end of service tree
41 #define CFQ_IDLE_DELAY (NSEC_PER_SEC / 5)
44 * below this threshold, we consider thinktime immediate
46 #define CFQ_MIN_TT (2 * NSEC_PER_SEC / HZ)
48 #define CFQ_SLICE_SCALE (5)
49 #define CFQ_HW_QUEUE_MIN (5)
50 #define CFQ_SERVICE_SHIFT 12
52 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
53 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
54 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
55 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
57 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
61 static struct kmem_cache
*cfq_pool
;
63 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
64 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
65 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67 #define sample_valid(samples) ((samples) > 80)
68 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
70 /* blkio-related constants */
71 #define CFQ_WEIGHT_LEGACY_MIN 10
72 #define CFQ_WEIGHT_LEGACY_DFL 500
73 #define CFQ_WEIGHT_LEGACY_MAX 1000
80 unsigned long ttime_samples
;
84 * Most of our rbtree usage is for sorting with min extraction, so
85 * if we cache the leftmost node we don't have to walk down the tree
86 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
87 * move this into the elevator for the rq sorting as well.
94 struct cfq_ttime ttime
;
96 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
97 .ttime = {.last_end_request = ktime_get_ns(),},}
100 * Per process-grouping structure
103 /* reference count */
105 /* various state flags, see below */
107 /* parent cfq_data */
108 struct cfq_data
*cfqd
;
109 /* service_tree member */
110 struct rb_node rb_node
;
111 /* service_tree key */
113 /* prio tree member */
114 struct rb_node p_node
;
115 /* prio tree root we belong to, if any */
116 struct rb_root
*p_root
;
117 /* sorted list of pending requests */
118 struct rb_root sort_list
;
119 /* if fifo isn't expired, next request to serve */
120 struct request
*next_rq
;
121 /* requests queued in sort_list */
123 /* currently allocated requests */
125 /* fifo list of requests in sort_list */
126 struct list_head fifo
;
128 /* time when queue got scheduled in to dispatch first request. */
132 /* time when first request from queue completed and slice started. */
137 /* pending priority requests */
139 /* number of requests that are on the dispatch list or inside driver */
142 /* io prio of this group */
143 unsigned short ioprio
, org_ioprio
;
144 unsigned short ioprio_class
, org_ioprio_class
;
149 sector_t last_request_pos
;
151 struct cfq_rb_root
*service_tree
;
152 struct cfq_queue
*new_cfqq
;
153 struct cfq_group
*cfqg
;
154 /* Number of sectors dispatched from queue in single dispatch round */
155 unsigned long nr_sectors
;
159 * First index in the service_trees.
160 * IDLE is handled separately, so it has negative index
170 * Second index in the service_trees.
174 SYNC_NOIDLE_WORKLOAD
= 1,
179 #ifdef CONFIG_CFQ_GROUP_IOSCHED
180 /* number of ios merged */
181 struct blkg_rwstat merged
;
182 /* total time spent on device in ns, may not be accurate w/ queueing */
183 struct blkg_rwstat service_time
;
184 /* total time spent waiting in scheduler queue in ns */
185 struct blkg_rwstat wait_time
;
186 /* number of IOs queued up */
187 struct blkg_rwstat queued
;
188 /* total disk time and nr sectors dispatched by this group */
189 struct blkg_stat time
;
190 #ifdef CONFIG_DEBUG_BLK_CGROUP
191 /* time not charged to this cgroup */
192 struct blkg_stat unaccounted_time
;
193 /* sum of number of ios queued across all samples */
194 struct blkg_stat avg_queue_size_sum
;
195 /* count of samples taken for average */
196 struct blkg_stat avg_queue_size_samples
;
197 /* how many times this group has been removed from service tree */
198 struct blkg_stat dequeue
;
199 /* total time spent waiting for it to be assigned a timeslice. */
200 struct blkg_stat group_wait_time
;
201 /* time spent idling for this blkcg_gq */
202 struct blkg_stat idle_time
;
203 /* total time with empty current active q with other requests queued */
204 struct blkg_stat empty_time
;
205 /* fields after this shouldn't be cleared on stat reset */
206 uint64_t start_group_wait_time
;
207 uint64_t start_idle_time
;
208 uint64_t start_empty_time
;
210 #endif /* CONFIG_DEBUG_BLK_CGROUP */
211 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
214 /* Per-cgroup data */
215 struct cfq_group_data
{
216 /* must be the first member */
217 struct blkcg_policy_data cpd
;
220 unsigned int leaf_weight
;
223 /* This is per cgroup per device grouping structure */
225 /* must be the first member */
226 struct blkg_policy_data pd
;
228 /* group service_tree member */
229 struct rb_node rb_node
;
231 /* group service_tree key */
235 * The number of active cfqgs and sum of their weights under this
236 * cfqg. This covers this cfqg's leaf_weight and all children's
237 * weights, but does not cover weights of further descendants.
239 * If a cfqg is on the service tree, it's active. An active cfqg
240 * also activates its parent and contributes to the children_weight
244 unsigned int children_weight
;
247 * vfraction is the fraction of vdisktime that the tasks in this
248 * cfqg are entitled to. This is determined by compounding the
249 * ratios walking up from this cfqg to the root.
251 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
252 * vfractions on a service tree is approximately 1. The sum may
253 * deviate a bit due to rounding errors and fluctuations caused by
254 * cfqgs entering and leaving the service tree.
256 unsigned int vfraction
;
259 * There are two weights - (internal) weight is the weight of this
260 * cfqg against the sibling cfqgs. leaf_weight is the wight of
261 * this cfqg against the child cfqgs. For the root cfqg, both
262 * weights are kept in sync for backward compatibility.
265 unsigned int new_weight
;
266 unsigned int dev_weight
;
268 unsigned int leaf_weight
;
269 unsigned int new_leaf_weight
;
270 unsigned int dev_leaf_weight
;
272 /* number of cfqq currently on this group */
276 * Per group busy queues average. Useful for workload slice calc. We
277 * create the array for each prio class but at run time it is used
278 * only for RT and BE class and slot for IDLE class remains unused.
279 * This is primarily done to avoid confusion and a gcc warning.
281 unsigned int busy_queues_avg
[CFQ_PRIO_NR
];
283 * rr lists of queues with requests. We maintain service trees for
284 * RT and BE classes. These trees are subdivided in subclasses
285 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
286 * class there is no subclassification and all the cfq queues go on
287 * a single tree service_tree_idle.
288 * Counts are embedded in the cfq_rb_root
290 struct cfq_rb_root service_trees
[2][3];
291 struct cfq_rb_root service_tree_idle
;
294 enum wl_type_t saved_wl_type
;
295 enum wl_class_t saved_wl_class
;
297 /* number of requests that are on the dispatch list or inside driver */
299 struct cfq_ttime ttime
;
300 struct cfqg_stats stats
; /* stats for this cfqg */
302 /* async queue for each priority case */
303 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
304 struct cfq_queue
*async_idle_cfqq
;
309 struct io_cq icq
; /* must be the first member */
310 struct cfq_queue
*cfqq
[2];
311 struct cfq_ttime ttime
;
312 int ioprio
; /* the current ioprio */
313 #ifdef CONFIG_CFQ_GROUP_IOSCHED
314 uint64_t blkcg_serial_nr
; /* the current blkcg serial */
319 * Per block device queue structure
322 struct request_queue
*queue
;
323 /* Root service tree for cfq_groups */
324 struct cfq_rb_root grp_service_tree
;
325 struct cfq_group
*root_group
;
328 * The priority currently being served
330 enum wl_class_t serving_wl_class
;
331 enum wl_type_t serving_wl_type
;
332 u64 workload_expires
;
333 struct cfq_group
*serving_group
;
336 * Each priority tree is sorted by next_request position. These
337 * trees are used when determining if two or more queues are
338 * interleaving requests (see cfq_close_cooperator).
340 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
342 unsigned int busy_queues
;
343 unsigned int busy_sync_queues
;
349 * queue-depth detection
355 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
356 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
359 int hw_tag_est_depth
;
360 unsigned int hw_tag_samples
;
363 * idle window management
365 struct hrtimer idle_slice_timer
;
366 struct work_struct unplug_work
;
368 struct cfq_queue
*active_queue
;
369 struct cfq_io_cq
*active_cic
;
371 sector_t last_position
;
374 * tunables, see top of file
376 unsigned int cfq_quantum
;
377 unsigned int cfq_back_penalty
;
378 unsigned int cfq_back_max
;
379 unsigned int cfq_slice_async_rq
;
380 unsigned int cfq_latency
;
381 u64 cfq_fifo_expire
[2];
385 u64 cfq_target_latency
;
388 * Fallback dummy cfqq for extreme OOM conditions
390 struct cfq_queue oom_cfqq
;
392 u64 last_delayed_sync
;
395 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
396 static void cfq_put_queue(struct cfq_queue
*cfqq
);
398 static struct cfq_rb_root
*st_for(struct cfq_group
*cfqg
,
399 enum wl_class_t
class,
405 if (class == IDLE_WORKLOAD
)
406 return &cfqg
->service_tree_idle
;
408 return &cfqg
->service_trees
[class][type
];
411 enum cfqq_state_flags
{
412 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
413 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
414 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
415 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
416 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
417 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
418 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
419 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
420 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
421 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
422 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
423 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
424 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
427 #define CFQ_CFQQ_FNS(name) \
428 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
430 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
432 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
434 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
436 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
438 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
442 CFQ_CFQQ_FNS(wait_request
);
443 CFQ_CFQQ_FNS(must_dispatch
);
444 CFQ_CFQQ_FNS(must_alloc_slice
);
445 CFQ_CFQQ_FNS(fifo_expire
);
446 CFQ_CFQQ_FNS(idle_window
);
447 CFQ_CFQQ_FNS(prio_changed
);
448 CFQ_CFQQ_FNS(slice_new
);
451 CFQ_CFQQ_FNS(split_coop
);
453 CFQ_CFQQ_FNS(wait_busy
);
456 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
458 /* cfqg stats flags */
459 enum cfqg_stats_flags
{
460 CFQG_stats_waiting
= 0,
465 #define CFQG_FLAG_FNS(name) \
466 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
468 stats->flags |= (1 << CFQG_stats_##name); \
470 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
472 stats->flags &= ~(1 << CFQG_stats_##name); \
474 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
476 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
479 CFQG_FLAG_FNS(waiting)
480 CFQG_FLAG_FNS(idling
)
484 /* This should be called with the queue_lock held. */
485 static void cfqg_stats_update_group_wait_time(struct cfqg_stats
*stats
)
487 unsigned long long now
;
489 if (!cfqg_stats_waiting(stats
))
493 if (time_after64(now
, stats
->start_group_wait_time
))
494 blkg_stat_add(&stats
->group_wait_time
,
495 now
- stats
->start_group_wait_time
);
496 cfqg_stats_clear_waiting(stats
);
499 /* This should be called with the queue_lock held. */
500 static void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
,
501 struct cfq_group
*curr_cfqg
)
503 struct cfqg_stats
*stats
= &cfqg
->stats
;
505 if (cfqg_stats_waiting(stats
))
507 if (cfqg
== curr_cfqg
)
509 stats
->start_group_wait_time
= sched_clock();
510 cfqg_stats_mark_waiting(stats
);
513 /* This should be called with the queue_lock held. */
514 static void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
)
516 unsigned long long now
;
518 if (!cfqg_stats_empty(stats
))
522 if (time_after64(now
, stats
->start_empty_time
))
523 blkg_stat_add(&stats
->empty_time
,
524 now
- stats
->start_empty_time
);
525 cfqg_stats_clear_empty(stats
);
528 static void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
)
530 blkg_stat_add(&cfqg
->stats
.dequeue
, 1);
533 static void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
)
535 struct cfqg_stats
*stats
= &cfqg
->stats
;
537 if (blkg_rwstat_total(&stats
->queued
))
541 * group is already marked empty. This can happen if cfqq got new
542 * request in parent group and moved to this group while being added
543 * to service tree. Just ignore the event and move on.
545 if (cfqg_stats_empty(stats
))
548 stats
->start_empty_time
= sched_clock();
549 cfqg_stats_mark_empty(stats
);
552 static void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
)
554 struct cfqg_stats
*stats
= &cfqg
->stats
;
556 if (cfqg_stats_idling(stats
)) {
557 unsigned long long now
= sched_clock();
559 if (time_after64(now
, stats
->start_idle_time
))
560 blkg_stat_add(&stats
->idle_time
,
561 now
- stats
->start_idle_time
);
562 cfqg_stats_clear_idling(stats
);
566 static void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
)
568 struct cfqg_stats
*stats
= &cfqg
->stats
;
570 BUG_ON(cfqg_stats_idling(stats
));
572 stats
->start_idle_time
= sched_clock();
573 cfqg_stats_mark_idling(stats
);
576 static void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
)
578 struct cfqg_stats
*stats
= &cfqg
->stats
;
580 blkg_stat_add(&stats
->avg_queue_size_sum
,
581 blkg_rwstat_total(&stats
->queued
));
582 blkg_stat_add(&stats
->avg_queue_size_samples
, 1);
583 cfqg_stats_update_group_wait_time(stats
);
586 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
588 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
, struct cfq_group
*curr_cfqg
) { }
589 static inline void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
) { }
590 static inline void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
) { }
591 static inline void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
) { }
592 static inline void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
) { }
593 static inline void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
) { }
594 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
) { }
596 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
598 #ifdef CONFIG_CFQ_GROUP_IOSCHED
600 static inline struct cfq_group
*pd_to_cfqg(struct blkg_policy_data
*pd
)
602 return pd
? container_of(pd
, struct cfq_group
, pd
) : NULL
;
605 static struct cfq_group_data
606 *cpd_to_cfqgd(struct blkcg_policy_data
*cpd
)
608 return cpd
? container_of(cpd
, struct cfq_group_data
, cpd
) : NULL
;
611 static inline struct blkcg_gq
*cfqg_to_blkg(struct cfq_group
*cfqg
)
613 return pd_to_blkg(&cfqg
->pd
);
616 static struct blkcg_policy blkcg_policy_cfq
;
618 static inline struct cfq_group
*blkg_to_cfqg(struct blkcg_gq
*blkg
)
620 return pd_to_cfqg(blkg_to_pd(blkg
, &blkcg_policy_cfq
));
623 static struct cfq_group_data
*blkcg_to_cfqgd(struct blkcg
*blkcg
)
625 return cpd_to_cfqgd(blkcg_to_cpd(blkcg
, &blkcg_policy_cfq
));
628 static inline struct cfq_group
*cfqg_parent(struct cfq_group
*cfqg
)
630 struct blkcg_gq
*pblkg
= cfqg_to_blkg(cfqg
)->parent
;
632 return pblkg
? blkg_to_cfqg(pblkg
) : NULL
;
635 static inline bool cfqg_is_descendant(struct cfq_group
*cfqg
,
636 struct cfq_group
*ancestor
)
638 return cgroup_is_descendant(cfqg_to_blkg(cfqg
)->blkcg
->css
.cgroup
,
639 cfqg_to_blkg(ancestor
)->blkcg
->css
.cgroup
);
642 static inline void cfqg_get(struct cfq_group
*cfqg
)
644 return blkg_get(cfqg_to_blkg(cfqg
));
647 static inline void cfqg_put(struct cfq_group
*cfqg
)
649 return blkg_put(cfqg_to_blkg(cfqg
));
652 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
655 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
656 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
657 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
658 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
662 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
665 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
666 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
669 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
670 struct cfq_group
*curr_cfqg
, int op
,
673 blkg_rwstat_add(&cfqg
->stats
.queued
, op
, op_flags
, 1);
674 cfqg_stats_end_empty_time(&cfqg
->stats
);
675 cfqg_stats_set_start_group_wait_time(cfqg
, curr_cfqg
);
678 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
679 uint64_t time
, unsigned long unaccounted_time
)
681 blkg_stat_add(&cfqg
->stats
.time
, time
);
682 #ifdef CONFIG_DEBUG_BLK_CGROUP
683 blkg_stat_add(&cfqg
->stats
.unaccounted_time
, unaccounted_time
);
687 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
, int op
,
690 blkg_rwstat_add(&cfqg
->stats
.queued
, op
, op_flags
, -1);
693 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
, int op
,
696 blkg_rwstat_add(&cfqg
->stats
.merged
, op
, op_flags
, 1);
699 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
700 uint64_t start_time
, uint64_t io_start_time
, int op
,
703 struct cfqg_stats
*stats
= &cfqg
->stats
;
704 unsigned long long now
= sched_clock();
706 if (time_after64(now
, io_start_time
))
707 blkg_rwstat_add(&stats
->service_time
, op
, op_flags
,
708 now
- io_start_time
);
709 if (time_after64(io_start_time
, start_time
))
710 blkg_rwstat_add(&stats
->wait_time
, op
, op_flags
,
711 io_start_time
- start_time
);
715 static void cfqg_stats_reset(struct cfqg_stats
*stats
)
717 /* queued stats shouldn't be cleared */
718 blkg_rwstat_reset(&stats
->merged
);
719 blkg_rwstat_reset(&stats
->service_time
);
720 blkg_rwstat_reset(&stats
->wait_time
);
721 blkg_stat_reset(&stats
->time
);
722 #ifdef CONFIG_DEBUG_BLK_CGROUP
723 blkg_stat_reset(&stats
->unaccounted_time
);
724 blkg_stat_reset(&stats
->avg_queue_size_sum
);
725 blkg_stat_reset(&stats
->avg_queue_size_samples
);
726 blkg_stat_reset(&stats
->dequeue
);
727 blkg_stat_reset(&stats
->group_wait_time
);
728 blkg_stat_reset(&stats
->idle_time
);
729 blkg_stat_reset(&stats
->empty_time
);
734 static void cfqg_stats_add_aux(struct cfqg_stats
*to
, struct cfqg_stats
*from
)
736 /* queued stats shouldn't be cleared */
737 blkg_rwstat_add_aux(&to
->merged
, &from
->merged
);
738 blkg_rwstat_add_aux(&to
->service_time
, &from
->service_time
);
739 blkg_rwstat_add_aux(&to
->wait_time
, &from
->wait_time
);
740 blkg_stat_add_aux(&from
->time
, &from
->time
);
741 #ifdef CONFIG_DEBUG_BLK_CGROUP
742 blkg_stat_add_aux(&to
->unaccounted_time
, &from
->unaccounted_time
);
743 blkg_stat_add_aux(&to
->avg_queue_size_sum
, &from
->avg_queue_size_sum
);
744 blkg_stat_add_aux(&to
->avg_queue_size_samples
, &from
->avg_queue_size_samples
);
745 blkg_stat_add_aux(&to
->dequeue
, &from
->dequeue
);
746 blkg_stat_add_aux(&to
->group_wait_time
, &from
->group_wait_time
);
747 blkg_stat_add_aux(&to
->idle_time
, &from
->idle_time
);
748 blkg_stat_add_aux(&to
->empty_time
, &from
->empty_time
);
753 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
754 * recursive stats can still account for the amount used by this cfqg after
757 static void cfqg_stats_xfer_dead(struct cfq_group
*cfqg
)
759 struct cfq_group
*parent
= cfqg_parent(cfqg
);
761 lockdep_assert_held(cfqg_to_blkg(cfqg
)->q
->queue_lock
);
763 if (unlikely(!parent
))
766 cfqg_stats_add_aux(&parent
->stats
, &cfqg
->stats
);
767 cfqg_stats_reset(&cfqg
->stats
);
770 #else /* CONFIG_CFQ_GROUP_IOSCHED */
772 static inline struct cfq_group
*cfqg_parent(struct cfq_group
*cfqg
) { return NULL
; }
773 static inline bool cfqg_is_descendant(struct cfq_group
*cfqg
,
774 struct cfq_group
*ancestor
)
778 static inline void cfqg_get(struct cfq_group
*cfqg
) { }
779 static inline void cfqg_put(struct cfq_group
*cfqg
) { }
781 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
782 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
783 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
784 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
786 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
788 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
789 struct cfq_group
*curr_cfqg
, int op
, int op_flags
) { }
790 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
791 uint64_t time
, unsigned long unaccounted_time
) { }
792 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
, int op
,
794 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
, int op
,
796 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
797 uint64_t start_time
, uint64_t io_start_time
, int op
,
800 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
802 #define cfq_log(cfqd, fmt, args...) \
803 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
805 /* Traverses through cfq group service trees */
806 #define for_each_cfqg_st(cfqg, i, j, st) \
807 for (i = 0; i <= IDLE_WORKLOAD; i++) \
808 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
809 : &cfqg->service_tree_idle; \
810 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
811 (i == IDLE_WORKLOAD && j == 0); \
812 j++, st = i < IDLE_WORKLOAD ? \
813 &cfqg->service_trees[i][j]: NULL) \
815 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
816 struct cfq_ttime
*ttime
, bool group_idle
)
819 if (!sample_valid(ttime
->ttime_samples
))
822 slice
= cfqd
->cfq_group_idle
;
824 slice
= cfqd
->cfq_slice_idle
;
825 return ttime
->ttime_mean
> slice
;
828 static inline bool iops_mode(struct cfq_data
*cfqd
)
831 * If we are not idling on queues and it is a NCQ drive, parallel
832 * execution of requests is on and measuring time is not possible
833 * in most of the cases until and unless we drive shallower queue
834 * depths and that becomes a performance bottleneck. In such cases
835 * switch to start providing fairness in terms of number of IOs.
837 if (!cfqd
->cfq_slice_idle
&& cfqd
->hw_tag
)
843 static inline enum wl_class_t
cfqq_class(struct cfq_queue
*cfqq
)
845 if (cfq_class_idle(cfqq
))
846 return IDLE_WORKLOAD
;
847 if (cfq_class_rt(cfqq
))
853 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
855 if (!cfq_cfqq_sync(cfqq
))
856 return ASYNC_WORKLOAD
;
857 if (!cfq_cfqq_idle_window(cfqq
))
858 return SYNC_NOIDLE_WORKLOAD
;
859 return SYNC_WORKLOAD
;
862 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class
,
863 struct cfq_data
*cfqd
,
864 struct cfq_group
*cfqg
)
866 if (wl_class
== IDLE_WORKLOAD
)
867 return cfqg
->service_tree_idle
.count
;
869 return cfqg
->service_trees
[wl_class
][ASYNC_WORKLOAD
].count
+
870 cfqg
->service_trees
[wl_class
][SYNC_NOIDLE_WORKLOAD
].count
+
871 cfqg
->service_trees
[wl_class
][SYNC_WORKLOAD
].count
;
874 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
875 struct cfq_group
*cfqg
)
877 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
+
878 cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
881 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
882 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
,
883 struct cfq_io_cq
*cic
, struct bio
*bio
);
885 static inline struct cfq_io_cq
*icq_to_cic(struct io_cq
*icq
)
887 /* cic->icq is the first member, %NULL will convert to %NULL */
888 return container_of(icq
, struct cfq_io_cq
, icq
);
891 static inline struct cfq_io_cq
*cfq_cic_lookup(struct cfq_data
*cfqd
,
892 struct io_context
*ioc
)
895 return icq_to_cic(ioc_lookup_icq(ioc
, cfqd
->queue
));
899 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_cq
*cic
, bool is_sync
)
901 return cic
->cfqq
[is_sync
];
904 static inline void cic_set_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
,
907 cic
->cfqq
[is_sync
] = cfqq
;
910 static inline struct cfq_data
*cic_to_cfqd(struct cfq_io_cq
*cic
)
912 return cic
->icq
.q
->elevator
->elevator_data
;
916 * We regard a request as SYNC, if it's either a read or has the SYNC bit
917 * set (in which case it could also be direct WRITE).
919 static inline bool cfq_bio_sync(struct bio
*bio
)
921 return bio_data_dir(bio
) == READ
|| (bio
->bi_opf
& REQ_SYNC
);
925 * scheduler run of queue, if there are requests pending and no one in the
926 * driver that will restart queueing
928 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
930 if (cfqd
->busy_queues
) {
931 cfq_log(cfqd
, "schedule dispatch");
932 kblockd_schedule_work(&cfqd
->unplug_work
);
937 * Scale schedule slice based on io priority. Use the sync time slice only
938 * if a queue is marked sync and has sync io queued. A sync queue with async
939 * io only, should not get full sync slice length.
941 static inline u64
cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
944 u64 base_slice
= cfqd
->cfq_slice
[sync
];
945 u64 slice
= div_u64(base_slice
, CFQ_SLICE_SCALE
);
947 WARN_ON(prio
>= IOPRIO_BE_NR
);
949 return base_slice
+ (slice
* (4 - prio
));
953 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
955 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
959 * cfqg_scale_charge - scale disk time charge according to cfqg weight
960 * @charge: disk time being charged
961 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
963 * Scale @charge according to @vfraction, which is in range (0, 1]. The
964 * scaling is inversely proportional.
966 * scaled = charge / vfraction
968 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
970 static inline u64
cfqg_scale_charge(u64 charge
,
971 unsigned int vfraction
)
973 u64 c
= charge
<< CFQ_SERVICE_SHIFT
; /* make it fixed point */
975 /* charge / vfraction */
976 c
<<= CFQ_SERVICE_SHIFT
;
977 return div_u64(c
, vfraction
);
980 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
982 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
984 min_vdisktime
= vdisktime
;
986 return min_vdisktime
;
989 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
991 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
993 min_vdisktime
= vdisktime
;
995 return min_vdisktime
;
998 static void update_min_vdisktime(struct cfq_rb_root
*st
)
1000 struct cfq_group
*cfqg
;
1003 cfqg
= rb_entry_cfqg(st
->left
);
1004 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
,
1010 * get averaged number of queues of RT/BE priority.
1011 * average is updated, with a formula that gives more weight to higher numbers,
1012 * to quickly follows sudden increases and decrease slowly
1015 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
1016 struct cfq_group
*cfqg
, bool rt
)
1018 unsigned min_q
, max_q
;
1019 unsigned mult
= cfq_hist_divisor
- 1;
1020 unsigned round
= cfq_hist_divisor
/ 2;
1021 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
1023 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
1024 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
1025 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
1027 return cfqg
->busy_queues_avg
[rt
];
1031 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1033 return cfqd
->cfq_target_latency
* cfqg
->vfraction
>> CFQ_SERVICE_SHIFT
;
1037 cfq_scaled_cfqq_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1039 u64 slice
= cfq_prio_to_slice(cfqd
, cfqq
);
1040 if (cfqd
->cfq_latency
) {
1042 * interested queues (we consider only the ones with the same
1043 * priority class in the cfq group)
1045 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
1046 cfq_class_rt(cfqq
));
1047 u64 sync_slice
= cfqd
->cfq_slice
[1];
1048 u64 expect_latency
= sync_slice
* iq
;
1049 u64 group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
1051 if (expect_latency
> group_slice
) {
1052 u64 base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
1055 /* scale low_slice according to IO priority
1056 * and sync vs async */
1057 low_slice
= div64_u64(base_low_slice
*slice
, sync_slice
);
1058 low_slice
= min(slice
, low_slice
);
1059 /* the adapted slice value is scaled to fit all iqs
1060 * into the target latency */
1061 slice
= div64_u64(slice
*group_slice
, expect_latency
);
1062 slice
= max(slice
, low_slice
);
1069 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1071 u64 slice
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
1072 u64 now
= ktime_get_ns();
1074 cfqq
->slice_start
= now
;
1075 cfqq
->slice_end
= now
+ slice
;
1076 cfqq
->allocated_slice
= slice
;
1077 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%llu", cfqq
->slice_end
- now
);
1081 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1082 * isn't valid until the first request from the dispatch is activated
1083 * and the slice time set.
1085 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
1087 if (cfq_cfqq_slice_new(cfqq
))
1089 if (ktime_get_ns() < cfqq
->slice_end
)
1096 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1097 * We choose the request that is closest to the head right now. Distance
1098 * behind the head is penalized and only allowed to a certain extent.
1100 static struct request
*
1101 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
1103 sector_t s1
, s2
, d1
= 0, d2
= 0;
1104 unsigned long back_max
;
1105 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1106 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1107 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
1109 if (rq1
== NULL
|| rq1
== rq2
)
1114 if (rq_is_sync(rq1
) != rq_is_sync(rq2
))
1115 return rq_is_sync(rq1
) ? rq1
: rq2
;
1117 if ((rq1
->cmd_flags
^ rq2
->cmd_flags
) & REQ_PRIO
)
1118 return rq1
->cmd_flags
& REQ_PRIO
? rq1
: rq2
;
1120 s1
= blk_rq_pos(rq1
);
1121 s2
= blk_rq_pos(rq2
);
1124 * by definition, 1KiB is 2 sectors
1126 back_max
= cfqd
->cfq_back_max
* 2;
1129 * Strict one way elevator _except_ in the case where we allow
1130 * short backward seeks which are biased as twice the cost of a
1131 * similar forward seek.
1135 else if (s1
+ back_max
>= last
)
1136 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
1138 wrap
|= CFQ_RQ1_WRAP
;
1142 else if (s2
+ back_max
>= last
)
1143 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
1145 wrap
|= CFQ_RQ2_WRAP
;
1147 /* Found required data */
1150 * By doing switch() on the bit mask "wrap" we avoid having to
1151 * check two variables for all permutations: --> faster!
1154 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1170 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
1173 * Since both rqs are wrapped,
1174 * start with the one that's further behind head
1175 * (--> only *one* back seek required),
1176 * since back seek takes more time than forward.
1186 * The below is leftmost cache rbtree addon
1188 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
1190 /* Service tree is empty */
1195 root
->left
= rb_first(&root
->rb
);
1198 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
1203 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
1206 root
->left
= rb_first(&root
->rb
);
1209 return rb_entry_cfqg(root
->left
);
1214 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
1220 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
1222 if (root
->left
== n
)
1224 rb_erase_init(n
, &root
->rb
);
1229 * would be nice to take fifo expire time into account as well
1231 static struct request
*
1232 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1233 struct request
*last
)
1235 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
1236 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
1237 struct request
*next
= NULL
, *prev
= NULL
;
1239 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
1242 prev
= rb_entry_rq(rbprev
);
1245 next
= rb_entry_rq(rbnext
);
1247 rbnext
= rb_first(&cfqq
->sort_list
);
1248 if (rbnext
&& rbnext
!= &last
->rb_node
)
1249 next
= rb_entry_rq(rbnext
);
1252 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
1255 static u64
cfq_slice_offset(struct cfq_data
*cfqd
,
1256 struct cfq_queue
*cfqq
)
1259 * just an approximation, should be ok.
1261 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
1262 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
1266 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1268 return cfqg
->vdisktime
- st
->min_vdisktime
;
1272 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1274 struct rb_node
**node
= &st
->rb
.rb_node
;
1275 struct rb_node
*parent
= NULL
;
1276 struct cfq_group
*__cfqg
;
1277 s64 key
= cfqg_key(st
, cfqg
);
1280 while (*node
!= NULL
) {
1282 __cfqg
= rb_entry_cfqg(parent
);
1284 if (key
< cfqg_key(st
, __cfqg
))
1285 node
= &parent
->rb_left
;
1287 node
= &parent
->rb_right
;
1293 st
->left
= &cfqg
->rb_node
;
1295 rb_link_node(&cfqg
->rb_node
, parent
, node
);
1296 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
1300 * This has to be called only on activation of cfqg
1303 cfq_update_group_weight(struct cfq_group
*cfqg
)
1305 if (cfqg
->new_weight
) {
1306 cfqg
->weight
= cfqg
->new_weight
;
1307 cfqg
->new_weight
= 0;
1312 cfq_update_group_leaf_weight(struct cfq_group
*cfqg
)
1314 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1316 if (cfqg
->new_leaf_weight
) {
1317 cfqg
->leaf_weight
= cfqg
->new_leaf_weight
;
1318 cfqg
->new_leaf_weight
= 0;
1323 cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1325 unsigned int vfr
= 1 << CFQ_SERVICE_SHIFT
; /* start with 1 */
1326 struct cfq_group
*pos
= cfqg
;
1327 struct cfq_group
*parent
;
1330 /* add to the service tree */
1331 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1334 * Update leaf_weight. We cannot update weight at this point
1335 * because cfqg might already have been activated and is
1336 * contributing its current weight to the parent's child_weight.
1338 cfq_update_group_leaf_weight(cfqg
);
1339 __cfq_group_service_tree_add(st
, cfqg
);
1342 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1343 * entitled to. vfraction is calculated by walking the tree
1344 * towards the root calculating the fraction it has at each level.
1345 * The compounded ratio is how much vfraction @cfqg owns.
1347 * Start with the proportion tasks in this cfqg has against active
1348 * children cfqgs - its leaf_weight against children_weight.
1350 propagate
= !pos
->nr_active
++;
1351 pos
->children_weight
+= pos
->leaf_weight
;
1352 vfr
= vfr
* pos
->leaf_weight
/ pos
->children_weight
;
1355 * Compound ->weight walking up the tree. Both activation and
1356 * vfraction calculation are done in the same loop. Propagation
1357 * stops once an already activated node is met. vfraction
1358 * calculation should always continue to the root.
1360 while ((parent
= cfqg_parent(pos
))) {
1362 cfq_update_group_weight(pos
);
1363 propagate
= !parent
->nr_active
++;
1364 parent
->children_weight
+= pos
->weight
;
1366 vfr
= vfr
* pos
->weight
/ parent
->children_weight
;
1370 cfqg
->vfraction
= max_t(unsigned, vfr
, 1);
1374 cfq_group_notify_queue_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1376 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1377 struct cfq_group
*__cfqg
;
1381 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1385 * Currently put the group at the end. Later implement something
1386 * so that groups get lesser vtime based on their weights, so that
1387 * if group does not loose all if it was not continuously backlogged.
1389 n
= rb_last(&st
->rb
);
1391 __cfqg
= rb_entry_cfqg(n
);
1392 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
1394 cfqg
->vdisktime
= st
->min_vdisktime
;
1395 cfq_group_service_tree_add(st
, cfqg
);
1399 cfq_group_service_tree_del(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1401 struct cfq_group
*pos
= cfqg
;
1405 * Undo activation from cfq_group_service_tree_add(). Deactivate
1406 * @cfqg and propagate deactivation upwards.
1408 propagate
= !--pos
->nr_active
;
1409 pos
->children_weight
-= pos
->leaf_weight
;
1412 struct cfq_group
*parent
= cfqg_parent(pos
);
1414 /* @pos has 0 nr_active at this point */
1415 WARN_ON_ONCE(pos
->children_weight
);
1421 propagate
= !--parent
->nr_active
;
1422 parent
->children_weight
-= pos
->weight
;
1426 /* remove from the service tree */
1427 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1428 cfq_rb_erase(&cfqg
->rb_node
, st
);
1432 cfq_group_notify_queue_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1434 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1436 BUG_ON(cfqg
->nr_cfqq
< 1);
1439 /* If there are other cfq queues under this group, don't delete it */
1443 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
1444 cfq_group_service_tree_del(st
, cfqg
);
1445 cfqg
->saved_wl_slice
= 0;
1446 cfqg_stats_update_dequeue(cfqg
);
1449 static inline u64
cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
,
1450 u64
*unaccounted_time
)
1453 u64 now
= ktime_get_ns();
1456 * Queue got expired before even a single request completed or
1457 * got expired immediately after first request completion.
1459 if (!cfqq
->slice_start
|| cfqq
->slice_start
== now
) {
1461 * Also charge the seek time incurred to the group, otherwise
1462 * if there are mutiple queues in the group, each can dispatch
1463 * a single request on seeky media and cause lots of seek time
1464 * and group will never know it.
1466 slice_used
= max_t(u64
, (now
- cfqq
->dispatch_start
),
1467 jiffies_to_nsecs(1));
1469 slice_used
= now
- cfqq
->slice_start
;
1470 if (slice_used
> cfqq
->allocated_slice
) {
1471 *unaccounted_time
= slice_used
- cfqq
->allocated_slice
;
1472 slice_used
= cfqq
->allocated_slice
;
1474 if (cfqq
->slice_start
> cfqq
->dispatch_start
)
1475 *unaccounted_time
+= cfqq
->slice_start
-
1476 cfqq
->dispatch_start
;
1482 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
1483 struct cfq_queue
*cfqq
)
1485 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1486 u64 used_sl
, charge
, unaccounted_sl
= 0;
1487 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
1488 - cfqg
->service_tree_idle
.count
;
1490 u64 now
= ktime_get_ns();
1492 BUG_ON(nr_sync
< 0);
1493 used_sl
= charge
= cfq_cfqq_slice_usage(cfqq
, &unaccounted_sl
);
1495 if (iops_mode(cfqd
))
1496 charge
= cfqq
->slice_dispatch
;
1497 else if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
1498 charge
= cfqq
->allocated_slice
;
1501 * Can't update vdisktime while on service tree and cfqg->vfraction
1502 * is valid only while on it. Cache vfr, leave the service tree,
1503 * update vdisktime and go back on. The re-addition to the tree
1504 * will also update the weights as necessary.
1506 vfr
= cfqg
->vfraction
;
1507 cfq_group_service_tree_del(st
, cfqg
);
1508 cfqg
->vdisktime
+= cfqg_scale_charge(charge
, vfr
);
1509 cfq_group_service_tree_add(st
, cfqg
);
1511 /* This group is being expired. Save the context */
1512 if (cfqd
->workload_expires
> now
) {
1513 cfqg
->saved_wl_slice
= cfqd
->workload_expires
- now
;
1514 cfqg
->saved_wl_type
= cfqd
->serving_wl_type
;
1515 cfqg
->saved_wl_class
= cfqd
->serving_wl_class
;
1517 cfqg
->saved_wl_slice
= 0;
1519 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
1521 cfq_log_cfqq(cfqq
->cfqd
, cfqq
,
1522 "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu",
1523 used_sl
, cfqq
->slice_dispatch
, charge
,
1524 iops_mode(cfqd
), cfqq
->nr_sectors
);
1525 cfqg_stats_update_timeslice_used(cfqg
, used_sl
, unaccounted_sl
);
1526 cfqg_stats_set_start_empty_time(cfqg
);
1530 * cfq_init_cfqg_base - initialize base part of a cfq_group
1531 * @cfqg: cfq_group to initialize
1533 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1534 * is enabled or not.
1536 static void cfq_init_cfqg_base(struct cfq_group
*cfqg
)
1538 struct cfq_rb_root
*st
;
1541 for_each_cfqg_st(cfqg
, i
, j
, st
)
1543 RB_CLEAR_NODE(&cfqg
->rb_node
);
1545 cfqg
->ttime
.last_end_request
= ktime_get_ns();
1548 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1549 static int __cfq_set_weight(struct cgroup_subsys_state
*css
, u64 val
,
1550 bool on_dfl
, bool reset_dev
, bool is_leaf_weight
);
1552 static void cfqg_stats_exit(struct cfqg_stats
*stats
)
1554 blkg_rwstat_exit(&stats
->merged
);
1555 blkg_rwstat_exit(&stats
->service_time
);
1556 blkg_rwstat_exit(&stats
->wait_time
);
1557 blkg_rwstat_exit(&stats
->queued
);
1558 blkg_stat_exit(&stats
->time
);
1559 #ifdef CONFIG_DEBUG_BLK_CGROUP
1560 blkg_stat_exit(&stats
->unaccounted_time
);
1561 blkg_stat_exit(&stats
->avg_queue_size_sum
);
1562 blkg_stat_exit(&stats
->avg_queue_size_samples
);
1563 blkg_stat_exit(&stats
->dequeue
);
1564 blkg_stat_exit(&stats
->group_wait_time
);
1565 blkg_stat_exit(&stats
->idle_time
);
1566 blkg_stat_exit(&stats
->empty_time
);
1570 static int cfqg_stats_init(struct cfqg_stats
*stats
, gfp_t gfp
)
1572 if (blkg_rwstat_init(&stats
->merged
, gfp
) ||
1573 blkg_rwstat_init(&stats
->service_time
, gfp
) ||
1574 blkg_rwstat_init(&stats
->wait_time
, gfp
) ||
1575 blkg_rwstat_init(&stats
->queued
, gfp
) ||
1576 blkg_stat_init(&stats
->time
, gfp
))
1579 #ifdef CONFIG_DEBUG_BLK_CGROUP
1580 if (blkg_stat_init(&stats
->unaccounted_time
, gfp
) ||
1581 blkg_stat_init(&stats
->avg_queue_size_sum
, gfp
) ||
1582 blkg_stat_init(&stats
->avg_queue_size_samples
, gfp
) ||
1583 blkg_stat_init(&stats
->dequeue
, gfp
) ||
1584 blkg_stat_init(&stats
->group_wait_time
, gfp
) ||
1585 blkg_stat_init(&stats
->idle_time
, gfp
) ||
1586 blkg_stat_init(&stats
->empty_time
, gfp
))
1591 cfqg_stats_exit(stats
);
1595 static struct blkcg_policy_data
*cfq_cpd_alloc(gfp_t gfp
)
1597 struct cfq_group_data
*cgd
;
1599 cgd
= kzalloc(sizeof(*cgd
), GFP_KERNEL
);
1605 static void cfq_cpd_init(struct blkcg_policy_data
*cpd
)
1607 struct cfq_group_data
*cgd
= cpd_to_cfqgd(cpd
);
1608 unsigned int weight
= cgroup_subsys_on_dfl(io_cgrp_subsys
) ?
1609 CGROUP_WEIGHT_DFL
: CFQ_WEIGHT_LEGACY_DFL
;
1611 if (cpd_to_blkcg(cpd
) == &blkcg_root
)
1614 cgd
->weight
= weight
;
1615 cgd
->leaf_weight
= weight
;
1618 static void cfq_cpd_free(struct blkcg_policy_data
*cpd
)
1620 kfree(cpd_to_cfqgd(cpd
));
1623 static void cfq_cpd_bind(struct blkcg_policy_data
*cpd
)
1625 struct blkcg
*blkcg
= cpd_to_blkcg(cpd
);
1626 bool on_dfl
= cgroup_subsys_on_dfl(io_cgrp_subsys
);
1627 unsigned int weight
= on_dfl
? CGROUP_WEIGHT_DFL
: CFQ_WEIGHT_LEGACY_DFL
;
1629 if (blkcg
== &blkcg_root
)
1632 WARN_ON_ONCE(__cfq_set_weight(&blkcg
->css
, weight
, on_dfl
, true, false));
1633 WARN_ON_ONCE(__cfq_set_weight(&blkcg
->css
, weight
, on_dfl
, true, true));
1636 static struct blkg_policy_data
*cfq_pd_alloc(gfp_t gfp
, int node
)
1638 struct cfq_group
*cfqg
;
1640 cfqg
= kzalloc_node(sizeof(*cfqg
), gfp
, node
);
1644 cfq_init_cfqg_base(cfqg
);
1645 if (cfqg_stats_init(&cfqg
->stats
, gfp
)) {
1653 static void cfq_pd_init(struct blkg_policy_data
*pd
)
1655 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1656 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(pd
->blkg
->blkcg
);
1658 cfqg
->weight
= cgd
->weight
;
1659 cfqg
->leaf_weight
= cgd
->leaf_weight
;
1662 static void cfq_pd_offline(struct blkg_policy_data
*pd
)
1664 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1667 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
1668 if (cfqg
->async_cfqq
[0][i
])
1669 cfq_put_queue(cfqg
->async_cfqq
[0][i
]);
1670 if (cfqg
->async_cfqq
[1][i
])
1671 cfq_put_queue(cfqg
->async_cfqq
[1][i
]);
1674 if (cfqg
->async_idle_cfqq
)
1675 cfq_put_queue(cfqg
->async_idle_cfqq
);
1678 * @blkg is going offline and will be ignored by
1679 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1680 * that they don't get lost. If IOs complete after this point, the
1681 * stats for them will be lost. Oh well...
1683 cfqg_stats_xfer_dead(cfqg
);
1686 static void cfq_pd_free(struct blkg_policy_data
*pd
)
1688 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1690 cfqg_stats_exit(&cfqg
->stats
);
1694 static void cfq_pd_reset_stats(struct blkg_policy_data
*pd
)
1696 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1698 cfqg_stats_reset(&cfqg
->stats
);
1701 static struct cfq_group
*cfq_lookup_cfqg(struct cfq_data
*cfqd
,
1702 struct blkcg
*blkcg
)
1704 struct blkcg_gq
*blkg
;
1706 blkg
= blkg_lookup(blkcg
, cfqd
->queue
);
1708 return blkg_to_cfqg(blkg
);
1712 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1715 /* cfqq reference on cfqg */
1719 static u64
cfqg_prfill_weight_device(struct seq_file
*sf
,
1720 struct blkg_policy_data
*pd
, int off
)
1722 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1724 if (!cfqg
->dev_weight
)
1726 return __blkg_prfill_u64(sf
, pd
, cfqg
->dev_weight
);
1729 static int cfqg_print_weight_device(struct seq_file
*sf
, void *v
)
1731 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1732 cfqg_prfill_weight_device
, &blkcg_policy_cfq
,
1737 static u64
cfqg_prfill_leaf_weight_device(struct seq_file
*sf
,
1738 struct blkg_policy_data
*pd
, int off
)
1740 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1742 if (!cfqg
->dev_leaf_weight
)
1744 return __blkg_prfill_u64(sf
, pd
, cfqg
->dev_leaf_weight
);
1747 static int cfqg_print_leaf_weight_device(struct seq_file
*sf
, void *v
)
1749 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1750 cfqg_prfill_leaf_weight_device
, &blkcg_policy_cfq
,
1755 static int cfq_print_weight(struct seq_file
*sf
, void *v
)
1757 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
1758 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
1759 unsigned int val
= 0;
1764 seq_printf(sf
, "%u\n", val
);
1768 static int cfq_print_leaf_weight(struct seq_file
*sf
, void *v
)
1770 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
1771 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
1772 unsigned int val
= 0;
1775 val
= cgd
->leaf_weight
;
1777 seq_printf(sf
, "%u\n", val
);
1781 static ssize_t
__cfqg_set_weight_device(struct kernfs_open_file
*of
,
1782 char *buf
, size_t nbytes
, loff_t off
,
1783 bool on_dfl
, bool is_leaf_weight
)
1785 unsigned int min
= on_dfl
? CGROUP_WEIGHT_MIN
: CFQ_WEIGHT_LEGACY_MIN
;
1786 unsigned int max
= on_dfl
? CGROUP_WEIGHT_MAX
: CFQ_WEIGHT_LEGACY_MAX
;
1787 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1788 struct blkg_conf_ctx ctx
;
1789 struct cfq_group
*cfqg
;
1790 struct cfq_group_data
*cfqgd
;
1794 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_cfq
, buf
, &ctx
);
1798 if (sscanf(ctx
.body
, "%llu", &v
) == 1) {
1799 /* require "default" on dfl */
1803 } else if (!strcmp(strim(ctx
.body
), "default")) {
1810 cfqg
= blkg_to_cfqg(ctx
.blkg
);
1811 cfqgd
= blkcg_to_cfqgd(blkcg
);
1814 if (!v
|| (v
>= min
&& v
<= max
)) {
1815 if (!is_leaf_weight
) {
1816 cfqg
->dev_weight
= v
;
1817 cfqg
->new_weight
= v
?: cfqgd
->weight
;
1819 cfqg
->dev_leaf_weight
= v
;
1820 cfqg
->new_leaf_weight
= v
?: cfqgd
->leaf_weight
;
1825 blkg_conf_finish(&ctx
);
1826 return ret
?: nbytes
;
1829 static ssize_t
cfqg_set_weight_device(struct kernfs_open_file
*of
,
1830 char *buf
, size_t nbytes
, loff_t off
)
1832 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, false, false);
1835 static ssize_t
cfqg_set_leaf_weight_device(struct kernfs_open_file
*of
,
1836 char *buf
, size_t nbytes
, loff_t off
)
1838 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, false, true);
1841 static int __cfq_set_weight(struct cgroup_subsys_state
*css
, u64 val
,
1842 bool on_dfl
, bool reset_dev
, bool is_leaf_weight
)
1844 unsigned int min
= on_dfl
? CGROUP_WEIGHT_MIN
: CFQ_WEIGHT_LEGACY_MIN
;
1845 unsigned int max
= on_dfl
? CGROUP_WEIGHT_MAX
: CFQ_WEIGHT_LEGACY_MAX
;
1846 struct blkcg
*blkcg
= css_to_blkcg(css
);
1847 struct blkcg_gq
*blkg
;
1848 struct cfq_group_data
*cfqgd
;
1851 if (val
< min
|| val
> max
)
1854 spin_lock_irq(&blkcg
->lock
);
1855 cfqgd
= blkcg_to_cfqgd(blkcg
);
1861 if (!is_leaf_weight
)
1862 cfqgd
->weight
= val
;
1864 cfqgd
->leaf_weight
= val
;
1866 hlist_for_each_entry(blkg
, &blkcg
->blkg_list
, blkcg_node
) {
1867 struct cfq_group
*cfqg
= blkg_to_cfqg(blkg
);
1872 if (!is_leaf_weight
) {
1874 cfqg
->dev_weight
= 0;
1875 if (!cfqg
->dev_weight
)
1876 cfqg
->new_weight
= cfqgd
->weight
;
1879 cfqg
->dev_leaf_weight
= 0;
1880 if (!cfqg
->dev_leaf_weight
)
1881 cfqg
->new_leaf_weight
= cfqgd
->leaf_weight
;
1886 spin_unlock_irq(&blkcg
->lock
);
1890 static int cfq_set_weight(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1893 return __cfq_set_weight(css
, val
, false, false, false);
1896 static int cfq_set_leaf_weight(struct cgroup_subsys_state
*css
,
1897 struct cftype
*cft
, u64 val
)
1899 return __cfq_set_weight(css
, val
, false, false, true);
1902 static int cfqg_print_stat(struct seq_file
*sf
, void *v
)
1904 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), blkg_prfill_stat
,
1905 &blkcg_policy_cfq
, seq_cft(sf
)->private, false);
1909 static int cfqg_print_rwstat(struct seq_file
*sf
, void *v
)
1911 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), blkg_prfill_rwstat
,
1912 &blkcg_policy_cfq
, seq_cft(sf
)->private, true);
1916 static u64
cfqg_prfill_stat_recursive(struct seq_file
*sf
,
1917 struct blkg_policy_data
*pd
, int off
)
1919 u64 sum
= blkg_stat_recursive_sum(pd_to_blkg(pd
),
1920 &blkcg_policy_cfq
, off
);
1921 return __blkg_prfill_u64(sf
, pd
, sum
);
1924 static u64
cfqg_prfill_rwstat_recursive(struct seq_file
*sf
,
1925 struct blkg_policy_data
*pd
, int off
)
1927 struct blkg_rwstat sum
= blkg_rwstat_recursive_sum(pd_to_blkg(pd
),
1928 &blkcg_policy_cfq
, off
);
1929 return __blkg_prfill_rwstat(sf
, pd
, &sum
);
1932 static int cfqg_print_stat_recursive(struct seq_file
*sf
, void *v
)
1934 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1935 cfqg_prfill_stat_recursive
, &blkcg_policy_cfq
,
1936 seq_cft(sf
)->private, false);
1940 static int cfqg_print_rwstat_recursive(struct seq_file
*sf
, void *v
)
1942 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1943 cfqg_prfill_rwstat_recursive
, &blkcg_policy_cfq
,
1944 seq_cft(sf
)->private, true);
1948 static u64
cfqg_prfill_sectors(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1951 u64 sum
= blkg_rwstat_total(&pd
->blkg
->stat_bytes
);
1953 return __blkg_prfill_u64(sf
, pd
, sum
>> 9);
1956 static int cfqg_print_stat_sectors(struct seq_file
*sf
, void *v
)
1958 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1959 cfqg_prfill_sectors
, &blkcg_policy_cfq
, 0, false);
1963 static u64
cfqg_prfill_sectors_recursive(struct seq_file
*sf
,
1964 struct blkg_policy_data
*pd
, int off
)
1966 struct blkg_rwstat tmp
= blkg_rwstat_recursive_sum(pd
->blkg
, NULL
,
1967 offsetof(struct blkcg_gq
, stat_bytes
));
1968 u64 sum
= atomic64_read(&tmp
.aux_cnt
[BLKG_RWSTAT_READ
]) +
1969 atomic64_read(&tmp
.aux_cnt
[BLKG_RWSTAT_WRITE
]);
1971 return __blkg_prfill_u64(sf
, pd
, sum
>> 9);
1974 static int cfqg_print_stat_sectors_recursive(struct seq_file
*sf
, void *v
)
1976 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1977 cfqg_prfill_sectors_recursive
, &blkcg_policy_cfq
, 0,
1982 #ifdef CONFIG_DEBUG_BLK_CGROUP
1983 static u64
cfqg_prfill_avg_queue_size(struct seq_file
*sf
,
1984 struct blkg_policy_data
*pd
, int off
)
1986 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1987 u64 samples
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_samples
);
1991 v
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_sum
);
1992 v
= div64_u64(v
, samples
);
1994 __blkg_prfill_u64(sf
, pd
, v
);
1998 /* print avg_queue_size */
1999 static int cfqg_print_avg_queue_size(struct seq_file
*sf
, void *v
)
2001 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
2002 cfqg_prfill_avg_queue_size
, &blkcg_policy_cfq
,
2006 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2008 static struct cftype cfq_blkcg_legacy_files
[] = {
2009 /* on root, weight is mapped to leaf_weight */
2011 .name
= "weight_device",
2012 .flags
= CFTYPE_ONLY_ON_ROOT
,
2013 .seq_show
= cfqg_print_leaf_weight_device
,
2014 .write
= cfqg_set_leaf_weight_device
,
2018 .flags
= CFTYPE_ONLY_ON_ROOT
,
2019 .seq_show
= cfq_print_leaf_weight
,
2020 .write_u64
= cfq_set_leaf_weight
,
2023 /* no such mapping necessary for !roots */
2025 .name
= "weight_device",
2026 .flags
= CFTYPE_NOT_ON_ROOT
,
2027 .seq_show
= cfqg_print_weight_device
,
2028 .write
= cfqg_set_weight_device
,
2032 .flags
= CFTYPE_NOT_ON_ROOT
,
2033 .seq_show
= cfq_print_weight
,
2034 .write_u64
= cfq_set_weight
,
2038 .name
= "leaf_weight_device",
2039 .seq_show
= cfqg_print_leaf_weight_device
,
2040 .write
= cfqg_set_leaf_weight_device
,
2043 .name
= "leaf_weight",
2044 .seq_show
= cfq_print_leaf_weight
,
2045 .write_u64
= cfq_set_leaf_weight
,
2048 /* statistics, covers only the tasks in the cfqg */
2051 .private = offsetof(struct cfq_group
, stats
.time
),
2052 .seq_show
= cfqg_print_stat
,
2056 .seq_show
= cfqg_print_stat_sectors
,
2059 .name
= "io_service_bytes",
2060 .private = (unsigned long)&blkcg_policy_cfq
,
2061 .seq_show
= blkg_print_stat_bytes
,
2064 .name
= "io_serviced",
2065 .private = (unsigned long)&blkcg_policy_cfq
,
2066 .seq_show
= blkg_print_stat_ios
,
2069 .name
= "io_service_time",
2070 .private = offsetof(struct cfq_group
, stats
.service_time
),
2071 .seq_show
= cfqg_print_rwstat
,
2074 .name
= "io_wait_time",
2075 .private = offsetof(struct cfq_group
, stats
.wait_time
),
2076 .seq_show
= cfqg_print_rwstat
,
2079 .name
= "io_merged",
2080 .private = offsetof(struct cfq_group
, stats
.merged
),
2081 .seq_show
= cfqg_print_rwstat
,
2084 .name
= "io_queued",
2085 .private = offsetof(struct cfq_group
, stats
.queued
),
2086 .seq_show
= cfqg_print_rwstat
,
2089 /* the same statictics which cover the cfqg and its descendants */
2091 .name
= "time_recursive",
2092 .private = offsetof(struct cfq_group
, stats
.time
),
2093 .seq_show
= cfqg_print_stat_recursive
,
2096 .name
= "sectors_recursive",
2097 .seq_show
= cfqg_print_stat_sectors_recursive
,
2100 .name
= "io_service_bytes_recursive",
2101 .private = (unsigned long)&blkcg_policy_cfq
,
2102 .seq_show
= blkg_print_stat_bytes_recursive
,
2105 .name
= "io_serviced_recursive",
2106 .private = (unsigned long)&blkcg_policy_cfq
,
2107 .seq_show
= blkg_print_stat_ios_recursive
,
2110 .name
= "io_service_time_recursive",
2111 .private = offsetof(struct cfq_group
, stats
.service_time
),
2112 .seq_show
= cfqg_print_rwstat_recursive
,
2115 .name
= "io_wait_time_recursive",
2116 .private = offsetof(struct cfq_group
, stats
.wait_time
),
2117 .seq_show
= cfqg_print_rwstat_recursive
,
2120 .name
= "io_merged_recursive",
2121 .private = offsetof(struct cfq_group
, stats
.merged
),
2122 .seq_show
= cfqg_print_rwstat_recursive
,
2125 .name
= "io_queued_recursive",
2126 .private = offsetof(struct cfq_group
, stats
.queued
),
2127 .seq_show
= cfqg_print_rwstat_recursive
,
2129 #ifdef CONFIG_DEBUG_BLK_CGROUP
2131 .name
= "avg_queue_size",
2132 .seq_show
= cfqg_print_avg_queue_size
,
2135 .name
= "group_wait_time",
2136 .private = offsetof(struct cfq_group
, stats
.group_wait_time
),
2137 .seq_show
= cfqg_print_stat
,
2140 .name
= "idle_time",
2141 .private = offsetof(struct cfq_group
, stats
.idle_time
),
2142 .seq_show
= cfqg_print_stat
,
2145 .name
= "empty_time",
2146 .private = offsetof(struct cfq_group
, stats
.empty_time
),
2147 .seq_show
= cfqg_print_stat
,
2151 .private = offsetof(struct cfq_group
, stats
.dequeue
),
2152 .seq_show
= cfqg_print_stat
,
2155 .name
= "unaccounted_time",
2156 .private = offsetof(struct cfq_group
, stats
.unaccounted_time
),
2157 .seq_show
= cfqg_print_stat
,
2159 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2163 static int cfq_print_weight_on_dfl(struct seq_file
*sf
, void *v
)
2165 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
2166 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
2168 seq_printf(sf
, "default %u\n", cgd
->weight
);
2169 blkcg_print_blkgs(sf
, blkcg
, cfqg_prfill_weight_device
,
2170 &blkcg_policy_cfq
, 0, false);
2174 static ssize_t
cfq_set_weight_on_dfl(struct kernfs_open_file
*of
,
2175 char *buf
, size_t nbytes
, loff_t off
)
2183 /* "WEIGHT" or "default WEIGHT" sets the default weight */
2184 v
= simple_strtoull(buf
, &endp
, 0);
2185 if (*endp
== '\0' || sscanf(buf
, "default %llu", &v
) == 1) {
2186 ret
= __cfq_set_weight(of_css(of
), v
, true, false, false);
2187 return ret
?: nbytes
;
2190 /* "MAJ:MIN WEIGHT" */
2191 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, true, false);
2194 static struct cftype cfq_blkcg_files
[] = {
2197 .flags
= CFTYPE_NOT_ON_ROOT
,
2198 .seq_show
= cfq_print_weight_on_dfl
,
2199 .write
= cfq_set_weight_on_dfl
,
2204 #else /* GROUP_IOSCHED */
2205 static struct cfq_group
*cfq_lookup_cfqg(struct cfq_data
*cfqd
,
2206 struct blkcg
*blkcg
)
2208 return cfqd
->root_group
;
2212 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
2216 #endif /* GROUP_IOSCHED */
2219 * The cfqd->service_trees holds all pending cfq_queue's that have
2220 * requests waiting to be processed. It is sorted in the order that
2221 * we will service the queues.
2223 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2226 struct rb_node
**p
, *parent
;
2227 struct cfq_queue
*__cfqq
;
2229 struct cfq_rb_root
*st
;
2232 u64 now
= ktime_get_ns();
2234 st
= st_for(cfqq
->cfqg
, cfqq_class(cfqq
), cfqq_type(cfqq
));
2235 if (cfq_class_idle(cfqq
)) {
2236 rb_key
= CFQ_IDLE_DELAY
;
2237 parent
= rb_last(&st
->rb
);
2238 if (parent
&& parent
!= &cfqq
->rb_node
) {
2239 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
2240 rb_key
+= __cfqq
->rb_key
;
2243 } else if (!add_front
) {
2245 * Get our rb key offset. Subtract any residual slice
2246 * value carried from last service. A negative resid
2247 * count indicates slice overrun, and this should position
2248 * the next service time further away in the tree.
2250 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + now
;
2251 rb_key
-= cfqq
->slice_resid
;
2252 cfqq
->slice_resid
= 0;
2254 rb_key
= -NSEC_PER_SEC
;
2255 __cfqq
= cfq_rb_first(st
);
2256 rb_key
+= __cfqq
? __cfqq
->rb_key
: now
;
2259 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
2262 * same position, nothing more to do
2264 if (rb_key
== cfqq
->rb_key
&& cfqq
->service_tree
== st
)
2267 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
2268 cfqq
->service_tree
= NULL
;
2273 cfqq
->service_tree
= st
;
2274 p
= &st
->rb
.rb_node
;
2277 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
2280 * sort by key, that represents service time.
2282 if (rb_key
< __cfqq
->rb_key
)
2283 p
= &parent
->rb_left
;
2285 p
= &parent
->rb_right
;
2291 st
->left
= &cfqq
->rb_node
;
2293 cfqq
->rb_key
= rb_key
;
2294 rb_link_node(&cfqq
->rb_node
, parent
, p
);
2295 rb_insert_color(&cfqq
->rb_node
, &st
->rb
);
2297 if (add_front
|| !new_cfqq
)
2299 cfq_group_notify_queue_add(cfqd
, cfqq
->cfqg
);
2302 static struct cfq_queue
*
2303 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
2304 sector_t sector
, struct rb_node
**ret_parent
,
2305 struct rb_node
***rb_link
)
2307 struct rb_node
**p
, *parent
;
2308 struct cfq_queue
*cfqq
= NULL
;
2316 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
2319 * Sort strictly based on sector. Smallest to the left,
2320 * largest to the right.
2322 if (sector
> blk_rq_pos(cfqq
->next_rq
))
2323 n
= &(*p
)->rb_right
;
2324 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
2332 *ret_parent
= parent
;
2338 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2340 struct rb_node
**p
, *parent
;
2341 struct cfq_queue
*__cfqq
;
2344 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2345 cfqq
->p_root
= NULL
;
2348 if (cfq_class_idle(cfqq
))
2353 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
2354 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
2355 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
2357 rb_link_node(&cfqq
->p_node
, parent
, p
);
2358 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
2360 cfqq
->p_root
= NULL
;
2364 * Update cfqq's position in the service tree.
2366 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2369 * Resorting requires the cfqq to be on the RR list already.
2371 if (cfq_cfqq_on_rr(cfqq
)) {
2372 cfq_service_tree_add(cfqd
, cfqq
, 0);
2373 cfq_prio_tree_add(cfqd
, cfqq
);
2378 * add to busy list of queues for service, trying to be fair in ordering
2379 * the pending list according to last request service
2381 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2383 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
2384 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2385 cfq_mark_cfqq_on_rr(cfqq
);
2386 cfqd
->busy_queues
++;
2387 if (cfq_cfqq_sync(cfqq
))
2388 cfqd
->busy_sync_queues
++;
2390 cfq_resort_rr_list(cfqd
, cfqq
);
2394 * Called when the cfqq no longer has requests pending, remove it from
2397 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2399 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
2400 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
2401 cfq_clear_cfqq_on_rr(cfqq
);
2403 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
2404 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
2405 cfqq
->service_tree
= NULL
;
2408 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2409 cfqq
->p_root
= NULL
;
2412 cfq_group_notify_queue_del(cfqd
, cfqq
->cfqg
);
2413 BUG_ON(!cfqd
->busy_queues
);
2414 cfqd
->busy_queues
--;
2415 if (cfq_cfqq_sync(cfqq
))
2416 cfqd
->busy_sync_queues
--;
2420 * rb tree support functions
2422 static void cfq_del_rq_rb(struct request
*rq
)
2424 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2425 const int sync
= rq_is_sync(rq
);
2427 BUG_ON(!cfqq
->queued
[sync
]);
2428 cfqq
->queued
[sync
]--;
2430 elv_rb_del(&cfqq
->sort_list
, rq
);
2432 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
2434 * Queue will be deleted from service tree when we actually
2435 * expire it later. Right now just remove it from prio tree
2439 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2440 cfqq
->p_root
= NULL
;
2445 static void cfq_add_rq_rb(struct request
*rq
)
2447 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2448 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2449 struct request
*prev
;
2451 cfqq
->queued
[rq_is_sync(rq
)]++;
2453 elv_rb_add(&cfqq
->sort_list
, rq
);
2455 if (!cfq_cfqq_on_rr(cfqq
))
2456 cfq_add_cfqq_rr(cfqd
, cfqq
);
2459 * check if this request is a better next-serve candidate
2461 prev
= cfqq
->next_rq
;
2462 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
2465 * adjust priority tree position, if ->next_rq changes
2467 if (prev
!= cfqq
->next_rq
)
2468 cfq_prio_tree_add(cfqd
, cfqq
);
2470 BUG_ON(!cfqq
->next_rq
);
2473 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
2475 elv_rb_del(&cfqq
->sort_list
, rq
);
2476 cfqq
->queued
[rq_is_sync(rq
)]--;
2477 cfqg_stats_update_io_remove(RQ_CFQG(rq
), req_op(rq
), rq
->cmd_flags
);
2479 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqq
->cfqd
->serving_group
,
2480 req_op(rq
), rq
->cmd_flags
);
2483 static struct request
*
2484 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
2486 struct task_struct
*tsk
= current
;
2487 struct cfq_io_cq
*cic
;
2488 struct cfq_queue
*cfqq
;
2490 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2494 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
2496 return elv_rb_find(&cfqq
->sort_list
, bio_end_sector(bio
));
2501 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
2503 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2505 cfqd
->rq_in_driver
++;
2506 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
2507 cfqd
->rq_in_driver
);
2509 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
2512 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
2514 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2516 WARN_ON(!cfqd
->rq_in_driver
);
2517 cfqd
->rq_in_driver
--;
2518 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
2519 cfqd
->rq_in_driver
);
2522 static void cfq_remove_request(struct request
*rq
)
2524 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2526 if (cfqq
->next_rq
== rq
)
2527 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
2529 list_del_init(&rq
->queuelist
);
2532 cfqq
->cfqd
->rq_queued
--;
2533 cfqg_stats_update_io_remove(RQ_CFQG(rq
), req_op(rq
), rq
->cmd_flags
);
2534 if (rq
->cmd_flags
& REQ_PRIO
) {
2535 WARN_ON(!cfqq
->prio_pending
);
2536 cfqq
->prio_pending
--;
2540 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
2543 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2544 struct request
*__rq
;
2546 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
2547 if (__rq
&& elv_bio_merge_ok(__rq
, bio
)) {
2549 return ELEVATOR_FRONT_MERGE
;
2552 return ELEVATOR_NO_MERGE
;
2555 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
2558 if (type
== ELEVATOR_FRONT_MERGE
) {
2559 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
2561 cfq_reposition_rq_rb(cfqq
, req
);
2565 static void cfq_bio_merged(struct request_queue
*q
, struct request
*req
,
2568 cfqg_stats_update_io_merged(RQ_CFQG(req
), bio_op(bio
), bio
->bi_opf
);
2572 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
2573 struct request
*next
)
2575 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2576 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2579 * reposition in fifo if next is older than rq
2581 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
2582 next
->fifo_time
< rq
->fifo_time
&&
2583 cfqq
== RQ_CFQQ(next
)) {
2584 list_move(&rq
->queuelist
, &next
->queuelist
);
2585 rq
->fifo_time
= next
->fifo_time
;
2588 if (cfqq
->next_rq
== next
)
2590 cfq_remove_request(next
);
2591 cfqg_stats_update_io_merged(RQ_CFQG(rq
), req_op(next
), next
->cmd_flags
);
2593 cfqq
= RQ_CFQQ(next
);
2595 * all requests of this queue are merged to other queues, delete it
2596 * from the service tree. If it's the active_queue,
2597 * cfq_dispatch_requests() will choose to expire it or do idle
2599 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
) &&
2600 cfqq
!= cfqd
->active_queue
)
2601 cfq_del_cfqq_rr(cfqd
, cfqq
);
2604 static int cfq_allow_bio_merge(struct request_queue
*q
, struct request
*rq
,
2607 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2608 struct cfq_io_cq
*cic
;
2609 struct cfq_queue
*cfqq
;
2612 * Disallow merge of a sync bio into an async request.
2614 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
2618 * Lookup the cfqq that this bio will be queued with and allow
2619 * merge only if rq is queued there.
2621 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
2625 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
2626 return cfqq
== RQ_CFQQ(rq
);
2629 static int cfq_allow_rq_merge(struct request_queue
*q
, struct request
*rq
,
2630 struct request
*next
)
2632 return RQ_CFQQ(rq
) == RQ_CFQQ(next
);
2635 static inline void cfq_del_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2637 hrtimer_try_to_cancel(&cfqd
->idle_slice_timer
);
2638 cfqg_stats_update_idle_time(cfqq
->cfqg
);
2641 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
2642 struct cfq_queue
*cfqq
)
2645 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_class:%d wl_type:%d",
2646 cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
2647 cfqg_stats_update_avg_queue_size(cfqq
->cfqg
);
2648 cfqq
->slice_start
= 0;
2649 cfqq
->dispatch_start
= ktime_get_ns();
2650 cfqq
->allocated_slice
= 0;
2651 cfqq
->slice_end
= 0;
2652 cfqq
->slice_dispatch
= 0;
2653 cfqq
->nr_sectors
= 0;
2655 cfq_clear_cfqq_wait_request(cfqq
);
2656 cfq_clear_cfqq_must_dispatch(cfqq
);
2657 cfq_clear_cfqq_must_alloc_slice(cfqq
);
2658 cfq_clear_cfqq_fifo_expire(cfqq
);
2659 cfq_mark_cfqq_slice_new(cfqq
);
2661 cfq_del_timer(cfqd
, cfqq
);
2664 cfqd
->active_queue
= cfqq
;
2668 * current cfqq expired its slice (or was too idle), select new one
2671 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2674 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
2676 if (cfq_cfqq_wait_request(cfqq
))
2677 cfq_del_timer(cfqd
, cfqq
);
2679 cfq_clear_cfqq_wait_request(cfqq
);
2680 cfq_clear_cfqq_wait_busy(cfqq
);
2683 * If this cfqq is shared between multiple processes, check to
2684 * make sure that those processes are still issuing I/Os within
2685 * the mean seek distance. If not, it may be time to break the
2686 * queues apart again.
2688 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
2689 cfq_mark_cfqq_split_coop(cfqq
);
2692 * store what was left of this slice, if the queue idled/timed out
2695 if (cfq_cfqq_slice_new(cfqq
))
2696 cfqq
->slice_resid
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
2698 cfqq
->slice_resid
= cfqq
->slice_end
- ktime_get_ns();
2699 cfq_log_cfqq(cfqd
, cfqq
, "resid=%lld", cfqq
->slice_resid
);
2702 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
2704 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
2705 cfq_del_cfqq_rr(cfqd
, cfqq
);
2707 cfq_resort_rr_list(cfqd
, cfqq
);
2709 if (cfqq
== cfqd
->active_queue
)
2710 cfqd
->active_queue
= NULL
;
2712 if (cfqd
->active_cic
) {
2713 put_io_context(cfqd
->active_cic
->icq
.ioc
);
2714 cfqd
->active_cic
= NULL
;
2718 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
2720 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2723 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
2727 * Get next queue for service. Unless we have a queue preemption,
2728 * we'll simply select the first cfqq in the service tree.
2730 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
2732 struct cfq_rb_root
*st
= st_for(cfqd
->serving_group
,
2733 cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
2735 if (!cfqd
->rq_queued
)
2738 /* There is nothing to dispatch */
2741 if (RB_EMPTY_ROOT(&st
->rb
))
2743 return cfq_rb_first(st
);
2746 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
2748 struct cfq_group
*cfqg
;
2749 struct cfq_queue
*cfqq
;
2751 struct cfq_rb_root
*st
;
2753 if (!cfqd
->rq_queued
)
2756 cfqg
= cfq_get_next_cfqg(cfqd
);
2760 for_each_cfqg_st(cfqg
, i
, j
, st
)
2761 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
2767 * Get and set a new active queue for service.
2769 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
2770 struct cfq_queue
*cfqq
)
2773 cfqq
= cfq_get_next_queue(cfqd
);
2775 __cfq_set_active_queue(cfqd
, cfqq
);
2779 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
2782 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
2783 return blk_rq_pos(rq
) - cfqd
->last_position
;
2785 return cfqd
->last_position
- blk_rq_pos(rq
);
2788 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2791 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
2794 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
2795 struct cfq_queue
*cur_cfqq
)
2797 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
2798 struct rb_node
*parent
, *node
;
2799 struct cfq_queue
*__cfqq
;
2800 sector_t sector
= cfqd
->last_position
;
2802 if (RB_EMPTY_ROOT(root
))
2806 * First, if we find a request starting at the end of the last
2807 * request, choose it.
2809 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
2814 * If the exact sector wasn't found, the parent of the NULL leaf
2815 * will contain the closest sector.
2817 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
2818 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2821 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
2822 node
= rb_next(&__cfqq
->p_node
);
2824 node
= rb_prev(&__cfqq
->p_node
);
2828 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
2829 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2837 * cur_cfqq - passed in so that we don't decide that the current queue is
2838 * closely cooperating with itself.
2840 * So, basically we're assuming that that cur_cfqq has dispatched at least
2841 * one request, and that cfqd->last_position reflects a position on the disk
2842 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2845 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
2846 struct cfq_queue
*cur_cfqq
)
2848 struct cfq_queue
*cfqq
;
2850 if (cfq_class_idle(cur_cfqq
))
2852 if (!cfq_cfqq_sync(cur_cfqq
))
2854 if (CFQQ_SEEKY(cur_cfqq
))
2858 * Don't search priority tree if it's the only queue in the group.
2860 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
2864 * We should notice if some of the queues are cooperating, eg
2865 * working closely on the same area of the disk. In that case,
2866 * we can group them together and don't waste time idling.
2868 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
2872 /* If new queue belongs to different cfq_group, don't choose it */
2873 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
2877 * It only makes sense to merge sync queues.
2879 if (!cfq_cfqq_sync(cfqq
))
2881 if (CFQQ_SEEKY(cfqq
))
2885 * Do not merge queues of different priority classes
2887 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
2894 * Determine whether we should enforce idle window for this queue.
2897 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2899 enum wl_class_t wl_class
= cfqq_class(cfqq
);
2900 struct cfq_rb_root
*st
= cfqq
->service_tree
;
2905 if (!cfqd
->cfq_slice_idle
)
2908 /* We never do for idle class queues. */
2909 if (wl_class
== IDLE_WORKLOAD
)
2912 /* We do for queues that were marked with idle window flag. */
2913 if (cfq_cfqq_idle_window(cfqq
) &&
2914 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
2918 * Otherwise, we do only if they are the last ones
2919 * in their service tree.
2921 if (st
->count
== 1 && cfq_cfqq_sync(cfqq
) &&
2922 !cfq_io_thinktime_big(cfqd
, &st
->ttime
, false))
2924 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d", st
->count
);
2928 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
2930 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2931 struct cfq_rb_root
*st
= cfqq
->service_tree
;
2932 struct cfq_io_cq
*cic
;
2933 u64 sl
, group_idle
= 0;
2934 u64 now
= ktime_get_ns();
2937 * SSD device without seek penalty, disable idling. But only do so
2938 * for devices that support queuing, otherwise we still have a problem
2939 * with sync vs async workloads.
2941 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
2944 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
2945 WARN_ON(cfq_cfqq_slice_new(cfqq
));
2948 * idle is disabled, either manually or by past process history
2950 if (!cfq_should_idle(cfqd
, cfqq
)) {
2951 /* no queue idling. Check for group idling */
2952 if (cfqd
->cfq_group_idle
)
2953 group_idle
= cfqd
->cfq_group_idle
;
2959 * still active requests from this queue, don't idle
2961 if (cfqq
->dispatched
)
2965 * task has exited, don't wait
2967 cic
= cfqd
->active_cic
;
2968 if (!cic
|| !atomic_read(&cic
->icq
.ioc
->active_ref
))
2972 * If our average think time is larger than the remaining time
2973 * slice, then don't idle. This avoids overrunning the allotted
2976 if (sample_valid(cic
->ttime
.ttime_samples
) &&
2977 (cfqq
->slice_end
- now
< cic
->ttime
.ttime_mean
)) {
2978 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%llu",
2979 cic
->ttime
.ttime_mean
);
2984 * There are other queues in the group or this is the only group and
2985 * it has too big thinktime, don't do group idle.
2988 (cfqq
->cfqg
->nr_cfqq
> 1 ||
2989 cfq_io_thinktime_big(cfqd
, &st
->ttime
, true)))
2992 cfq_mark_cfqq_wait_request(cfqq
);
2995 sl
= cfqd
->cfq_group_idle
;
2997 sl
= cfqd
->cfq_slice_idle
;
2999 hrtimer_start(&cfqd
->idle_slice_timer
, ns_to_ktime(sl
),
3001 cfqg_stats_set_start_idle_time(cfqq
->cfqg
);
3002 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %llu group_idle: %d", sl
,
3003 group_idle
? 1 : 0);
3007 * Move request from internal lists to the request queue dispatch list.
3009 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
3011 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3012 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3014 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
3016 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
3017 cfq_remove_request(rq
);
3019 (RQ_CFQG(rq
))->dispatched
++;
3020 elv_dispatch_sort(q
, rq
);
3022 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
3023 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
3027 * return expired entry, or NULL to just start from scratch in rbtree
3029 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
3031 struct request
*rq
= NULL
;
3033 if (cfq_cfqq_fifo_expire(cfqq
))
3036 cfq_mark_cfqq_fifo_expire(cfqq
);
3038 if (list_empty(&cfqq
->fifo
))
3041 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
3042 if (ktime_get_ns() < rq
->fifo_time
)
3049 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3051 const int base_rq
= cfqd
->cfq_slice_async_rq
;
3053 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
3055 return 2 * base_rq
* (IOPRIO_BE_NR
- cfqq
->ioprio
);
3059 * Must be called with the queue_lock held.
3061 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
3063 int process_refs
, io_refs
;
3065 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
3066 process_refs
= cfqq
->ref
- io_refs
;
3067 BUG_ON(process_refs
< 0);
3068 return process_refs
;
3071 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
3073 int process_refs
, new_process_refs
;
3074 struct cfq_queue
*__cfqq
;
3077 * If there are no process references on the new_cfqq, then it is
3078 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3079 * chain may have dropped their last reference (not just their
3080 * last process reference).
3082 if (!cfqq_process_refs(new_cfqq
))
3085 /* Avoid a circular list and skip interim queue merges */
3086 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
3092 process_refs
= cfqq_process_refs(cfqq
);
3093 new_process_refs
= cfqq_process_refs(new_cfqq
);
3095 * If the process for the cfqq has gone away, there is no
3096 * sense in merging the queues.
3098 if (process_refs
== 0 || new_process_refs
== 0)
3102 * Merge in the direction of the lesser amount of work.
3104 if (new_process_refs
>= process_refs
) {
3105 cfqq
->new_cfqq
= new_cfqq
;
3106 new_cfqq
->ref
+= process_refs
;
3108 new_cfqq
->new_cfqq
= cfqq
;
3109 cfqq
->ref
+= new_process_refs
;
3113 static enum wl_type_t
cfq_choose_wl_type(struct cfq_data
*cfqd
,
3114 struct cfq_group
*cfqg
, enum wl_class_t wl_class
)
3116 struct cfq_queue
*queue
;
3118 bool key_valid
= false;
3120 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
3122 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
3123 /* select the one with lowest rb_key */
3124 queue
= cfq_rb_first(st_for(cfqg
, wl_class
, i
));
3126 (!key_valid
|| queue
->rb_key
< lowest_key
)) {
3127 lowest_key
= queue
->rb_key
;
3137 choose_wl_class_and_type(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
3141 struct cfq_rb_root
*st
;
3143 enum wl_class_t original_class
= cfqd
->serving_wl_class
;
3144 u64 now
= ktime_get_ns();
3146 /* Choose next priority. RT > BE > IDLE */
3147 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
3148 cfqd
->serving_wl_class
= RT_WORKLOAD
;
3149 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
3150 cfqd
->serving_wl_class
= BE_WORKLOAD
;
3152 cfqd
->serving_wl_class
= IDLE_WORKLOAD
;
3153 cfqd
->workload_expires
= now
+ jiffies_to_nsecs(1);
3157 if (original_class
!= cfqd
->serving_wl_class
)
3161 * For RT and BE, we have to choose also the type
3162 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3165 st
= st_for(cfqg
, cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
3169 * check workload expiration, and that we still have other queues ready
3171 if (count
&& !(now
> cfqd
->workload_expires
))
3175 /* otherwise select new workload type */
3176 cfqd
->serving_wl_type
= cfq_choose_wl_type(cfqd
, cfqg
,
3177 cfqd
->serving_wl_class
);
3178 st
= st_for(cfqg
, cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
3182 * the workload slice is computed as a fraction of target latency
3183 * proportional to the number of queues in that workload, over
3184 * all the queues in the same priority class
3186 group_slice
= cfq_group_slice(cfqd
, cfqg
);
3188 slice
= div_u64(group_slice
* count
,
3189 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_wl_class
],
3190 cfq_group_busy_queues_wl(cfqd
->serving_wl_class
, cfqd
,
3193 if (cfqd
->serving_wl_type
== ASYNC_WORKLOAD
) {
3197 * Async queues are currently system wide. Just taking
3198 * proportion of queues with-in same group will lead to higher
3199 * async ratio system wide as generally root group is going
3200 * to have higher weight. A more accurate thing would be to
3201 * calculate system wide asnc/sync ratio.
3203 tmp
= cfqd
->cfq_target_latency
*
3204 cfqg_busy_async_queues(cfqd
, cfqg
);
3205 tmp
= div_u64(tmp
, cfqd
->busy_queues
);
3206 slice
= min_t(u64
, slice
, tmp
);
3208 /* async workload slice is scaled down according to
3209 * the sync/async slice ratio. */
3210 slice
= div64_u64(slice
*cfqd
->cfq_slice
[0], cfqd
->cfq_slice
[1]);
3212 /* sync workload slice is at least 2 * cfq_slice_idle */
3213 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
3215 slice
= max_t(u64
, slice
, CFQ_MIN_TT
);
3216 cfq_log(cfqd
, "workload slice:%llu", slice
);
3217 cfqd
->workload_expires
= now
+ slice
;
3220 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
3222 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
3223 struct cfq_group
*cfqg
;
3225 if (RB_EMPTY_ROOT(&st
->rb
))
3227 cfqg
= cfq_rb_first_group(st
);
3228 update_min_vdisktime(st
);
3232 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
3234 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
3235 u64 now
= ktime_get_ns();
3237 cfqd
->serving_group
= cfqg
;
3239 /* Restore the workload type data */
3240 if (cfqg
->saved_wl_slice
) {
3241 cfqd
->workload_expires
= now
+ cfqg
->saved_wl_slice
;
3242 cfqd
->serving_wl_type
= cfqg
->saved_wl_type
;
3243 cfqd
->serving_wl_class
= cfqg
->saved_wl_class
;
3245 cfqd
->workload_expires
= now
- 1;
3247 choose_wl_class_and_type(cfqd
, cfqg
);
3251 * Select a queue for service. If we have a current active queue,
3252 * check whether to continue servicing it, or retrieve and set a new one.
3254 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
3256 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
3257 u64 now
= ktime_get_ns();
3259 cfqq
= cfqd
->active_queue
;
3263 if (!cfqd
->rq_queued
)
3267 * We were waiting for group to get backlogged. Expire the queue
3269 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
3273 * The active queue has run out of time, expire it and select new.
3275 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
3277 * If slice had not expired at the completion of last request
3278 * we might not have turned on wait_busy flag. Don't expire
3279 * the queue yet. Allow the group to get backlogged.
3281 * The very fact that we have used the slice, that means we
3282 * have been idling all along on this queue and it should be
3283 * ok to wait for this request to complete.
3285 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
3286 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
3290 goto check_group_idle
;
3294 * The active queue has requests and isn't expired, allow it to
3297 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3301 * If another queue has a request waiting within our mean seek
3302 * distance, let it run. The expire code will check for close
3303 * cooperators and put the close queue at the front of the service
3304 * tree. If possible, merge the expiring queue with the new cfqq.
3306 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
3308 if (!cfqq
->new_cfqq
)
3309 cfq_setup_merge(cfqq
, new_cfqq
);
3314 * No requests pending. If the active queue still has requests in
3315 * flight or is idling for a new request, allow either of these
3316 * conditions to happen (or time out) before selecting a new queue.
3318 if (hrtimer_active(&cfqd
->idle_slice_timer
)) {
3324 * This is a deep seek queue, but the device is much faster than
3325 * the queue can deliver, don't idle
3327 if (CFQQ_SEEKY(cfqq
) && cfq_cfqq_idle_window(cfqq
) &&
3328 (cfq_cfqq_slice_new(cfqq
) ||
3329 (cfqq
->slice_end
- now
> now
- cfqq
->slice_start
))) {
3330 cfq_clear_cfqq_deep(cfqq
);
3331 cfq_clear_cfqq_idle_window(cfqq
);
3334 if (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
3340 * If group idle is enabled and there are requests dispatched from
3341 * this group, wait for requests to complete.
3344 if (cfqd
->cfq_group_idle
&& cfqq
->cfqg
->nr_cfqq
== 1 &&
3345 cfqq
->cfqg
->dispatched
&&
3346 !cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true)) {
3352 cfq_slice_expired(cfqd
, 0);
3355 * Current queue expired. Check if we have to switch to a new
3359 cfq_choose_cfqg(cfqd
);
3361 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
3366 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
3370 while (cfqq
->next_rq
) {
3371 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
3375 BUG_ON(!list_empty(&cfqq
->fifo
));
3377 /* By default cfqq is not expired if it is empty. Do it explicitly */
3378 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
3383 * Drain our current requests. Used for barriers and when switching
3384 * io schedulers on-the-fly.
3386 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
3388 struct cfq_queue
*cfqq
;
3391 /* Expire the timeslice of the current active queue first */
3392 cfq_slice_expired(cfqd
, 0);
3393 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
3394 __cfq_set_active_queue(cfqd
, cfqq
);
3395 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
3398 BUG_ON(cfqd
->busy_queues
);
3400 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
3404 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
3405 struct cfq_queue
*cfqq
)
3407 u64 now
= ktime_get_ns();
3409 /* the queue hasn't finished any request, can't estimate */
3410 if (cfq_cfqq_slice_new(cfqq
))
3412 if (now
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
> cfqq
->slice_end
)
3418 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3420 unsigned int max_dispatch
;
3422 if (cfq_cfqq_must_dispatch(cfqq
))
3426 * Drain async requests before we start sync IO
3428 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
3432 * If this is an async queue and we have sync IO in flight, let it wait
3434 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
3437 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
3438 if (cfq_class_idle(cfqq
))
3442 * Does this cfqq already have too much IO in flight?
3444 if (cfqq
->dispatched
>= max_dispatch
) {
3445 bool promote_sync
= false;
3447 * idle queue must always only have a single IO in flight
3449 if (cfq_class_idle(cfqq
))
3453 * If there is only one sync queue
3454 * we can ignore async queue here and give the sync
3455 * queue no dispatch limit. The reason is a sync queue can
3456 * preempt async queue, limiting the sync queue doesn't make
3457 * sense. This is useful for aiostress test.
3459 if (cfq_cfqq_sync(cfqq
) && cfqd
->busy_sync_queues
== 1)
3460 promote_sync
= true;
3463 * We have other queues, don't allow more IO from this one
3465 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
) &&
3470 * Sole queue user, no limit
3472 if (cfqd
->busy_queues
== 1 || promote_sync
)
3476 * Normally we start throttling cfqq when cfq_quantum/2
3477 * requests have been dispatched. But we can drive
3478 * deeper queue depths at the beginning of slice
3479 * subjected to upper limit of cfq_quantum.
3481 max_dispatch
= cfqd
->cfq_quantum
;
3485 * Async queues must wait a bit before being allowed dispatch.
3486 * We also ramp up the dispatch depth gradually for async IO,
3487 * based on the last sync IO we serviced
3489 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
3490 u64 last_sync
= ktime_get_ns() - cfqd
->last_delayed_sync
;
3493 depth
= div64_u64(last_sync
, cfqd
->cfq_slice
[1]);
3494 if (!depth
&& !cfqq
->dispatched
)
3496 if (depth
< max_dispatch
)
3497 max_dispatch
= depth
;
3501 * If we're below the current max, allow a dispatch
3503 return cfqq
->dispatched
< max_dispatch
;
3507 * Dispatch a request from cfqq, moving them to the request queue
3510 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3514 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
3516 rq
= cfq_check_fifo(cfqq
);
3518 cfq_mark_cfqq_must_dispatch(cfqq
);
3520 if (!cfq_may_dispatch(cfqd
, cfqq
))
3524 * follow expired path, else get first next available
3529 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
3532 * insert request into driver dispatch list
3534 cfq_dispatch_insert(cfqd
->queue
, rq
);
3536 if (!cfqd
->active_cic
) {
3537 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
3539 atomic_long_inc(&cic
->icq
.ioc
->refcount
);
3540 cfqd
->active_cic
= cic
;
3547 * Find the cfqq that we need to service and move a request from that to the
3550 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
3552 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3553 struct cfq_queue
*cfqq
;
3555 if (!cfqd
->busy_queues
)
3558 if (unlikely(force
))
3559 return cfq_forced_dispatch(cfqd
);
3561 cfqq
= cfq_select_queue(cfqd
);
3566 * Dispatch a request from this cfqq, if it is allowed
3568 if (!cfq_dispatch_request(cfqd
, cfqq
))
3571 cfqq
->slice_dispatch
++;
3572 cfq_clear_cfqq_must_dispatch(cfqq
);
3575 * expire an async queue immediately if it has used up its slice. idle
3576 * queue always expire after 1 dispatch round.
3578 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
3579 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
3580 cfq_class_idle(cfqq
))) {
3581 cfqq
->slice_end
= ktime_get_ns() + 1;
3582 cfq_slice_expired(cfqd
, 0);
3585 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
3590 * task holds one reference to the queue, dropped when task exits. each rq
3591 * in-flight on this queue also holds a reference, dropped when rq is freed.
3593 * Each cfq queue took a reference on the parent group. Drop it now.
3594 * queue lock must be held here.
3596 static void cfq_put_queue(struct cfq_queue
*cfqq
)
3598 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3599 struct cfq_group
*cfqg
;
3601 BUG_ON(cfqq
->ref
<= 0);
3607 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
3608 BUG_ON(rb_first(&cfqq
->sort_list
));
3609 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
3612 if (unlikely(cfqd
->active_queue
== cfqq
)) {
3613 __cfq_slice_expired(cfqd
, cfqq
, 0);
3614 cfq_schedule_dispatch(cfqd
);
3617 BUG_ON(cfq_cfqq_on_rr(cfqq
));
3618 kmem_cache_free(cfq_pool
, cfqq
);
3622 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
3624 struct cfq_queue
*__cfqq
, *next
;
3627 * If this queue was scheduled to merge with another queue, be
3628 * sure to drop the reference taken on that queue (and others in
3629 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3631 __cfqq
= cfqq
->new_cfqq
;
3633 if (__cfqq
== cfqq
) {
3634 WARN(1, "cfqq->new_cfqq loop detected\n");
3637 next
= __cfqq
->new_cfqq
;
3638 cfq_put_queue(__cfqq
);
3643 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3645 if (unlikely(cfqq
== cfqd
->active_queue
)) {
3646 __cfq_slice_expired(cfqd
, cfqq
, 0);
3647 cfq_schedule_dispatch(cfqd
);
3650 cfq_put_cooperator(cfqq
);
3652 cfq_put_queue(cfqq
);
3655 static void cfq_init_icq(struct io_cq
*icq
)
3657 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3659 cic
->ttime
.last_end_request
= ktime_get_ns();
3662 static void cfq_exit_icq(struct io_cq
*icq
)
3664 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3665 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3667 if (cic_to_cfqq(cic
, false)) {
3668 cfq_exit_cfqq(cfqd
, cic_to_cfqq(cic
, false));
3669 cic_set_cfqq(cic
, NULL
, false);
3672 if (cic_to_cfqq(cic
, true)) {
3673 cfq_exit_cfqq(cfqd
, cic_to_cfqq(cic
, true));
3674 cic_set_cfqq(cic
, NULL
, true);
3678 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct cfq_io_cq
*cic
)
3680 struct task_struct
*tsk
= current
;
3683 if (!cfq_cfqq_prio_changed(cfqq
))
3686 ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3687 switch (ioprio_class
) {
3689 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
3690 case IOPRIO_CLASS_NONE
:
3692 * no prio set, inherit CPU scheduling settings
3694 cfqq
->ioprio
= task_nice_ioprio(tsk
);
3695 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
3697 case IOPRIO_CLASS_RT
:
3698 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3699 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
3701 case IOPRIO_CLASS_BE
:
3702 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3703 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3705 case IOPRIO_CLASS_IDLE
:
3706 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
3708 cfq_clear_cfqq_idle_window(cfqq
);
3713 * keep track of original prio settings in case we have to temporarily
3714 * elevate the priority of this queue
3716 cfqq
->org_ioprio
= cfqq
->ioprio
;
3717 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
3718 cfq_clear_cfqq_prio_changed(cfqq
);
3721 static void check_ioprio_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3723 int ioprio
= cic
->icq
.ioc
->ioprio
;
3724 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3725 struct cfq_queue
*cfqq
;
3728 * Check whether ioprio has changed. The condition may trigger
3729 * spuriously on a newly created cic but there's no harm.
3731 if (unlikely(!cfqd
) || likely(cic
->ioprio
== ioprio
))
3734 cfqq
= cic_to_cfqq(cic
, false);
3736 cfq_put_queue(cfqq
);
3737 cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
, bio
);
3738 cic_set_cfqq(cic
, cfqq
, false);
3741 cfqq
= cic_to_cfqq(cic
, true);
3743 cfq_mark_cfqq_prio_changed(cfqq
);
3745 cic
->ioprio
= ioprio
;
3748 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3749 pid_t pid
, bool is_sync
)
3751 RB_CLEAR_NODE(&cfqq
->rb_node
);
3752 RB_CLEAR_NODE(&cfqq
->p_node
);
3753 INIT_LIST_HEAD(&cfqq
->fifo
);
3758 cfq_mark_cfqq_prio_changed(cfqq
);
3761 if (!cfq_class_idle(cfqq
))
3762 cfq_mark_cfqq_idle_window(cfqq
);
3763 cfq_mark_cfqq_sync(cfqq
);
3768 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3769 static void check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3771 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3772 struct cfq_queue
*cfqq
;
3776 serial_nr
= bio_blkcg(bio
)->css
.serial_nr
;
3780 * Check whether blkcg has changed. The condition may trigger
3781 * spuriously on a newly created cic but there's no harm.
3783 if (unlikely(!cfqd
) || likely(cic
->blkcg_serial_nr
== serial_nr
))
3787 * Drop reference to queues. New queues will be assigned in new
3788 * group upon arrival of fresh requests.
3790 cfqq
= cic_to_cfqq(cic
, false);
3792 cfq_log_cfqq(cfqd
, cfqq
, "changed cgroup");
3793 cic_set_cfqq(cic
, NULL
, false);
3794 cfq_put_queue(cfqq
);
3797 cfqq
= cic_to_cfqq(cic
, true);
3799 cfq_log_cfqq(cfqd
, cfqq
, "changed cgroup");
3800 cic_set_cfqq(cic
, NULL
, true);
3801 cfq_put_queue(cfqq
);
3804 cic
->blkcg_serial_nr
= serial_nr
;
3807 static inline void check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
) { }
3808 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3810 static struct cfq_queue
**
3811 cfq_async_queue_prio(struct cfq_group
*cfqg
, int ioprio_class
, int ioprio
)
3813 switch (ioprio_class
) {
3814 case IOPRIO_CLASS_RT
:
3815 return &cfqg
->async_cfqq
[0][ioprio
];
3816 case IOPRIO_CLASS_NONE
:
3817 ioprio
= IOPRIO_NORM
;
3819 case IOPRIO_CLASS_BE
:
3820 return &cfqg
->async_cfqq
[1][ioprio
];
3821 case IOPRIO_CLASS_IDLE
:
3822 return &cfqg
->async_idle_cfqq
;
3828 static struct cfq_queue
*
3829 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct cfq_io_cq
*cic
,
3832 int ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3833 int ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3834 struct cfq_queue
**async_cfqq
= NULL
;
3835 struct cfq_queue
*cfqq
;
3836 struct cfq_group
*cfqg
;
3839 cfqg
= cfq_lookup_cfqg(cfqd
, bio_blkcg(bio
));
3841 cfqq
= &cfqd
->oom_cfqq
;
3846 if (!ioprio_valid(cic
->ioprio
)) {
3847 struct task_struct
*tsk
= current
;
3848 ioprio
= task_nice_ioprio(tsk
);
3849 ioprio_class
= task_nice_ioclass(tsk
);
3851 async_cfqq
= cfq_async_queue_prio(cfqg
, ioprio_class
, ioprio
);
3857 cfqq
= kmem_cache_alloc_node(cfq_pool
, GFP_NOWAIT
| __GFP_ZERO
,
3860 cfqq
= &cfqd
->oom_cfqq
;
3864 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
3865 cfq_init_prio_data(cfqq
, cic
);
3866 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
3867 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
3870 /* a new async queue is created, pin and remember */
3881 __cfq_update_io_thinktime(struct cfq_ttime
*ttime
, u64 slice_idle
)
3883 u64 elapsed
= ktime_get_ns() - ttime
->last_end_request
;
3884 elapsed
= min(elapsed
, 2UL * slice_idle
);
3886 ttime
->ttime_samples
= (7*ttime
->ttime_samples
+ 256) / 8;
3887 ttime
->ttime_total
= div_u64(7*ttime
->ttime_total
+ 256*elapsed
, 8);
3888 ttime
->ttime_mean
= div64_ul(ttime
->ttime_total
+ 128,
3889 ttime
->ttime_samples
);
3893 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3894 struct cfq_io_cq
*cic
)
3896 if (cfq_cfqq_sync(cfqq
)) {
3897 __cfq_update_io_thinktime(&cic
->ttime
, cfqd
->cfq_slice_idle
);
3898 __cfq_update_io_thinktime(&cfqq
->service_tree
->ttime
,
3899 cfqd
->cfq_slice_idle
);
3901 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3902 __cfq_update_io_thinktime(&cfqq
->cfqg
->ttime
, cfqd
->cfq_group_idle
);
3907 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3911 sector_t n_sec
= blk_rq_sectors(rq
);
3912 if (cfqq
->last_request_pos
) {
3913 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3914 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3916 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3919 cfqq
->seek_history
<<= 1;
3920 if (blk_queue_nonrot(cfqd
->queue
))
3921 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
3923 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3927 * Disable idle window if the process thinks too long or seeks so much that
3931 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3932 struct cfq_io_cq
*cic
)
3934 int old_idle
, enable_idle
;
3937 * Don't idle for async or idle io prio class
3939 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3942 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3944 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3945 cfq_mark_cfqq_deep(cfqq
);
3947 if (cfqq
->next_rq
&& (cfqq
->next_rq
->cmd_flags
& REQ_NOIDLE
))
3949 else if (!atomic_read(&cic
->icq
.ioc
->active_ref
) ||
3950 !cfqd
->cfq_slice_idle
||
3951 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3953 else if (sample_valid(cic
->ttime
.ttime_samples
)) {
3954 if (cic
->ttime
.ttime_mean
> cfqd
->cfq_slice_idle
)
3960 if (old_idle
!= enable_idle
) {
3961 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3963 cfq_mark_cfqq_idle_window(cfqq
);
3965 cfq_clear_cfqq_idle_window(cfqq
);
3970 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3971 * no or if we aren't sure, a 1 will cause a preempt.
3974 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3977 struct cfq_queue
*cfqq
;
3979 cfqq
= cfqd
->active_queue
;
3983 if (cfq_class_idle(new_cfqq
))
3986 if (cfq_class_idle(cfqq
))
3990 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3992 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3996 * if the new request is sync, but the currently running queue is
3997 * not, let the sync request have priority.
3999 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
))
4003 * Treat ancestors of current cgroup the same way as current cgroup.
4004 * For anybody else we disallow preemption to guarantee service
4005 * fairness among cgroups.
4007 if (!cfqg_is_descendant(cfqq
->cfqg
, new_cfqq
->cfqg
))
4010 if (cfq_slice_used(cfqq
))
4014 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
4016 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
4019 WARN_ON_ONCE(cfqq
->ioprio_class
!= new_cfqq
->ioprio_class
);
4020 /* Allow preemption only if we are idling on sync-noidle tree */
4021 if (cfqd
->serving_wl_type
== SYNC_NOIDLE_WORKLOAD
&&
4022 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
4023 RB_EMPTY_ROOT(&cfqq
->sort_list
))
4027 * So both queues are sync. Let the new request get disk time if
4028 * it's a metadata request and the current queue is doing regular IO.
4030 if ((rq
->cmd_flags
& REQ_PRIO
) && !cfqq
->prio_pending
)
4033 /* An idle queue should not be idle now for some reason */
4034 if (RB_EMPTY_ROOT(&cfqq
->sort_list
) && !cfq_should_idle(cfqd
, cfqq
))
4037 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
4041 * if this request is as-good as one we would expect from the
4042 * current cfqq, let it preempt
4044 if (cfq_rq_close(cfqd
, cfqq
, rq
))
4051 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4052 * let it have half of its nominal slice.
4054 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
4056 enum wl_type_t old_type
= cfqq_type(cfqd
->active_queue
);
4058 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
4059 cfq_slice_expired(cfqd
, 1);
4062 * workload type is changed, don't save slice, otherwise preempt
4065 if (old_type
!= cfqq_type(cfqq
))
4066 cfqq
->cfqg
->saved_wl_slice
= 0;
4069 * Put the new queue at the front of the of the current list,
4070 * so we know that it will be selected next.
4072 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
4074 cfq_service_tree_add(cfqd
, cfqq
, 1);
4076 cfqq
->slice_end
= 0;
4077 cfq_mark_cfqq_slice_new(cfqq
);
4081 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4082 * something we should do about it
4085 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
4088 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
4091 if (rq
->cmd_flags
& REQ_PRIO
)
4092 cfqq
->prio_pending
++;
4094 cfq_update_io_thinktime(cfqd
, cfqq
, cic
);
4095 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
4096 cfq_update_idle_window(cfqd
, cfqq
, cic
);
4098 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
4100 if (cfqq
== cfqd
->active_queue
) {
4102 * Remember that we saw a request from this process, but
4103 * don't start queuing just yet. Otherwise we risk seeing lots
4104 * of tiny requests, because we disrupt the normal plugging
4105 * and merging. If the request is already larger than a single
4106 * page, let it rip immediately. For that case we assume that
4107 * merging is already done. Ditto for a busy system that
4108 * has other work pending, don't risk delaying until the
4109 * idle timer unplug to continue working.
4111 if (cfq_cfqq_wait_request(cfqq
)) {
4112 if (blk_rq_bytes(rq
) > PAGE_SIZE
||
4113 cfqd
->busy_queues
> 1) {
4114 cfq_del_timer(cfqd
, cfqq
);
4115 cfq_clear_cfqq_wait_request(cfqq
);
4116 __blk_run_queue(cfqd
->queue
);
4118 cfqg_stats_update_idle_time(cfqq
->cfqg
);
4119 cfq_mark_cfqq_must_dispatch(cfqq
);
4122 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
4124 * not the active queue - expire current slice if it is
4125 * idle and has expired it's mean thinktime or this new queue
4126 * has some old slice time left and is of higher priority or
4127 * this new queue is RT and the current one is BE
4129 cfq_preempt_queue(cfqd
, cfqq
);
4130 __blk_run_queue(cfqd
->queue
);
4134 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
4136 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4137 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4139 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
4140 cfq_init_prio_data(cfqq
, RQ_CIC(rq
));
4142 rq
->fifo_time
= ktime_get_ns() + cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)];
4143 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
4145 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqd
->serving_group
, req_op(rq
),
4147 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
4151 * Update hw_tag based on peak queue depth over 50 samples under
4154 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
4156 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
4158 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
4159 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
4161 if (cfqd
->hw_tag
== 1)
4164 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
4165 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
4169 * If active queue hasn't enough requests and can idle, cfq might not
4170 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4173 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
4174 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
4175 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
4178 if (cfqd
->hw_tag_samples
++ < 50)
4181 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
4187 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
4189 struct cfq_io_cq
*cic
= cfqd
->active_cic
;
4190 u64 now
= ktime_get_ns();
4192 /* If the queue already has requests, don't wait */
4193 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
4196 /* If there are other queues in the group, don't wait */
4197 if (cfqq
->cfqg
->nr_cfqq
> 1)
4200 /* the only queue in the group, but think time is big */
4201 if (cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true))
4204 if (cfq_slice_used(cfqq
))
4207 /* if slice left is less than think time, wait busy */
4208 if (cic
&& sample_valid(cic
->ttime
.ttime_samples
)
4209 && (cfqq
->slice_end
- now
< cic
->ttime
.ttime_mean
))
4213 * If think times is less than a jiffy than ttime_mean=0 and above
4214 * will not be true. It might happen that slice has not expired yet
4215 * but will expire soon (4-5 ns) during select_queue(). To cover the
4216 * case where think time is less than a jiffy, mark the queue wait
4217 * busy if only 1 jiffy is left in the slice.
4219 if (cfqq
->slice_end
- now
<= jiffies_to_nsecs(1))
4225 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
4227 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4228 struct cfq_data
*cfqd
= cfqq
->cfqd
;
4229 const int sync
= rq_is_sync(rq
);
4230 u64 now
= ktime_get_ns();
4232 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d",
4233 !!(rq
->cmd_flags
& REQ_NOIDLE
));
4235 cfq_update_hw_tag(cfqd
);
4237 WARN_ON(!cfqd
->rq_in_driver
);
4238 WARN_ON(!cfqq
->dispatched
);
4239 cfqd
->rq_in_driver
--;
4241 (RQ_CFQG(rq
))->dispatched
--;
4242 cfqg_stats_update_completion(cfqq
->cfqg
, rq_start_time_ns(rq
),
4243 rq_io_start_time_ns(rq
), req_op(rq
),
4246 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
4249 struct cfq_rb_root
*st
;
4251 RQ_CIC(rq
)->ttime
.last_end_request
= now
;
4253 if (cfq_cfqq_on_rr(cfqq
))
4254 st
= cfqq
->service_tree
;
4256 st
= st_for(cfqq
->cfqg
, cfqq_class(cfqq
),
4259 st
->ttime
.last_end_request
= now
;
4261 * We have to do this check in jiffies since start_time is in
4262 * jiffies and it is not trivial to convert to ns. If
4263 * cfq_fifo_expire[1] ever comes close to 1 jiffie, this test
4264 * will become problematic but so far we are fine (the default
4267 if (!time_after(rq
->start_time
+
4268 nsecs_to_jiffies(cfqd
->cfq_fifo_expire
[1]),
4270 cfqd
->last_delayed_sync
= now
;
4273 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4274 cfqq
->cfqg
->ttime
.last_end_request
= now
;
4278 * If this is the active queue, check if it needs to be expired,
4279 * or if we want to idle in case it has no pending requests.
4281 if (cfqd
->active_queue
== cfqq
) {
4282 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
4284 if (cfq_cfqq_slice_new(cfqq
)) {
4285 cfq_set_prio_slice(cfqd
, cfqq
);
4286 cfq_clear_cfqq_slice_new(cfqq
);
4290 * Should we wait for next request to come in before we expire
4293 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
4294 u64 extend_sl
= cfqd
->cfq_slice_idle
;
4295 if (!cfqd
->cfq_slice_idle
)
4296 extend_sl
= cfqd
->cfq_group_idle
;
4297 cfqq
->slice_end
= now
+ extend_sl
;
4298 cfq_mark_cfqq_wait_busy(cfqq
);
4299 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
4303 * Idling is not enabled on:
4305 * - idle-priority queues
4307 * - queues with still some requests queued
4308 * - when there is a close cooperator
4310 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
4311 cfq_slice_expired(cfqd
, 1);
4312 else if (sync
&& cfqq_empty
&&
4313 !cfq_close_cooperator(cfqd
, cfqq
)) {
4314 cfq_arm_slice_timer(cfqd
);
4318 if (!cfqd
->rq_in_driver
)
4319 cfq_schedule_dispatch(cfqd
);
4322 static void cfqq_boost_on_prio(struct cfq_queue
*cfqq
, int op_flags
)
4325 * If REQ_PRIO is set, boost class and prio level, if it's below
4326 * BE/NORM. If prio is not set, restore the potentially boosted
4329 if (!(op_flags
& REQ_PRIO
)) {
4330 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
4331 cfqq
->ioprio
= cfqq
->org_ioprio
;
4333 if (cfq_class_idle(cfqq
))
4334 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
4335 if (cfqq
->ioprio
> IOPRIO_NORM
)
4336 cfqq
->ioprio
= IOPRIO_NORM
;
4340 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
4342 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
4343 cfq_mark_cfqq_must_alloc_slice(cfqq
);
4344 return ELV_MQUEUE_MUST
;
4347 return ELV_MQUEUE_MAY
;
4350 static int cfq_may_queue(struct request_queue
*q
, int op
, int op_flags
)
4352 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4353 struct task_struct
*tsk
= current
;
4354 struct cfq_io_cq
*cic
;
4355 struct cfq_queue
*cfqq
;
4358 * don't force setup of a queue from here, as a call to may_queue
4359 * does not necessarily imply that a request actually will be queued.
4360 * so just lookup a possibly existing queue, or return 'may queue'
4363 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
4365 return ELV_MQUEUE_MAY
;
4367 cfqq
= cic_to_cfqq(cic
, rw_is_sync(op
, op_flags
));
4369 cfq_init_prio_data(cfqq
, cic
);
4370 cfqq_boost_on_prio(cfqq
, op_flags
);
4372 return __cfq_may_queue(cfqq
);
4375 return ELV_MQUEUE_MAY
;
4379 * queue lock held here
4381 static void cfq_put_request(struct request
*rq
)
4383 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4386 const int rw
= rq_data_dir(rq
);
4388 BUG_ON(!cfqq
->allocated
[rw
]);
4389 cfqq
->allocated
[rw
]--;
4391 /* Put down rq reference on cfqg */
4392 cfqg_put(RQ_CFQG(rq
));
4393 rq
->elv
.priv
[0] = NULL
;
4394 rq
->elv
.priv
[1] = NULL
;
4396 cfq_put_queue(cfqq
);
4400 static struct cfq_queue
*
4401 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_cq
*cic
,
4402 struct cfq_queue
*cfqq
)
4404 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
4405 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
4406 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
4407 cfq_put_queue(cfqq
);
4408 return cic_to_cfqq(cic
, 1);
4412 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4413 * was the last process referring to said cfqq.
4415 static struct cfq_queue
*
4416 split_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
)
4418 if (cfqq_process_refs(cfqq
) == 1) {
4419 cfqq
->pid
= current
->pid
;
4420 cfq_clear_cfqq_coop(cfqq
);
4421 cfq_clear_cfqq_split_coop(cfqq
);
4425 cic_set_cfqq(cic
, NULL
, 1);
4427 cfq_put_cooperator(cfqq
);
4429 cfq_put_queue(cfqq
);
4433 * Allocate cfq data structures associated with this request.
4436 cfq_set_request(struct request_queue
*q
, struct request
*rq
, struct bio
*bio
,
4439 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4440 struct cfq_io_cq
*cic
= icq_to_cic(rq
->elv
.icq
);
4441 const int rw
= rq_data_dir(rq
);
4442 const bool is_sync
= rq_is_sync(rq
);
4443 struct cfq_queue
*cfqq
;
4445 spin_lock_irq(q
->queue_lock
);
4447 check_ioprio_changed(cic
, bio
);
4448 check_blkcg_changed(cic
, bio
);
4450 cfqq
= cic_to_cfqq(cic
, is_sync
);
4451 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
4453 cfq_put_queue(cfqq
);
4454 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
, bio
);
4455 cic_set_cfqq(cic
, cfqq
, is_sync
);
4458 * If the queue was seeky for too long, break it apart.
4460 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
4461 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
4462 cfqq
= split_cfqq(cic
, cfqq
);
4468 * Check to see if this queue is scheduled to merge with
4469 * another, closely cooperating queue. The merging of
4470 * queues happens here as it must be done in process context.
4471 * The reference on new_cfqq was taken in merge_cfqqs.
4474 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
4477 cfqq
->allocated
[rw
]++;
4480 cfqg_get(cfqq
->cfqg
);
4481 rq
->elv
.priv
[0] = cfqq
;
4482 rq
->elv
.priv
[1] = cfqq
->cfqg
;
4483 spin_unlock_irq(q
->queue_lock
);
4487 static void cfq_kick_queue(struct work_struct
*work
)
4489 struct cfq_data
*cfqd
=
4490 container_of(work
, struct cfq_data
, unplug_work
);
4491 struct request_queue
*q
= cfqd
->queue
;
4493 spin_lock_irq(q
->queue_lock
);
4494 __blk_run_queue(cfqd
->queue
);
4495 spin_unlock_irq(q
->queue_lock
);
4499 * Timer running if the active_queue is currently idling inside its time slice
4501 static enum hrtimer_restart
cfq_idle_slice_timer(struct hrtimer
*timer
)
4503 struct cfq_data
*cfqd
= container_of(timer
, struct cfq_data
,
4505 struct cfq_queue
*cfqq
;
4506 unsigned long flags
;
4509 cfq_log(cfqd
, "idle timer fired");
4511 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
4513 cfqq
= cfqd
->active_queue
;
4518 * We saw a request before the queue expired, let it through
4520 if (cfq_cfqq_must_dispatch(cfqq
))
4526 if (cfq_slice_used(cfqq
))
4530 * only expire and reinvoke request handler, if there are
4531 * other queues with pending requests
4533 if (!cfqd
->busy_queues
)
4537 * not expired and it has a request pending, let it dispatch
4539 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
4543 * Queue depth flag is reset only when the idle didn't succeed
4545 cfq_clear_cfqq_deep(cfqq
);
4548 cfq_slice_expired(cfqd
, timed_out
);
4550 cfq_schedule_dispatch(cfqd
);
4552 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
4553 return HRTIMER_NORESTART
;
4556 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
4558 hrtimer_cancel(&cfqd
->idle_slice_timer
);
4559 cancel_work_sync(&cfqd
->unplug_work
);
4562 static void cfq_exit_queue(struct elevator_queue
*e
)
4564 struct cfq_data
*cfqd
= e
->elevator_data
;
4565 struct request_queue
*q
= cfqd
->queue
;
4567 cfq_shutdown_timer_wq(cfqd
);
4569 spin_lock_irq(q
->queue_lock
);
4571 if (cfqd
->active_queue
)
4572 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
4574 spin_unlock_irq(q
->queue_lock
);
4576 cfq_shutdown_timer_wq(cfqd
);
4578 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4579 blkcg_deactivate_policy(q
, &blkcg_policy_cfq
);
4581 kfree(cfqd
->root_group
);
4586 static int cfq_init_queue(struct request_queue
*q
, struct elevator_type
*e
)
4588 struct cfq_data
*cfqd
;
4589 struct blkcg_gq
*blkg __maybe_unused
;
4591 struct elevator_queue
*eq
;
4593 eq
= elevator_alloc(q
, e
);
4597 cfqd
= kzalloc_node(sizeof(*cfqd
), GFP_KERNEL
, q
->node
);
4599 kobject_put(&eq
->kobj
);
4602 eq
->elevator_data
= cfqd
;
4605 spin_lock_irq(q
->queue_lock
);
4607 spin_unlock_irq(q
->queue_lock
);
4609 /* Init root service tree */
4610 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
4612 /* Init root group and prefer root group over other groups by default */
4613 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4614 ret
= blkcg_activate_policy(q
, &blkcg_policy_cfq
);
4618 cfqd
->root_group
= blkg_to_cfqg(q
->root_blkg
);
4621 cfqd
->root_group
= kzalloc_node(sizeof(*cfqd
->root_group
),
4622 GFP_KERNEL
, cfqd
->queue
->node
);
4623 if (!cfqd
->root_group
)
4626 cfq_init_cfqg_base(cfqd
->root_group
);
4627 cfqd
->root_group
->weight
= 2 * CFQ_WEIGHT_LEGACY_DFL
;
4628 cfqd
->root_group
->leaf_weight
= 2 * CFQ_WEIGHT_LEGACY_DFL
;
4632 * Not strictly needed (since RB_ROOT just clears the node and we
4633 * zeroed cfqd on alloc), but better be safe in case someone decides
4634 * to add magic to the rb code
4636 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
4637 cfqd
->prio_trees
[i
] = RB_ROOT
;
4640 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4641 * Grab a permanent reference to it, so that the normal code flow
4642 * will not attempt to free it. oom_cfqq is linked to root_group
4643 * but shouldn't hold a reference as it'll never be unlinked. Lose
4644 * the reference from linking right away.
4646 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
4647 cfqd
->oom_cfqq
.ref
++;
4649 spin_lock_irq(q
->queue_lock
);
4650 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, cfqd
->root_group
);
4651 cfqg_put(cfqd
->root_group
);
4652 spin_unlock_irq(q
->queue_lock
);
4654 hrtimer_init(&cfqd
->idle_slice_timer
, CLOCK_MONOTONIC
,
4656 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
4658 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
4660 cfqd
->cfq_quantum
= cfq_quantum
;
4661 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
4662 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
4663 cfqd
->cfq_back_max
= cfq_back_max
;
4664 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
4665 cfqd
->cfq_slice
[0] = cfq_slice_async
;
4666 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
4667 cfqd
->cfq_target_latency
= cfq_target_latency
;
4668 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
4669 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
4670 cfqd
->cfq_group_idle
= cfq_group_idle
;
4671 cfqd
->cfq_latency
= 1;
4674 * we optimistically start assuming sync ops weren't delayed in last
4675 * second, in order to have larger depth for async operations.
4677 cfqd
->last_delayed_sync
= ktime_get_ns() - NSEC_PER_SEC
;
4682 kobject_put(&eq
->kobj
);
4686 static void cfq_registered_queue(struct request_queue
*q
)
4688 struct elevator_queue
*e
= q
->elevator
;
4689 struct cfq_data
*cfqd
= e
->elevator_data
;
4692 * Default to IOPS mode with no idling for SSDs
4694 if (blk_queue_nonrot(q
))
4695 cfqd
->cfq_slice_idle
= 0;
4699 * sysfs parts below -->
4702 cfq_var_show(unsigned int var
, char *page
)
4704 return sprintf(page
, "%u\n", var
);
4708 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
4710 char *p
= (char *) page
;
4712 *var
= simple_strtoul(p
, &p
, 10);
4716 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4717 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4719 struct cfq_data *cfqd = e->elevator_data; \
4720 u64 __data = __VAR; \
4722 __data = div_u64(__data, NSEC_PER_MSEC); \
4723 return cfq_var_show(__data, (page)); \
4725 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
4726 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
4727 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
4728 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
4729 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
4730 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
4731 SHOW_FUNCTION(cfq_group_idle_show
, cfqd
->cfq_group_idle
, 1);
4732 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
4733 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
4734 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
4735 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
4736 SHOW_FUNCTION(cfq_target_latency_show
, cfqd
->cfq_target_latency
, 1);
4737 #undef SHOW_FUNCTION
4739 #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
4740 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4742 struct cfq_data *cfqd = e->elevator_data; \
4743 u64 __data = __VAR; \
4744 __data = div_u64(__data, NSEC_PER_USEC); \
4745 return cfq_var_show(__data, (page)); \
4747 USEC_SHOW_FUNCTION(cfq_slice_idle_us_show
, cfqd
->cfq_slice_idle
);
4748 USEC_SHOW_FUNCTION(cfq_group_idle_us_show
, cfqd
->cfq_group_idle
);
4749 USEC_SHOW_FUNCTION(cfq_slice_sync_us_show
, cfqd
->cfq_slice
[1]);
4750 USEC_SHOW_FUNCTION(cfq_slice_async_us_show
, cfqd
->cfq_slice
[0]);
4751 USEC_SHOW_FUNCTION(cfq_target_latency_us_show
, cfqd
->cfq_target_latency
);
4752 #undef USEC_SHOW_FUNCTION
4754 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4755 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4757 struct cfq_data *cfqd = e->elevator_data; \
4758 unsigned int __data; \
4759 int ret = cfq_var_store(&__data, (page), count); \
4760 if (__data < (MIN)) \
4762 else if (__data > (MAX)) \
4765 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
4767 *(__PTR) = __data; \
4770 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
4771 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
4773 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
4775 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
4776 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
4778 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
4779 STORE_FUNCTION(cfq_group_idle_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
, 1);
4780 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
4781 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
4782 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
4784 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
4785 STORE_FUNCTION(cfq_target_latency_store
, &cfqd
->cfq_target_latency
, 1, UINT_MAX
, 1);
4786 #undef STORE_FUNCTION
4788 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
4789 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4791 struct cfq_data *cfqd = e->elevator_data; \
4792 unsigned int __data; \
4793 int ret = cfq_var_store(&__data, (page), count); \
4794 if (__data < (MIN)) \
4796 else if (__data > (MAX)) \
4798 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
4801 USEC_STORE_FUNCTION(cfq_slice_idle_us_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
);
4802 USEC_STORE_FUNCTION(cfq_group_idle_us_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
);
4803 USEC_STORE_FUNCTION(cfq_slice_sync_us_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
);
4804 USEC_STORE_FUNCTION(cfq_slice_async_us_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
);
4805 USEC_STORE_FUNCTION(cfq_target_latency_us_store
, &cfqd
->cfq_target_latency
, 1, UINT_MAX
);
4806 #undef USEC_STORE_FUNCTION
4808 #define CFQ_ATTR(name) \
4809 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4811 static struct elv_fs_entry cfq_attrs
[] = {
4813 CFQ_ATTR(fifo_expire_sync
),
4814 CFQ_ATTR(fifo_expire_async
),
4815 CFQ_ATTR(back_seek_max
),
4816 CFQ_ATTR(back_seek_penalty
),
4817 CFQ_ATTR(slice_sync
),
4818 CFQ_ATTR(slice_sync_us
),
4819 CFQ_ATTR(slice_async
),
4820 CFQ_ATTR(slice_async_us
),
4821 CFQ_ATTR(slice_async_rq
),
4822 CFQ_ATTR(slice_idle
),
4823 CFQ_ATTR(slice_idle_us
),
4824 CFQ_ATTR(group_idle
),
4825 CFQ_ATTR(group_idle_us
),
4826 CFQ_ATTR(low_latency
),
4827 CFQ_ATTR(target_latency
),
4828 CFQ_ATTR(target_latency_us
),
4832 static struct elevator_type iosched_cfq
= {
4834 .elevator_merge_fn
= cfq_merge
,
4835 .elevator_merged_fn
= cfq_merged_request
,
4836 .elevator_merge_req_fn
= cfq_merged_requests
,
4837 .elevator_allow_bio_merge_fn
= cfq_allow_bio_merge
,
4838 .elevator_allow_rq_merge_fn
= cfq_allow_rq_merge
,
4839 .elevator_bio_merged_fn
= cfq_bio_merged
,
4840 .elevator_dispatch_fn
= cfq_dispatch_requests
,
4841 .elevator_add_req_fn
= cfq_insert_request
,
4842 .elevator_activate_req_fn
= cfq_activate_request
,
4843 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
4844 .elevator_completed_req_fn
= cfq_completed_request
,
4845 .elevator_former_req_fn
= elv_rb_former_request
,
4846 .elevator_latter_req_fn
= elv_rb_latter_request
,
4847 .elevator_init_icq_fn
= cfq_init_icq
,
4848 .elevator_exit_icq_fn
= cfq_exit_icq
,
4849 .elevator_set_req_fn
= cfq_set_request
,
4850 .elevator_put_req_fn
= cfq_put_request
,
4851 .elevator_may_queue_fn
= cfq_may_queue
,
4852 .elevator_init_fn
= cfq_init_queue
,
4853 .elevator_exit_fn
= cfq_exit_queue
,
4854 .elevator_registered_fn
= cfq_registered_queue
,
4856 .icq_size
= sizeof(struct cfq_io_cq
),
4857 .icq_align
= __alignof__(struct cfq_io_cq
),
4858 .elevator_attrs
= cfq_attrs
,
4859 .elevator_name
= "cfq",
4860 .elevator_owner
= THIS_MODULE
,
4863 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4864 static struct blkcg_policy blkcg_policy_cfq
= {
4865 .dfl_cftypes
= cfq_blkcg_files
,
4866 .legacy_cftypes
= cfq_blkcg_legacy_files
,
4868 .cpd_alloc_fn
= cfq_cpd_alloc
,
4869 .cpd_init_fn
= cfq_cpd_init
,
4870 .cpd_free_fn
= cfq_cpd_free
,
4871 .cpd_bind_fn
= cfq_cpd_bind
,
4873 .pd_alloc_fn
= cfq_pd_alloc
,
4874 .pd_init_fn
= cfq_pd_init
,
4875 .pd_offline_fn
= cfq_pd_offline
,
4876 .pd_free_fn
= cfq_pd_free
,
4877 .pd_reset_stats_fn
= cfq_pd_reset_stats
,
4881 static int __init
cfq_init(void)
4885 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4886 ret
= blkcg_policy_register(&blkcg_policy_cfq
);
4894 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
4898 ret
= elv_register(&iosched_cfq
);
4905 kmem_cache_destroy(cfq_pool
);
4907 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4908 blkcg_policy_unregister(&blkcg_policy_cfq
);
4913 static void __exit
cfq_exit(void)
4915 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4916 blkcg_policy_unregister(&blkcg_policy_cfq
);
4918 elv_unregister(&iosched_cfq
);
4919 kmem_cache_destroy(cfq_pool
);
4922 module_init(cfq_init
);
4923 module_exit(cfq_exit
);
4925 MODULE_AUTHOR("Jens Axboe");
4926 MODULE_LICENSE("GPL");
4927 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");