slab: setup cpu caches later on when interrupts are enabled
[linux/fpc-iii.git] / arch / parisc / mm / fault.c
blob92c7fa4ecc3f4a27ac6ac79f31f1acda964f967e
1 /* $Id: fault.c,v 1.5 2000/01/26 16:20:29 jsm Exp $
3 * This file is subject to the terms and conditions of the GNU General Public
4 * License. See the file "COPYING" in the main directory of this archive
5 * for more details.
8 * Copyright (C) 1995, 1996, 1997, 1998 by Ralf Baechle
9 * Copyright 1999 SuSE GmbH (Philipp Rumpf, prumpf@tux.org)
10 * Copyright 1999 Hewlett Packard Co.
14 #include <linux/mm.h>
15 #include <linux/ptrace.h>
16 #include <linux/sched.h>
17 #include <linux/interrupt.h>
18 #include <linux/module.h>
20 #include <asm/uaccess.h>
21 #include <asm/traps.h>
23 #define PRINT_USER_FAULTS /* (turn this on if you want user faults to be */
24 /* dumped to the console via printk) */
27 /* Various important other fields */
28 #define bit22set(x) (x & 0x00000200)
29 #define bits23_25set(x) (x & 0x000001c0)
30 #define isGraphicsFlushRead(x) ((x & 0xfc003fdf) == 0x04001a80)
31 /* extended opcode is 0x6a */
33 #define BITSSET 0x1c0 /* for identifying LDCW */
36 DEFINE_PER_CPU(struct exception_data, exception_data);
39 * parisc_acctyp(unsigned int inst) --
40 * Given a PA-RISC memory access instruction, determine if the
41 * the instruction would perform a memory read or memory write
42 * operation.
44 * This function assumes that the given instruction is a memory access
45 * instruction (i.e. you should really only call it if you know that
46 * the instruction has generated some sort of a memory access fault).
48 * Returns:
49 * VM_READ if read operation
50 * VM_WRITE if write operation
51 * VM_EXEC if execute operation
53 static unsigned long
54 parisc_acctyp(unsigned long code, unsigned int inst)
56 if (code == 6 || code == 16)
57 return VM_EXEC;
59 switch (inst & 0xf0000000) {
60 case 0x40000000: /* load */
61 case 0x50000000: /* new load */
62 return VM_READ;
64 case 0x60000000: /* store */
65 case 0x70000000: /* new store */
66 return VM_WRITE;
68 case 0x20000000: /* coproc */
69 case 0x30000000: /* coproc2 */
70 if (bit22set(inst))
71 return VM_WRITE;
73 case 0x0: /* indexed/memory management */
74 if (bit22set(inst)) {
76 * Check for the 'Graphics Flush Read' instruction.
77 * It resembles an FDC instruction, except for bits
78 * 20 and 21. Any combination other than zero will
79 * utilize the block mover functionality on some
80 * older PA-RISC platforms. The case where a block
81 * move is performed from VM to graphics IO space
82 * should be treated as a READ.
84 * The significance of bits 20,21 in the FDC
85 * instruction is:
87 * 00 Flush data cache (normal instruction behavior)
88 * 01 Graphics flush write (IO space -> VM)
89 * 10 Graphics flush read (VM -> IO space)
90 * 11 Graphics flush read/write (VM <-> IO space)
92 if (isGraphicsFlushRead(inst))
93 return VM_READ;
94 return VM_WRITE;
95 } else {
97 * Check for LDCWX and LDCWS (semaphore instructions).
98 * If bits 23 through 25 are all 1's it is one of
99 * the above two instructions and is a write.
101 * Note: With the limited bits we are looking at,
102 * this will also catch PROBEW and PROBEWI. However,
103 * these should never get in here because they don't
104 * generate exceptions of the type:
105 * Data TLB miss fault/data page fault
106 * Data memory protection trap
108 if (bits23_25set(inst) == BITSSET)
109 return VM_WRITE;
111 return VM_READ; /* Default */
113 return VM_READ; /* Default */
116 #undef bit22set
117 #undef bits23_25set
118 #undef isGraphicsFlushRead
119 #undef BITSSET
122 #if 0
123 /* This is the treewalk to find a vma which is the highest that has
124 * a start < addr. We're using find_vma_prev instead right now, but
125 * we might want to use this at some point in the future. Probably
126 * not, but I want it committed to CVS so I don't lose it :-)
128 while (tree != vm_avl_empty) {
129 if (tree->vm_start > addr) {
130 tree = tree->vm_avl_left;
131 } else {
132 prev = tree;
133 if (prev->vm_next == NULL)
134 break;
135 if (prev->vm_next->vm_start > addr)
136 break;
137 tree = tree->vm_avl_right;
140 #endif
142 int fixup_exception(struct pt_regs *regs)
144 const struct exception_table_entry *fix;
146 fix = search_exception_tables(regs->iaoq[0]);
147 if (fix) {
148 struct exception_data *d;
149 d = &__get_cpu_var(exception_data);
150 d->fault_ip = regs->iaoq[0];
151 d->fault_space = regs->isr;
152 d->fault_addr = regs->ior;
154 regs->iaoq[0] = ((fix->fixup) & ~3);
156 * NOTE: In some cases the faulting instruction
157 * may be in the delay slot of a branch. We
158 * don't want to take the branch, so we don't
159 * increment iaoq[1], instead we set it to be
160 * iaoq[0]+4, and clear the B bit in the PSW
162 regs->iaoq[1] = regs->iaoq[0] + 4;
163 regs->gr[0] &= ~PSW_B; /* IPSW in gr[0] */
165 return 1;
168 return 0;
171 void do_page_fault(struct pt_regs *regs, unsigned long code,
172 unsigned long address)
174 struct vm_area_struct *vma, *prev_vma;
175 struct task_struct *tsk = current;
176 struct mm_struct *mm = tsk->mm;
177 unsigned long acc_type;
178 int fault;
180 if (in_atomic() || !mm)
181 goto no_context;
183 down_read(&mm->mmap_sem);
184 vma = find_vma_prev(mm, address, &prev_vma);
185 if (!vma || address < vma->vm_start)
186 goto check_expansion;
188 * Ok, we have a good vm_area for this memory access. We still need to
189 * check the access permissions.
192 good_area:
194 acc_type = parisc_acctyp(code,regs->iir);
196 if ((vma->vm_flags & acc_type) != acc_type)
197 goto bad_area;
200 * If for any reason at all we couldn't handle the fault, make
201 * sure we exit gracefully rather than endlessly redo the
202 * fault.
205 fault = handle_mm_fault(mm, vma, address, (acc_type & VM_WRITE) != 0);
206 if (unlikely(fault & VM_FAULT_ERROR)) {
208 * We hit a shared mapping outside of the file, or some
209 * other thing happened to us that made us unable to
210 * handle the page fault gracefully.
212 if (fault & VM_FAULT_OOM)
213 goto out_of_memory;
214 else if (fault & VM_FAULT_SIGBUS)
215 goto bad_area;
216 BUG();
218 if (fault & VM_FAULT_MAJOR)
219 current->maj_flt++;
220 else
221 current->min_flt++;
222 up_read(&mm->mmap_sem);
223 return;
225 check_expansion:
226 vma = prev_vma;
227 if (vma && (expand_stack(vma, address) == 0))
228 goto good_area;
231 * Something tried to access memory that isn't in our memory map..
233 bad_area:
234 up_read(&mm->mmap_sem);
236 if (user_mode(regs)) {
237 struct siginfo si;
239 #ifdef PRINT_USER_FAULTS
240 printk(KERN_DEBUG "\n");
241 printk(KERN_DEBUG "do_page_fault() pid=%d command='%s' type=%lu address=0x%08lx\n",
242 task_pid_nr(tsk), tsk->comm, code, address);
243 if (vma) {
244 printk(KERN_DEBUG "vm_start = 0x%08lx, vm_end = 0x%08lx\n",
245 vma->vm_start, vma->vm_end);
247 show_regs(regs);
248 #endif
249 /* FIXME: actually we need to get the signo and code correct */
250 si.si_signo = SIGSEGV;
251 si.si_errno = 0;
252 si.si_code = SEGV_MAPERR;
253 si.si_addr = (void __user *) address;
254 force_sig_info(SIGSEGV, &si, current);
255 return;
258 no_context:
260 if (!user_mode(regs) && fixup_exception(regs)) {
261 return;
264 parisc_terminate("Bad Address (null pointer deref?)", regs, code, address);
266 out_of_memory:
267 up_read(&mm->mmap_sem);
268 printk(KERN_CRIT "VM: killing process %s\n", current->comm);
269 if (user_mode(regs))
270 do_group_exit(SIGKILL);
271 goto no_context;