2 * mm/percpu.c - percpu memory allocator
4 * Copyright (C) 2009 SUSE Linux Products GmbH
5 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
7 * This file is released under the GPLv2.
9 * This is percpu allocator which can handle both static and dynamic
10 * areas. Percpu areas are allocated in chunks. Each chunk is
11 * consisted of boot-time determined number of units and the first
12 * chunk is used for static percpu variables in the kernel image
13 * (special boot time alloc/init handling necessary as these areas
14 * need to be brought up before allocation services are running).
15 * Unit grows as necessary and all units grow or shrink in unison.
16 * When a chunk is filled up, another chunk is allocated.
19 * ------------------- ------------------- ------------
20 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
21 * ------------------- ...... ------------------- .... ------------
23 * Allocation is done in offset-size areas of single unit space. Ie,
24 * an area of 512 bytes at 6k in c1 occupies 512 bytes at 6k of c1:u0,
25 * c1:u1, c1:u2 and c1:u3. On UMA, units corresponds directly to
26 * cpus. On NUMA, the mapping can be non-linear and even sparse.
27 * Percpu access can be done by configuring percpu base registers
28 * according to cpu to unit mapping and pcpu_unit_size.
30 * There are usually many small percpu allocations many of them being
31 * as small as 4 bytes. The allocator organizes chunks into lists
32 * according to free size and tries to allocate from the fullest one.
33 * Each chunk keeps the maximum contiguous area size hint which is
34 * guaranteed to be equal to or larger than the maximum contiguous
35 * area in the chunk. This helps the allocator not to iterate the
36 * chunk maps unnecessarily.
38 * Allocation state in each chunk is kept using an array of integers
39 * on chunk->map. A positive value in the map represents a free
40 * region and negative allocated. Allocation inside a chunk is done
41 * by scanning this map sequentially and serving the first matching
42 * entry. This is mostly copied from the percpu_modalloc() allocator.
43 * Chunks can be determined from the address using the index field
44 * in the page struct. The index field contains a pointer to the chunk.
46 * To use this allocator, arch code should do the followings.
48 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
49 * regular address to percpu pointer and back if they need to be
50 * different from the default
52 * - use pcpu_setup_first_chunk() during percpu area initialization to
53 * setup the first chunk containing the kernel static percpu area
56 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
58 #include <linux/bitmap.h>
59 #include <linux/bootmem.h>
60 #include <linux/err.h>
61 #include <linux/list.h>
62 #include <linux/log2.h>
64 #include <linux/module.h>
65 #include <linux/mutex.h>
66 #include <linux/percpu.h>
67 #include <linux/pfn.h>
68 #include <linux/slab.h>
69 #include <linux/spinlock.h>
70 #include <linux/vmalloc.h>
71 #include <linux/workqueue.h>
72 #include <linux/kmemleak.h>
74 #include <asm/cacheflush.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
79 #define PCPU_SLOT_BASE_SHIFT 5 /* 1-31 shares the same slot */
80 #define PCPU_DFL_MAP_ALLOC 16 /* start a map with 16 ents */
81 #define PCPU_ATOMIC_MAP_MARGIN_LOW 32
82 #define PCPU_ATOMIC_MAP_MARGIN_HIGH 64
83 #define PCPU_EMPTY_POP_PAGES_LOW 2
84 #define PCPU_EMPTY_POP_PAGES_HIGH 4
87 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
88 #ifndef __addr_to_pcpu_ptr
89 #define __addr_to_pcpu_ptr(addr) \
90 (void __percpu *)((unsigned long)(addr) - \
91 (unsigned long)pcpu_base_addr + \
92 (unsigned long)__per_cpu_start)
94 #ifndef __pcpu_ptr_to_addr
95 #define __pcpu_ptr_to_addr(ptr) \
96 (void __force *)((unsigned long)(ptr) + \
97 (unsigned long)pcpu_base_addr - \
98 (unsigned long)__per_cpu_start)
100 #else /* CONFIG_SMP */
101 /* on UP, it's always identity mapped */
102 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
103 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
104 #endif /* CONFIG_SMP */
107 struct list_head list
; /* linked to pcpu_slot lists */
108 int free_size
; /* free bytes in the chunk */
109 int contig_hint
; /* max contiguous size hint */
110 void *base_addr
; /* base address of this chunk */
112 int map_used
; /* # of map entries used before the sentry */
113 int map_alloc
; /* # of map entries allocated */
114 int *map
; /* allocation map */
115 struct work_struct map_extend_work
;/* async ->map[] extension */
117 void *data
; /* chunk data */
118 int first_free
; /* no free below this */
119 bool immutable
; /* no [de]population allowed */
120 int nr_populated
; /* # of populated pages */
121 unsigned long populated
[]; /* populated bitmap */
124 static int pcpu_unit_pages __read_mostly
;
125 static int pcpu_unit_size __read_mostly
;
126 static int pcpu_nr_units __read_mostly
;
127 static int pcpu_atom_size __read_mostly
;
128 static int pcpu_nr_slots __read_mostly
;
129 static size_t pcpu_chunk_struct_size __read_mostly
;
131 /* cpus with the lowest and highest unit addresses */
132 static unsigned int pcpu_low_unit_cpu __read_mostly
;
133 static unsigned int pcpu_high_unit_cpu __read_mostly
;
135 /* the address of the first chunk which starts with the kernel static area */
136 void *pcpu_base_addr __read_mostly
;
137 EXPORT_SYMBOL_GPL(pcpu_base_addr
);
139 static const int *pcpu_unit_map __read_mostly
; /* cpu -> unit */
140 const unsigned long *pcpu_unit_offsets __read_mostly
; /* cpu -> unit offset */
142 /* group information, used for vm allocation */
143 static int pcpu_nr_groups __read_mostly
;
144 static const unsigned long *pcpu_group_offsets __read_mostly
;
145 static const size_t *pcpu_group_sizes __read_mostly
;
148 * The first chunk which always exists. Note that unlike other
149 * chunks, this one can be allocated and mapped in several different
150 * ways and thus often doesn't live in the vmalloc area.
152 static struct pcpu_chunk
*pcpu_first_chunk
;
155 * Optional reserved chunk. This chunk reserves part of the first
156 * chunk and serves it for reserved allocations. The amount of
157 * reserved offset is in pcpu_reserved_chunk_limit. When reserved
158 * area doesn't exist, the following variables contain NULL and 0
161 static struct pcpu_chunk
*pcpu_reserved_chunk
;
162 static int pcpu_reserved_chunk_limit
;
164 static DEFINE_SPINLOCK(pcpu_lock
); /* all internal data structures */
165 static DEFINE_MUTEX(pcpu_alloc_mutex
); /* chunk create/destroy, [de]pop */
167 static struct list_head
*pcpu_slot __read_mostly
; /* chunk list slots */
170 * The number of empty populated pages, protected by pcpu_lock. The
171 * reserved chunk doesn't contribute to the count.
173 static int pcpu_nr_empty_pop_pages
;
176 * Balance work is used to populate or destroy chunks asynchronously. We
177 * try to keep the number of populated free pages between
178 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
181 static void pcpu_balance_workfn(struct work_struct
*work
);
182 static DECLARE_WORK(pcpu_balance_work
, pcpu_balance_workfn
);
183 static bool pcpu_async_enabled __read_mostly
;
184 static bool pcpu_atomic_alloc_failed
;
186 static void pcpu_schedule_balance_work(void)
188 if (pcpu_async_enabled
)
189 schedule_work(&pcpu_balance_work
);
192 static bool pcpu_addr_in_first_chunk(void *addr
)
194 void *first_start
= pcpu_first_chunk
->base_addr
;
196 return addr
>= first_start
&& addr
< first_start
+ pcpu_unit_size
;
199 static bool pcpu_addr_in_reserved_chunk(void *addr
)
201 void *first_start
= pcpu_first_chunk
->base_addr
;
203 return addr
>= first_start
&&
204 addr
< first_start
+ pcpu_reserved_chunk_limit
;
207 static int __pcpu_size_to_slot(int size
)
209 int highbit
= fls(size
); /* size is in bytes */
210 return max(highbit
- PCPU_SLOT_BASE_SHIFT
+ 2, 1);
213 static int pcpu_size_to_slot(int size
)
215 if (size
== pcpu_unit_size
)
216 return pcpu_nr_slots
- 1;
217 return __pcpu_size_to_slot(size
);
220 static int pcpu_chunk_slot(const struct pcpu_chunk
*chunk
)
222 if (chunk
->free_size
< sizeof(int) || chunk
->contig_hint
< sizeof(int))
225 return pcpu_size_to_slot(chunk
->free_size
);
228 /* set the pointer to a chunk in a page struct */
229 static void pcpu_set_page_chunk(struct page
*page
, struct pcpu_chunk
*pcpu
)
231 page
->index
= (unsigned long)pcpu
;
234 /* obtain pointer to a chunk from a page struct */
235 static struct pcpu_chunk
*pcpu_get_page_chunk(struct page
*page
)
237 return (struct pcpu_chunk
*)page
->index
;
240 static int __maybe_unused
pcpu_page_idx(unsigned int cpu
, int page_idx
)
242 return pcpu_unit_map
[cpu
] * pcpu_unit_pages
+ page_idx
;
245 static unsigned long pcpu_chunk_addr(struct pcpu_chunk
*chunk
,
246 unsigned int cpu
, int page_idx
)
248 return (unsigned long)chunk
->base_addr
+ pcpu_unit_offsets
[cpu
] +
249 (page_idx
<< PAGE_SHIFT
);
252 static void __maybe_unused
pcpu_next_unpop(struct pcpu_chunk
*chunk
,
253 int *rs
, int *re
, int end
)
255 *rs
= find_next_zero_bit(chunk
->populated
, end
, *rs
);
256 *re
= find_next_bit(chunk
->populated
, end
, *rs
+ 1);
259 static void __maybe_unused
pcpu_next_pop(struct pcpu_chunk
*chunk
,
260 int *rs
, int *re
, int end
)
262 *rs
= find_next_bit(chunk
->populated
, end
, *rs
);
263 *re
= find_next_zero_bit(chunk
->populated
, end
, *rs
+ 1);
267 * (Un)populated page region iterators. Iterate over (un)populated
268 * page regions between @start and @end in @chunk. @rs and @re should
269 * be integer variables and will be set to start and end page index of
270 * the current region.
272 #define pcpu_for_each_unpop_region(chunk, rs, re, start, end) \
273 for ((rs) = (start), pcpu_next_unpop((chunk), &(rs), &(re), (end)); \
275 (rs) = (re) + 1, pcpu_next_unpop((chunk), &(rs), &(re), (end)))
277 #define pcpu_for_each_pop_region(chunk, rs, re, start, end) \
278 for ((rs) = (start), pcpu_next_pop((chunk), &(rs), &(re), (end)); \
280 (rs) = (re) + 1, pcpu_next_pop((chunk), &(rs), &(re), (end)))
283 * pcpu_mem_zalloc - allocate memory
284 * @size: bytes to allocate
286 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
287 * kzalloc() is used; otherwise, vzalloc() is used. The returned
288 * memory is always zeroed.
291 * Does GFP_KERNEL allocation.
294 * Pointer to the allocated area on success, NULL on failure.
296 static void *pcpu_mem_zalloc(size_t size
)
298 if (WARN_ON_ONCE(!slab_is_available()))
301 if (size
<= PAGE_SIZE
)
302 return kzalloc(size
, GFP_KERNEL
);
304 return vzalloc(size
);
308 * pcpu_mem_free - free memory
309 * @ptr: memory to free
311 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
313 static void pcpu_mem_free(void *ptr
)
319 * pcpu_count_occupied_pages - count the number of pages an area occupies
320 * @chunk: chunk of interest
321 * @i: index of the area in question
323 * Count the number of pages chunk's @i'th area occupies. When the area's
324 * start and/or end address isn't aligned to page boundary, the straddled
325 * page is included in the count iff the rest of the page is free.
327 static int pcpu_count_occupied_pages(struct pcpu_chunk
*chunk
, int i
)
329 int off
= chunk
->map
[i
] & ~1;
330 int end
= chunk
->map
[i
+ 1] & ~1;
332 if (!PAGE_ALIGNED(off
) && i
> 0) {
333 int prev
= chunk
->map
[i
- 1];
335 if (!(prev
& 1) && prev
<= round_down(off
, PAGE_SIZE
))
336 off
= round_down(off
, PAGE_SIZE
);
339 if (!PAGE_ALIGNED(end
) && i
+ 1 < chunk
->map_used
) {
340 int next
= chunk
->map
[i
+ 1];
341 int nend
= chunk
->map
[i
+ 2] & ~1;
343 if (!(next
& 1) && nend
>= round_up(end
, PAGE_SIZE
))
344 end
= round_up(end
, PAGE_SIZE
);
347 return max_t(int, PFN_DOWN(end
) - PFN_UP(off
), 0);
351 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
352 * @chunk: chunk of interest
353 * @oslot: the previous slot it was on
355 * This function is called after an allocation or free changed @chunk.
356 * New slot according to the changed state is determined and @chunk is
357 * moved to the slot. Note that the reserved chunk is never put on
363 static void pcpu_chunk_relocate(struct pcpu_chunk
*chunk
, int oslot
)
365 int nslot
= pcpu_chunk_slot(chunk
);
367 if (chunk
!= pcpu_reserved_chunk
&& oslot
!= nslot
) {
369 list_move(&chunk
->list
, &pcpu_slot
[nslot
]);
371 list_move_tail(&chunk
->list
, &pcpu_slot
[nslot
]);
376 * pcpu_need_to_extend - determine whether chunk area map needs to be extended
377 * @chunk: chunk of interest
378 * @is_atomic: the allocation context
380 * Determine whether area map of @chunk needs to be extended. If
381 * @is_atomic, only the amount necessary for a new allocation is
382 * considered; however, async extension is scheduled if the left amount is
383 * low. If !@is_atomic, it aims for more empty space. Combined, this
384 * ensures that the map is likely to have enough available space to
385 * accomodate atomic allocations which can't extend maps directly.
391 * New target map allocation length if extension is necessary, 0
394 static int pcpu_need_to_extend(struct pcpu_chunk
*chunk
, bool is_atomic
)
396 int margin
, new_alloc
;
401 if (chunk
->map_alloc
<
402 chunk
->map_used
+ PCPU_ATOMIC_MAP_MARGIN_LOW
&&
404 schedule_work(&chunk
->map_extend_work
);
406 margin
= PCPU_ATOMIC_MAP_MARGIN_HIGH
;
409 if (chunk
->map_alloc
>= chunk
->map_used
+ margin
)
412 new_alloc
= PCPU_DFL_MAP_ALLOC
;
413 while (new_alloc
< chunk
->map_used
+ margin
)
420 * pcpu_extend_area_map - extend area map of a chunk
421 * @chunk: chunk of interest
422 * @new_alloc: new target allocation length of the area map
424 * Extend area map of @chunk to have @new_alloc entries.
427 * Does GFP_KERNEL allocation. Grabs and releases pcpu_lock.
430 * 0 on success, -errno on failure.
432 static int pcpu_extend_area_map(struct pcpu_chunk
*chunk
, int new_alloc
)
434 int *old
= NULL
, *new = NULL
;
435 size_t old_size
= 0, new_size
= new_alloc
* sizeof(new[0]);
438 new = pcpu_mem_zalloc(new_size
);
442 /* acquire pcpu_lock and switch to new area map */
443 spin_lock_irqsave(&pcpu_lock
, flags
);
445 if (new_alloc
<= chunk
->map_alloc
)
448 old_size
= chunk
->map_alloc
* sizeof(chunk
->map
[0]);
451 memcpy(new, old
, old_size
);
453 chunk
->map_alloc
= new_alloc
;
458 spin_unlock_irqrestore(&pcpu_lock
, flags
);
461 * pcpu_mem_free() might end up calling vfree() which uses
462 * IRQ-unsafe lock and thus can't be called under pcpu_lock.
470 static void pcpu_map_extend_workfn(struct work_struct
*work
)
472 struct pcpu_chunk
*chunk
= container_of(work
, struct pcpu_chunk
,
476 spin_lock_irq(&pcpu_lock
);
477 new_alloc
= pcpu_need_to_extend(chunk
, false);
478 spin_unlock_irq(&pcpu_lock
);
481 pcpu_extend_area_map(chunk
, new_alloc
);
485 * pcpu_fit_in_area - try to fit the requested allocation in a candidate area
486 * @chunk: chunk the candidate area belongs to
487 * @off: the offset to the start of the candidate area
488 * @this_size: the size of the candidate area
489 * @size: the size of the target allocation
490 * @align: the alignment of the target allocation
491 * @pop_only: only allocate from already populated region
493 * We're trying to allocate @size bytes aligned at @align. @chunk's area
494 * at @off sized @this_size is a candidate. This function determines
495 * whether the target allocation fits in the candidate area and returns the
496 * number of bytes to pad after @off. If the target area doesn't fit, -1
499 * If @pop_only is %true, this function only considers the already
500 * populated part of the candidate area.
502 static int pcpu_fit_in_area(struct pcpu_chunk
*chunk
, int off
, int this_size
,
503 int size
, int align
, bool pop_only
)
508 int head
= ALIGN(cand_off
, align
) - off
;
509 int page_start
, page_end
, rs
, re
;
511 if (this_size
< head
+ size
)
518 * If the first unpopulated page is beyond the end of the
519 * allocation, the whole allocation is populated;
520 * otherwise, retry from the end of the unpopulated area.
522 page_start
= PFN_DOWN(head
+ off
);
523 page_end
= PFN_UP(head
+ off
+ size
);
526 pcpu_next_unpop(chunk
, &rs
, &re
, PFN_UP(off
+ this_size
));
529 cand_off
= re
* PAGE_SIZE
;
534 * pcpu_alloc_area - allocate area from a pcpu_chunk
535 * @chunk: chunk of interest
536 * @size: wanted size in bytes
537 * @align: wanted align
538 * @pop_only: allocate only from the populated area
539 * @occ_pages_p: out param for the number of pages the area occupies
541 * Try to allocate @size bytes area aligned at @align from @chunk.
542 * Note that this function only allocates the offset. It doesn't
543 * populate or map the area.
545 * @chunk->map must have at least two free slots.
551 * Allocated offset in @chunk on success, -1 if no matching area is
554 static int pcpu_alloc_area(struct pcpu_chunk
*chunk
, int size
, int align
,
555 bool pop_only
, int *occ_pages_p
)
557 int oslot
= pcpu_chunk_slot(chunk
);
560 bool seen_free
= false;
563 for (i
= chunk
->first_free
, p
= chunk
->map
+ i
; i
< chunk
->map_used
; i
++, p
++) {
571 this_size
= (p
[1] & ~1) - off
;
573 head
= pcpu_fit_in_area(chunk
, off
, this_size
, size
, align
,
577 chunk
->first_free
= i
;
580 max_contig
= max(this_size
, max_contig
);
585 * If head is small or the previous block is free,
586 * merge'em. Note that 'small' is defined as smaller
587 * than sizeof(int), which is very small but isn't too
588 * uncommon for percpu allocations.
590 if (head
&& (head
< sizeof(int) || !(p
[-1] & 1))) {
593 chunk
->free_size
-= head
;
595 max_contig
= max(*p
- p
[-1], max_contig
);
600 /* if tail is small, just keep it around */
601 tail
= this_size
- head
- size
;
602 if (tail
< sizeof(int)) {
604 size
= this_size
- head
;
607 /* split if warranted */
609 int nr_extra
= !!head
+ !!tail
;
611 /* insert new subblocks */
612 memmove(p
+ nr_extra
+ 1, p
+ 1,
613 sizeof(chunk
->map
[0]) * (chunk
->map_used
- i
));
614 chunk
->map_used
+= nr_extra
;
618 chunk
->first_free
= i
;
623 max_contig
= max(head
, max_contig
);
627 max_contig
= max(tail
, max_contig
);
632 chunk
->first_free
= i
+ 1;
634 /* update hint and mark allocated */
635 if (i
+ 1 == chunk
->map_used
)
636 chunk
->contig_hint
= max_contig
; /* fully scanned */
638 chunk
->contig_hint
= max(chunk
->contig_hint
,
641 chunk
->free_size
-= size
;
644 *occ_pages_p
= pcpu_count_occupied_pages(chunk
, i
);
645 pcpu_chunk_relocate(chunk
, oslot
);
649 chunk
->contig_hint
= max_contig
; /* fully scanned */
650 pcpu_chunk_relocate(chunk
, oslot
);
652 /* tell the upper layer that this chunk has no matching area */
657 * pcpu_free_area - free area to a pcpu_chunk
658 * @chunk: chunk of interest
659 * @freeme: offset of area to free
660 * @occ_pages_p: out param for the number of pages the area occupies
662 * Free area starting from @freeme to @chunk. Note that this function
663 * only modifies the allocation map. It doesn't depopulate or unmap
669 static void pcpu_free_area(struct pcpu_chunk
*chunk
, int freeme
,
672 int oslot
= pcpu_chunk_slot(chunk
);
678 freeme
|= 1; /* we are searching for <given offset, in use> pair */
683 unsigned k
= (i
+ j
) / 2;
687 else if (off
> freeme
)
692 BUG_ON(off
!= freeme
);
694 if (i
< chunk
->first_free
)
695 chunk
->first_free
= i
;
699 chunk
->free_size
+= (p
[1] & ~1) - off
;
701 *occ_pages_p
= pcpu_count_occupied_pages(chunk
, i
);
703 /* merge with next? */
706 /* merge with previous? */
707 if (i
> 0 && !(p
[-1] & 1)) {
713 chunk
->map_used
-= to_free
;
714 memmove(p
+ 1, p
+ 1 + to_free
,
715 (chunk
->map_used
- i
) * sizeof(chunk
->map
[0]));
718 chunk
->contig_hint
= max(chunk
->map
[i
+ 1] - chunk
->map
[i
] - 1, chunk
->contig_hint
);
719 pcpu_chunk_relocate(chunk
, oslot
);
722 static struct pcpu_chunk
*pcpu_alloc_chunk(void)
724 struct pcpu_chunk
*chunk
;
726 chunk
= pcpu_mem_zalloc(pcpu_chunk_struct_size
);
730 chunk
->map
= pcpu_mem_zalloc(PCPU_DFL_MAP_ALLOC
*
731 sizeof(chunk
->map
[0]));
733 pcpu_mem_free(chunk
);
737 chunk
->map_alloc
= PCPU_DFL_MAP_ALLOC
;
739 chunk
->map
[1] = pcpu_unit_size
| 1;
742 INIT_LIST_HEAD(&chunk
->list
);
743 INIT_WORK(&chunk
->map_extend_work
, pcpu_map_extend_workfn
);
744 chunk
->free_size
= pcpu_unit_size
;
745 chunk
->contig_hint
= pcpu_unit_size
;
750 static void pcpu_free_chunk(struct pcpu_chunk
*chunk
)
754 pcpu_mem_free(chunk
->map
);
755 pcpu_mem_free(chunk
);
759 * pcpu_chunk_populated - post-population bookkeeping
760 * @chunk: pcpu_chunk which got populated
761 * @page_start: the start page
762 * @page_end: the end page
764 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
765 * the bookkeeping information accordingly. Must be called after each
766 * successful population.
768 static void pcpu_chunk_populated(struct pcpu_chunk
*chunk
,
769 int page_start
, int page_end
)
771 int nr
= page_end
- page_start
;
773 lockdep_assert_held(&pcpu_lock
);
775 bitmap_set(chunk
->populated
, page_start
, nr
);
776 chunk
->nr_populated
+= nr
;
777 pcpu_nr_empty_pop_pages
+= nr
;
781 * pcpu_chunk_depopulated - post-depopulation bookkeeping
782 * @chunk: pcpu_chunk which got depopulated
783 * @page_start: the start page
784 * @page_end: the end page
786 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
787 * Update the bookkeeping information accordingly. Must be called after
788 * each successful depopulation.
790 static void pcpu_chunk_depopulated(struct pcpu_chunk
*chunk
,
791 int page_start
, int page_end
)
793 int nr
= page_end
- page_start
;
795 lockdep_assert_held(&pcpu_lock
);
797 bitmap_clear(chunk
->populated
, page_start
, nr
);
798 chunk
->nr_populated
-= nr
;
799 pcpu_nr_empty_pop_pages
-= nr
;
803 * Chunk management implementation.
805 * To allow different implementations, chunk alloc/free and
806 * [de]population are implemented in a separate file which is pulled
807 * into this file and compiled together. The following functions
808 * should be implemented.
810 * pcpu_populate_chunk - populate the specified range of a chunk
811 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
812 * pcpu_create_chunk - create a new chunk
813 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
814 * pcpu_addr_to_page - translate address to physical address
815 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
817 static int pcpu_populate_chunk(struct pcpu_chunk
*chunk
, int off
, int size
);
818 static void pcpu_depopulate_chunk(struct pcpu_chunk
*chunk
, int off
, int size
);
819 static struct pcpu_chunk
*pcpu_create_chunk(void);
820 static void pcpu_destroy_chunk(struct pcpu_chunk
*chunk
);
821 static struct page
*pcpu_addr_to_page(void *addr
);
822 static int __init
pcpu_verify_alloc_info(const struct pcpu_alloc_info
*ai
);
824 #ifdef CONFIG_NEED_PER_CPU_KM
825 #include "percpu-km.c"
827 #include "percpu-vm.c"
831 * pcpu_chunk_addr_search - determine chunk containing specified address
832 * @addr: address for which the chunk needs to be determined.
835 * The address of the found chunk.
837 static struct pcpu_chunk
*pcpu_chunk_addr_search(void *addr
)
839 /* is it in the first chunk? */
840 if (pcpu_addr_in_first_chunk(addr
)) {
841 /* is it in the reserved area? */
842 if (pcpu_addr_in_reserved_chunk(addr
))
843 return pcpu_reserved_chunk
;
844 return pcpu_first_chunk
;
848 * The address is relative to unit0 which might be unused and
849 * thus unmapped. Offset the address to the unit space of the
850 * current processor before looking it up in the vmalloc
851 * space. Note that any possible cpu id can be used here, so
852 * there's no need to worry about preemption or cpu hotplug.
854 addr
+= pcpu_unit_offsets
[raw_smp_processor_id()];
855 return pcpu_get_page_chunk(pcpu_addr_to_page(addr
));
859 * pcpu_alloc - the percpu allocator
860 * @size: size of area to allocate in bytes
861 * @align: alignment of area (max PAGE_SIZE)
862 * @reserved: allocate from the reserved chunk if available
863 * @gfp: allocation flags
865 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
866 * contain %GFP_KERNEL, the allocation is atomic.
869 * Percpu pointer to the allocated area on success, NULL on failure.
871 static void __percpu
*pcpu_alloc(size_t size
, size_t align
, bool reserved
,
874 static int warn_limit
= 10;
875 struct pcpu_chunk
*chunk
;
877 bool is_atomic
= (gfp
& GFP_KERNEL
) != GFP_KERNEL
;
879 int slot
, off
, new_alloc
, cpu
, ret
;
884 * We want the lowest bit of offset available for in-use/free
885 * indicator, so force >= 16bit alignment and make size even.
887 if (unlikely(align
< 2))
890 size
= ALIGN(size
, 2);
892 if (unlikely(!size
|| size
> PCPU_MIN_UNIT_SIZE
|| align
> PAGE_SIZE
)) {
893 WARN(true, "illegal size (%zu) or align (%zu) for percpu allocation\n",
898 spin_lock_irqsave(&pcpu_lock
, flags
);
900 /* serve reserved allocations from the reserved chunk if available */
901 if (reserved
&& pcpu_reserved_chunk
) {
902 chunk
= pcpu_reserved_chunk
;
904 if (size
> chunk
->contig_hint
) {
905 err
= "alloc from reserved chunk failed";
909 while ((new_alloc
= pcpu_need_to_extend(chunk
, is_atomic
))) {
910 spin_unlock_irqrestore(&pcpu_lock
, flags
);
912 pcpu_extend_area_map(chunk
, new_alloc
) < 0) {
913 err
= "failed to extend area map of reserved chunk";
916 spin_lock_irqsave(&pcpu_lock
, flags
);
919 off
= pcpu_alloc_area(chunk
, size
, align
, is_atomic
,
924 err
= "alloc from reserved chunk failed";
929 /* search through normal chunks */
930 for (slot
= pcpu_size_to_slot(size
); slot
< pcpu_nr_slots
; slot
++) {
931 list_for_each_entry(chunk
, &pcpu_slot
[slot
], list
) {
932 if (size
> chunk
->contig_hint
)
935 new_alloc
= pcpu_need_to_extend(chunk
, is_atomic
);
939 spin_unlock_irqrestore(&pcpu_lock
, flags
);
940 if (pcpu_extend_area_map(chunk
,
942 err
= "failed to extend area map";
945 spin_lock_irqsave(&pcpu_lock
, flags
);
947 * pcpu_lock has been dropped, need to
948 * restart cpu_slot list walking.
953 off
= pcpu_alloc_area(chunk
, size
, align
, is_atomic
,
960 spin_unlock_irqrestore(&pcpu_lock
, flags
);
963 * No space left. Create a new chunk. We don't want multiple
964 * tasks to create chunks simultaneously. Serialize and create iff
965 * there's still no empty chunk after grabbing the mutex.
970 mutex_lock(&pcpu_alloc_mutex
);
972 if (list_empty(&pcpu_slot
[pcpu_nr_slots
- 1])) {
973 chunk
= pcpu_create_chunk();
975 mutex_unlock(&pcpu_alloc_mutex
);
976 err
= "failed to allocate new chunk";
980 spin_lock_irqsave(&pcpu_lock
, flags
);
981 pcpu_chunk_relocate(chunk
, -1);
983 spin_lock_irqsave(&pcpu_lock
, flags
);
986 mutex_unlock(&pcpu_alloc_mutex
);
990 spin_unlock_irqrestore(&pcpu_lock
, flags
);
992 /* populate if not all pages are already there */
994 int page_start
, page_end
, rs
, re
;
996 mutex_lock(&pcpu_alloc_mutex
);
998 page_start
= PFN_DOWN(off
);
999 page_end
= PFN_UP(off
+ size
);
1001 pcpu_for_each_unpop_region(chunk
, rs
, re
, page_start
, page_end
) {
1002 WARN_ON(chunk
->immutable
);
1004 ret
= pcpu_populate_chunk(chunk
, rs
, re
);
1006 spin_lock_irqsave(&pcpu_lock
, flags
);
1008 mutex_unlock(&pcpu_alloc_mutex
);
1009 pcpu_free_area(chunk
, off
, &occ_pages
);
1010 err
= "failed to populate";
1013 pcpu_chunk_populated(chunk
, rs
, re
);
1014 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1017 mutex_unlock(&pcpu_alloc_mutex
);
1020 if (chunk
!= pcpu_reserved_chunk
)
1021 pcpu_nr_empty_pop_pages
-= occ_pages
;
1023 if (pcpu_nr_empty_pop_pages
< PCPU_EMPTY_POP_PAGES_LOW
)
1024 pcpu_schedule_balance_work();
1026 /* clear the areas and return address relative to base address */
1027 for_each_possible_cpu(cpu
)
1028 memset((void *)pcpu_chunk_addr(chunk
, cpu
, 0) + off
, 0, size
);
1030 ptr
= __addr_to_pcpu_ptr(chunk
->base_addr
+ off
);
1031 kmemleak_alloc_percpu(ptr
, size
, gfp
);
1035 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1037 if (!is_atomic
&& warn_limit
) {
1038 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1039 size
, align
, is_atomic
, err
);
1042 pr_info("limit reached, disable warning\n");
1045 /* see the flag handling in pcpu_blance_workfn() */
1046 pcpu_atomic_alloc_failed
= true;
1047 pcpu_schedule_balance_work();
1053 * __alloc_percpu_gfp - allocate dynamic percpu area
1054 * @size: size of area to allocate in bytes
1055 * @align: alignment of area (max PAGE_SIZE)
1056 * @gfp: allocation flags
1058 * Allocate zero-filled percpu area of @size bytes aligned at @align. If
1059 * @gfp doesn't contain %GFP_KERNEL, the allocation doesn't block and can
1060 * be called from any context but is a lot more likely to fail.
1063 * Percpu pointer to the allocated area on success, NULL on failure.
1065 void __percpu
*__alloc_percpu_gfp(size_t size
, size_t align
, gfp_t gfp
)
1067 return pcpu_alloc(size
, align
, false, gfp
);
1069 EXPORT_SYMBOL_GPL(__alloc_percpu_gfp
);
1072 * __alloc_percpu - allocate dynamic percpu area
1073 * @size: size of area to allocate in bytes
1074 * @align: alignment of area (max PAGE_SIZE)
1076 * Equivalent to __alloc_percpu_gfp(size, align, %GFP_KERNEL).
1078 void __percpu
*__alloc_percpu(size_t size
, size_t align
)
1080 return pcpu_alloc(size
, align
, false, GFP_KERNEL
);
1082 EXPORT_SYMBOL_GPL(__alloc_percpu
);
1085 * __alloc_reserved_percpu - allocate reserved percpu area
1086 * @size: size of area to allocate in bytes
1087 * @align: alignment of area (max PAGE_SIZE)
1089 * Allocate zero-filled percpu area of @size bytes aligned at @align
1090 * from reserved percpu area if arch has set it up; otherwise,
1091 * allocation is served from the same dynamic area. Might sleep.
1092 * Might trigger writeouts.
1095 * Does GFP_KERNEL allocation.
1098 * Percpu pointer to the allocated area on success, NULL on failure.
1100 void __percpu
*__alloc_reserved_percpu(size_t size
, size_t align
)
1102 return pcpu_alloc(size
, align
, true, GFP_KERNEL
);
1106 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
1109 * Reclaim all fully free chunks except for the first one.
1111 static void pcpu_balance_workfn(struct work_struct
*work
)
1114 struct list_head
*free_head
= &pcpu_slot
[pcpu_nr_slots
- 1];
1115 struct pcpu_chunk
*chunk
, *next
;
1116 int slot
, nr_to_pop
, ret
;
1119 * There's no reason to keep around multiple unused chunks and VM
1120 * areas can be scarce. Destroy all free chunks except for one.
1122 mutex_lock(&pcpu_alloc_mutex
);
1123 spin_lock_irq(&pcpu_lock
);
1125 list_for_each_entry_safe(chunk
, next
, free_head
, list
) {
1126 WARN_ON(chunk
->immutable
);
1128 /* spare the first one */
1129 if (chunk
== list_first_entry(free_head
, struct pcpu_chunk
, list
))
1132 list_move(&chunk
->list
, &to_free
);
1135 spin_unlock_irq(&pcpu_lock
);
1137 list_for_each_entry_safe(chunk
, next
, &to_free
, list
) {
1140 pcpu_for_each_pop_region(chunk
, rs
, re
, 0, pcpu_unit_pages
) {
1141 pcpu_depopulate_chunk(chunk
, rs
, re
);
1142 spin_lock_irq(&pcpu_lock
);
1143 pcpu_chunk_depopulated(chunk
, rs
, re
);
1144 spin_unlock_irq(&pcpu_lock
);
1146 pcpu_destroy_chunk(chunk
);
1150 * Ensure there are certain number of free populated pages for
1151 * atomic allocs. Fill up from the most packed so that atomic
1152 * allocs don't increase fragmentation. If atomic allocation
1153 * failed previously, always populate the maximum amount. This
1154 * should prevent atomic allocs larger than PAGE_SIZE from keeping
1155 * failing indefinitely; however, large atomic allocs are not
1156 * something we support properly and can be highly unreliable and
1160 if (pcpu_atomic_alloc_failed
) {
1161 nr_to_pop
= PCPU_EMPTY_POP_PAGES_HIGH
;
1162 /* best effort anyway, don't worry about synchronization */
1163 pcpu_atomic_alloc_failed
= false;
1165 nr_to_pop
= clamp(PCPU_EMPTY_POP_PAGES_HIGH
-
1166 pcpu_nr_empty_pop_pages
,
1167 0, PCPU_EMPTY_POP_PAGES_HIGH
);
1170 for (slot
= pcpu_size_to_slot(PAGE_SIZE
); slot
< pcpu_nr_slots
; slot
++) {
1171 int nr_unpop
= 0, rs
, re
;
1176 spin_lock_irq(&pcpu_lock
);
1177 list_for_each_entry(chunk
, &pcpu_slot
[slot
], list
) {
1178 nr_unpop
= pcpu_unit_pages
- chunk
->nr_populated
;
1182 spin_unlock_irq(&pcpu_lock
);
1187 /* @chunk can't go away while pcpu_alloc_mutex is held */
1188 pcpu_for_each_unpop_region(chunk
, rs
, re
, 0, pcpu_unit_pages
) {
1189 int nr
= min(re
- rs
, nr_to_pop
);
1191 ret
= pcpu_populate_chunk(chunk
, rs
, rs
+ nr
);
1194 spin_lock_irq(&pcpu_lock
);
1195 pcpu_chunk_populated(chunk
, rs
, rs
+ nr
);
1196 spin_unlock_irq(&pcpu_lock
);
1207 /* ran out of chunks to populate, create a new one and retry */
1208 chunk
= pcpu_create_chunk();
1210 spin_lock_irq(&pcpu_lock
);
1211 pcpu_chunk_relocate(chunk
, -1);
1212 spin_unlock_irq(&pcpu_lock
);
1217 mutex_unlock(&pcpu_alloc_mutex
);
1221 * free_percpu - free percpu area
1222 * @ptr: pointer to area to free
1224 * Free percpu area @ptr.
1227 * Can be called from atomic context.
1229 void free_percpu(void __percpu
*ptr
)
1232 struct pcpu_chunk
*chunk
;
1233 unsigned long flags
;
1239 kmemleak_free_percpu(ptr
);
1241 addr
= __pcpu_ptr_to_addr(ptr
);
1243 spin_lock_irqsave(&pcpu_lock
, flags
);
1245 chunk
= pcpu_chunk_addr_search(addr
);
1246 off
= addr
- chunk
->base_addr
;
1248 pcpu_free_area(chunk
, off
, &occ_pages
);
1250 if (chunk
!= pcpu_reserved_chunk
)
1251 pcpu_nr_empty_pop_pages
+= occ_pages
;
1253 /* if there are more than one fully free chunks, wake up grim reaper */
1254 if (chunk
->free_size
== pcpu_unit_size
) {
1255 struct pcpu_chunk
*pos
;
1257 list_for_each_entry(pos
, &pcpu_slot
[pcpu_nr_slots
- 1], list
)
1259 pcpu_schedule_balance_work();
1264 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1266 EXPORT_SYMBOL_GPL(free_percpu
);
1269 * is_kernel_percpu_address - test whether address is from static percpu area
1270 * @addr: address to test
1272 * Test whether @addr belongs to in-kernel static percpu area. Module
1273 * static percpu areas are not considered. For those, use
1274 * is_module_percpu_address().
1277 * %true if @addr is from in-kernel static percpu area, %false otherwise.
1279 bool is_kernel_percpu_address(unsigned long addr
)
1282 const size_t static_size
= __per_cpu_end
- __per_cpu_start
;
1283 void __percpu
*base
= __addr_to_pcpu_ptr(pcpu_base_addr
);
1286 for_each_possible_cpu(cpu
) {
1287 void *start
= per_cpu_ptr(base
, cpu
);
1289 if ((void *)addr
>= start
&& (void *)addr
< start
+ static_size
)
1293 /* on UP, can't distinguish from other static vars, always false */
1298 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
1299 * @addr: the address to be converted to physical address
1301 * Given @addr which is dereferenceable address obtained via one of
1302 * percpu access macros, this function translates it into its physical
1303 * address. The caller is responsible for ensuring @addr stays valid
1304 * until this function finishes.
1306 * percpu allocator has special setup for the first chunk, which currently
1307 * supports either embedding in linear address space or vmalloc mapping,
1308 * and, from the second one, the backing allocator (currently either vm or
1309 * km) provides translation.
1311 * The addr can be translated simply without checking if it falls into the
1312 * first chunk. But the current code reflects better how percpu allocator
1313 * actually works, and the verification can discover both bugs in percpu
1314 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
1318 * The physical address for @addr.
1320 phys_addr_t
per_cpu_ptr_to_phys(void *addr
)
1322 void __percpu
*base
= __addr_to_pcpu_ptr(pcpu_base_addr
);
1323 bool in_first_chunk
= false;
1324 unsigned long first_low
, first_high
;
1328 * The following test on unit_low/high isn't strictly
1329 * necessary but will speed up lookups of addresses which
1330 * aren't in the first chunk.
1332 first_low
= pcpu_chunk_addr(pcpu_first_chunk
, pcpu_low_unit_cpu
, 0);
1333 first_high
= pcpu_chunk_addr(pcpu_first_chunk
, pcpu_high_unit_cpu
,
1335 if ((unsigned long)addr
>= first_low
&&
1336 (unsigned long)addr
< first_high
) {
1337 for_each_possible_cpu(cpu
) {
1338 void *start
= per_cpu_ptr(base
, cpu
);
1340 if (addr
>= start
&& addr
< start
+ pcpu_unit_size
) {
1341 in_first_chunk
= true;
1347 if (in_first_chunk
) {
1348 if (!is_vmalloc_addr(addr
))
1351 return page_to_phys(vmalloc_to_page(addr
)) +
1352 offset_in_page(addr
);
1354 return page_to_phys(pcpu_addr_to_page(addr
)) +
1355 offset_in_page(addr
);
1359 * pcpu_alloc_alloc_info - allocate percpu allocation info
1360 * @nr_groups: the number of groups
1361 * @nr_units: the number of units
1363 * Allocate ai which is large enough for @nr_groups groups containing
1364 * @nr_units units. The returned ai's groups[0].cpu_map points to the
1365 * cpu_map array which is long enough for @nr_units and filled with
1366 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
1367 * pointer of other groups.
1370 * Pointer to the allocated pcpu_alloc_info on success, NULL on
1373 struct pcpu_alloc_info
* __init
pcpu_alloc_alloc_info(int nr_groups
,
1376 struct pcpu_alloc_info
*ai
;
1377 size_t base_size
, ai_size
;
1381 base_size
= ALIGN(sizeof(*ai
) + nr_groups
* sizeof(ai
->groups
[0]),
1382 __alignof__(ai
->groups
[0].cpu_map
[0]));
1383 ai_size
= base_size
+ nr_units
* sizeof(ai
->groups
[0].cpu_map
[0]);
1385 ptr
= memblock_virt_alloc_nopanic(PFN_ALIGN(ai_size
), 0);
1391 ai
->groups
[0].cpu_map
= ptr
;
1393 for (unit
= 0; unit
< nr_units
; unit
++)
1394 ai
->groups
[0].cpu_map
[unit
] = NR_CPUS
;
1396 ai
->nr_groups
= nr_groups
;
1397 ai
->__ai_size
= PFN_ALIGN(ai_size
);
1403 * pcpu_free_alloc_info - free percpu allocation info
1404 * @ai: pcpu_alloc_info to free
1406 * Free @ai which was allocated by pcpu_alloc_alloc_info().
1408 void __init
pcpu_free_alloc_info(struct pcpu_alloc_info
*ai
)
1410 memblock_free_early(__pa(ai
), ai
->__ai_size
);
1414 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
1416 * @ai: allocation info to dump
1418 * Print out information about @ai using loglevel @lvl.
1420 static void pcpu_dump_alloc_info(const char *lvl
,
1421 const struct pcpu_alloc_info
*ai
)
1423 int group_width
= 1, cpu_width
= 1, width
;
1424 char empty_str
[] = "--------";
1425 int alloc
= 0, alloc_end
= 0;
1427 int upa
, apl
; /* units per alloc, allocs per line */
1433 v
= num_possible_cpus();
1436 empty_str
[min_t(int, cpu_width
, sizeof(empty_str
) - 1)] = '\0';
1438 upa
= ai
->alloc_size
/ ai
->unit_size
;
1439 width
= upa
* (cpu_width
+ 1) + group_width
+ 3;
1440 apl
= rounddown_pow_of_two(max(60 / width
, 1));
1442 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
1443 lvl
, ai
->static_size
, ai
->reserved_size
, ai
->dyn_size
,
1444 ai
->unit_size
, ai
->alloc_size
/ ai
->atom_size
, ai
->atom_size
);
1446 for (group
= 0; group
< ai
->nr_groups
; group
++) {
1447 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1448 int unit
= 0, unit_end
= 0;
1450 BUG_ON(gi
->nr_units
% upa
);
1451 for (alloc_end
+= gi
->nr_units
/ upa
;
1452 alloc
< alloc_end
; alloc
++) {
1453 if (!(alloc
% apl
)) {
1455 printk("%spcpu-alloc: ", lvl
);
1457 pr_cont("[%0*d] ", group_width
, group
);
1459 for (unit_end
+= upa
; unit
< unit_end
; unit
++)
1460 if (gi
->cpu_map
[unit
] != NR_CPUS
)
1462 cpu_width
, gi
->cpu_map
[unit
]);
1464 pr_cont("%s ", empty_str
);
1471 * pcpu_setup_first_chunk - initialize the first percpu chunk
1472 * @ai: pcpu_alloc_info describing how to percpu area is shaped
1473 * @base_addr: mapped address
1475 * Initialize the first percpu chunk which contains the kernel static
1476 * perpcu area. This function is to be called from arch percpu area
1479 * @ai contains all information necessary to initialize the first
1480 * chunk and prime the dynamic percpu allocator.
1482 * @ai->static_size is the size of static percpu area.
1484 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
1485 * reserve after the static area in the first chunk. This reserves
1486 * the first chunk such that it's available only through reserved
1487 * percpu allocation. This is primarily used to serve module percpu
1488 * static areas on architectures where the addressing model has
1489 * limited offset range for symbol relocations to guarantee module
1490 * percpu symbols fall inside the relocatable range.
1492 * @ai->dyn_size determines the number of bytes available for dynamic
1493 * allocation in the first chunk. The area between @ai->static_size +
1494 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
1496 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
1497 * and equal to or larger than @ai->static_size + @ai->reserved_size +
1500 * @ai->atom_size is the allocation atom size and used as alignment
1503 * @ai->alloc_size is the allocation size and always multiple of
1504 * @ai->atom_size. This is larger than @ai->atom_size if
1505 * @ai->unit_size is larger than @ai->atom_size.
1507 * @ai->nr_groups and @ai->groups describe virtual memory layout of
1508 * percpu areas. Units which should be colocated are put into the
1509 * same group. Dynamic VM areas will be allocated according to these
1510 * groupings. If @ai->nr_groups is zero, a single group containing
1511 * all units is assumed.
1513 * The caller should have mapped the first chunk at @base_addr and
1514 * copied static data to each unit.
1516 * If the first chunk ends up with both reserved and dynamic areas, it
1517 * is served by two chunks - one to serve the core static and reserved
1518 * areas and the other for the dynamic area. They share the same vm
1519 * and page map but uses different area allocation map to stay away
1520 * from each other. The latter chunk is circulated in the chunk slots
1521 * and available for dynamic allocation like any other chunks.
1524 * 0 on success, -errno on failure.
1526 int __init
pcpu_setup_first_chunk(const struct pcpu_alloc_info
*ai
,
1529 static int smap
[PERCPU_DYNAMIC_EARLY_SLOTS
] __initdata
;
1530 static int dmap
[PERCPU_DYNAMIC_EARLY_SLOTS
] __initdata
;
1531 size_t dyn_size
= ai
->dyn_size
;
1532 size_t size_sum
= ai
->static_size
+ ai
->reserved_size
+ dyn_size
;
1533 struct pcpu_chunk
*schunk
, *dchunk
= NULL
;
1534 unsigned long *group_offsets
;
1535 size_t *group_sizes
;
1536 unsigned long *unit_off
;
1541 #define PCPU_SETUP_BUG_ON(cond) do { \
1542 if (unlikely(cond)) { \
1543 pr_emerg("failed to initialize, %s\n", #cond); \
1544 pr_emerg("cpu_possible_mask=%*pb\n", \
1545 cpumask_pr_args(cpu_possible_mask)); \
1546 pcpu_dump_alloc_info(KERN_EMERG, ai); \
1552 PCPU_SETUP_BUG_ON(ai
->nr_groups
<= 0);
1554 PCPU_SETUP_BUG_ON(!ai
->static_size
);
1555 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start
));
1557 PCPU_SETUP_BUG_ON(!base_addr
);
1558 PCPU_SETUP_BUG_ON(offset_in_page(base_addr
));
1559 PCPU_SETUP_BUG_ON(ai
->unit_size
< size_sum
);
1560 PCPU_SETUP_BUG_ON(offset_in_page(ai
->unit_size
));
1561 PCPU_SETUP_BUG_ON(ai
->unit_size
< PCPU_MIN_UNIT_SIZE
);
1562 PCPU_SETUP_BUG_ON(ai
->dyn_size
< PERCPU_DYNAMIC_EARLY_SIZE
);
1563 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai
) < 0);
1565 /* process group information and build config tables accordingly */
1566 group_offsets
= memblock_virt_alloc(ai
->nr_groups
*
1567 sizeof(group_offsets
[0]), 0);
1568 group_sizes
= memblock_virt_alloc(ai
->nr_groups
*
1569 sizeof(group_sizes
[0]), 0);
1570 unit_map
= memblock_virt_alloc(nr_cpu_ids
* sizeof(unit_map
[0]), 0);
1571 unit_off
= memblock_virt_alloc(nr_cpu_ids
* sizeof(unit_off
[0]), 0);
1573 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
++)
1574 unit_map
[cpu
] = UINT_MAX
;
1576 pcpu_low_unit_cpu
= NR_CPUS
;
1577 pcpu_high_unit_cpu
= NR_CPUS
;
1579 for (group
= 0, unit
= 0; group
< ai
->nr_groups
; group
++, unit
+= i
) {
1580 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1582 group_offsets
[group
] = gi
->base_offset
;
1583 group_sizes
[group
] = gi
->nr_units
* ai
->unit_size
;
1585 for (i
= 0; i
< gi
->nr_units
; i
++) {
1586 cpu
= gi
->cpu_map
[i
];
1590 PCPU_SETUP_BUG_ON(cpu
>= nr_cpu_ids
);
1591 PCPU_SETUP_BUG_ON(!cpu_possible(cpu
));
1592 PCPU_SETUP_BUG_ON(unit_map
[cpu
] != UINT_MAX
);
1594 unit_map
[cpu
] = unit
+ i
;
1595 unit_off
[cpu
] = gi
->base_offset
+ i
* ai
->unit_size
;
1597 /* determine low/high unit_cpu */
1598 if (pcpu_low_unit_cpu
== NR_CPUS
||
1599 unit_off
[cpu
] < unit_off
[pcpu_low_unit_cpu
])
1600 pcpu_low_unit_cpu
= cpu
;
1601 if (pcpu_high_unit_cpu
== NR_CPUS
||
1602 unit_off
[cpu
] > unit_off
[pcpu_high_unit_cpu
])
1603 pcpu_high_unit_cpu
= cpu
;
1606 pcpu_nr_units
= unit
;
1608 for_each_possible_cpu(cpu
)
1609 PCPU_SETUP_BUG_ON(unit_map
[cpu
] == UINT_MAX
);
1611 /* we're done parsing the input, undefine BUG macro and dump config */
1612 #undef PCPU_SETUP_BUG_ON
1613 pcpu_dump_alloc_info(KERN_DEBUG
, ai
);
1615 pcpu_nr_groups
= ai
->nr_groups
;
1616 pcpu_group_offsets
= group_offsets
;
1617 pcpu_group_sizes
= group_sizes
;
1618 pcpu_unit_map
= unit_map
;
1619 pcpu_unit_offsets
= unit_off
;
1621 /* determine basic parameters */
1622 pcpu_unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
1623 pcpu_unit_size
= pcpu_unit_pages
<< PAGE_SHIFT
;
1624 pcpu_atom_size
= ai
->atom_size
;
1625 pcpu_chunk_struct_size
= sizeof(struct pcpu_chunk
) +
1626 BITS_TO_LONGS(pcpu_unit_pages
) * sizeof(unsigned long);
1629 * Allocate chunk slots. The additional last slot is for
1632 pcpu_nr_slots
= __pcpu_size_to_slot(pcpu_unit_size
) + 2;
1633 pcpu_slot
= memblock_virt_alloc(
1634 pcpu_nr_slots
* sizeof(pcpu_slot
[0]), 0);
1635 for (i
= 0; i
< pcpu_nr_slots
; i
++)
1636 INIT_LIST_HEAD(&pcpu_slot
[i
]);
1639 * Initialize static chunk. If reserved_size is zero, the
1640 * static chunk covers static area + dynamic allocation area
1641 * in the first chunk. If reserved_size is not zero, it
1642 * covers static area + reserved area (mostly used for module
1643 * static percpu allocation).
1645 schunk
= memblock_virt_alloc(pcpu_chunk_struct_size
, 0);
1646 INIT_LIST_HEAD(&schunk
->list
);
1647 INIT_WORK(&schunk
->map_extend_work
, pcpu_map_extend_workfn
);
1648 schunk
->base_addr
= base_addr
;
1650 schunk
->map_alloc
= ARRAY_SIZE(smap
);
1651 schunk
->immutable
= true;
1652 bitmap_fill(schunk
->populated
, pcpu_unit_pages
);
1653 schunk
->nr_populated
= pcpu_unit_pages
;
1655 if (ai
->reserved_size
) {
1656 schunk
->free_size
= ai
->reserved_size
;
1657 pcpu_reserved_chunk
= schunk
;
1658 pcpu_reserved_chunk_limit
= ai
->static_size
+ ai
->reserved_size
;
1660 schunk
->free_size
= dyn_size
;
1661 dyn_size
= 0; /* dynamic area covered */
1663 schunk
->contig_hint
= schunk
->free_size
;
1666 schunk
->map
[1] = ai
->static_size
;
1667 schunk
->map_used
= 1;
1668 if (schunk
->free_size
)
1669 schunk
->map
[++schunk
->map_used
] = ai
->static_size
+ schunk
->free_size
;
1670 schunk
->map
[schunk
->map_used
] |= 1;
1672 /* init dynamic chunk if necessary */
1674 dchunk
= memblock_virt_alloc(pcpu_chunk_struct_size
, 0);
1675 INIT_LIST_HEAD(&dchunk
->list
);
1676 INIT_WORK(&dchunk
->map_extend_work
, pcpu_map_extend_workfn
);
1677 dchunk
->base_addr
= base_addr
;
1679 dchunk
->map_alloc
= ARRAY_SIZE(dmap
);
1680 dchunk
->immutable
= true;
1681 bitmap_fill(dchunk
->populated
, pcpu_unit_pages
);
1682 dchunk
->nr_populated
= pcpu_unit_pages
;
1684 dchunk
->contig_hint
= dchunk
->free_size
= dyn_size
;
1686 dchunk
->map
[1] = pcpu_reserved_chunk_limit
;
1687 dchunk
->map
[2] = (pcpu_reserved_chunk_limit
+ dchunk
->free_size
) | 1;
1688 dchunk
->map_used
= 2;
1691 /* link the first chunk in */
1692 pcpu_first_chunk
= dchunk
?: schunk
;
1693 pcpu_nr_empty_pop_pages
+=
1694 pcpu_count_occupied_pages(pcpu_first_chunk
, 1);
1695 pcpu_chunk_relocate(pcpu_first_chunk
, -1);
1698 pcpu_base_addr
= base_addr
;
1704 const char * const pcpu_fc_names
[PCPU_FC_NR
] __initconst
= {
1705 [PCPU_FC_AUTO
] = "auto",
1706 [PCPU_FC_EMBED
] = "embed",
1707 [PCPU_FC_PAGE
] = "page",
1710 enum pcpu_fc pcpu_chosen_fc __initdata
= PCPU_FC_AUTO
;
1712 static int __init
percpu_alloc_setup(char *str
)
1719 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
1720 else if (!strcmp(str
, "embed"))
1721 pcpu_chosen_fc
= PCPU_FC_EMBED
;
1723 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
1724 else if (!strcmp(str
, "page"))
1725 pcpu_chosen_fc
= PCPU_FC_PAGE
;
1728 pr_warn("unknown allocator %s specified\n", str
);
1732 early_param("percpu_alloc", percpu_alloc_setup
);
1735 * pcpu_embed_first_chunk() is used by the generic percpu setup.
1736 * Build it if needed by the arch config or the generic setup is going
1739 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
1740 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
1741 #define BUILD_EMBED_FIRST_CHUNK
1744 /* build pcpu_page_first_chunk() iff needed by the arch config */
1745 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
1746 #define BUILD_PAGE_FIRST_CHUNK
1749 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
1750 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
1752 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
1753 * @reserved_size: the size of reserved percpu area in bytes
1754 * @dyn_size: minimum free size for dynamic allocation in bytes
1755 * @atom_size: allocation atom size
1756 * @cpu_distance_fn: callback to determine distance between cpus, optional
1758 * This function determines grouping of units, their mappings to cpus
1759 * and other parameters considering needed percpu size, allocation
1760 * atom size and distances between CPUs.
1762 * Groups are always multiples of atom size and CPUs which are of
1763 * LOCAL_DISTANCE both ways are grouped together and share space for
1764 * units in the same group. The returned configuration is guaranteed
1765 * to have CPUs on different nodes on different groups and >=75% usage
1766 * of allocated virtual address space.
1769 * On success, pointer to the new allocation_info is returned. On
1770 * failure, ERR_PTR value is returned.
1772 static struct pcpu_alloc_info
* __init
pcpu_build_alloc_info(
1773 size_t reserved_size
, size_t dyn_size
,
1775 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
)
1777 static int group_map
[NR_CPUS
] __initdata
;
1778 static int group_cnt
[NR_CPUS
] __initdata
;
1779 const size_t static_size
= __per_cpu_end
- __per_cpu_start
;
1780 int nr_groups
= 1, nr_units
= 0;
1781 size_t size_sum
, min_unit_size
, alloc_size
;
1782 int upa
, max_upa
, uninitialized_var(best_upa
); /* units_per_alloc */
1783 int last_allocs
, group
, unit
;
1784 unsigned int cpu
, tcpu
;
1785 struct pcpu_alloc_info
*ai
;
1786 unsigned int *cpu_map
;
1788 /* this function may be called multiple times */
1789 memset(group_map
, 0, sizeof(group_map
));
1790 memset(group_cnt
, 0, sizeof(group_cnt
));
1792 /* calculate size_sum and ensure dyn_size is enough for early alloc */
1793 size_sum
= PFN_ALIGN(static_size
+ reserved_size
+
1794 max_t(size_t, dyn_size
, PERCPU_DYNAMIC_EARLY_SIZE
));
1795 dyn_size
= size_sum
- static_size
- reserved_size
;
1798 * Determine min_unit_size, alloc_size and max_upa such that
1799 * alloc_size is multiple of atom_size and is the smallest
1800 * which can accommodate 4k aligned segments which are equal to
1801 * or larger than min_unit_size.
1803 min_unit_size
= max_t(size_t, size_sum
, PCPU_MIN_UNIT_SIZE
);
1805 alloc_size
= roundup(min_unit_size
, atom_size
);
1806 upa
= alloc_size
/ min_unit_size
;
1807 while (alloc_size
% upa
|| (offset_in_page(alloc_size
/ upa
)))
1811 /* group cpus according to their proximity */
1812 for_each_possible_cpu(cpu
) {
1815 for_each_possible_cpu(tcpu
) {
1818 if (group_map
[tcpu
] == group
&& cpu_distance_fn
&&
1819 (cpu_distance_fn(cpu
, tcpu
) > LOCAL_DISTANCE
||
1820 cpu_distance_fn(tcpu
, cpu
) > LOCAL_DISTANCE
)) {
1822 nr_groups
= max(nr_groups
, group
+ 1);
1826 group_map
[cpu
] = group
;
1831 * Expand unit size until address space usage goes over 75%
1832 * and then as much as possible without using more address
1835 last_allocs
= INT_MAX
;
1836 for (upa
= max_upa
; upa
; upa
--) {
1837 int allocs
= 0, wasted
= 0;
1839 if (alloc_size
% upa
|| (offset_in_page(alloc_size
/ upa
)))
1842 for (group
= 0; group
< nr_groups
; group
++) {
1843 int this_allocs
= DIV_ROUND_UP(group_cnt
[group
], upa
);
1844 allocs
+= this_allocs
;
1845 wasted
+= this_allocs
* upa
- group_cnt
[group
];
1849 * Don't accept if wastage is over 1/3. The
1850 * greater-than comparison ensures upa==1 always
1851 * passes the following check.
1853 if (wasted
> num_possible_cpus() / 3)
1856 /* and then don't consume more memory */
1857 if (allocs
> last_allocs
)
1859 last_allocs
= allocs
;
1864 /* allocate and fill alloc_info */
1865 for (group
= 0; group
< nr_groups
; group
++)
1866 nr_units
+= roundup(group_cnt
[group
], upa
);
1868 ai
= pcpu_alloc_alloc_info(nr_groups
, nr_units
);
1870 return ERR_PTR(-ENOMEM
);
1871 cpu_map
= ai
->groups
[0].cpu_map
;
1873 for (group
= 0; group
< nr_groups
; group
++) {
1874 ai
->groups
[group
].cpu_map
= cpu_map
;
1875 cpu_map
+= roundup(group_cnt
[group
], upa
);
1878 ai
->static_size
= static_size
;
1879 ai
->reserved_size
= reserved_size
;
1880 ai
->dyn_size
= dyn_size
;
1881 ai
->unit_size
= alloc_size
/ upa
;
1882 ai
->atom_size
= atom_size
;
1883 ai
->alloc_size
= alloc_size
;
1885 for (group
= 0, unit
= 0; group_cnt
[group
]; group
++) {
1886 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1889 * Initialize base_offset as if all groups are located
1890 * back-to-back. The caller should update this to
1891 * reflect actual allocation.
1893 gi
->base_offset
= unit
* ai
->unit_size
;
1895 for_each_possible_cpu(cpu
)
1896 if (group_map
[cpu
] == group
)
1897 gi
->cpu_map
[gi
->nr_units
++] = cpu
;
1898 gi
->nr_units
= roundup(gi
->nr_units
, upa
);
1899 unit
+= gi
->nr_units
;
1901 BUG_ON(unit
!= nr_units
);
1905 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
1907 #if defined(BUILD_EMBED_FIRST_CHUNK)
1909 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
1910 * @reserved_size: the size of reserved percpu area in bytes
1911 * @dyn_size: minimum free size for dynamic allocation in bytes
1912 * @atom_size: allocation atom size
1913 * @cpu_distance_fn: callback to determine distance between cpus, optional
1914 * @alloc_fn: function to allocate percpu page
1915 * @free_fn: function to free percpu page
1917 * This is a helper to ease setting up embedded first percpu chunk and
1918 * can be called where pcpu_setup_first_chunk() is expected.
1920 * If this function is used to setup the first chunk, it is allocated
1921 * by calling @alloc_fn and used as-is without being mapped into
1922 * vmalloc area. Allocations are always whole multiples of @atom_size
1923 * aligned to @atom_size.
1925 * This enables the first chunk to piggy back on the linear physical
1926 * mapping which often uses larger page size. Please note that this
1927 * can result in very sparse cpu->unit mapping on NUMA machines thus
1928 * requiring large vmalloc address space. Don't use this allocator if
1929 * vmalloc space is not orders of magnitude larger than distances
1930 * between node memory addresses (ie. 32bit NUMA machines).
1932 * @dyn_size specifies the minimum dynamic area size.
1934 * If the needed size is smaller than the minimum or specified unit
1935 * size, the leftover is returned using @free_fn.
1938 * 0 on success, -errno on failure.
1940 int __init
pcpu_embed_first_chunk(size_t reserved_size
, size_t dyn_size
,
1942 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
,
1943 pcpu_fc_alloc_fn_t alloc_fn
,
1944 pcpu_fc_free_fn_t free_fn
)
1946 void *base
= (void *)ULONG_MAX
;
1947 void **areas
= NULL
;
1948 struct pcpu_alloc_info
*ai
;
1949 size_t size_sum
, areas_size
, max_distance
;
1952 ai
= pcpu_build_alloc_info(reserved_size
, dyn_size
, atom_size
,
1957 size_sum
= ai
->static_size
+ ai
->reserved_size
+ ai
->dyn_size
;
1958 areas_size
= PFN_ALIGN(ai
->nr_groups
* sizeof(void *));
1960 areas
= memblock_virt_alloc_nopanic(areas_size
, 0);
1966 /* allocate, copy and determine base address */
1967 for (group
= 0; group
< ai
->nr_groups
; group
++) {
1968 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1969 unsigned int cpu
= NR_CPUS
;
1972 for (i
= 0; i
< gi
->nr_units
&& cpu
== NR_CPUS
; i
++)
1973 cpu
= gi
->cpu_map
[i
];
1974 BUG_ON(cpu
== NR_CPUS
);
1976 /* allocate space for the whole group */
1977 ptr
= alloc_fn(cpu
, gi
->nr_units
* ai
->unit_size
, atom_size
);
1980 goto out_free_areas
;
1982 /* kmemleak tracks the percpu allocations separately */
1986 base
= min(ptr
, base
);
1990 * Copy data and free unused parts. This should happen after all
1991 * allocations are complete; otherwise, we may end up with
1992 * overlapping groups.
1994 for (group
= 0; group
< ai
->nr_groups
; group
++) {
1995 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
1996 void *ptr
= areas
[group
];
1998 for (i
= 0; i
< gi
->nr_units
; i
++, ptr
+= ai
->unit_size
) {
1999 if (gi
->cpu_map
[i
] == NR_CPUS
) {
2000 /* unused unit, free whole */
2001 free_fn(ptr
, ai
->unit_size
);
2004 /* copy and return the unused part */
2005 memcpy(ptr
, __per_cpu_load
, ai
->static_size
);
2006 free_fn(ptr
+ size_sum
, ai
->unit_size
- size_sum
);
2010 /* base address is now known, determine group base offsets */
2012 for (group
= 0; group
< ai
->nr_groups
; group
++) {
2013 ai
->groups
[group
].base_offset
= areas
[group
] - base
;
2014 max_distance
= max_t(size_t, max_distance
,
2015 ai
->groups
[group
].base_offset
);
2017 max_distance
+= ai
->unit_size
;
2019 /* warn if maximum distance is further than 75% of vmalloc space */
2020 if (max_distance
> VMALLOC_TOTAL
* 3 / 4) {
2021 pr_warn("max_distance=0x%zx too large for vmalloc space 0x%lx\n",
2022 max_distance
, VMALLOC_TOTAL
);
2023 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2024 /* and fail if we have fallback */
2030 pr_info("Embedded %zu pages/cpu @%p s%zu r%zu d%zu u%zu\n",
2031 PFN_DOWN(size_sum
), base
, ai
->static_size
, ai
->reserved_size
,
2032 ai
->dyn_size
, ai
->unit_size
);
2034 rc
= pcpu_setup_first_chunk(ai
, base
);
2038 for (group
= 0; group
< ai
->nr_groups
; group
++)
2040 free_fn(areas
[group
],
2041 ai
->groups
[group
].nr_units
* ai
->unit_size
);
2043 pcpu_free_alloc_info(ai
);
2045 memblock_free_early(__pa(areas
), areas_size
);
2048 #endif /* BUILD_EMBED_FIRST_CHUNK */
2050 #ifdef BUILD_PAGE_FIRST_CHUNK
2052 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
2053 * @reserved_size: the size of reserved percpu area in bytes
2054 * @alloc_fn: function to allocate percpu page, always called with PAGE_SIZE
2055 * @free_fn: function to free percpu page, always called with PAGE_SIZE
2056 * @populate_pte_fn: function to populate pte
2058 * This is a helper to ease setting up page-remapped first percpu
2059 * chunk and can be called where pcpu_setup_first_chunk() is expected.
2061 * This is the basic allocator. Static percpu area is allocated
2062 * page-by-page into vmalloc area.
2065 * 0 on success, -errno on failure.
2067 int __init
pcpu_page_first_chunk(size_t reserved_size
,
2068 pcpu_fc_alloc_fn_t alloc_fn
,
2069 pcpu_fc_free_fn_t free_fn
,
2070 pcpu_fc_populate_pte_fn_t populate_pte_fn
)
2072 static struct vm_struct vm
;
2073 struct pcpu_alloc_info
*ai
;
2077 struct page
**pages
;
2080 snprintf(psize_str
, sizeof(psize_str
), "%luK", PAGE_SIZE
>> 10);
2082 ai
= pcpu_build_alloc_info(reserved_size
, 0, PAGE_SIZE
, NULL
);
2085 BUG_ON(ai
->nr_groups
!= 1);
2086 BUG_ON(ai
->groups
[0].nr_units
!= num_possible_cpus());
2088 unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
2090 /* unaligned allocations can't be freed, round up to page size */
2091 pages_size
= PFN_ALIGN(unit_pages
* num_possible_cpus() *
2093 pages
= memblock_virt_alloc(pages_size
, 0);
2095 /* allocate pages */
2097 for (unit
= 0; unit
< num_possible_cpus(); unit
++)
2098 for (i
= 0; i
< unit_pages
; i
++) {
2099 unsigned int cpu
= ai
->groups
[0].cpu_map
[unit
];
2102 ptr
= alloc_fn(cpu
, PAGE_SIZE
, PAGE_SIZE
);
2104 pr_warn("failed to allocate %s page for cpu%u\n",
2108 /* kmemleak tracks the percpu allocations separately */
2110 pages
[j
++] = virt_to_page(ptr
);
2113 /* allocate vm area, map the pages and copy static data */
2114 vm
.flags
= VM_ALLOC
;
2115 vm
.size
= num_possible_cpus() * ai
->unit_size
;
2116 vm_area_register_early(&vm
, PAGE_SIZE
);
2118 for (unit
= 0; unit
< num_possible_cpus(); unit
++) {
2119 unsigned long unit_addr
=
2120 (unsigned long)vm
.addr
+ unit
* ai
->unit_size
;
2122 for (i
= 0; i
< unit_pages
; i
++)
2123 populate_pte_fn(unit_addr
+ (i
<< PAGE_SHIFT
));
2125 /* pte already populated, the following shouldn't fail */
2126 rc
= __pcpu_map_pages(unit_addr
, &pages
[unit
* unit_pages
],
2129 panic("failed to map percpu area, err=%d\n", rc
);
2132 * FIXME: Archs with virtual cache should flush local
2133 * cache for the linear mapping here - something
2134 * equivalent to flush_cache_vmap() on the local cpu.
2135 * flush_cache_vmap() can't be used as most supporting
2136 * data structures are not set up yet.
2139 /* copy static data */
2140 memcpy((void *)unit_addr
, __per_cpu_load
, ai
->static_size
);
2143 /* we're ready, commit */
2144 pr_info("%d %s pages/cpu @%p s%zu r%zu d%zu\n",
2145 unit_pages
, psize_str
, vm
.addr
, ai
->static_size
,
2146 ai
->reserved_size
, ai
->dyn_size
);
2148 rc
= pcpu_setup_first_chunk(ai
, vm
.addr
);
2153 free_fn(page_address(pages
[j
]), PAGE_SIZE
);
2156 memblock_free_early(__pa(pages
), pages_size
);
2157 pcpu_free_alloc_info(ai
);
2160 #endif /* BUILD_PAGE_FIRST_CHUNK */
2162 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
2164 * Generic SMP percpu area setup.
2166 * The embedding helper is used because its behavior closely resembles
2167 * the original non-dynamic generic percpu area setup. This is
2168 * important because many archs have addressing restrictions and might
2169 * fail if the percpu area is located far away from the previous
2170 * location. As an added bonus, in non-NUMA cases, embedding is
2171 * generally a good idea TLB-wise because percpu area can piggy back
2172 * on the physical linear memory mapping which uses large page
2173 * mappings on applicable archs.
2175 unsigned long __per_cpu_offset
[NR_CPUS
] __read_mostly
;
2176 EXPORT_SYMBOL(__per_cpu_offset
);
2178 static void * __init
pcpu_dfl_fc_alloc(unsigned int cpu
, size_t size
,
2181 return memblock_virt_alloc_from_nopanic(
2182 size
, align
, __pa(MAX_DMA_ADDRESS
));
2185 static void __init
pcpu_dfl_fc_free(void *ptr
, size_t size
)
2187 memblock_free_early(__pa(ptr
), size
);
2190 void __init
setup_per_cpu_areas(void)
2192 unsigned long delta
;
2197 * Always reserve area for module percpu variables. That's
2198 * what the legacy allocator did.
2200 rc
= pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE
,
2201 PERCPU_DYNAMIC_RESERVE
, PAGE_SIZE
, NULL
,
2202 pcpu_dfl_fc_alloc
, pcpu_dfl_fc_free
);
2204 panic("Failed to initialize percpu areas.");
2206 delta
= (unsigned long)pcpu_base_addr
- (unsigned long)__per_cpu_start
;
2207 for_each_possible_cpu(cpu
)
2208 __per_cpu_offset
[cpu
] = delta
+ pcpu_unit_offsets
[cpu
];
2210 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
2212 #else /* CONFIG_SMP */
2215 * UP percpu area setup.
2217 * UP always uses km-based percpu allocator with identity mapping.
2218 * Static percpu variables are indistinguishable from the usual static
2219 * variables and don't require any special preparation.
2221 void __init
setup_per_cpu_areas(void)
2223 const size_t unit_size
=
2224 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE
,
2225 PERCPU_DYNAMIC_RESERVE
));
2226 struct pcpu_alloc_info
*ai
;
2229 ai
= pcpu_alloc_alloc_info(1, 1);
2230 fc
= memblock_virt_alloc_from_nopanic(unit_size
,
2232 __pa(MAX_DMA_ADDRESS
));
2234 panic("Failed to allocate memory for percpu areas.");
2235 /* kmemleak tracks the percpu allocations separately */
2238 ai
->dyn_size
= unit_size
;
2239 ai
->unit_size
= unit_size
;
2240 ai
->atom_size
= unit_size
;
2241 ai
->alloc_size
= unit_size
;
2242 ai
->groups
[0].nr_units
= 1;
2243 ai
->groups
[0].cpu_map
[0] = 0;
2245 if (pcpu_setup_first_chunk(ai
, fc
) < 0)
2246 panic("Failed to initialize percpu areas.");
2249 #endif /* CONFIG_SMP */
2252 * First and reserved chunks are initialized with temporary allocation
2253 * map in initdata so that they can be used before slab is online.
2254 * This function is called after slab is brought up and replaces those
2255 * with properly allocated maps.
2257 void __init
percpu_init_late(void)
2259 struct pcpu_chunk
*target_chunks
[] =
2260 { pcpu_first_chunk
, pcpu_reserved_chunk
, NULL
};
2261 struct pcpu_chunk
*chunk
;
2262 unsigned long flags
;
2265 for (i
= 0; (chunk
= target_chunks
[i
]); i
++) {
2267 const size_t size
= PERCPU_DYNAMIC_EARLY_SLOTS
* sizeof(map
[0]);
2269 BUILD_BUG_ON(size
> PAGE_SIZE
);
2271 map
= pcpu_mem_zalloc(size
);
2274 spin_lock_irqsave(&pcpu_lock
, flags
);
2275 memcpy(map
, chunk
->map
, size
);
2277 spin_unlock_irqrestore(&pcpu_lock
, flags
);
2282 * Percpu allocator is initialized early during boot when neither slab or
2283 * workqueue is available. Plug async management until everything is up
2286 static int __init
percpu_enable_async(void)
2288 pcpu_async_enabled
= true;
2291 subsys_initcall(percpu_enable_async
);