drivers/base/cpu: Simplify s*nprintf() usages
[linux/fpc-iii.git] / mm / kasan / init.c
blobce45c491ebcdbde1a0d3c5cc374d381c405b4823
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file contains some kasan initialization code.
5 * Copyright (c) 2015 Samsung Electronics Co., Ltd.
6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
14 #include <linux/memblock.h>
15 #include <linux/init.h>
16 #include <linux/kasan.h>
17 #include <linux/kernel.h>
18 #include <linux/mm.h>
19 #include <linux/pfn.h>
20 #include <linux/slab.h>
22 #include <asm/page.h>
23 #include <asm/pgalloc.h>
25 #include "kasan.h"
28 * This page serves two purposes:
29 * - It used as early shadow memory. The entire shadow region populated
30 * with this page, before we will be able to setup normal shadow memory.
31 * - Latter it reused it as zero shadow to cover large ranges of memory
32 * that allowed to access, but not handled by kasan (vmalloc/vmemmap ...).
34 unsigned char kasan_early_shadow_page[PAGE_SIZE] __page_aligned_bss;
36 #if CONFIG_PGTABLE_LEVELS > 4
37 p4d_t kasan_early_shadow_p4d[MAX_PTRS_PER_P4D] __page_aligned_bss;
38 static inline bool kasan_p4d_table(pgd_t pgd)
40 return pgd_page(pgd) == virt_to_page(lm_alias(kasan_early_shadow_p4d));
42 #else
43 static inline bool kasan_p4d_table(pgd_t pgd)
45 return false;
47 #endif
48 #if CONFIG_PGTABLE_LEVELS > 3
49 pud_t kasan_early_shadow_pud[PTRS_PER_PUD] __page_aligned_bss;
50 static inline bool kasan_pud_table(p4d_t p4d)
52 return p4d_page(p4d) == virt_to_page(lm_alias(kasan_early_shadow_pud));
54 #else
55 static inline bool kasan_pud_table(p4d_t p4d)
57 return false;
59 #endif
60 #if CONFIG_PGTABLE_LEVELS > 2
61 pmd_t kasan_early_shadow_pmd[PTRS_PER_PMD] __page_aligned_bss;
62 static inline bool kasan_pmd_table(pud_t pud)
64 return pud_page(pud) == virt_to_page(lm_alias(kasan_early_shadow_pmd));
66 #else
67 static inline bool kasan_pmd_table(pud_t pud)
69 return false;
71 #endif
72 pte_t kasan_early_shadow_pte[PTRS_PER_PTE] __page_aligned_bss;
74 static inline bool kasan_pte_table(pmd_t pmd)
76 return pmd_page(pmd) == virt_to_page(lm_alias(kasan_early_shadow_pte));
79 static inline bool kasan_early_shadow_page_entry(pte_t pte)
81 return pte_page(pte) == virt_to_page(lm_alias(kasan_early_shadow_page));
84 static __init void *early_alloc(size_t size, int node)
86 void *ptr = memblock_alloc_try_nid(size, size, __pa(MAX_DMA_ADDRESS),
87 MEMBLOCK_ALLOC_ACCESSIBLE, node);
89 if (!ptr)
90 panic("%s: Failed to allocate %zu bytes align=%zx nid=%d from=%llx\n",
91 __func__, size, size, node, (u64)__pa(MAX_DMA_ADDRESS));
93 return ptr;
96 static void __ref zero_pte_populate(pmd_t *pmd, unsigned long addr,
97 unsigned long end)
99 pte_t *pte = pte_offset_kernel(pmd, addr);
100 pte_t zero_pte;
102 zero_pte = pfn_pte(PFN_DOWN(__pa_symbol(kasan_early_shadow_page)),
103 PAGE_KERNEL);
104 zero_pte = pte_wrprotect(zero_pte);
106 while (addr + PAGE_SIZE <= end) {
107 set_pte_at(&init_mm, addr, pte, zero_pte);
108 addr += PAGE_SIZE;
109 pte = pte_offset_kernel(pmd, addr);
113 static int __ref zero_pmd_populate(pud_t *pud, unsigned long addr,
114 unsigned long end)
116 pmd_t *pmd = pmd_offset(pud, addr);
117 unsigned long next;
119 do {
120 next = pmd_addr_end(addr, end);
122 if (IS_ALIGNED(addr, PMD_SIZE) && end - addr >= PMD_SIZE) {
123 pmd_populate_kernel(&init_mm, pmd,
124 lm_alias(kasan_early_shadow_pte));
125 continue;
128 if (pmd_none(*pmd)) {
129 pte_t *p;
131 if (slab_is_available())
132 p = pte_alloc_one_kernel(&init_mm);
133 else
134 p = early_alloc(PAGE_SIZE, NUMA_NO_NODE);
135 if (!p)
136 return -ENOMEM;
138 pmd_populate_kernel(&init_mm, pmd, p);
140 zero_pte_populate(pmd, addr, next);
141 } while (pmd++, addr = next, addr != end);
143 return 0;
146 static int __ref zero_pud_populate(p4d_t *p4d, unsigned long addr,
147 unsigned long end)
149 pud_t *pud = pud_offset(p4d, addr);
150 unsigned long next;
152 do {
153 next = pud_addr_end(addr, end);
154 if (IS_ALIGNED(addr, PUD_SIZE) && end - addr >= PUD_SIZE) {
155 pmd_t *pmd;
157 pud_populate(&init_mm, pud,
158 lm_alias(kasan_early_shadow_pmd));
159 pmd = pmd_offset(pud, addr);
160 pmd_populate_kernel(&init_mm, pmd,
161 lm_alias(kasan_early_shadow_pte));
162 continue;
165 if (pud_none(*pud)) {
166 pmd_t *p;
168 if (slab_is_available()) {
169 p = pmd_alloc(&init_mm, pud, addr);
170 if (!p)
171 return -ENOMEM;
172 } else {
173 pud_populate(&init_mm, pud,
174 early_alloc(PAGE_SIZE, NUMA_NO_NODE));
177 zero_pmd_populate(pud, addr, next);
178 } while (pud++, addr = next, addr != end);
180 return 0;
183 static int __ref zero_p4d_populate(pgd_t *pgd, unsigned long addr,
184 unsigned long end)
186 p4d_t *p4d = p4d_offset(pgd, addr);
187 unsigned long next;
189 do {
190 next = p4d_addr_end(addr, end);
191 if (IS_ALIGNED(addr, P4D_SIZE) && end - addr >= P4D_SIZE) {
192 pud_t *pud;
193 pmd_t *pmd;
195 p4d_populate(&init_mm, p4d,
196 lm_alias(kasan_early_shadow_pud));
197 pud = pud_offset(p4d, addr);
198 pud_populate(&init_mm, pud,
199 lm_alias(kasan_early_shadow_pmd));
200 pmd = pmd_offset(pud, addr);
201 pmd_populate_kernel(&init_mm, pmd,
202 lm_alias(kasan_early_shadow_pte));
203 continue;
206 if (p4d_none(*p4d)) {
207 pud_t *p;
209 if (slab_is_available()) {
210 p = pud_alloc(&init_mm, p4d, addr);
211 if (!p)
212 return -ENOMEM;
213 } else {
214 p4d_populate(&init_mm, p4d,
215 early_alloc(PAGE_SIZE, NUMA_NO_NODE));
218 zero_pud_populate(p4d, addr, next);
219 } while (p4d++, addr = next, addr != end);
221 return 0;
225 * kasan_populate_early_shadow - populate shadow memory region with
226 * kasan_early_shadow_page
227 * @shadow_start - start of the memory range to populate
228 * @shadow_end - end of the memory range to populate
230 int __ref kasan_populate_early_shadow(const void *shadow_start,
231 const void *shadow_end)
233 unsigned long addr = (unsigned long)shadow_start;
234 unsigned long end = (unsigned long)shadow_end;
235 pgd_t *pgd = pgd_offset_k(addr);
236 unsigned long next;
238 do {
239 next = pgd_addr_end(addr, end);
241 if (IS_ALIGNED(addr, PGDIR_SIZE) && end - addr >= PGDIR_SIZE) {
242 p4d_t *p4d;
243 pud_t *pud;
244 pmd_t *pmd;
247 * kasan_early_shadow_pud should be populated with pmds
248 * at this moment.
249 * [pud,pmd]_populate*() below needed only for
250 * 3,2 - level page tables where we don't have
251 * puds,pmds, so pgd_populate(), pud_populate()
252 * is noops.
254 * The ifndef is required to avoid build breakage.
256 * With 5level-fixup.h, pgd_populate() is not nop and
257 * we reference kasan_early_shadow_p4d. It's not defined
258 * unless 5-level paging enabled.
260 * The ifndef can be dropped once all KASAN-enabled
261 * architectures will switch to pgtable-nop4d.h.
263 #ifndef __ARCH_HAS_5LEVEL_HACK
264 pgd_populate(&init_mm, pgd,
265 lm_alias(kasan_early_shadow_p4d));
266 #endif
267 p4d = p4d_offset(pgd, addr);
268 p4d_populate(&init_mm, p4d,
269 lm_alias(kasan_early_shadow_pud));
270 pud = pud_offset(p4d, addr);
271 pud_populate(&init_mm, pud,
272 lm_alias(kasan_early_shadow_pmd));
273 pmd = pmd_offset(pud, addr);
274 pmd_populate_kernel(&init_mm, pmd,
275 lm_alias(kasan_early_shadow_pte));
276 continue;
279 if (pgd_none(*pgd)) {
280 p4d_t *p;
282 if (slab_is_available()) {
283 p = p4d_alloc(&init_mm, pgd, addr);
284 if (!p)
285 return -ENOMEM;
286 } else {
287 pgd_populate(&init_mm, pgd,
288 early_alloc(PAGE_SIZE, NUMA_NO_NODE));
291 zero_p4d_populate(pgd, addr, next);
292 } while (pgd++, addr = next, addr != end);
294 return 0;
297 static void kasan_free_pte(pte_t *pte_start, pmd_t *pmd)
299 pte_t *pte;
300 int i;
302 for (i = 0; i < PTRS_PER_PTE; i++) {
303 pte = pte_start + i;
304 if (!pte_none(*pte))
305 return;
308 pte_free_kernel(&init_mm, (pte_t *)page_to_virt(pmd_page(*pmd)));
309 pmd_clear(pmd);
312 static void kasan_free_pmd(pmd_t *pmd_start, pud_t *pud)
314 pmd_t *pmd;
315 int i;
317 for (i = 0; i < PTRS_PER_PMD; i++) {
318 pmd = pmd_start + i;
319 if (!pmd_none(*pmd))
320 return;
323 pmd_free(&init_mm, (pmd_t *)page_to_virt(pud_page(*pud)));
324 pud_clear(pud);
327 static void kasan_free_pud(pud_t *pud_start, p4d_t *p4d)
329 pud_t *pud;
330 int i;
332 for (i = 0; i < PTRS_PER_PUD; i++) {
333 pud = pud_start + i;
334 if (!pud_none(*pud))
335 return;
338 pud_free(&init_mm, (pud_t *)page_to_virt(p4d_page(*p4d)));
339 p4d_clear(p4d);
342 static void kasan_free_p4d(p4d_t *p4d_start, pgd_t *pgd)
344 p4d_t *p4d;
345 int i;
347 for (i = 0; i < PTRS_PER_P4D; i++) {
348 p4d = p4d_start + i;
349 if (!p4d_none(*p4d))
350 return;
353 p4d_free(&init_mm, (p4d_t *)page_to_virt(pgd_page(*pgd)));
354 pgd_clear(pgd);
357 static void kasan_remove_pte_table(pte_t *pte, unsigned long addr,
358 unsigned long end)
360 unsigned long next;
362 for (; addr < end; addr = next, pte++) {
363 next = (addr + PAGE_SIZE) & PAGE_MASK;
364 if (next > end)
365 next = end;
367 if (!pte_present(*pte))
368 continue;
370 if (WARN_ON(!kasan_early_shadow_page_entry(*pte)))
371 continue;
372 pte_clear(&init_mm, addr, pte);
376 static void kasan_remove_pmd_table(pmd_t *pmd, unsigned long addr,
377 unsigned long end)
379 unsigned long next;
381 for (; addr < end; addr = next, pmd++) {
382 pte_t *pte;
384 next = pmd_addr_end(addr, end);
386 if (!pmd_present(*pmd))
387 continue;
389 if (kasan_pte_table(*pmd)) {
390 if (IS_ALIGNED(addr, PMD_SIZE) &&
391 IS_ALIGNED(next, PMD_SIZE))
392 pmd_clear(pmd);
393 continue;
395 pte = pte_offset_kernel(pmd, addr);
396 kasan_remove_pte_table(pte, addr, next);
397 kasan_free_pte(pte_offset_kernel(pmd, 0), pmd);
401 static void kasan_remove_pud_table(pud_t *pud, unsigned long addr,
402 unsigned long end)
404 unsigned long next;
406 for (; addr < end; addr = next, pud++) {
407 pmd_t *pmd, *pmd_base;
409 next = pud_addr_end(addr, end);
411 if (!pud_present(*pud))
412 continue;
414 if (kasan_pmd_table(*pud)) {
415 if (IS_ALIGNED(addr, PUD_SIZE) &&
416 IS_ALIGNED(next, PUD_SIZE))
417 pud_clear(pud);
418 continue;
420 pmd = pmd_offset(pud, addr);
421 pmd_base = pmd_offset(pud, 0);
422 kasan_remove_pmd_table(pmd, addr, next);
423 kasan_free_pmd(pmd_base, pud);
427 static void kasan_remove_p4d_table(p4d_t *p4d, unsigned long addr,
428 unsigned long end)
430 unsigned long next;
432 for (; addr < end; addr = next, p4d++) {
433 pud_t *pud;
435 next = p4d_addr_end(addr, end);
437 if (!p4d_present(*p4d))
438 continue;
440 if (kasan_pud_table(*p4d)) {
441 if (IS_ALIGNED(addr, P4D_SIZE) &&
442 IS_ALIGNED(next, P4D_SIZE))
443 p4d_clear(p4d);
444 continue;
446 pud = pud_offset(p4d, addr);
447 kasan_remove_pud_table(pud, addr, next);
448 kasan_free_pud(pud_offset(p4d, 0), p4d);
452 void kasan_remove_zero_shadow(void *start, unsigned long size)
454 unsigned long addr, end, next;
455 pgd_t *pgd;
457 addr = (unsigned long)kasan_mem_to_shadow(start);
458 end = addr + (size >> KASAN_SHADOW_SCALE_SHIFT);
460 if (WARN_ON((unsigned long)start %
461 (KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE)) ||
462 WARN_ON(size % (KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE)))
463 return;
465 for (; addr < end; addr = next) {
466 p4d_t *p4d;
468 next = pgd_addr_end(addr, end);
470 pgd = pgd_offset_k(addr);
471 if (!pgd_present(*pgd))
472 continue;
474 if (kasan_p4d_table(*pgd)) {
475 if (IS_ALIGNED(addr, PGDIR_SIZE) &&
476 IS_ALIGNED(next, PGDIR_SIZE))
477 pgd_clear(pgd);
478 continue;
481 p4d = p4d_offset(pgd, addr);
482 kasan_remove_p4d_table(p4d, addr, next);
483 kasan_free_p4d(p4d_offset(pgd, 0), pgd);
487 int kasan_add_zero_shadow(void *start, unsigned long size)
489 int ret;
490 void *shadow_start, *shadow_end;
492 shadow_start = kasan_mem_to_shadow(start);
493 shadow_end = shadow_start + (size >> KASAN_SHADOW_SCALE_SHIFT);
495 if (WARN_ON((unsigned long)start %
496 (KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE)) ||
497 WARN_ON(size % (KASAN_SHADOW_SCALE_SIZE * PAGE_SIZE)))
498 return -EINVAL;
500 ret = kasan_populate_early_shadow(shadow_start, shadow_end);
501 if (ret)
502 kasan_remove_zero_shadow(shadow_start,
503 size >> KASAN_SHADOW_SCALE_SHIFT);
504 return ret;