Linux 3.2.95
[linux/fpc-iii.git] / ipc / sem.c
blobb31c3ef43c913f4cea4d583703ea015c9c777a2f
1 /*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51 * count_semzcnt()
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
76 #include <linux/slab.h>
77 #include <linux/spinlock.h>
78 #include <linux/init.h>
79 #include <linux/proc_fs.h>
80 #include <linux/time.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/audit.h>
84 #include <linux/capability.h>
85 #include <linux/seq_file.h>
86 #include <linux/rwsem.h>
87 #include <linux/nsproxy.h>
88 #include <linux/ipc_namespace.h>
90 #include <asm/uaccess.h>
91 #include "util.h"
93 /* One semaphore structure for each semaphore in the system. */
94 struct sem {
95 int semval; /* current value */
96 int sempid; /* pid of last operation */
97 struct list_head sem_pending; /* pending single-sop operations */
100 /* One queue for each sleeping process in the system. */
101 struct sem_queue {
102 struct list_head simple_list; /* queue of pending operations */
103 struct list_head list; /* queue of pending operations */
104 struct task_struct *sleeper; /* this process */
105 struct sem_undo *undo; /* undo structure */
106 int pid; /* process id of requesting process */
107 int status; /* completion status of operation */
108 struct sembuf *sops; /* array of pending operations */
109 int nsops; /* number of operations */
110 int alter; /* does *sops alter the array? */
113 /* Each task has a list of undo requests. They are executed automatically
114 * when the process exits.
116 struct sem_undo {
117 struct list_head list_proc; /* per-process list: *
118 * all undos from one process
119 * rcu protected */
120 struct rcu_head rcu; /* rcu struct for sem_undo */
121 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
122 struct list_head list_id; /* per semaphore array list:
123 * all undos for one array */
124 int semid; /* semaphore set identifier */
125 short *semadj; /* array of adjustments */
126 /* one per semaphore */
129 /* sem_undo_list controls shared access to the list of sem_undo structures
130 * that may be shared among all a CLONE_SYSVSEM task group.
132 struct sem_undo_list {
133 atomic_t refcnt;
134 spinlock_t lock;
135 struct list_head list_proc;
139 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
141 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
142 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
144 static int newary(struct ipc_namespace *, struct ipc_params *);
145 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
146 #ifdef CONFIG_PROC_FS
147 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
148 #endif
150 #define SEMMSL_FAST 256 /* 512 bytes on stack */
151 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
154 * linked list protection:
155 * sem_undo.id_next,
156 * sem_array.sem_pending{,last},
157 * sem_array.sem_undo: sem_lock() for read/write
158 * sem_undo.proc_next: only "current" is allowed to read/write that field.
162 #define sc_semmsl sem_ctls[0]
163 #define sc_semmns sem_ctls[1]
164 #define sc_semopm sem_ctls[2]
165 #define sc_semmni sem_ctls[3]
167 void sem_init_ns(struct ipc_namespace *ns)
169 ns->sc_semmsl = SEMMSL;
170 ns->sc_semmns = SEMMNS;
171 ns->sc_semopm = SEMOPM;
172 ns->sc_semmni = SEMMNI;
173 ns->used_sems = 0;
174 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
177 #ifdef CONFIG_IPC_NS
178 void sem_exit_ns(struct ipc_namespace *ns)
180 free_ipcs(ns, &sem_ids(ns), freeary);
181 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
183 #endif
185 void __init sem_init (void)
187 sem_init_ns(&init_ipc_ns);
188 ipc_init_proc_interface("sysvipc/sem",
189 " key semid perms nsems uid gid cuid cgid otime ctime\n",
190 IPC_SEM_IDS, sysvipc_sem_proc_show);
194 * sem_lock_(check_) routines are called in the paths where the rw_mutex
195 * is not held.
197 static inline struct sem_array *sem_lock(struct ipc_namespace *ns, int id)
199 struct kern_ipc_perm *ipcp = ipc_lock(&sem_ids(ns), id);
201 if (IS_ERR(ipcp))
202 return (struct sem_array *)ipcp;
204 return container_of(ipcp, struct sem_array, sem_perm);
207 static inline struct sem_array *sem_lock_check(struct ipc_namespace *ns,
208 int id)
210 struct kern_ipc_perm *ipcp = ipc_lock_check(&sem_ids(ns), id);
212 if (IS_ERR(ipcp))
213 return (struct sem_array *)ipcp;
215 return container_of(ipcp, struct sem_array, sem_perm);
218 static inline void sem_lock_and_putref(struct sem_array *sma)
220 ipc_lock_by_ptr(&sma->sem_perm);
221 ipc_rcu_putref(sma);
224 static inline void sem_getref_and_unlock(struct sem_array *sma)
226 ipc_rcu_getref(sma);
227 ipc_unlock(&(sma)->sem_perm);
230 static inline void sem_putref(struct sem_array *sma)
232 ipc_lock_by_ptr(&sma->sem_perm);
233 ipc_rcu_putref(sma);
234 ipc_unlock(&(sma)->sem_perm);
237 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
239 ipc_rmid(&sem_ids(ns), &s->sem_perm);
243 * Lockless wakeup algorithm:
244 * Without the check/retry algorithm a lockless wakeup is possible:
245 * - queue.status is initialized to -EINTR before blocking.
246 * - wakeup is performed by
247 * * unlinking the queue entry from sma->sem_pending
248 * * setting queue.status to IN_WAKEUP
249 * This is the notification for the blocked thread that a
250 * result value is imminent.
251 * * call wake_up_process
252 * * set queue.status to the final value.
253 * - the previously blocked thread checks queue.status:
254 * * if it's IN_WAKEUP, then it must wait until the value changes
255 * * if it's not -EINTR, then the operation was completed by
256 * update_queue. semtimedop can return queue.status without
257 * performing any operation on the sem array.
258 * * otherwise it must acquire the spinlock and check what's up.
260 * The two-stage algorithm is necessary to protect against the following
261 * races:
262 * - if queue.status is set after wake_up_process, then the woken up idle
263 * thread could race forward and try (and fail) to acquire sma->lock
264 * before update_queue had a chance to set queue.status
265 * - if queue.status is written before wake_up_process and if the
266 * blocked process is woken up by a signal between writing
267 * queue.status and the wake_up_process, then the woken up
268 * process could return from semtimedop and die by calling
269 * sys_exit before wake_up_process is called. Then wake_up_process
270 * will oops, because the task structure is already invalid.
271 * (yes, this happened on s390 with sysv msg).
274 #define IN_WAKEUP 1
277 * newary - Create a new semaphore set
278 * @ns: namespace
279 * @params: ptr to the structure that contains key, semflg and nsems
281 * Called with sem_ids.rw_mutex held (as a writer)
284 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
286 int id;
287 int retval;
288 struct sem_array *sma;
289 int size;
290 key_t key = params->key;
291 int nsems = params->u.nsems;
292 int semflg = params->flg;
293 int i;
295 if (!nsems)
296 return -EINVAL;
297 if (ns->used_sems + nsems > ns->sc_semmns)
298 return -ENOSPC;
300 size = sizeof (*sma) + nsems * sizeof (struct sem);
301 sma = ipc_rcu_alloc(size);
302 if (!sma) {
303 return -ENOMEM;
305 memset (sma, 0, size);
307 sma->sem_perm.mode = (semflg & S_IRWXUGO);
308 sma->sem_perm.key = key;
310 sma->sem_perm.security = NULL;
311 retval = security_sem_alloc(sma);
312 if (retval) {
313 ipc_rcu_putref(sma);
314 return retval;
317 sma->sem_base = (struct sem *) &sma[1];
319 for (i = 0; i < nsems; i++)
320 INIT_LIST_HEAD(&sma->sem_base[i].sem_pending);
322 sma->complex_count = 0;
323 INIT_LIST_HEAD(&sma->sem_pending);
324 INIT_LIST_HEAD(&sma->list_id);
325 sma->sem_nsems = nsems;
326 sma->sem_ctime = get_seconds();
328 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
329 if (id < 0) {
330 security_sem_free(sma);
331 ipc_rcu_putref(sma);
332 return id;
334 ns->used_sems += nsems;
336 sem_unlock(sma);
338 return sma->sem_perm.id;
343 * Called with sem_ids.rw_mutex and ipcp locked.
345 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
347 struct sem_array *sma;
349 sma = container_of(ipcp, struct sem_array, sem_perm);
350 return security_sem_associate(sma, semflg);
354 * Called with sem_ids.rw_mutex and ipcp locked.
356 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
357 struct ipc_params *params)
359 struct sem_array *sma;
361 sma = container_of(ipcp, struct sem_array, sem_perm);
362 if (params->u.nsems > sma->sem_nsems)
363 return -EINVAL;
365 return 0;
368 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
370 struct ipc_namespace *ns;
371 struct ipc_ops sem_ops;
372 struct ipc_params sem_params;
374 ns = current->nsproxy->ipc_ns;
376 if (nsems < 0 || nsems > ns->sc_semmsl)
377 return -EINVAL;
379 sem_ops.getnew = newary;
380 sem_ops.associate = sem_security;
381 sem_ops.more_checks = sem_more_checks;
383 sem_params.key = key;
384 sem_params.flg = semflg;
385 sem_params.u.nsems = nsems;
387 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
391 * Determine whether a sequence of semaphore operations would succeed
392 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
395 static int try_atomic_semop (struct sem_array * sma, struct sembuf * sops,
396 int nsops, struct sem_undo *un, int pid)
398 int result, sem_op;
399 struct sembuf *sop;
400 struct sem * curr;
402 for (sop = sops; sop < sops + nsops; sop++) {
403 curr = sma->sem_base + sop->sem_num;
404 sem_op = sop->sem_op;
405 result = curr->semval;
407 if (!sem_op && result)
408 goto would_block;
410 result += sem_op;
411 if (result < 0)
412 goto would_block;
413 if (result > SEMVMX)
414 goto out_of_range;
415 if (sop->sem_flg & SEM_UNDO) {
416 int undo = un->semadj[sop->sem_num] - sem_op;
418 * Exceeding the undo range is an error.
420 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
421 goto out_of_range;
423 curr->semval = result;
426 sop--;
427 while (sop >= sops) {
428 sma->sem_base[sop->sem_num].sempid = pid;
429 if (sop->sem_flg & SEM_UNDO)
430 un->semadj[sop->sem_num] -= sop->sem_op;
431 sop--;
434 return 0;
436 out_of_range:
437 result = -ERANGE;
438 goto undo;
440 would_block:
441 if (sop->sem_flg & IPC_NOWAIT)
442 result = -EAGAIN;
443 else
444 result = 1;
446 undo:
447 sop--;
448 while (sop >= sops) {
449 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
450 sop--;
453 return result;
456 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
457 * @q: queue entry that must be signaled
458 * @error: Error value for the signal
460 * Prepare the wake-up of the queue entry q.
462 static void wake_up_sem_queue_prepare(struct list_head *pt,
463 struct sem_queue *q, int error)
465 if (list_empty(pt)) {
467 * Hold preempt off so that we don't get preempted and have the
468 * wakee busy-wait until we're scheduled back on.
470 preempt_disable();
472 q->status = IN_WAKEUP;
473 q->pid = error;
475 list_add_tail(&q->simple_list, pt);
479 * wake_up_sem_queue_do(pt) - do the actual wake-up
480 * @pt: list of tasks to be woken up
482 * Do the actual wake-up.
483 * The function is called without any locks held, thus the semaphore array
484 * could be destroyed already and the tasks can disappear as soon as the
485 * status is set to the actual return code.
487 static void wake_up_sem_queue_do(struct list_head *pt)
489 struct sem_queue *q, *t;
490 int did_something;
492 did_something = !list_empty(pt);
493 list_for_each_entry_safe(q, t, pt, simple_list) {
494 wake_up_process(q->sleeper);
495 /* q can disappear immediately after writing q->status. */
496 smp_wmb();
497 q->status = q->pid;
499 if (did_something)
500 preempt_enable();
503 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
505 list_del(&q->list);
506 if (q->nsops == 1)
507 list_del(&q->simple_list);
508 else
509 sma->complex_count--;
512 /** check_restart(sma, q)
513 * @sma: semaphore array
514 * @q: the operation that just completed
516 * update_queue is O(N^2) when it restarts scanning the whole queue of
517 * waiting operations. Therefore this function checks if the restart is
518 * really necessary. It is called after a previously waiting operation
519 * was completed.
521 static int check_restart(struct sem_array *sma, struct sem_queue *q)
523 struct sem *curr;
524 struct sem_queue *h;
526 /* if the operation didn't modify the array, then no restart */
527 if (q->alter == 0)
528 return 0;
530 /* pending complex operations are too difficult to analyse */
531 if (sma->complex_count)
532 return 1;
534 /* we were a sleeping complex operation. Too difficult */
535 if (q->nsops > 1)
536 return 1;
538 curr = sma->sem_base + q->sops[0].sem_num;
540 /* No-one waits on this queue */
541 if (list_empty(&curr->sem_pending))
542 return 0;
544 /* the new semaphore value */
545 if (curr->semval) {
546 /* It is impossible that someone waits for the new value:
547 * - q is a previously sleeping simple operation that
548 * altered the array. It must be a decrement, because
549 * simple increments never sleep.
550 * - The value is not 0, thus wait-for-zero won't proceed.
551 * - If there are older (higher priority) decrements
552 * in the queue, then they have observed the original
553 * semval value and couldn't proceed. The operation
554 * decremented to value - thus they won't proceed either.
556 BUG_ON(q->sops[0].sem_op >= 0);
557 return 0;
560 * semval is 0. Check if there are wait-for-zero semops.
561 * They must be the first entries in the per-semaphore simple queue
563 h = list_first_entry(&curr->sem_pending, struct sem_queue, simple_list);
564 BUG_ON(h->nsops != 1);
565 BUG_ON(h->sops[0].sem_num != q->sops[0].sem_num);
567 /* Yes, there is a wait-for-zero semop. Restart */
568 if (h->sops[0].sem_op == 0)
569 return 1;
571 /* Again - no-one is waiting for the new value. */
572 return 0;
577 * update_queue(sma, semnum): Look for tasks that can be completed.
578 * @sma: semaphore array.
579 * @semnum: semaphore that was modified.
580 * @pt: list head for the tasks that must be woken up.
582 * update_queue must be called after a semaphore in a semaphore array
583 * was modified. If multiple semaphore were modified, then @semnum
584 * must be set to -1.
585 * The tasks that must be woken up are added to @pt. The return code
586 * is stored in q->pid.
587 * The function return 1 if at least one semop was completed successfully.
589 static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
591 struct sem_queue *q;
592 struct list_head *walk;
593 struct list_head *pending_list;
594 int offset;
595 int semop_completed = 0;
597 /* if there are complex operations around, then knowing the semaphore
598 * that was modified doesn't help us. Assume that multiple semaphores
599 * were modified.
601 if (sma->complex_count)
602 semnum = -1;
604 if (semnum == -1) {
605 pending_list = &sma->sem_pending;
606 offset = offsetof(struct sem_queue, list);
607 } else {
608 pending_list = &sma->sem_base[semnum].sem_pending;
609 offset = offsetof(struct sem_queue, simple_list);
612 again:
613 walk = pending_list->next;
614 while (walk != pending_list) {
615 int error, restart;
617 q = (struct sem_queue *)((char *)walk - offset);
618 walk = walk->next;
620 /* If we are scanning the single sop, per-semaphore list of
621 * one semaphore and that semaphore is 0, then it is not
622 * necessary to scan the "alter" entries: simple increments
623 * that affect only one entry succeed immediately and cannot
624 * be in the per semaphore pending queue, and decrements
625 * cannot be successful if the value is already 0.
627 if (semnum != -1 && sma->sem_base[semnum].semval == 0 &&
628 q->alter)
629 break;
631 error = try_atomic_semop(sma, q->sops, q->nsops,
632 q->undo, q->pid);
634 /* Does q->sleeper still need to sleep? */
635 if (error > 0)
636 continue;
638 unlink_queue(sma, q);
640 if (error) {
641 restart = 0;
642 } else {
643 semop_completed = 1;
644 restart = check_restart(sma, q);
647 wake_up_sem_queue_prepare(pt, q, error);
648 if (restart)
649 goto again;
651 return semop_completed;
655 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
656 * @sma: semaphore array
657 * @sops: operations that were performed
658 * @nsops: number of operations
659 * @otime: force setting otime
660 * @pt: list head of the tasks that must be woken up.
662 * do_smart_update() does the required called to update_queue, based on the
663 * actual changes that were performed on the semaphore array.
664 * Note that the function does not do the actual wake-up: the caller is
665 * responsible for calling wake_up_sem_queue_do(@pt).
666 * It is safe to perform this call after dropping all locks.
668 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
669 int otime, struct list_head *pt)
671 int i;
673 if (sma->complex_count || sops == NULL) {
674 if (update_queue(sma, -1, pt))
675 otime = 1;
676 goto done;
679 for (i = 0; i < nsops; i++) {
680 if (sops[i].sem_op > 0 ||
681 (sops[i].sem_op < 0 &&
682 sma->sem_base[sops[i].sem_num].semval == 0))
683 if (update_queue(sma, sops[i].sem_num, pt))
684 otime = 1;
686 done:
687 if (otime)
688 sma->sem_otime = get_seconds();
692 /* The following counts are associated to each semaphore:
693 * semncnt number of tasks waiting on semval being nonzero
694 * semzcnt number of tasks waiting on semval being zero
695 * This model assumes that a task waits on exactly one semaphore.
696 * Since semaphore operations are to be performed atomically, tasks actually
697 * wait on a whole sequence of semaphores simultaneously.
698 * The counts we return here are a rough approximation, but still
699 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
701 static int count_semncnt (struct sem_array * sma, ushort semnum)
703 int semncnt;
704 struct sem_queue * q;
706 semncnt = 0;
707 list_for_each_entry(q, &sma->sem_pending, list) {
708 struct sembuf * sops = q->sops;
709 int nsops = q->nsops;
710 int i;
711 for (i = 0; i < nsops; i++)
712 if (sops[i].sem_num == semnum
713 && (sops[i].sem_op < 0)
714 && !(sops[i].sem_flg & IPC_NOWAIT))
715 semncnt++;
717 return semncnt;
720 static int count_semzcnt (struct sem_array * sma, ushort semnum)
722 int semzcnt;
723 struct sem_queue * q;
725 semzcnt = 0;
726 list_for_each_entry(q, &sma->sem_pending, list) {
727 struct sembuf * sops = q->sops;
728 int nsops = q->nsops;
729 int i;
730 for (i = 0; i < nsops; i++)
731 if (sops[i].sem_num == semnum
732 && (sops[i].sem_op == 0)
733 && !(sops[i].sem_flg & IPC_NOWAIT))
734 semzcnt++;
736 return semzcnt;
739 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
740 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
741 * remains locked on exit.
743 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
745 struct sem_undo *un, *tu;
746 struct sem_queue *q, *tq;
747 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
748 struct list_head tasks;
750 /* Free the existing undo structures for this semaphore set. */
751 assert_spin_locked(&sma->sem_perm.lock);
752 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
753 list_del(&un->list_id);
754 spin_lock(&un->ulp->lock);
755 un->semid = -1;
756 list_del_rcu(&un->list_proc);
757 spin_unlock(&un->ulp->lock);
758 kfree_rcu(un, rcu);
761 /* Wake up all pending processes and let them fail with EIDRM. */
762 INIT_LIST_HEAD(&tasks);
763 list_for_each_entry_safe(q, tq, &sma->sem_pending, list) {
764 unlink_queue(sma, q);
765 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
768 /* Remove the semaphore set from the IDR */
769 sem_rmid(ns, sma);
770 sem_unlock(sma);
772 wake_up_sem_queue_do(&tasks);
773 ns->used_sems -= sma->sem_nsems;
774 security_sem_free(sma);
775 ipc_rcu_putref(sma);
778 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
780 switch(version) {
781 case IPC_64:
782 return copy_to_user(buf, in, sizeof(*in));
783 case IPC_OLD:
785 struct semid_ds out;
787 memset(&out, 0, sizeof(out));
789 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
791 out.sem_otime = in->sem_otime;
792 out.sem_ctime = in->sem_ctime;
793 out.sem_nsems = in->sem_nsems;
795 return copy_to_user(buf, &out, sizeof(out));
797 default:
798 return -EINVAL;
802 static int semctl_nolock(struct ipc_namespace *ns, int semid,
803 int cmd, int version, union semun arg)
805 int err;
806 struct sem_array *sma;
808 switch(cmd) {
809 case IPC_INFO:
810 case SEM_INFO:
812 struct seminfo seminfo;
813 int max_id;
815 err = security_sem_semctl(NULL, cmd);
816 if (err)
817 return err;
819 memset(&seminfo,0,sizeof(seminfo));
820 seminfo.semmni = ns->sc_semmni;
821 seminfo.semmns = ns->sc_semmns;
822 seminfo.semmsl = ns->sc_semmsl;
823 seminfo.semopm = ns->sc_semopm;
824 seminfo.semvmx = SEMVMX;
825 seminfo.semmnu = SEMMNU;
826 seminfo.semmap = SEMMAP;
827 seminfo.semume = SEMUME;
828 down_read(&sem_ids(ns).rw_mutex);
829 if (cmd == SEM_INFO) {
830 seminfo.semusz = sem_ids(ns).in_use;
831 seminfo.semaem = ns->used_sems;
832 } else {
833 seminfo.semusz = SEMUSZ;
834 seminfo.semaem = SEMAEM;
836 max_id = ipc_get_maxid(&sem_ids(ns));
837 up_read(&sem_ids(ns).rw_mutex);
838 if (copy_to_user (arg.__buf, &seminfo, sizeof(struct seminfo)))
839 return -EFAULT;
840 return (max_id < 0) ? 0: max_id;
842 case IPC_STAT:
843 case SEM_STAT:
845 struct semid64_ds tbuf;
846 int id;
848 if (cmd == SEM_STAT) {
849 sma = sem_lock(ns, semid);
850 if (IS_ERR(sma))
851 return PTR_ERR(sma);
852 id = sma->sem_perm.id;
853 } else {
854 sma = sem_lock_check(ns, semid);
855 if (IS_ERR(sma))
856 return PTR_ERR(sma);
857 id = 0;
860 err = -EACCES;
861 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
862 goto out_unlock;
864 err = security_sem_semctl(sma, cmd);
865 if (err)
866 goto out_unlock;
868 memset(&tbuf, 0, sizeof(tbuf));
870 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
871 tbuf.sem_otime = sma->sem_otime;
872 tbuf.sem_ctime = sma->sem_ctime;
873 tbuf.sem_nsems = sma->sem_nsems;
874 sem_unlock(sma);
875 if (copy_semid_to_user (arg.buf, &tbuf, version))
876 return -EFAULT;
877 return id;
879 default:
880 return -EINVAL;
882 out_unlock:
883 sem_unlock(sma);
884 return err;
887 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
888 int cmd, int version, union semun arg)
890 struct sem_array *sma;
891 struct sem* curr;
892 int err;
893 ushort fast_sem_io[SEMMSL_FAST];
894 ushort* sem_io = fast_sem_io;
895 int nsems;
896 struct list_head tasks;
898 sma = sem_lock_check(ns, semid);
899 if (IS_ERR(sma))
900 return PTR_ERR(sma);
902 INIT_LIST_HEAD(&tasks);
903 nsems = sma->sem_nsems;
905 err = -EACCES;
906 if (ipcperms(ns, &sma->sem_perm,
907 (cmd == SETVAL || cmd == SETALL) ? S_IWUGO : S_IRUGO))
908 goto out_unlock;
910 err = security_sem_semctl(sma, cmd);
911 if (err)
912 goto out_unlock;
914 err = -EACCES;
915 switch (cmd) {
916 case GETALL:
918 ushort __user *array = arg.array;
919 int i;
921 if(nsems > SEMMSL_FAST) {
922 sem_getref_and_unlock(sma);
924 sem_io = ipc_alloc(sizeof(ushort)*nsems);
925 if(sem_io == NULL) {
926 sem_putref(sma);
927 return -ENOMEM;
930 sem_lock_and_putref(sma);
931 if (sma->sem_perm.deleted) {
932 sem_unlock(sma);
933 err = -EIDRM;
934 goto out_free;
938 for (i = 0; i < sma->sem_nsems; i++)
939 sem_io[i] = sma->sem_base[i].semval;
940 sem_unlock(sma);
941 err = 0;
942 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
943 err = -EFAULT;
944 goto out_free;
946 case SETALL:
948 int i;
949 struct sem_undo *un;
951 sem_getref_and_unlock(sma);
953 if(nsems > SEMMSL_FAST) {
954 sem_io = ipc_alloc(sizeof(ushort)*nsems);
955 if(sem_io == NULL) {
956 sem_putref(sma);
957 return -ENOMEM;
961 if (copy_from_user (sem_io, arg.array, nsems*sizeof(ushort))) {
962 sem_putref(sma);
963 err = -EFAULT;
964 goto out_free;
967 for (i = 0; i < nsems; i++) {
968 if (sem_io[i] > SEMVMX) {
969 sem_putref(sma);
970 err = -ERANGE;
971 goto out_free;
974 sem_lock_and_putref(sma);
975 if (sma->sem_perm.deleted) {
976 sem_unlock(sma);
977 err = -EIDRM;
978 goto out_free;
981 for (i = 0; i < nsems; i++)
982 sma->sem_base[i].semval = sem_io[i];
984 assert_spin_locked(&sma->sem_perm.lock);
985 list_for_each_entry(un, &sma->list_id, list_id) {
986 for (i = 0; i < nsems; i++)
987 un->semadj[i] = 0;
989 sma->sem_ctime = get_seconds();
990 /* maybe some queued-up processes were waiting for this */
991 do_smart_update(sma, NULL, 0, 0, &tasks);
992 err = 0;
993 goto out_unlock;
995 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
997 err = -EINVAL;
998 if(semnum < 0 || semnum >= nsems)
999 goto out_unlock;
1001 curr = &sma->sem_base[semnum];
1003 switch (cmd) {
1004 case GETVAL:
1005 err = curr->semval;
1006 goto out_unlock;
1007 case GETPID:
1008 err = curr->sempid;
1009 goto out_unlock;
1010 case GETNCNT:
1011 err = count_semncnt(sma,semnum);
1012 goto out_unlock;
1013 case GETZCNT:
1014 err = count_semzcnt(sma,semnum);
1015 goto out_unlock;
1016 case SETVAL:
1018 int val = arg.val;
1019 struct sem_undo *un;
1021 err = -ERANGE;
1022 if (val > SEMVMX || val < 0)
1023 goto out_unlock;
1025 assert_spin_locked(&sma->sem_perm.lock);
1026 list_for_each_entry(un, &sma->list_id, list_id)
1027 un->semadj[semnum] = 0;
1029 curr->semval = val;
1030 curr->sempid = task_tgid_vnr(current);
1031 sma->sem_ctime = get_seconds();
1032 /* maybe some queued-up processes were waiting for this */
1033 do_smart_update(sma, NULL, 0, 0, &tasks);
1034 err = 0;
1035 goto out_unlock;
1038 out_unlock:
1039 sem_unlock(sma);
1040 wake_up_sem_queue_do(&tasks);
1042 out_free:
1043 if(sem_io != fast_sem_io)
1044 ipc_free(sem_io, sizeof(ushort)*nsems);
1045 return err;
1048 static inline unsigned long
1049 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1051 switch(version) {
1052 case IPC_64:
1053 if (copy_from_user(out, buf, sizeof(*out)))
1054 return -EFAULT;
1055 return 0;
1056 case IPC_OLD:
1058 struct semid_ds tbuf_old;
1060 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1061 return -EFAULT;
1063 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1064 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1065 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1067 return 0;
1069 default:
1070 return -EINVAL;
1075 * This function handles some semctl commands which require the rw_mutex
1076 * to be held in write mode.
1077 * NOTE: no locks must be held, the rw_mutex is taken inside this function.
1079 static int semctl_down(struct ipc_namespace *ns, int semid,
1080 int cmd, int version, union semun arg)
1082 struct sem_array *sma;
1083 int err;
1084 struct semid64_ds semid64;
1085 struct kern_ipc_perm *ipcp;
1087 if(cmd == IPC_SET) {
1088 if (copy_semid_from_user(&semid64, arg.buf, version))
1089 return -EFAULT;
1092 ipcp = ipcctl_pre_down(ns, &sem_ids(ns), semid, cmd,
1093 &semid64.sem_perm, 0);
1094 if (IS_ERR(ipcp))
1095 return PTR_ERR(ipcp);
1097 sma = container_of(ipcp, struct sem_array, sem_perm);
1099 err = security_sem_semctl(sma, cmd);
1100 if (err)
1101 goto out_unlock;
1103 switch(cmd){
1104 case IPC_RMID:
1105 freeary(ns, ipcp);
1106 goto out_up;
1107 case IPC_SET:
1108 ipc_update_perm(&semid64.sem_perm, ipcp);
1109 sma->sem_ctime = get_seconds();
1110 break;
1111 default:
1112 err = -EINVAL;
1115 out_unlock:
1116 sem_unlock(sma);
1117 out_up:
1118 up_write(&sem_ids(ns).rw_mutex);
1119 return err;
1122 SYSCALL_DEFINE(semctl)(int semid, int semnum, int cmd, union semun arg)
1124 int err = -EINVAL;
1125 int version;
1126 struct ipc_namespace *ns;
1128 if (semid < 0)
1129 return -EINVAL;
1131 version = ipc_parse_version(&cmd);
1132 ns = current->nsproxy->ipc_ns;
1134 switch(cmd) {
1135 case IPC_INFO:
1136 case SEM_INFO:
1137 case IPC_STAT:
1138 case SEM_STAT:
1139 err = semctl_nolock(ns, semid, cmd, version, arg);
1140 return err;
1141 case GETALL:
1142 case GETVAL:
1143 case GETPID:
1144 case GETNCNT:
1145 case GETZCNT:
1146 case SETVAL:
1147 case SETALL:
1148 err = semctl_main(ns,semid,semnum,cmd,version,arg);
1149 return err;
1150 case IPC_RMID:
1151 case IPC_SET:
1152 err = semctl_down(ns, semid, cmd, version, arg);
1153 return err;
1154 default:
1155 return -EINVAL;
1158 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1159 asmlinkage long SyS_semctl(int semid, int semnum, int cmd, union semun arg)
1161 return SYSC_semctl((int) semid, (int) semnum, (int) cmd, arg);
1163 SYSCALL_ALIAS(sys_semctl, SyS_semctl);
1164 #endif
1166 /* If the task doesn't already have a undo_list, then allocate one
1167 * here. We guarantee there is only one thread using this undo list,
1168 * and current is THE ONE
1170 * If this allocation and assignment succeeds, but later
1171 * portions of this code fail, there is no need to free the sem_undo_list.
1172 * Just let it stay associated with the task, and it'll be freed later
1173 * at exit time.
1175 * This can block, so callers must hold no locks.
1177 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1179 struct sem_undo_list *undo_list;
1181 undo_list = current->sysvsem.undo_list;
1182 if (!undo_list) {
1183 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1184 if (undo_list == NULL)
1185 return -ENOMEM;
1186 spin_lock_init(&undo_list->lock);
1187 atomic_set(&undo_list->refcnt, 1);
1188 INIT_LIST_HEAD(&undo_list->list_proc);
1190 current->sysvsem.undo_list = undo_list;
1192 *undo_listp = undo_list;
1193 return 0;
1196 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1198 struct sem_undo *un;
1200 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1201 if (un->semid == semid)
1202 return un;
1204 return NULL;
1207 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1209 struct sem_undo *un;
1211 assert_spin_locked(&ulp->lock);
1213 un = __lookup_undo(ulp, semid);
1214 if (un) {
1215 list_del_rcu(&un->list_proc);
1216 list_add_rcu(&un->list_proc, &ulp->list_proc);
1218 return un;
1222 * find_alloc_undo - Lookup (and if not present create) undo array
1223 * @ns: namespace
1224 * @semid: semaphore array id
1226 * The function looks up (and if not present creates) the undo structure.
1227 * The size of the undo structure depends on the size of the semaphore
1228 * array, thus the alloc path is not that straightforward.
1229 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1230 * performs a rcu_read_lock().
1232 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1234 struct sem_array *sma;
1235 struct sem_undo_list *ulp;
1236 struct sem_undo *un, *new;
1237 int nsems;
1238 int error;
1240 error = get_undo_list(&ulp);
1241 if (error)
1242 return ERR_PTR(error);
1244 rcu_read_lock();
1245 spin_lock(&ulp->lock);
1246 un = lookup_undo(ulp, semid);
1247 spin_unlock(&ulp->lock);
1248 if (likely(un!=NULL))
1249 goto out;
1250 rcu_read_unlock();
1252 /* no undo structure around - allocate one. */
1253 /* step 1: figure out the size of the semaphore array */
1254 sma = sem_lock_check(ns, semid);
1255 if (IS_ERR(sma))
1256 return ERR_CAST(sma);
1258 nsems = sma->sem_nsems;
1259 sem_getref_and_unlock(sma);
1261 /* step 2: allocate new undo structure */
1262 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1263 if (!new) {
1264 sem_putref(sma);
1265 return ERR_PTR(-ENOMEM);
1268 /* step 3: Acquire the lock on semaphore array */
1269 sem_lock_and_putref(sma);
1270 if (sma->sem_perm.deleted) {
1271 sem_unlock(sma);
1272 kfree(new);
1273 un = ERR_PTR(-EIDRM);
1274 goto out;
1276 spin_lock(&ulp->lock);
1279 * step 4: check for races: did someone else allocate the undo struct?
1281 un = lookup_undo(ulp, semid);
1282 if (un) {
1283 kfree(new);
1284 goto success;
1286 /* step 5: initialize & link new undo structure */
1287 new->semadj = (short *) &new[1];
1288 new->ulp = ulp;
1289 new->semid = semid;
1290 assert_spin_locked(&ulp->lock);
1291 list_add_rcu(&new->list_proc, &ulp->list_proc);
1292 assert_spin_locked(&sma->sem_perm.lock);
1293 list_add(&new->list_id, &sma->list_id);
1294 un = new;
1296 success:
1297 spin_unlock(&ulp->lock);
1298 rcu_read_lock();
1299 sem_unlock(sma);
1300 out:
1301 return un;
1306 * get_queue_result - Retrieve the result code from sem_queue
1307 * @q: Pointer to queue structure
1309 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1310 * q->status, then we must loop until the value is replaced with the final
1311 * value: This may happen if a task is woken up by an unrelated event (e.g.
1312 * signal) and in parallel the task is woken up by another task because it got
1313 * the requested semaphores.
1315 * The function can be called with or without holding the semaphore spinlock.
1317 static int get_queue_result(struct sem_queue *q)
1319 int error;
1321 error = q->status;
1322 while (unlikely(error == IN_WAKEUP)) {
1323 cpu_relax();
1324 error = q->status;
1327 return error;
1331 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1332 unsigned, nsops, const struct timespec __user *, timeout)
1334 int error = -EINVAL;
1335 struct sem_array *sma;
1336 struct sembuf fast_sops[SEMOPM_FAST];
1337 struct sembuf* sops = fast_sops, *sop;
1338 struct sem_undo *un;
1339 int undos = 0, alter = 0, max;
1340 struct sem_queue queue;
1341 unsigned long jiffies_left = 0;
1342 struct ipc_namespace *ns;
1343 struct list_head tasks;
1345 ns = current->nsproxy->ipc_ns;
1347 if (nsops < 1 || semid < 0)
1348 return -EINVAL;
1349 if (nsops > ns->sc_semopm)
1350 return -E2BIG;
1351 if(nsops > SEMOPM_FAST) {
1352 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1353 if(sops==NULL)
1354 return -ENOMEM;
1356 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1357 error=-EFAULT;
1358 goto out_free;
1360 if (timeout) {
1361 struct timespec _timeout;
1362 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1363 error = -EFAULT;
1364 goto out_free;
1366 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1367 _timeout.tv_nsec >= 1000000000L) {
1368 error = -EINVAL;
1369 goto out_free;
1371 jiffies_left = timespec_to_jiffies(&_timeout);
1373 max = 0;
1374 for (sop = sops; sop < sops + nsops; sop++) {
1375 if (sop->sem_num >= max)
1376 max = sop->sem_num;
1377 if (sop->sem_flg & SEM_UNDO)
1378 undos = 1;
1379 if (sop->sem_op != 0)
1380 alter = 1;
1383 if (undos) {
1384 un = find_alloc_undo(ns, semid);
1385 if (IS_ERR(un)) {
1386 error = PTR_ERR(un);
1387 goto out_free;
1389 } else
1390 un = NULL;
1392 INIT_LIST_HEAD(&tasks);
1394 sma = sem_lock_check(ns, semid);
1395 if (IS_ERR(sma)) {
1396 if (un)
1397 rcu_read_unlock();
1398 error = PTR_ERR(sma);
1399 goto out_free;
1403 * semid identifiers are not unique - find_alloc_undo may have
1404 * allocated an undo structure, it was invalidated by an RMID
1405 * and now a new array with received the same id. Check and fail.
1406 * This case can be detected checking un->semid. The existence of
1407 * "un" itself is guaranteed by rcu.
1409 error = -EIDRM;
1410 if (un) {
1411 if (un->semid == -1) {
1412 rcu_read_unlock();
1413 goto out_unlock_free;
1414 } else {
1416 * rcu lock can be released, "un" cannot disappear:
1417 * - sem_lock is acquired, thus IPC_RMID is
1418 * impossible.
1419 * - exit_sem is impossible, it always operates on
1420 * current (or a dead task).
1423 rcu_read_unlock();
1427 error = -EFBIG;
1428 if (max >= sma->sem_nsems)
1429 goto out_unlock_free;
1431 error = -EACCES;
1432 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1433 goto out_unlock_free;
1435 error = security_sem_semop(sma, sops, nsops, alter);
1436 if (error)
1437 goto out_unlock_free;
1439 error = try_atomic_semop (sma, sops, nsops, un, task_tgid_vnr(current));
1440 if (error <= 0) {
1441 if (alter && error == 0)
1442 do_smart_update(sma, sops, nsops, 1, &tasks);
1444 goto out_unlock_free;
1447 /* We need to sleep on this operation, so we put the current
1448 * task into the pending queue and go to sleep.
1451 queue.sops = sops;
1452 queue.nsops = nsops;
1453 queue.undo = un;
1454 queue.pid = task_tgid_vnr(current);
1455 queue.alter = alter;
1456 if (alter)
1457 list_add_tail(&queue.list, &sma->sem_pending);
1458 else
1459 list_add(&queue.list, &sma->sem_pending);
1461 if (nsops == 1) {
1462 struct sem *curr;
1463 curr = &sma->sem_base[sops->sem_num];
1465 if (alter)
1466 list_add_tail(&queue.simple_list, &curr->sem_pending);
1467 else
1468 list_add(&queue.simple_list, &curr->sem_pending);
1469 } else {
1470 INIT_LIST_HEAD(&queue.simple_list);
1471 sma->complex_count++;
1474 queue.status = -EINTR;
1475 queue.sleeper = current;
1477 sleep_again:
1478 current->state = TASK_INTERRUPTIBLE;
1479 sem_unlock(sma);
1481 if (timeout)
1482 jiffies_left = schedule_timeout(jiffies_left);
1483 else
1484 schedule();
1486 error = get_queue_result(&queue);
1488 if (error != -EINTR) {
1489 /* fast path: update_queue already obtained all requested
1490 * resources.
1491 * Perform a smp_mb(): User space could assume that semop()
1492 * is a memory barrier: Without the mb(), the cpu could
1493 * speculatively read in user space stale data that was
1494 * overwritten by the previous owner of the semaphore.
1496 smp_mb();
1498 goto out_free;
1501 sma = sem_lock(ns, semid);
1504 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1506 error = get_queue_result(&queue);
1509 * Array removed? If yes, leave without sem_unlock().
1511 if (IS_ERR(sma)) {
1512 goto out_free;
1517 * If queue.status != -EINTR we are woken up by another process.
1518 * Leave without unlink_queue(), but with sem_unlock().
1521 if (error != -EINTR) {
1522 goto out_unlock_free;
1526 * If an interrupt occurred we have to clean up the queue
1528 if (timeout && jiffies_left == 0)
1529 error = -EAGAIN;
1532 * If the wakeup was spurious, just retry
1534 if (error == -EINTR && !signal_pending(current))
1535 goto sleep_again;
1537 unlink_queue(sma, &queue);
1539 out_unlock_free:
1540 sem_unlock(sma);
1542 wake_up_sem_queue_do(&tasks);
1543 out_free:
1544 if(sops != fast_sops)
1545 kfree(sops);
1546 return error;
1549 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1550 unsigned, nsops)
1552 return sys_semtimedop(semid, tsops, nsops, NULL);
1555 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1556 * parent and child tasks.
1559 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1561 struct sem_undo_list *undo_list;
1562 int error;
1564 if (clone_flags & CLONE_SYSVSEM) {
1565 error = get_undo_list(&undo_list);
1566 if (error)
1567 return error;
1568 atomic_inc(&undo_list->refcnt);
1569 tsk->sysvsem.undo_list = undo_list;
1570 } else
1571 tsk->sysvsem.undo_list = NULL;
1573 return 0;
1577 * add semadj values to semaphores, free undo structures.
1578 * undo structures are not freed when semaphore arrays are destroyed
1579 * so some of them may be out of date.
1580 * IMPLEMENTATION NOTE: There is some confusion over whether the
1581 * set of adjustments that needs to be done should be done in an atomic
1582 * manner or not. That is, if we are attempting to decrement the semval
1583 * should we queue up and wait until we can do so legally?
1584 * The original implementation attempted to do this (queue and wait).
1585 * The current implementation does not do so. The POSIX standard
1586 * and SVID should be consulted to determine what behavior is mandated.
1588 void exit_sem(struct task_struct *tsk)
1590 struct sem_undo_list *ulp;
1592 ulp = tsk->sysvsem.undo_list;
1593 if (!ulp)
1594 return;
1595 tsk->sysvsem.undo_list = NULL;
1597 if (!atomic_dec_and_test(&ulp->refcnt))
1598 return;
1600 for (;;) {
1601 struct sem_array *sma;
1602 struct sem_undo *un;
1603 struct list_head tasks;
1604 int semid;
1605 int i;
1607 rcu_read_lock();
1608 un = list_entry_rcu(ulp->list_proc.next,
1609 struct sem_undo, list_proc);
1610 if (&un->list_proc == &ulp->list_proc) {
1612 * We must wait for freeary() before freeing this ulp,
1613 * in case we raced with last sem_undo. There is a small
1614 * possibility where we exit while freeary() didn't
1615 * finish unlocking sem_undo_list.
1617 spin_unlock_wait(&ulp->lock);
1618 rcu_read_unlock();
1619 break;
1621 spin_lock(&ulp->lock);
1622 semid = un->semid;
1623 spin_unlock(&ulp->lock);
1624 rcu_read_unlock();
1626 /* exit_sem raced with IPC_RMID, nothing to do */
1627 if (semid == -1)
1628 continue;
1630 sma = sem_lock_check(tsk->nsproxy->ipc_ns, semid);
1632 /* exit_sem raced with IPC_RMID, nothing to do */
1633 if (IS_ERR(sma))
1634 continue;
1636 un = __lookup_undo(ulp, semid);
1637 if (un == NULL) {
1638 /* exit_sem raced with IPC_RMID+semget() that created
1639 * exactly the same semid. Nothing to do.
1641 sem_unlock(sma);
1642 continue;
1645 /* remove un from the linked lists */
1646 assert_spin_locked(&sma->sem_perm.lock);
1647 list_del(&un->list_id);
1649 spin_lock(&ulp->lock);
1650 list_del_rcu(&un->list_proc);
1651 spin_unlock(&ulp->lock);
1653 /* perform adjustments registered in un */
1654 for (i = 0; i < sma->sem_nsems; i++) {
1655 struct sem * semaphore = &sma->sem_base[i];
1656 if (un->semadj[i]) {
1657 semaphore->semval += un->semadj[i];
1659 * Range checks of the new semaphore value,
1660 * not defined by sus:
1661 * - Some unices ignore the undo entirely
1662 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1663 * - some cap the value (e.g. FreeBSD caps
1664 * at 0, but doesn't enforce SEMVMX)
1666 * Linux caps the semaphore value, both at 0
1667 * and at SEMVMX.
1669 * Manfred <manfred@colorfullife.com>
1671 if (semaphore->semval < 0)
1672 semaphore->semval = 0;
1673 if (semaphore->semval > SEMVMX)
1674 semaphore->semval = SEMVMX;
1675 semaphore->sempid = task_tgid_vnr(current);
1678 /* maybe some queued-up processes were waiting for this */
1679 INIT_LIST_HEAD(&tasks);
1680 do_smart_update(sma, NULL, 0, 1, &tasks);
1681 sem_unlock(sma);
1682 wake_up_sem_queue_do(&tasks);
1684 kfree_rcu(un, rcu);
1686 kfree(ulp);
1689 #ifdef CONFIG_PROC_FS
1690 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1692 struct sem_array *sma = it;
1694 return seq_printf(s,
1695 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
1696 sma->sem_perm.key,
1697 sma->sem_perm.id,
1698 sma->sem_perm.mode,
1699 sma->sem_nsems,
1700 sma->sem_perm.uid,
1701 sma->sem_perm.gid,
1702 sma->sem_perm.cuid,
1703 sma->sem_perm.cgid,
1704 sma->sem_otime,
1705 sma->sem_ctime);
1707 #endif