3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
8 * SMP-threaded, sysctl's added
9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
10 * Enforced range limit on SEM_UNDO
11 * (c) 2001 Red Hat Inc
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
22 * Pavel Emelianov <xemul@openvz.org>
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
76 #include <linux/slab.h>
77 #include <linux/spinlock.h>
78 #include <linux/init.h>
79 #include <linux/proc_fs.h>
80 #include <linux/time.h>
81 #include <linux/security.h>
82 #include <linux/syscalls.h>
83 #include <linux/audit.h>
84 #include <linux/capability.h>
85 #include <linux/seq_file.h>
86 #include <linux/rwsem.h>
87 #include <linux/nsproxy.h>
88 #include <linux/ipc_namespace.h>
90 #include <asm/uaccess.h>
93 /* One semaphore structure for each semaphore in the system. */
95 int semval
; /* current value */
96 int sempid
; /* pid of last operation */
97 struct list_head sem_pending
; /* pending single-sop operations */
100 /* One queue for each sleeping process in the system. */
102 struct list_head simple_list
; /* queue of pending operations */
103 struct list_head list
; /* queue of pending operations */
104 struct task_struct
*sleeper
; /* this process */
105 struct sem_undo
*undo
; /* undo structure */
106 int pid
; /* process id of requesting process */
107 int status
; /* completion status of operation */
108 struct sembuf
*sops
; /* array of pending operations */
109 int nsops
; /* number of operations */
110 int alter
; /* does *sops alter the array? */
113 /* Each task has a list of undo requests. They are executed automatically
114 * when the process exits.
117 struct list_head list_proc
; /* per-process list: *
118 * all undos from one process
120 struct rcu_head rcu
; /* rcu struct for sem_undo */
121 struct sem_undo_list
*ulp
; /* back ptr to sem_undo_list */
122 struct list_head list_id
; /* per semaphore array list:
123 * all undos for one array */
124 int semid
; /* semaphore set identifier */
125 short *semadj
; /* array of adjustments */
126 /* one per semaphore */
129 /* sem_undo_list controls shared access to the list of sem_undo structures
130 * that may be shared among all a CLONE_SYSVSEM task group.
132 struct sem_undo_list
{
135 struct list_head list_proc
;
139 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
141 #define sem_unlock(sma) ipc_unlock(&(sma)->sem_perm)
142 #define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
144 static int newary(struct ipc_namespace
*, struct ipc_params
*);
145 static void freeary(struct ipc_namespace
*, struct kern_ipc_perm
*);
146 #ifdef CONFIG_PROC_FS
147 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
);
150 #define SEMMSL_FAST 256 /* 512 bytes on stack */
151 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
154 * linked list protection:
156 * sem_array.sem_pending{,last},
157 * sem_array.sem_undo: sem_lock() for read/write
158 * sem_undo.proc_next: only "current" is allowed to read/write that field.
162 #define sc_semmsl sem_ctls[0]
163 #define sc_semmns sem_ctls[1]
164 #define sc_semopm sem_ctls[2]
165 #define sc_semmni sem_ctls[3]
167 void sem_init_ns(struct ipc_namespace
*ns
)
169 ns
->sc_semmsl
= SEMMSL
;
170 ns
->sc_semmns
= SEMMNS
;
171 ns
->sc_semopm
= SEMOPM
;
172 ns
->sc_semmni
= SEMMNI
;
174 ipc_init_ids(&ns
->ids
[IPC_SEM_IDS
]);
178 void sem_exit_ns(struct ipc_namespace
*ns
)
180 free_ipcs(ns
, &sem_ids(ns
), freeary
);
181 idr_destroy(&ns
->ids
[IPC_SEM_IDS
].ipcs_idr
);
185 void __init
sem_init (void)
187 sem_init_ns(&init_ipc_ns
);
188 ipc_init_proc_interface("sysvipc/sem",
189 " key semid perms nsems uid gid cuid cgid otime ctime\n",
190 IPC_SEM_IDS
, sysvipc_sem_proc_show
);
194 * sem_lock_(check_) routines are called in the paths where the rw_mutex
197 static inline struct sem_array
*sem_lock(struct ipc_namespace
*ns
, int id
)
199 struct kern_ipc_perm
*ipcp
= ipc_lock(&sem_ids(ns
), id
);
202 return (struct sem_array
*)ipcp
;
204 return container_of(ipcp
, struct sem_array
, sem_perm
);
207 static inline struct sem_array
*sem_lock_check(struct ipc_namespace
*ns
,
210 struct kern_ipc_perm
*ipcp
= ipc_lock_check(&sem_ids(ns
), id
);
213 return (struct sem_array
*)ipcp
;
215 return container_of(ipcp
, struct sem_array
, sem_perm
);
218 static inline void sem_lock_and_putref(struct sem_array
*sma
)
220 ipc_lock_by_ptr(&sma
->sem_perm
);
224 static inline void sem_getref_and_unlock(struct sem_array
*sma
)
227 ipc_unlock(&(sma
)->sem_perm
);
230 static inline void sem_putref(struct sem_array
*sma
)
232 ipc_lock_by_ptr(&sma
->sem_perm
);
234 ipc_unlock(&(sma
)->sem_perm
);
237 static inline void sem_rmid(struct ipc_namespace
*ns
, struct sem_array
*s
)
239 ipc_rmid(&sem_ids(ns
), &s
->sem_perm
);
243 * Lockless wakeup algorithm:
244 * Without the check/retry algorithm a lockless wakeup is possible:
245 * - queue.status is initialized to -EINTR before blocking.
246 * - wakeup is performed by
247 * * unlinking the queue entry from sma->sem_pending
248 * * setting queue.status to IN_WAKEUP
249 * This is the notification for the blocked thread that a
250 * result value is imminent.
251 * * call wake_up_process
252 * * set queue.status to the final value.
253 * - the previously blocked thread checks queue.status:
254 * * if it's IN_WAKEUP, then it must wait until the value changes
255 * * if it's not -EINTR, then the operation was completed by
256 * update_queue. semtimedop can return queue.status without
257 * performing any operation on the sem array.
258 * * otherwise it must acquire the spinlock and check what's up.
260 * The two-stage algorithm is necessary to protect against the following
262 * - if queue.status is set after wake_up_process, then the woken up idle
263 * thread could race forward and try (and fail) to acquire sma->lock
264 * before update_queue had a chance to set queue.status
265 * - if queue.status is written before wake_up_process and if the
266 * blocked process is woken up by a signal between writing
267 * queue.status and the wake_up_process, then the woken up
268 * process could return from semtimedop and die by calling
269 * sys_exit before wake_up_process is called. Then wake_up_process
270 * will oops, because the task structure is already invalid.
271 * (yes, this happened on s390 with sysv msg).
277 * newary - Create a new semaphore set
279 * @params: ptr to the structure that contains key, semflg and nsems
281 * Called with sem_ids.rw_mutex held (as a writer)
284 static int newary(struct ipc_namespace
*ns
, struct ipc_params
*params
)
288 struct sem_array
*sma
;
290 key_t key
= params
->key
;
291 int nsems
= params
->u
.nsems
;
292 int semflg
= params
->flg
;
297 if (ns
->used_sems
+ nsems
> ns
->sc_semmns
)
300 size
= sizeof (*sma
) + nsems
* sizeof (struct sem
);
301 sma
= ipc_rcu_alloc(size
);
305 memset (sma
, 0, size
);
307 sma
->sem_perm
.mode
= (semflg
& S_IRWXUGO
);
308 sma
->sem_perm
.key
= key
;
310 sma
->sem_perm
.security
= NULL
;
311 retval
= security_sem_alloc(sma
);
317 sma
->sem_base
= (struct sem
*) &sma
[1];
319 for (i
= 0; i
< nsems
; i
++)
320 INIT_LIST_HEAD(&sma
->sem_base
[i
].sem_pending
);
322 sma
->complex_count
= 0;
323 INIT_LIST_HEAD(&sma
->sem_pending
);
324 INIT_LIST_HEAD(&sma
->list_id
);
325 sma
->sem_nsems
= nsems
;
326 sma
->sem_ctime
= get_seconds();
328 id
= ipc_addid(&sem_ids(ns
), &sma
->sem_perm
, ns
->sc_semmni
);
330 security_sem_free(sma
);
334 ns
->used_sems
+= nsems
;
338 return sma
->sem_perm
.id
;
343 * Called with sem_ids.rw_mutex and ipcp locked.
345 static inline int sem_security(struct kern_ipc_perm
*ipcp
, int semflg
)
347 struct sem_array
*sma
;
349 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
350 return security_sem_associate(sma
, semflg
);
354 * Called with sem_ids.rw_mutex and ipcp locked.
356 static inline int sem_more_checks(struct kern_ipc_perm
*ipcp
,
357 struct ipc_params
*params
)
359 struct sem_array
*sma
;
361 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
362 if (params
->u
.nsems
> sma
->sem_nsems
)
368 SYSCALL_DEFINE3(semget
, key_t
, key
, int, nsems
, int, semflg
)
370 struct ipc_namespace
*ns
;
371 struct ipc_ops sem_ops
;
372 struct ipc_params sem_params
;
374 ns
= current
->nsproxy
->ipc_ns
;
376 if (nsems
< 0 || nsems
> ns
->sc_semmsl
)
379 sem_ops
.getnew
= newary
;
380 sem_ops
.associate
= sem_security
;
381 sem_ops
.more_checks
= sem_more_checks
;
383 sem_params
.key
= key
;
384 sem_params
.flg
= semflg
;
385 sem_params
.u
.nsems
= nsems
;
387 return ipcget(ns
, &sem_ids(ns
), &sem_ops
, &sem_params
);
391 * Determine whether a sequence of semaphore operations would succeed
392 * all at once. Return 0 if yes, 1 if need to sleep, else return error code.
395 static int try_atomic_semop (struct sem_array
* sma
, struct sembuf
* sops
,
396 int nsops
, struct sem_undo
*un
, int pid
)
402 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
403 curr
= sma
->sem_base
+ sop
->sem_num
;
404 sem_op
= sop
->sem_op
;
405 result
= curr
->semval
;
407 if (!sem_op
&& result
)
415 if (sop
->sem_flg
& SEM_UNDO
) {
416 int undo
= un
->semadj
[sop
->sem_num
] - sem_op
;
418 * Exceeding the undo range is an error.
420 if (undo
< (-SEMAEM
- 1) || undo
> SEMAEM
)
423 curr
->semval
= result
;
427 while (sop
>= sops
) {
428 sma
->sem_base
[sop
->sem_num
].sempid
= pid
;
429 if (sop
->sem_flg
& SEM_UNDO
)
430 un
->semadj
[sop
->sem_num
] -= sop
->sem_op
;
441 if (sop
->sem_flg
& IPC_NOWAIT
)
448 while (sop
>= sops
) {
449 sma
->sem_base
[sop
->sem_num
].semval
-= sop
->sem_op
;
456 /** wake_up_sem_queue_prepare(q, error): Prepare wake-up
457 * @q: queue entry that must be signaled
458 * @error: Error value for the signal
460 * Prepare the wake-up of the queue entry q.
462 static void wake_up_sem_queue_prepare(struct list_head
*pt
,
463 struct sem_queue
*q
, int error
)
465 if (list_empty(pt
)) {
467 * Hold preempt off so that we don't get preempted and have the
468 * wakee busy-wait until we're scheduled back on.
472 q
->status
= IN_WAKEUP
;
475 list_add_tail(&q
->simple_list
, pt
);
479 * wake_up_sem_queue_do(pt) - do the actual wake-up
480 * @pt: list of tasks to be woken up
482 * Do the actual wake-up.
483 * The function is called without any locks held, thus the semaphore array
484 * could be destroyed already and the tasks can disappear as soon as the
485 * status is set to the actual return code.
487 static void wake_up_sem_queue_do(struct list_head
*pt
)
489 struct sem_queue
*q
, *t
;
492 did_something
= !list_empty(pt
);
493 list_for_each_entry_safe(q
, t
, pt
, simple_list
) {
494 wake_up_process(q
->sleeper
);
495 /* q can disappear immediately after writing q->status. */
503 static void unlink_queue(struct sem_array
*sma
, struct sem_queue
*q
)
507 list_del(&q
->simple_list
);
509 sma
->complex_count
--;
512 /** check_restart(sma, q)
513 * @sma: semaphore array
514 * @q: the operation that just completed
516 * update_queue is O(N^2) when it restarts scanning the whole queue of
517 * waiting operations. Therefore this function checks if the restart is
518 * really necessary. It is called after a previously waiting operation
521 static int check_restart(struct sem_array
*sma
, struct sem_queue
*q
)
526 /* if the operation didn't modify the array, then no restart */
530 /* pending complex operations are too difficult to analyse */
531 if (sma
->complex_count
)
534 /* we were a sleeping complex operation. Too difficult */
538 curr
= sma
->sem_base
+ q
->sops
[0].sem_num
;
540 /* No-one waits on this queue */
541 if (list_empty(&curr
->sem_pending
))
544 /* the new semaphore value */
546 /* It is impossible that someone waits for the new value:
547 * - q is a previously sleeping simple operation that
548 * altered the array. It must be a decrement, because
549 * simple increments never sleep.
550 * - The value is not 0, thus wait-for-zero won't proceed.
551 * - If there are older (higher priority) decrements
552 * in the queue, then they have observed the original
553 * semval value and couldn't proceed. The operation
554 * decremented to value - thus they won't proceed either.
556 BUG_ON(q
->sops
[0].sem_op
>= 0);
560 * semval is 0. Check if there are wait-for-zero semops.
561 * They must be the first entries in the per-semaphore simple queue
563 h
= list_first_entry(&curr
->sem_pending
, struct sem_queue
, simple_list
);
564 BUG_ON(h
->nsops
!= 1);
565 BUG_ON(h
->sops
[0].sem_num
!= q
->sops
[0].sem_num
);
567 /* Yes, there is a wait-for-zero semop. Restart */
568 if (h
->sops
[0].sem_op
== 0)
571 /* Again - no-one is waiting for the new value. */
577 * update_queue(sma, semnum): Look for tasks that can be completed.
578 * @sma: semaphore array.
579 * @semnum: semaphore that was modified.
580 * @pt: list head for the tasks that must be woken up.
582 * update_queue must be called after a semaphore in a semaphore array
583 * was modified. If multiple semaphore were modified, then @semnum
585 * The tasks that must be woken up are added to @pt. The return code
586 * is stored in q->pid.
587 * The function return 1 if at least one semop was completed successfully.
589 static int update_queue(struct sem_array
*sma
, int semnum
, struct list_head
*pt
)
592 struct list_head
*walk
;
593 struct list_head
*pending_list
;
595 int semop_completed
= 0;
597 /* if there are complex operations around, then knowing the semaphore
598 * that was modified doesn't help us. Assume that multiple semaphores
601 if (sma
->complex_count
)
605 pending_list
= &sma
->sem_pending
;
606 offset
= offsetof(struct sem_queue
, list
);
608 pending_list
= &sma
->sem_base
[semnum
].sem_pending
;
609 offset
= offsetof(struct sem_queue
, simple_list
);
613 walk
= pending_list
->next
;
614 while (walk
!= pending_list
) {
617 q
= (struct sem_queue
*)((char *)walk
- offset
);
620 /* If we are scanning the single sop, per-semaphore list of
621 * one semaphore and that semaphore is 0, then it is not
622 * necessary to scan the "alter" entries: simple increments
623 * that affect only one entry succeed immediately and cannot
624 * be in the per semaphore pending queue, and decrements
625 * cannot be successful if the value is already 0.
627 if (semnum
!= -1 && sma
->sem_base
[semnum
].semval
== 0 &&
631 error
= try_atomic_semop(sma
, q
->sops
, q
->nsops
,
634 /* Does q->sleeper still need to sleep? */
638 unlink_queue(sma
, q
);
644 restart
= check_restart(sma
, q
);
647 wake_up_sem_queue_prepare(pt
, q
, error
);
651 return semop_completed
;
655 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
656 * @sma: semaphore array
657 * @sops: operations that were performed
658 * @nsops: number of operations
659 * @otime: force setting otime
660 * @pt: list head of the tasks that must be woken up.
662 * do_smart_update() does the required called to update_queue, based on the
663 * actual changes that were performed on the semaphore array.
664 * Note that the function does not do the actual wake-up: the caller is
665 * responsible for calling wake_up_sem_queue_do(@pt).
666 * It is safe to perform this call after dropping all locks.
668 static void do_smart_update(struct sem_array
*sma
, struct sembuf
*sops
, int nsops
,
669 int otime
, struct list_head
*pt
)
673 if (sma
->complex_count
|| sops
== NULL
) {
674 if (update_queue(sma
, -1, pt
))
679 for (i
= 0; i
< nsops
; i
++) {
680 if (sops
[i
].sem_op
> 0 ||
681 (sops
[i
].sem_op
< 0 &&
682 sma
->sem_base
[sops
[i
].sem_num
].semval
== 0))
683 if (update_queue(sma
, sops
[i
].sem_num
, pt
))
688 sma
->sem_otime
= get_seconds();
692 /* The following counts are associated to each semaphore:
693 * semncnt number of tasks waiting on semval being nonzero
694 * semzcnt number of tasks waiting on semval being zero
695 * This model assumes that a task waits on exactly one semaphore.
696 * Since semaphore operations are to be performed atomically, tasks actually
697 * wait on a whole sequence of semaphores simultaneously.
698 * The counts we return here are a rough approximation, but still
699 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
701 static int count_semncnt (struct sem_array
* sma
, ushort semnum
)
704 struct sem_queue
* q
;
707 list_for_each_entry(q
, &sma
->sem_pending
, list
) {
708 struct sembuf
* sops
= q
->sops
;
709 int nsops
= q
->nsops
;
711 for (i
= 0; i
< nsops
; i
++)
712 if (sops
[i
].sem_num
== semnum
713 && (sops
[i
].sem_op
< 0)
714 && !(sops
[i
].sem_flg
& IPC_NOWAIT
))
720 static int count_semzcnt (struct sem_array
* sma
, ushort semnum
)
723 struct sem_queue
* q
;
726 list_for_each_entry(q
, &sma
->sem_pending
, list
) {
727 struct sembuf
* sops
= q
->sops
;
728 int nsops
= q
->nsops
;
730 for (i
= 0; i
< nsops
; i
++)
731 if (sops
[i
].sem_num
== semnum
732 && (sops
[i
].sem_op
== 0)
733 && !(sops
[i
].sem_flg
& IPC_NOWAIT
))
739 /* Free a semaphore set. freeary() is called with sem_ids.rw_mutex locked
740 * as a writer and the spinlock for this semaphore set hold. sem_ids.rw_mutex
741 * remains locked on exit.
743 static void freeary(struct ipc_namespace
*ns
, struct kern_ipc_perm
*ipcp
)
745 struct sem_undo
*un
, *tu
;
746 struct sem_queue
*q
, *tq
;
747 struct sem_array
*sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
748 struct list_head tasks
;
750 /* Free the existing undo structures for this semaphore set. */
751 assert_spin_locked(&sma
->sem_perm
.lock
);
752 list_for_each_entry_safe(un
, tu
, &sma
->list_id
, list_id
) {
753 list_del(&un
->list_id
);
754 spin_lock(&un
->ulp
->lock
);
756 list_del_rcu(&un
->list_proc
);
757 spin_unlock(&un
->ulp
->lock
);
761 /* Wake up all pending processes and let them fail with EIDRM. */
762 INIT_LIST_HEAD(&tasks
);
763 list_for_each_entry_safe(q
, tq
, &sma
->sem_pending
, list
) {
764 unlink_queue(sma
, q
);
765 wake_up_sem_queue_prepare(&tasks
, q
, -EIDRM
);
768 /* Remove the semaphore set from the IDR */
772 wake_up_sem_queue_do(&tasks
);
773 ns
->used_sems
-= sma
->sem_nsems
;
774 security_sem_free(sma
);
778 static unsigned long copy_semid_to_user(void __user
*buf
, struct semid64_ds
*in
, int version
)
782 return copy_to_user(buf
, in
, sizeof(*in
));
787 memset(&out
, 0, sizeof(out
));
789 ipc64_perm_to_ipc_perm(&in
->sem_perm
, &out
.sem_perm
);
791 out
.sem_otime
= in
->sem_otime
;
792 out
.sem_ctime
= in
->sem_ctime
;
793 out
.sem_nsems
= in
->sem_nsems
;
795 return copy_to_user(buf
, &out
, sizeof(out
));
802 static int semctl_nolock(struct ipc_namespace
*ns
, int semid
,
803 int cmd
, int version
, union semun arg
)
806 struct sem_array
*sma
;
812 struct seminfo seminfo
;
815 err
= security_sem_semctl(NULL
, cmd
);
819 memset(&seminfo
,0,sizeof(seminfo
));
820 seminfo
.semmni
= ns
->sc_semmni
;
821 seminfo
.semmns
= ns
->sc_semmns
;
822 seminfo
.semmsl
= ns
->sc_semmsl
;
823 seminfo
.semopm
= ns
->sc_semopm
;
824 seminfo
.semvmx
= SEMVMX
;
825 seminfo
.semmnu
= SEMMNU
;
826 seminfo
.semmap
= SEMMAP
;
827 seminfo
.semume
= SEMUME
;
828 down_read(&sem_ids(ns
).rw_mutex
);
829 if (cmd
== SEM_INFO
) {
830 seminfo
.semusz
= sem_ids(ns
).in_use
;
831 seminfo
.semaem
= ns
->used_sems
;
833 seminfo
.semusz
= SEMUSZ
;
834 seminfo
.semaem
= SEMAEM
;
836 max_id
= ipc_get_maxid(&sem_ids(ns
));
837 up_read(&sem_ids(ns
).rw_mutex
);
838 if (copy_to_user (arg
.__buf
, &seminfo
, sizeof(struct seminfo
)))
840 return (max_id
< 0) ? 0: max_id
;
845 struct semid64_ds tbuf
;
848 if (cmd
== SEM_STAT
) {
849 sma
= sem_lock(ns
, semid
);
852 id
= sma
->sem_perm
.id
;
854 sma
= sem_lock_check(ns
, semid
);
861 if (ipcperms(ns
, &sma
->sem_perm
, S_IRUGO
))
864 err
= security_sem_semctl(sma
, cmd
);
868 memset(&tbuf
, 0, sizeof(tbuf
));
870 kernel_to_ipc64_perm(&sma
->sem_perm
, &tbuf
.sem_perm
);
871 tbuf
.sem_otime
= sma
->sem_otime
;
872 tbuf
.sem_ctime
= sma
->sem_ctime
;
873 tbuf
.sem_nsems
= sma
->sem_nsems
;
875 if (copy_semid_to_user (arg
.buf
, &tbuf
, version
))
887 static int semctl_main(struct ipc_namespace
*ns
, int semid
, int semnum
,
888 int cmd
, int version
, union semun arg
)
890 struct sem_array
*sma
;
893 ushort fast_sem_io
[SEMMSL_FAST
];
894 ushort
* sem_io
= fast_sem_io
;
896 struct list_head tasks
;
898 sma
= sem_lock_check(ns
, semid
);
902 INIT_LIST_HEAD(&tasks
);
903 nsems
= sma
->sem_nsems
;
906 if (ipcperms(ns
, &sma
->sem_perm
,
907 (cmd
== SETVAL
|| cmd
== SETALL
) ? S_IWUGO
: S_IRUGO
))
910 err
= security_sem_semctl(sma
, cmd
);
918 ushort __user
*array
= arg
.array
;
921 if(nsems
> SEMMSL_FAST
) {
922 sem_getref_and_unlock(sma
);
924 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
930 sem_lock_and_putref(sma
);
931 if (sma
->sem_perm
.deleted
) {
938 for (i
= 0; i
< sma
->sem_nsems
; i
++)
939 sem_io
[i
] = sma
->sem_base
[i
].semval
;
942 if(copy_to_user(array
, sem_io
, nsems
*sizeof(ushort
)))
951 sem_getref_and_unlock(sma
);
953 if(nsems
> SEMMSL_FAST
) {
954 sem_io
= ipc_alloc(sizeof(ushort
)*nsems
);
961 if (copy_from_user (sem_io
, arg
.array
, nsems
*sizeof(ushort
))) {
967 for (i
= 0; i
< nsems
; i
++) {
968 if (sem_io
[i
] > SEMVMX
) {
974 sem_lock_and_putref(sma
);
975 if (sma
->sem_perm
.deleted
) {
981 for (i
= 0; i
< nsems
; i
++)
982 sma
->sem_base
[i
].semval
= sem_io
[i
];
984 assert_spin_locked(&sma
->sem_perm
.lock
);
985 list_for_each_entry(un
, &sma
->list_id
, list_id
) {
986 for (i
= 0; i
< nsems
; i
++)
989 sma
->sem_ctime
= get_seconds();
990 /* maybe some queued-up processes were waiting for this */
991 do_smart_update(sma
, NULL
, 0, 0, &tasks
);
995 /* GETVAL, GETPID, GETNCTN, GETZCNT, SETVAL: fall-through */
998 if(semnum
< 0 || semnum
>= nsems
)
1001 curr
= &sma
->sem_base
[semnum
];
1011 err
= count_semncnt(sma
,semnum
);
1014 err
= count_semzcnt(sma
,semnum
);
1019 struct sem_undo
*un
;
1022 if (val
> SEMVMX
|| val
< 0)
1025 assert_spin_locked(&sma
->sem_perm
.lock
);
1026 list_for_each_entry(un
, &sma
->list_id
, list_id
)
1027 un
->semadj
[semnum
] = 0;
1030 curr
->sempid
= task_tgid_vnr(current
);
1031 sma
->sem_ctime
= get_seconds();
1032 /* maybe some queued-up processes were waiting for this */
1033 do_smart_update(sma
, NULL
, 0, 0, &tasks
);
1040 wake_up_sem_queue_do(&tasks
);
1043 if(sem_io
!= fast_sem_io
)
1044 ipc_free(sem_io
, sizeof(ushort
)*nsems
);
1048 static inline unsigned long
1049 copy_semid_from_user(struct semid64_ds
*out
, void __user
*buf
, int version
)
1053 if (copy_from_user(out
, buf
, sizeof(*out
)))
1058 struct semid_ds tbuf_old
;
1060 if(copy_from_user(&tbuf_old
, buf
, sizeof(tbuf_old
)))
1063 out
->sem_perm
.uid
= tbuf_old
.sem_perm
.uid
;
1064 out
->sem_perm
.gid
= tbuf_old
.sem_perm
.gid
;
1065 out
->sem_perm
.mode
= tbuf_old
.sem_perm
.mode
;
1075 * This function handles some semctl commands which require the rw_mutex
1076 * to be held in write mode.
1077 * NOTE: no locks must be held, the rw_mutex is taken inside this function.
1079 static int semctl_down(struct ipc_namespace
*ns
, int semid
,
1080 int cmd
, int version
, union semun arg
)
1082 struct sem_array
*sma
;
1084 struct semid64_ds semid64
;
1085 struct kern_ipc_perm
*ipcp
;
1087 if(cmd
== IPC_SET
) {
1088 if (copy_semid_from_user(&semid64
, arg
.buf
, version
))
1092 ipcp
= ipcctl_pre_down(ns
, &sem_ids(ns
), semid
, cmd
,
1093 &semid64
.sem_perm
, 0);
1095 return PTR_ERR(ipcp
);
1097 sma
= container_of(ipcp
, struct sem_array
, sem_perm
);
1099 err
= security_sem_semctl(sma
, cmd
);
1108 ipc_update_perm(&semid64
.sem_perm
, ipcp
);
1109 sma
->sem_ctime
= get_seconds();
1118 up_write(&sem_ids(ns
).rw_mutex
);
1122 SYSCALL_DEFINE(semctl
)(int semid
, int semnum
, int cmd
, union semun arg
)
1126 struct ipc_namespace
*ns
;
1131 version
= ipc_parse_version(&cmd
);
1132 ns
= current
->nsproxy
->ipc_ns
;
1139 err
= semctl_nolock(ns
, semid
, cmd
, version
, arg
);
1148 err
= semctl_main(ns
,semid
,semnum
,cmd
,version
,arg
);
1152 err
= semctl_down(ns
, semid
, cmd
, version
, arg
);
1158 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1159 asmlinkage
long SyS_semctl(int semid
, int semnum
, int cmd
, union semun arg
)
1161 return SYSC_semctl((int) semid
, (int) semnum
, (int) cmd
, arg
);
1163 SYSCALL_ALIAS(sys_semctl
, SyS_semctl
);
1166 /* If the task doesn't already have a undo_list, then allocate one
1167 * here. We guarantee there is only one thread using this undo list,
1168 * and current is THE ONE
1170 * If this allocation and assignment succeeds, but later
1171 * portions of this code fail, there is no need to free the sem_undo_list.
1172 * Just let it stay associated with the task, and it'll be freed later
1175 * This can block, so callers must hold no locks.
1177 static inline int get_undo_list(struct sem_undo_list
**undo_listp
)
1179 struct sem_undo_list
*undo_list
;
1181 undo_list
= current
->sysvsem
.undo_list
;
1183 undo_list
= kzalloc(sizeof(*undo_list
), GFP_KERNEL
);
1184 if (undo_list
== NULL
)
1186 spin_lock_init(&undo_list
->lock
);
1187 atomic_set(&undo_list
->refcnt
, 1);
1188 INIT_LIST_HEAD(&undo_list
->list_proc
);
1190 current
->sysvsem
.undo_list
= undo_list
;
1192 *undo_listp
= undo_list
;
1196 static struct sem_undo
*__lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1198 struct sem_undo
*un
;
1200 list_for_each_entry_rcu(un
, &ulp
->list_proc
, list_proc
) {
1201 if (un
->semid
== semid
)
1207 static struct sem_undo
*lookup_undo(struct sem_undo_list
*ulp
, int semid
)
1209 struct sem_undo
*un
;
1211 assert_spin_locked(&ulp
->lock
);
1213 un
= __lookup_undo(ulp
, semid
);
1215 list_del_rcu(&un
->list_proc
);
1216 list_add_rcu(&un
->list_proc
, &ulp
->list_proc
);
1222 * find_alloc_undo - Lookup (and if not present create) undo array
1224 * @semid: semaphore array id
1226 * The function looks up (and if not present creates) the undo structure.
1227 * The size of the undo structure depends on the size of the semaphore
1228 * array, thus the alloc path is not that straightforward.
1229 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1230 * performs a rcu_read_lock().
1232 static struct sem_undo
*find_alloc_undo(struct ipc_namespace
*ns
, int semid
)
1234 struct sem_array
*sma
;
1235 struct sem_undo_list
*ulp
;
1236 struct sem_undo
*un
, *new;
1240 error
= get_undo_list(&ulp
);
1242 return ERR_PTR(error
);
1245 spin_lock(&ulp
->lock
);
1246 un
= lookup_undo(ulp
, semid
);
1247 spin_unlock(&ulp
->lock
);
1248 if (likely(un
!=NULL
))
1252 /* no undo structure around - allocate one. */
1253 /* step 1: figure out the size of the semaphore array */
1254 sma
= sem_lock_check(ns
, semid
);
1256 return ERR_CAST(sma
);
1258 nsems
= sma
->sem_nsems
;
1259 sem_getref_and_unlock(sma
);
1261 /* step 2: allocate new undo structure */
1262 new = kzalloc(sizeof(struct sem_undo
) + sizeof(short)*nsems
, GFP_KERNEL
);
1265 return ERR_PTR(-ENOMEM
);
1268 /* step 3: Acquire the lock on semaphore array */
1269 sem_lock_and_putref(sma
);
1270 if (sma
->sem_perm
.deleted
) {
1273 un
= ERR_PTR(-EIDRM
);
1276 spin_lock(&ulp
->lock
);
1279 * step 4: check for races: did someone else allocate the undo struct?
1281 un
= lookup_undo(ulp
, semid
);
1286 /* step 5: initialize & link new undo structure */
1287 new->semadj
= (short *) &new[1];
1290 assert_spin_locked(&ulp
->lock
);
1291 list_add_rcu(&new->list_proc
, &ulp
->list_proc
);
1292 assert_spin_locked(&sma
->sem_perm
.lock
);
1293 list_add(&new->list_id
, &sma
->list_id
);
1297 spin_unlock(&ulp
->lock
);
1306 * get_queue_result - Retrieve the result code from sem_queue
1307 * @q: Pointer to queue structure
1309 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1310 * q->status, then we must loop until the value is replaced with the final
1311 * value: This may happen if a task is woken up by an unrelated event (e.g.
1312 * signal) and in parallel the task is woken up by another task because it got
1313 * the requested semaphores.
1315 * The function can be called with or without holding the semaphore spinlock.
1317 static int get_queue_result(struct sem_queue
*q
)
1322 while (unlikely(error
== IN_WAKEUP
)) {
1331 SYSCALL_DEFINE4(semtimedop
, int, semid
, struct sembuf __user
*, tsops
,
1332 unsigned, nsops
, const struct timespec __user
*, timeout
)
1334 int error
= -EINVAL
;
1335 struct sem_array
*sma
;
1336 struct sembuf fast_sops
[SEMOPM_FAST
];
1337 struct sembuf
* sops
= fast_sops
, *sop
;
1338 struct sem_undo
*un
;
1339 int undos
= 0, alter
= 0, max
;
1340 struct sem_queue queue
;
1341 unsigned long jiffies_left
= 0;
1342 struct ipc_namespace
*ns
;
1343 struct list_head tasks
;
1345 ns
= current
->nsproxy
->ipc_ns
;
1347 if (nsops
< 1 || semid
< 0)
1349 if (nsops
> ns
->sc_semopm
)
1351 if(nsops
> SEMOPM_FAST
) {
1352 sops
= kmalloc(sizeof(*sops
)*nsops
,GFP_KERNEL
);
1356 if (copy_from_user (sops
, tsops
, nsops
* sizeof(*tsops
))) {
1361 struct timespec _timeout
;
1362 if (copy_from_user(&_timeout
, timeout
, sizeof(*timeout
))) {
1366 if (_timeout
.tv_sec
< 0 || _timeout
.tv_nsec
< 0 ||
1367 _timeout
.tv_nsec
>= 1000000000L) {
1371 jiffies_left
= timespec_to_jiffies(&_timeout
);
1374 for (sop
= sops
; sop
< sops
+ nsops
; sop
++) {
1375 if (sop
->sem_num
>= max
)
1377 if (sop
->sem_flg
& SEM_UNDO
)
1379 if (sop
->sem_op
!= 0)
1384 un
= find_alloc_undo(ns
, semid
);
1386 error
= PTR_ERR(un
);
1392 INIT_LIST_HEAD(&tasks
);
1394 sma
= sem_lock_check(ns
, semid
);
1398 error
= PTR_ERR(sma
);
1403 * semid identifiers are not unique - find_alloc_undo may have
1404 * allocated an undo structure, it was invalidated by an RMID
1405 * and now a new array with received the same id. Check and fail.
1406 * This case can be detected checking un->semid. The existence of
1407 * "un" itself is guaranteed by rcu.
1411 if (un
->semid
== -1) {
1413 goto out_unlock_free
;
1416 * rcu lock can be released, "un" cannot disappear:
1417 * - sem_lock is acquired, thus IPC_RMID is
1419 * - exit_sem is impossible, it always operates on
1420 * current (or a dead task).
1428 if (max
>= sma
->sem_nsems
)
1429 goto out_unlock_free
;
1432 if (ipcperms(ns
, &sma
->sem_perm
, alter
? S_IWUGO
: S_IRUGO
))
1433 goto out_unlock_free
;
1435 error
= security_sem_semop(sma
, sops
, nsops
, alter
);
1437 goto out_unlock_free
;
1439 error
= try_atomic_semop (sma
, sops
, nsops
, un
, task_tgid_vnr(current
));
1441 if (alter
&& error
== 0)
1442 do_smart_update(sma
, sops
, nsops
, 1, &tasks
);
1444 goto out_unlock_free
;
1447 /* We need to sleep on this operation, so we put the current
1448 * task into the pending queue and go to sleep.
1452 queue
.nsops
= nsops
;
1454 queue
.pid
= task_tgid_vnr(current
);
1455 queue
.alter
= alter
;
1457 list_add_tail(&queue
.list
, &sma
->sem_pending
);
1459 list_add(&queue
.list
, &sma
->sem_pending
);
1463 curr
= &sma
->sem_base
[sops
->sem_num
];
1466 list_add_tail(&queue
.simple_list
, &curr
->sem_pending
);
1468 list_add(&queue
.simple_list
, &curr
->sem_pending
);
1470 INIT_LIST_HEAD(&queue
.simple_list
);
1471 sma
->complex_count
++;
1474 queue
.status
= -EINTR
;
1475 queue
.sleeper
= current
;
1478 current
->state
= TASK_INTERRUPTIBLE
;
1482 jiffies_left
= schedule_timeout(jiffies_left
);
1486 error
= get_queue_result(&queue
);
1488 if (error
!= -EINTR
) {
1489 /* fast path: update_queue already obtained all requested
1491 * Perform a smp_mb(): User space could assume that semop()
1492 * is a memory barrier: Without the mb(), the cpu could
1493 * speculatively read in user space stale data that was
1494 * overwritten by the previous owner of the semaphore.
1501 sma
= sem_lock(ns
, semid
);
1504 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1506 error
= get_queue_result(&queue
);
1509 * Array removed? If yes, leave without sem_unlock().
1517 * If queue.status != -EINTR we are woken up by another process.
1518 * Leave without unlink_queue(), but with sem_unlock().
1521 if (error
!= -EINTR
) {
1522 goto out_unlock_free
;
1526 * If an interrupt occurred we have to clean up the queue
1528 if (timeout
&& jiffies_left
== 0)
1532 * If the wakeup was spurious, just retry
1534 if (error
== -EINTR
&& !signal_pending(current
))
1537 unlink_queue(sma
, &queue
);
1542 wake_up_sem_queue_do(&tasks
);
1544 if(sops
!= fast_sops
)
1549 SYSCALL_DEFINE3(semop
, int, semid
, struct sembuf __user
*, tsops
,
1552 return sys_semtimedop(semid
, tsops
, nsops
, NULL
);
1555 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1556 * parent and child tasks.
1559 int copy_semundo(unsigned long clone_flags
, struct task_struct
*tsk
)
1561 struct sem_undo_list
*undo_list
;
1564 if (clone_flags
& CLONE_SYSVSEM
) {
1565 error
= get_undo_list(&undo_list
);
1568 atomic_inc(&undo_list
->refcnt
);
1569 tsk
->sysvsem
.undo_list
= undo_list
;
1571 tsk
->sysvsem
.undo_list
= NULL
;
1577 * add semadj values to semaphores, free undo structures.
1578 * undo structures are not freed when semaphore arrays are destroyed
1579 * so some of them may be out of date.
1580 * IMPLEMENTATION NOTE: There is some confusion over whether the
1581 * set of adjustments that needs to be done should be done in an atomic
1582 * manner or not. That is, if we are attempting to decrement the semval
1583 * should we queue up and wait until we can do so legally?
1584 * The original implementation attempted to do this (queue and wait).
1585 * The current implementation does not do so. The POSIX standard
1586 * and SVID should be consulted to determine what behavior is mandated.
1588 void exit_sem(struct task_struct
*tsk
)
1590 struct sem_undo_list
*ulp
;
1592 ulp
= tsk
->sysvsem
.undo_list
;
1595 tsk
->sysvsem
.undo_list
= NULL
;
1597 if (!atomic_dec_and_test(&ulp
->refcnt
))
1601 struct sem_array
*sma
;
1602 struct sem_undo
*un
;
1603 struct list_head tasks
;
1608 un
= list_entry_rcu(ulp
->list_proc
.next
,
1609 struct sem_undo
, list_proc
);
1610 if (&un
->list_proc
== &ulp
->list_proc
) {
1612 * We must wait for freeary() before freeing this ulp,
1613 * in case we raced with last sem_undo. There is a small
1614 * possibility where we exit while freeary() didn't
1615 * finish unlocking sem_undo_list.
1617 spin_unlock_wait(&ulp
->lock
);
1621 spin_lock(&ulp
->lock
);
1623 spin_unlock(&ulp
->lock
);
1626 /* exit_sem raced with IPC_RMID, nothing to do */
1630 sma
= sem_lock_check(tsk
->nsproxy
->ipc_ns
, semid
);
1632 /* exit_sem raced with IPC_RMID, nothing to do */
1636 un
= __lookup_undo(ulp
, semid
);
1638 /* exit_sem raced with IPC_RMID+semget() that created
1639 * exactly the same semid. Nothing to do.
1645 /* remove un from the linked lists */
1646 assert_spin_locked(&sma
->sem_perm
.lock
);
1647 list_del(&un
->list_id
);
1649 spin_lock(&ulp
->lock
);
1650 list_del_rcu(&un
->list_proc
);
1651 spin_unlock(&ulp
->lock
);
1653 /* perform adjustments registered in un */
1654 for (i
= 0; i
< sma
->sem_nsems
; i
++) {
1655 struct sem
* semaphore
= &sma
->sem_base
[i
];
1656 if (un
->semadj
[i
]) {
1657 semaphore
->semval
+= un
->semadj
[i
];
1659 * Range checks of the new semaphore value,
1660 * not defined by sus:
1661 * - Some unices ignore the undo entirely
1662 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
1663 * - some cap the value (e.g. FreeBSD caps
1664 * at 0, but doesn't enforce SEMVMX)
1666 * Linux caps the semaphore value, both at 0
1669 * Manfred <manfred@colorfullife.com>
1671 if (semaphore
->semval
< 0)
1672 semaphore
->semval
= 0;
1673 if (semaphore
->semval
> SEMVMX
)
1674 semaphore
->semval
= SEMVMX
;
1675 semaphore
->sempid
= task_tgid_vnr(current
);
1678 /* maybe some queued-up processes were waiting for this */
1679 INIT_LIST_HEAD(&tasks
);
1680 do_smart_update(sma
, NULL
, 0, 1, &tasks
);
1682 wake_up_sem_queue_do(&tasks
);
1689 #ifdef CONFIG_PROC_FS
1690 static int sysvipc_sem_proc_show(struct seq_file
*s
, void *it
)
1692 struct sem_array
*sma
= it
;
1694 return seq_printf(s
,
1695 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",