OMAP: DSS2: fix irq-stats compilation
[linux/fpc-iii.git] / arch / sh / kernel / perf_event.c
blob7ff0943e7a0856cb1dcc1339f7f74181baf678dc
1 /*
2 * Performance event support framework for SuperH hardware counters.
4 * Copyright (C) 2009 Paul Mundt
6 * Heavily based on the x86 and PowerPC implementations.
8 * x86:
9 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
10 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
11 * Copyright (C) 2009 Jaswinder Singh Rajput
12 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
13 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
14 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
16 * ppc:
17 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
19 * This file is subject to the terms and conditions of the GNU General Public
20 * License. See the file "COPYING" in the main directory of this archive
21 * for more details.
23 #include <linux/kernel.h>
24 #include <linux/init.h>
25 #include <linux/io.h>
26 #include <linux/irq.h>
27 #include <linux/perf_event.h>
28 #include <asm/processor.h>
30 struct cpu_hw_events {
31 struct perf_event *events[MAX_HWEVENTS];
32 unsigned long used_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
33 unsigned long active_mask[BITS_TO_LONGS(MAX_HWEVENTS)];
36 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
38 static struct sh_pmu *sh_pmu __read_mostly;
40 /* Number of perf_events counting hardware events */
41 static atomic_t num_events;
42 /* Used to avoid races in calling reserve/release_pmc_hardware */
43 static DEFINE_MUTEX(pmc_reserve_mutex);
46 * Stub these out for now, do something more profound later.
48 int reserve_pmc_hardware(void)
50 return 0;
53 void release_pmc_hardware(void)
57 static inline int sh_pmu_initialized(void)
59 return !!sh_pmu;
63 * Release the PMU if this is the last perf_event.
65 static void hw_perf_event_destroy(struct perf_event *event)
67 if (!atomic_add_unless(&num_events, -1, 1)) {
68 mutex_lock(&pmc_reserve_mutex);
69 if (atomic_dec_return(&num_events) == 0)
70 release_pmc_hardware();
71 mutex_unlock(&pmc_reserve_mutex);
75 static int hw_perf_cache_event(int config, int *evp)
77 unsigned long type, op, result;
78 int ev;
80 if (!sh_pmu->cache_events)
81 return -EINVAL;
83 /* unpack config */
84 type = config & 0xff;
85 op = (config >> 8) & 0xff;
86 result = (config >> 16) & 0xff;
88 if (type >= PERF_COUNT_HW_CACHE_MAX ||
89 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
90 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
91 return -EINVAL;
93 ev = (*sh_pmu->cache_events)[type][op][result];
94 if (ev == 0)
95 return -EOPNOTSUPP;
96 if (ev == -1)
97 return -EINVAL;
98 *evp = ev;
99 return 0;
102 static int __hw_perf_event_init(struct perf_event *event)
104 struct perf_event_attr *attr = &event->attr;
105 struct hw_perf_event *hwc = &event->hw;
106 int config = -1;
107 int err;
109 if (!sh_pmu_initialized())
110 return -ENODEV;
113 * All of the on-chip counters are "limited", in that they have
114 * no interrupts, and are therefore unable to do sampling without
115 * further work and timer assistance.
117 if (hwc->sample_period)
118 return -EINVAL;
121 * See if we need to reserve the counter.
123 * If no events are currently in use, then we have to take a
124 * mutex to ensure that we don't race with another task doing
125 * reserve_pmc_hardware or release_pmc_hardware.
127 err = 0;
128 if (!atomic_inc_not_zero(&num_events)) {
129 mutex_lock(&pmc_reserve_mutex);
130 if (atomic_read(&num_events) == 0 &&
131 reserve_pmc_hardware())
132 err = -EBUSY;
133 else
134 atomic_inc(&num_events);
135 mutex_unlock(&pmc_reserve_mutex);
138 if (err)
139 return err;
141 event->destroy = hw_perf_event_destroy;
143 switch (attr->type) {
144 case PERF_TYPE_RAW:
145 config = attr->config & sh_pmu->raw_event_mask;
146 break;
147 case PERF_TYPE_HW_CACHE:
148 err = hw_perf_cache_event(attr->config, &config);
149 if (err)
150 return err;
151 break;
152 case PERF_TYPE_HARDWARE:
153 if (attr->config >= sh_pmu->max_events)
154 return -EINVAL;
156 config = sh_pmu->event_map(attr->config);
157 break;
160 if (config == -1)
161 return -EINVAL;
163 hwc->config |= config;
165 return 0;
168 static void sh_perf_event_update(struct perf_event *event,
169 struct hw_perf_event *hwc, int idx)
171 u64 prev_raw_count, new_raw_count;
172 s64 delta;
173 int shift = 0;
176 * Depending on the counter configuration, they may or may not
177 * be chained, in which case the previous counter value can be
178 * updated underneath us if the lower-half overflows.
180 * Our tactic to handle this is to first atomically read and
181 * exchange a new raw count - then add that new-prev delta
182 * count to the generic counter atomically.
184 * As there is no interrupt associated with the overflow events,
185 * this is the simplest approach for maintaining consistency.
187 again:
188 prev_raw_count = atomic64_read(&hwc->prev_count);
189 new_raw_count = sh_pmu->read(idx);
191 if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
192 new_raw_count) != prev_raw_count)
193 goto again;
196 * Now we have the new raw value and have updated the prev
197 * timestamp already. We can now calculate the elapsed delta
198 * (counter-)time and add that to the generic counter.
200 * Careful, not all hw sign-extends above the physical width
201 * of the count.
203 delta = (new_raw_count << shift) - (prev_raw_count << shift);
204 delta >>= shift;
206 atomic64_add(delta, &event->count);
209 static void sh_pmu_disable(struct perf_event *event)
211 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
212 struct hw_perf_event *hwc = &event->hw;
213 int idx = hwc->idx;
215 clear_bit(idx, cpuc->active_mask);
216 sh_pmu->disable(hwc, idx);
218 barrier();
220 sh_perf_event_update(event, &event->hw, idx);
222 cpuc->events[idx] = NULL;
223 clear_bit(idx, cpuc->used_mask);
225 perf_event_update_userpage(event);
228 static int sh_pmu_enable(struct perf_event *event)
230 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
231 struct hw_perf_event *hwc = &event->hw;
232 int idx = hwc->idx;
234 if (test_and_set_bit(idx, cpuc->used_mask)) {
235 idx = find_first_zero_bit(cpuc->used_mask, sh_pmu->num_events);
236 if (idx == sh_pmu->num_events)
237 return -EAGAIN;
239 set_bit(idx, cpuc->used_mask);
240 hwc->idx = idx;
243 sh_pmu->disable(hwc, idx);
245 cpuc->events[idx] = event;
246 set_bit(idx, cpuc->active_mask);
248 sh_pmu->enable(hwc, idx);
250 perf_event_update_userpage(event);
252 return 0;
255 static void sh_pmu_read(struct perf_event *event)
257 sh_perf_event_update(event, &event->hw, event->hw.idx);
260 static const struct pmu pmu = {
261 .enable = sh_pmu_enable,
262 .disable = sh_pmu_disable,
263 .read = sh_pmu_read,
266 const struct pmu *hw_perf_event_init(struct perf_event *event)
268 int err = __hw_perf_event_init(event);
269 if (unlikely(err)) {
270 if (event->destroy)
271 event->destroy(event);
272 return ERR_PTR(err);
275 return &pmu;
278 void hw_perf_event_setup(int cpu)
280 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
282 memset(cpuhw, 0, sizeof(struct cpu_hw_events));
285 void hw_perf_enable(void)
287 if (!sh_pmu_initialized())
288 return;
290 sh_pmu->enable_all();
293 void hw_perf_disable(void)
295 if (!sh_pmu_initialized())
296 return;
298 sh_pmu->disable_all();
301 int register_sh_pmu(struct sh_pmu *pmu)
303 if (sh_pmu)
304 return -EBUSY;
305 sh_pmu = pmu;
307 pr_info("Performance Events: %s support registered\n", pmu->name);
309 WARN_ON(pmu->num_events > MAX_HWEVENTS);
311 return 0;