2 * Simple NUMA memory policy for the Linux kernel.
4 * Copyright 2003,2004 Andi Kleen, SuSE Labs.
5 * (C) Copyright 2005 Christoph Lameter, Silicon Graphics, Inc.
6 * Subject to the GNU Public License, version 2.
8 * NUMA policy allows the user to give hints in which node(s) memory should
11 * Support four policies per VMA and per process:
13 * The VMA policy has priority over the process policy for a page fault.
15 * interleave Allocate memory interleaved over a set of nodes,
16 * with normal fallback if it fails.
17 * For VMA based allocations this interleaves based on the
18 * offset into the backing object or offset into the mapping
19 * for anonymous memory. For process policy an process counter
22 * bind Only allocate memory on a specific set of nodes,
24 * FIXME: memory is allocated starting with the first node
25 * to the last. It would be better if bind would truly restrict
26 * the allocation to memory nodes instead
28 * preferred Try a specific node first before normal fallback.
29 * As a special case NUMA_NO_NODE here means do the allocation
30 * on the local CPU. This is normally identical to default,
31 * but useful to set in a VMA when you have a non default
34 * default Allocate on the local node first, or when on a VMA
35 * use the process policy. This is what Linux always did
36 * in a NUMA aware kernel and still does by, ahem, default.
38 * The process policy is applied for most non interrupt memory allocations
39 * in that process' context. Interrupts ignore the policies and always
40 * try to allocate on the local CPU. The VMA policy is only applied for memory
41 * allocations for a VMA in the VM.
43 * Currently there are a few corner cases in swapping where the policy
44 * is not applied, but the majority should be handled. When process policy
45 * is used it is not remembered over swap outs/swap ins.
47 * Only the highest zone in the zone hierarchy gets policied. Allocations
48 * requesting a lower zone just use default policy. This implies that
49 * on systems with highmem kernel lowmem allocation don't get policied.
50 * Same with GFP_DMA allocations.
52 * For shmfs/tmpfs/hugetlbfs shared memory the policy is shared between
53 * all users and remembered even when nobody has memory mapped.
57 fix mmap readahead to honour policy and enable policy for any page cache
59 statistics for bigpages
60 global policy for page cache? currently it uses process policy. Requires
62 handle mremap for shared memory (currently ignored for the policy)
64 make bind policy root only? It can trigger oom much faster and the
65 kernel is not always grateful with that.
68 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
70 #include <linux/mempolicy.h>
72 #include <linux/highmem.h>
73 #include <linux/hugetlb.h>
74 #include <linux/kernel.h>
75 #include <linux/sched.h>
76 #include <linux/nodemask.h>
77 #include <linux/cpuset.h>
78 #include <linux/slab.h>
79 #include <linux/string.h>
80 #include <linux/export.h>
81 #include <linux/nsproxy.h>
82 #include <linux/interrupt.h>
83 #include <linux/init.h>
84 #include <linux/compat.h>
85 #include <linux/swap.h>
86 #include <linux/seq_file.h>
87 #include <linux/proc_fs.h>
88 #include <linux/migrate.h>
89 #include <linux/ksm.h>
90 #include <linux/rmap.h>
91 #include <linux/security.h>
92 #include <linux/syscalls.h>
93 #include <linux/ctype.h>
94 #include <linux/mm_inline.h>
95 #include <linux/mmu_notifier.h>
96 #include <linux/printk.h>
98 #include <asm/tlbflush.h>
99 #include <asm/uaccess.h>
100 #include <linux/random.h>
102 #include "internal.h"
105 #define MPOL_MF_DISCONTIG_OK (MPOL_MF_INTERNAL << 0) /* Skip checks for continuous vmas */
106 #define MPOL_MF_INVERT (MPOL_MF_INTERNAL << 1) /* Invert check for nodemask */
108 static struct kmem_cache
*policy_cache
;
109 static struct kmem_cache
*sn_cache
;
111 /* Highest zone. An specific allocation for a zone below that is not
113 enum zone_type policy_zone
= 0;
116 * run-time system-wide default policy => local allocation
118 static struct mempolicy default_policy
= {
119 .refcnt
= ATOMIC_INIT(1), /* never free it */
120 .mode
= MPOL_PREFERRED
,
121 .flags
= MPOL_F_LOCAL
,
124 static struct mempolicy preferred_node_policy
[MAX_NUMNODES
];
126 struct mempolicy
*get_task_policy(struct task_struct
*p
)
128 struct mempolicy
*pol
= p
->mempolicy
;
134 node
= numa_node_id();
135 if (node
!= NUMA_NO_NODE
) {
136 pol
= &preferred_node_policy
[node
];
137 /* preferred_node_policy is not initialised early in boot */
142 return &default_policy
;
145 static const struct mempolicy_operations
{
146 int (*create
)(struct mempolicy
*pol
, const nodemask_t
*nodes
);
148 * If read-side task has no lock to protect task->mempolicy, write-side
149 * task will rebind the task->mempolicy by two step. The first step is
150 * setting all the newly nodes, and the second step is cleaning all the
151 * disallowed nodes. In this way, we can avoid finding no node to alloc
153 * If we have a lock to protect task->mempolicy in read-side, we do
157 * MPOL_REBIND_ONCE - do rebind work at once
158 * MPOL_REBIND_STEP1 - set all the newly nodes
159 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
161 void (*rebind
)(struct mempolicy
*pol
, const nodemask_t
*nodes
,
162 enum mpol_rebind_step step
);
163 } mpol_ops
[MPOL_MAX
];
165 static inline int mpol_store_user_nodemask(const struct mempolicy
*pol
)
167 return pol
->flags
& MPOL_MODE_FLAGS
;
170 static void mpol_relative_nodemask(nodemask_t
*ret
, const nodemask_t
*orig
,
171 const nodemask_t
*rel
)
174 nodes_fold(tmp
, *orig
, nodes_weight(*rel
));
175 nodes_onto(*ret
, tmp
, *rel
);
178 static int mpol_new_interleave(struct mempolicy
*pol
, const nodemask_t
*nodes
)
180 if (nodes_empty(*nodes
))
182 pol
->v
.nodes
= *nodes
;
186 static int mpol_new_preferred(struct mempolicy
*pol
, const nodemask_t
*nodes
)
189 pol
->flags
|= MPOL_F_LOCAL
; /* local allocation */
190 else if (nodes_empty(*nodes
))
191 return -EINVAL
; /* no allowed nodes */
193 pol
->v
.preferred_node
= first_node(*nodes
);
197 static int mpol_new_bind(struct mempolicy
*pol
, const nodemask_t
*nodes
)
199 if (nodes_empty(*nodes
))
201 pol
->v
.nodes
= *nodes
;
206 * mpol_set_nodemask is called after mpol_new() to set up the nodemask, if
207 * any, for the new policy. mpol_new() has already validated the nodes
208 * parameter with respect to the policy mode and flags. But, we need to
209 * handle an empty nodemask with MPOL_PREFERRED here.
211 * Must be called holding task's alloc_lock to protect task's mems_allowed
212 * and mempolicy. May also be called holding the mmap_semaphore for write.
214 static int mpol_set_nodemask(struct mempolicy
*pol
,
215 const nodemask_t
*nodes
, struct nodemask_scratch
*nsc
)
219 /* if mode is MPOL_DEFAULT, pol is NULL. This is right. */
223 nodes_and(nsc
->mask1
,
224 cpuset_current_mems_allowed
, node_states
[N_MEMORY
]);
227 if (pol
->mode
== MPOL_PREFERRED
&& nodes_empty(*nodes
))
228 nodes
= NULL
; /* explicit local allocation */
230 if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
231 mpol_relative_nodemask(&nsc
->mask2
, nodes
, &nsc
->mask1
);
233 nodes_and(nsc
->mask2
, *nodes
, nsc
->mask1
);
235 if (mpol_store_user_nodemask(pol
))
236 pol
->w
.user_nodemask
= *nodes
;
238 pol
->w
.cpuset_mems_allowed
=
239 cpuset_current_mems_allowed
;
243 ret
= mpol_ops
[pol
->mode
].create(pol
, &nsc
->mask2
);
245 ret
= mpol_ops
[pol
->mode
].create(pol
, NULL
);
250 * This function just creates a new policy, does some check and simple
251 * initialization. You must invoke mpol_set_nodemask() to set nodes.
253 static struct mempolicy
*mpol_new(unsigned short mode
, unsigned short flags
,
256 struct mempolicy
*policy
;
258 pr_debug("setting mode %d flags %d nodes[0] %lx\n",
259 mode
, flags
, nodes
? nodes_addr(*nodes
)[0] : NUMA_NO_NODE
);
261 if (mode
== MPOL_DEFAULT
) {
262 if (nodes
&& !nodes_empty(*nodes
))
263 return ERR_PTR(-EINVAL
);
269 * MPOL_PREFERRED cannot be used with MPOL_F_STATIC_NODES or
270 * MPOL_F_RELATIVE_NODES if the nodemask is empty (local allocation).
271 * All other modes require a valid pointer to a non-empty nodemask.
273 if (mode
== MPOL_PREFERRED
) {
274 if (nodes_empty(*nodes
)) {
275 if (((flags
& MPOL_F_STATIC_NODES
) ||
276 (flags
& MPOL_F_RELATIVE_NODES
)))
277 return ERR_PTR(-EINVAL
);
279 } else if (mode
== MPOL_LOCAL
) {
280 if (!nodes_empty(*nodes
))
281 return ERR_PTR(-EINVAL
);
282 mode
= MPOL_PREFERRED
;
283 } else if (nodes_empty(*nodes
))
284 return ERR_PTR(-EINVAL
);
285 policy
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
287 return ERR_PTR(-ENOMEM
);
288 atomic_set(&policy
->refcnt
, 1);
290 policy
->flags
= flags
;
295 /* Slow path of a mpol destructor. */
296 void __mpol_put(struct mempolicy
*p
)
298 if (!atomic_dec_and_test(&p
->refcnt
))
300 kmem_cache_free(policy_cache
, p
);
303 static void mpol_rebind_default(struct mempolicy
*pol
, const nodemask_t
*nodes
,
304 enum mpol_rebind_step step
)
310 * MPOL_REBIND_ONCE - do rebind work at once
311 * MPOL_REBIND_STEP1 - set all the newly nodes
312 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
314 static void mpol_rebind_nodemask(struct mempolicy
*pol
, const nodemask_t
*nodes
,
315 enum mpol_rebind_step step
)
319 if (pol
->flags
& MPOL_F_STATIC_NODES
)
320 nodes_and(tmp
, pol
->w
.user_nodemask
, *nodes
);
321 else if (pol
->flags
& MPOL_F_RELATIVE_NODES
)
322 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
325 * if step == 1, we use ->w.cpuset_mems_allowed to cache the
328 if (step
== MPOL_REBIND_ONCE
|| step
== MPOL_REBIND_STEP1
) {
329 nodes_remap(tmp
, pol
->v
.nodes
,
330 pol
->w
.cpuset_mems_allowed
, *nodes
);
331 pol
->w
.cpuset_mems_allowed
= step
? tmp
: *nodes
;
332 } else if (step
== MPOL_REBIND_STEP2
) {
333 tmp
= pol
->w
.cpuset_mems_allowed
;
334 pol
->w
.cpuset_mems_allowed
= *nodes
;
339 if (nodes_empty(tmp
))
342 if (step
== MPOL_REBIND_STEP1
)
343 nodes_or(pol
->v
.nodes
, pol
->v
.nodes
, tmp
);
344 else if (step
== MPOL_REBIND_ONCE
|| step
== MPOL_REBIND_STEP2
)
349 if (!node_isset(current
->il_next
, tmp
)) {
350 current
->il_next
= next_node(current
->il_next
, tmp
);
351 if (current
->il_next
>= MAX_NUMNODES
)
352 current
->il_next
= first_node(tmp
);
353 if (current
->il_next
>= MAX_NUMNODES
)
354 current
->il_next
= numa_node_id();
358 static void mpol_rebind_preferred(struct mempolicy
*pol
,
359 const nodemask_t
*nodes
,
360 enum mpol_rebind_step step
)
364 if (pol
->flags
& MPOL_F_STATIC_NODES
) {
365 int node
= first_node(pol
->w
.user_nodemask
);
367 if (node_isset(node
, *nodes
)) {
368 pol
->v
.preferred_node
= node
;
369 pol
->flags
&= ~MPOL_F_LOCAL
;
371 pol
->flags
|= MPOL_F_LOCAL
;
372 } else if (pol
->flags
& MPOL_F_RELATIVE_NODES
) {
373 mpol_relative_nodemask(&tmp
, &pol
->w
.user_nodemask
, nodes
);
374 pol
->v
.preferred_node
= first_node(tmp
);
375 } else if (!(pol
->flags
& MPOL_F_LOCAL
)) {
376 pol
->v
.preferred_node
= node_remap(pol
->v
.preferred_node
,
377 pol
->w
.cpuset_mems_allowed
,
379 pol
->w
.cpuset_mems_allowed
= *nodes
;
384 * mpol_rebind_policy - Migrate a policy to a different set of nodes
386 * If read-side task has no lock to protect task->mempolicy, write-side
387 * task will rebind the task->mempolicy by two step. The first step is
388 * setting all the newly nodes, and the second step is cleaning all the
389 * disallowed nodes. In this way, we can avoid finding no node to alloc
391 * If we have a lock to protect task->mempolicy in read-side, we do
395 * MPOL_REBIND_ONCE - do rebind work at once
396 * MPOL_REBIND_STEP1 - set all the newly nodes
397 * MPOL_REBIND_STEP2 - clean all the disallowed nodes
399 static void mpol_rebind_policy(struct mempolicy
*pol
, const nodemask_t
*newmask
,
400 enum mpol_rebind_step step
)
404 if (!mpol_store_user_nodemask(pol
) && step
== MPOL_REBIND_ONCE
&&
405 nodes_equal(pol
->w
.cpuset_mems_allowed
, *newmask
))
408 if (step
== MPOL_REBIND_STEP1
&& (pol
->flags
& MPOL_F_REBINDING
))
411 if (step
== MPOL_REBIND_STEP2
&& !(pol
->flags
& MPOL_F_REBINDING
))
414 if (step
== MPOL_REBIND_STEP1
)
415 pol
->flags
|= MPOL_F_REBINDING
;
416 else if (step
== MPOL_REBIND_STEP2
)
417 pol
->flags
&= ~MPOL_F_REBINDING
;
418 else if (step
>= MPOL_REBIND_NSTEP
)
421 mpol_ops
[pol
->mode
].rebind(pol
, newmask
, step
);
425 * Wrapper for mpol_rebind_policy() that just requires task
426 * pointer, and updates task mempolicy.
428 * Called with task's alloc_lock held.
431 void mpol_rebind_task(struct task_struct
*tsk
, const nodemask_t
*new,
432 enum mpol_rebind_step step
)
434 mpol_rebind_policy(tsk
->mempolicy
, new, step
);
438 * Rebind each vma in mm to new nodemask.
440 * Call holding a reference to mm. Takes mm->mmap_sem during call.
443 void mpol_rebind_mm(struct mm_struct
*mm
, nodemask_t
*new)
445 struct vm_area_struct
*vma
;
447 down_write(&mm
->mmap_sem
);
448 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
)
449 mpol_rebind_policy(vma
->vm_policy
, new, MPOL_REBIND_ONCE
);
450 up_write(&mm
->mmap_sem
);
453 static const struct mempolicy_operations mpol_ops
[MPOL_MAX
] = {
455 .rebind
= mpol_rebind_default
,
457 [MPOL_INTERLEAVE
] = {
458 .create
= mpol_new_interleave
,
459 .rebind
= mpol_rebind_nodemask
,
462 .create
= mpol_new_preferred
,
463 .rebind
= mpol_rebind_preferred
,
466 .create
= mpol_new_bind
,
467 .rebind
= mpol_rebind_nodemask
,
471 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
472 unsigned long flags
);
475 struct list_head
*pagelist
;
478 struct vm_area_struct
*prev
;
482 * Scan through pages checking if pages follow certain conditions,
483 * and move them to the pagelist if they do.
485 static int queue_pages_pte_range(pmd_t
*pmd
, unsigned long addr
,
486 unsigned long end
, struct mm_walk
*walk
)
488 struct vm_area_struct
*vma
= walk
->vma
;
490 struct queue_pages
*qp
= walk
->private;
491 unsigned long flags
= qp
->flags
;
496 if (pmd_trans_huge(*pmd
)) {
497 ptl
= pmd_lock(walk
->mm
, pmd
);
498 if (pmd_trans_huge(*pmd
)) {
499 page
= pmd_page(*pmd
);
500 if (is_huge_zero_page(page
)) {
502 split_huge_pmd(vma
, pmd
, addr
);
507 ret
= split_huge_page(page
);
519 pte
= pte_offset_map_lock(walk
->mm
, pmd
, addr
, &ptl
);
520 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
) {
521 if (!pte_present(*pte
))
523 page
= vm_normal_page(vma
, addr
, *pte
);
527 * vm_normal_page() filters out zero pages, but there might
528 * still be PageReserved pages to skip, perhaps in a VDSO.
530 if (PageReserved(page
))
532 nid
= page_to_nid(page
);
533 if (node_isset(nid
, *qp
->nmask
) == !!(flags
& MPOL_MF_INVERT
))
535 if (PageTail(page
) && PageAnon(page
)) {
537 pte_unmap_unlock(pte
, ptl
);
539 ret
= split_huge_page(page
);
542 /* Failed to split -- skip. */
544 pte
= pte_offset_map_lock(walk
->mm
, pmd
,
551 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
))
552 migrate_page_add(page
, qp
->pagelist
, flags
);
554 pte_unmap_unlock(pte
- 1, ptl
);
559 static int queue_pages_hugetlb(pte_t
*pte
, unsigned long hmask
,
560 unsigned long addr
, unsigned long end
,
561 struct mm_walk
*walk
)
563 #ifdef CONFIG_HUGETLB_PAGE
564 struct queue_pages
*qp
= walk
->private;
565 unsigned long flags
= qp
->flags
;
571 ptl
= huge_pte_lock(hstate_vma(walk
->vma
), walk
->mm
, pte
);
572 entry
= huge_ptep_get(pte
);
573 if (!pte_present(entry
))
575 page
= pte_page(entry
);
576 nid
= page_to_nid(page
);
577 if (node_isset(nid
, *qp
->nmask
) == !!(flags
& MPOL_MF_INVERT
))
579 /* With MPOL_MF_MOVE, we migrate only unshared hugepage. */
580 if (flags
& (MPOL_MF_MOVE_ALL
) ||
581 (flags
& MPOL_MF_MOVE
&& page_mapcount(page
) == 1))
582 isolate_huge_page(page
, qp
->pagelist
);
591 #ifdef CONFIG_NUMA_BALANCING
593 * This is used to mark a range of virtual addresses to be inaccessible.
594 * These are later cleared by a NUMA hinting fault. Depending on these
595 * faults, pages may be migrated for better NUMA placement.
597 * This is assuming that NUMA faults are handled using PROT_NONE. If
598 * an architecture makes a different choice, it will need further
599 * changes to the core.
601 unsigned long change_prot_numa(struct vm_area_struct
*vma
,
602 unsigned long addr
, unsigned long end
)
606 nr_updated
= change_protection(vma
, addr
, end
, PAGE_NONE
, 0, 1);
608 count_vm_numa_events(NUMA_PTE_UPDATES
, nr_updated
);
613 static unsigned long change_prot_numa(struct vm_area_struct
*vma
,
614 unsigned long addr
, unsigned long end
)
618 #endif /* CONFIG_NUMA_BALANCING */
620 static int queue_pages_test_walk(unsigned long start
, unsigned long end
,
621 struct mm_walk
*walk
)
623 struct vm_area_struct
*vma
= walk
->vma
;
624 struct queue_pages
*qp
= walk
->private;
625 unsigned long endvma
= vma
->vm_end
;
626 unsigned long flags
= qp
->flags
;
628 if (vma
->vm_flags
& VM_PFNMAP
)
633 if (vma
->vm_start
> start
)
634 start
= vma
->vm_start
;
636 if (!(flags
& MPOL_MF_DISCONTIG_OK
)) {
637 if (!vma
->vm_next
&& vma
->vm_end
< end
)
639 if (qp
->prev
&& qp
->prev
->vm_end
< vma
->vm_start
)
645 if (flags
& MPOL_MF_LAZY
) {
646 /* Similar to task_numa_work, skip inaccessible VMAs */
647 if (vma_migratable(vma
) &&
648 vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
))
649 change_prot_numa(vma
, start
, endvma
);
653 if ((flags
& MPOL_MF_STRICT
) ||
654 ((flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) &&
655 vma_migratable(vma
)))
656 /* queue pages from current vma */
662 * Walk through page tables and collect pages to be migrated.
664 * If pages found in a given range are on a set of nodes (determined by
665 * @nodes and @flags,) it's isolated and queued to the pagelist which is
666 * passed via @private.)
669 queue_pages_range(struct mm_struct
*mm
, unsigned long start
, unsigned long end
,
670 nodemask_t
*nodes
, unsigned long flags
,
671 struct list_head
*pagelist
)
673 struct queue_pages qp
= {
674 .pagelist
= pagelist
,
679 struct mm_walk queue_pages_walk
= {
680 .hugetlb_entry
= queue_pages_hugetlb
,
681 .pmd_entry
= queue_pages_pte_range
,
682 .test_walk
= queue_pages_test_walk
,
687 return walk_page_range(start
, end
, &queue_pages_walk
);
691 * Apply policy to a single VMA
692 * This must be called with the mmap_sem held for writing.
694 static int vma_replace_policy(struct vm_area_struct
*vma
,
695 struct mempolicy
*pol
)
698 struct mempolicy
*old
;
699 struct mempolicy
*new;
701 pr_debug("vma %lx-%lx/%lx vm_ops %p vm_file %p set_policy %p\n",
702 vma
->vm_start
, vma
->vm_end
, vma
->vm_pgoff
,
703 vma
->vm_ops
, vma
->vm_file
,
704 vma
->vm_ops
? vma
->vm_ops
->set_policy
: NULL
);
710 if (vma
->vm_ops
&& vma
->vm_ops
->set_policy
) {
711 err
= vma
->vm_ops
->set_policy(vma
, new);
716 old
= vma
->vm_policy
;
717 vma
->vm_policy
= new; /* protected by mmap_sem */
726 /* Step 2: apply policy to a range and do splits. */
727 static int mbind_range(struct mm_struct
*mm
, unsigned long start
,
728 unsigned long end
, struct mempolicy
*new_pol
)
730 struct vm_area_struct
*next
;
731 struct vm_area_struct
*prev
;
732 struct vm_area_struct
*vma
;
735 unsigned long vmstart
;
738 vma
= find_vma(mm
, start
);
739 if (!vma
|| vma
->vm_start
> start
)
743 if (start
> vma
->vm_start
)
746 for (; vma
&& vma
->vm_start
< end
; prev
= vma
, vma
= next
) {
748 vmstart
= max(start
, vma
->vm_start
);
749 vmend
= min(end
, vma
->vm_end
);
751 if (mpol_equal(vma_policy(vma
), new_pol
))
754 pgoff
= vma
->vm_pgoff
+
755 ((vmstart
- vma
->vm_start
) >> PAGE_SHIFT
);
756 prev
= vma_merge(mm
, prev
, vmstart
, vmend
, vma
->vm_flags
,
757 vma
->anon_vma
, vma
->vm_file
, pgoff
,
758 new_pol
, vma
->vm_userfaultfd_ctx
);
762 if (mpol_equal(vma_policy(vma
), new_pol
))
764 /* vma_merge() joined vma && vma->next, case 8 */
767 if (vma
->vm_start
!= vmstart
) {
768 err
= split_vma(vma
->vm_mm
, vma
, vmstart
, 1);
772 if (vma
->vm_end
!= vmend
) {
773 err
= split_vma(vma
->vm_mm
, vma
, vmend
, 0);
778 err
= vma_replace_policy(vma
, new_pol
);
787 /* Set the process memory policy */
788 static long do_set_mempolicy(unsigned short mode
, unsigned short flags
,
791 struct mempolicy
*new, *old
;
792 NODEMASK_SCRATCH(scratch
);
798 new = mpol_new(mode
, flags
, nodes
);
805 ret
= mpol_set_nodemask(new, nodes
, scratch
);
807 task_unlock(current
);
811 old
= current
->mempolicy
;
812 current
->mempolicy
= new;
813 if (new && new->mode
== MPOL_INTERLEAVE
&&
814 nodes_weight(new->v
.nodes
))
815 current
->il_next
= first_node(new->v
.nodes
);
816 task_unlock(current
);
820 NODEMASK_SCRATCH_FREE(scratch
);
825 * Return nodemask for policy for get_mempolicy() query
827 * Called with task's alloc_lock held
829 static void get_policy_nodemask(struct mempolicy
*p
, nodemask_t
*nodes
)
832 if (p
== &default_policy
)
838 case MPOL_INTERLEAVE
:
842 if (!(p
->flags
& MPOL_F_LOCAL
))
843 node_set(p
->v
.preferred_node
, *nodes
);
844 /* else return empty node mask for local allocation */
851 static int lookup_node(struct mm_struct
*mm
, unsigned long addr
)
856 err
= get_user_pages(current
, mm
, addr
& PAGE_MASK
, 1, 0, 0, &p
, NULL
);
858 err
= page_to_nid(p
);
864 /* Retrieve NUMA policy */
865 static long do_get_mempolicy(int *policy
, nodemask_t
*nmask
,
866 unsigned long addr
, unsigned long flags
)
869 struct mm_struct
*mm
= current
->mm
;
870 struct vm_area_struct
*vma
= NULL
;
871 struct mempolicy
*pol
= current
->mempolicy
;
874 ~(unsigned long)(MPOL_F_NODE
|MPOL_F_ADDR
|MPOL_F_MEMS_ALLOWED
))
877 if (flags
& MPOL_F_MEMS_ALLOWED
) {
878 if (flags
& (MPOL_F_NODE
|MPOL_F_ADDR
))
880 *policy
= 0; /* just so it's initialized */
882 *nmask
= cpuset_current_mems_allowed
;
883 task_unlock(current
);
887 if (flags
& MPOL_F_ADDR
) {
889 * Do NOT fall back to task policy if the
890 * vma/shared policy at addr is NULL. We
891 * want to return MPOL_DEFAULT in this case.
893 down_read(&mm
->mmap_sem
);
894 vma
= find_vma_intersection(mm
, addr
, addr
+1);
896 up_read(&mm
->mmap_sem
);
899 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
)
900 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
902 pol
= vma
->vm_policy
;
907 pol
= &default_policy
; /* indicates default behavior */
909 if (flags
& MPOL_F_NODE
) {
910 if (flags
& MPOL_F_ADDR
) {
911 err
= lookup_node(mm
, addr
);
915 } else if (pol
== current
->mempolicy
&&
916 pol
->mode
== MPOL_INTERLEAVE
) {
917 *policy
= current
->il_next
;
923 *policy
= pol
== &default_policy
? MPOL_DEFAULT
:
926 * Internal mempolicy flags must be masked off before exposing
927 * the policy to userspace.
929 *policy
|= (pol
->flags
& MPOL_MODE_FLAGS
);
933 up_read(¤t
->mm
->mmap_sem
);
939 if (mpol_store_user_nodemask(pol
)) {
940 *nmask
= pol
->w
.user_nodemask
;
943 get_policy_nodemask(pol
, nmask
);
944 task_unlock(current
);
951 up_read(¤t
->mm
->mmap_sem
);
955 #ifdef CONFIG_MIGRATION
959 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
963 * Avoid migrating a page that is shared with others.
965 if ((flags
& MPOL_MF_MOVE_ALL
) || page_mapcount(page
) == 1) {
966 if (!isolate_lru_page(page
)) {
967 list_add_tail(&page
->lru
, pagelist
);
968 inc_zone_page_state(page
, NR_ISOLATED_ANON
+
969 page_is_file_cache(page
));
974 static struct page
*new_node_page(struct page
*page
, unsigned long node
, int **x
)
977 return alloc_huge_page_node(page_hstate(compound_head(page
)),
980 return __alloc_pages_node(node
, GFP_HIGHUSER_MOVABLE
|
985 * Migrate pages from one node to a target node.
986 * Returns error or the number of pages not migrated.
988 static int migrate_to_node(struct mm_struct
*mm
, int source
, int dest
,
996 node_set(source
, nmask
);
999 * This does not "check" the range but isolates all pages that
1000 * need migration. Between passing in the full user address
1001 * space range and MPOL_MF_DISCONTIG_OK, this call can not fail.
1003 VM_BUG_ON(!(flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)));
1004 queue_pages_range(mm
, mm
->mmap
->vm_start
, mm
->task_size
, &nmask
,
1005 flags
| MPOL_MF_DISCONTIG_OK
, &pagelist
);
1007 if (!list_empty(&pagelist
)) {
1008 err
= migrate_pages(&pagelist
, new_node_page
, NULL
, dest
,
1009 MIGRATE_SYNC
, MR_SYSCALL
);
1011 putback_movable_pages(&pagelist
);
1018 * Move pages between the two nodesets so as to preserve the physical
1019 * layout as much as possible.
1021 * Returns the number of page that could not be moved.
1023 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
1024 const nodemask_t
*to
, int flags
)
1030 err
= migrate_prep();
1034 down_read(&mm
->mmap_sem
);
1037 * Find a 'source' bit set in 'tmp' whose corresponding 'dest'
1038 * bit in 'to' is not also set in 'tmp'. Clear the found 'source'
1039 * bit in 'tmp', and return that <source, dest> pair for migration.
1040 * The pair of nodemasks 'to' and 'from' define the map.
1042 * If no pair of bits is found that way, fallback to picking some
1043 * pair of 'source' and 'dest' bits that are not the same. If the
1044 * 'source' and 'dest' bits are the same, this represents a node
1045 * that will be migrating to itself, so no pages need move.
1047 * If no bits are left in 'tmp', or if all remaining bits left
1048 * in 'tmp' correspond to the same bit in 'to', return false
1049 * (nothing left to migrate).
1051 * This lets us pick a pair of nodes to migrate between, such that
1052 * if possible the dest node is not already occupied by some other
1053 * source node, minimizing the risk of overloading the memory on a
1054 * node that would happen if we migrated incoming memory to a node
1055 * before migrating outgoing memory source that same node.
1057 * A single scan of tmp is sufficient. As we go, we remember the
1058 * most recent <s, d> pair that moved (s != d). If we find a pair
1059 * that not only moved, but what's better, moved to an empty slot
1060 * (d is not set in tmp), then we break out then, with that pair.
1061 * Otherwise when we finish scanning from_tmp, we at least have the
1062 * most recent <s, d> pair that moved. If we get all the way through
1063 * the scan of tmp without finding any node that moved, much less
1064 * moved to an empty node, then there is nothing left worth migrating.
1068 while (!nodes_empty(tmp
)) {
1070 int source
= NUMA_NO_NODE
;
1073 for_each_node_mask(s
, tmp
) {
1076 * do_migrate_pages() tries to maintain the relative
1077 * node relationship of the pages established between
1078 * threads and memory areas.
1080 * However if the number of source nodes is not equal to
1081 * the number of destination nodes we can not preserve
1082 * this node relative relationship. In that case, skip
1083 * copying memory from a node that is in the destination
1086 * Example: [2,3,4] -> [3,4,5] moves everything.
1087 * [0-7] - > [3,4,5] moves only 0,1,2,6,7.
1090 if ((nodes_weight(*from
) != nodes_weight(*to
)) &&
1091 (node_isset(s
, *to
)))
1094 d
= node_remap(s
, *from
, *to
);
1098 source
= s
; /* Node moved. Memorize */
1101 /* dest not in remaining from nodes? */
1102 if (!node_isset(dest
, tmp
))
1105 if (source
== NUMA_NO_NODE
)
1108 node_clear(source
, tmp
);
1109 err
= migrate_to_node(mm
, source
, dest
, flags
);
1115 up_read(&mm
->mmap_sem
);
1123 * Allocate a new page for page migration based on vma policy.
1124 * Start by assuming the page is mapped by the same vma as contains @start.
1125 * Search forward from there, if not. N.B., this assumes that the
1126 * list of pages handed to migrate_pages()--which is how we get here--
1127 * is in virtual address order.
1129 static struct page
*new_page(struct page
*page
, unsigned long start
, int **x
)
1131 struct vm_area_struct
*vma
;
1132 unsigned long uninitialized_var(address
);
1134 vma
= find_vma(current
->mm
, start
);
1136 address
= page_address_in_vma(page
, vma
);
1137 if (address
!= -EFAULT
)
1142 if (PageHuge(page
)) {
1144 return alloc_huge_page_noerr(vma
, address
, 1);
1147 * if !vma, alloc_page_vma() will use task or system default policy
1149 return alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
1153 static void migrate_page_add(struct page
*page
, struct list_head
*pagelist
,
1154 unsigned long flags
)
1158 int do_migrate_pages(struct mm_struct
*mm
, const nodemask_t
*from
,
1159 const nodemask_t
*to
, int flags
)
1164 static struct page
*new_page(struct page
*page
, unsigned long start
, int **x
)
1170 static long do_mbind(unsigned long start
, unsigned long len
,
1171 unsigned short mode
, unsigned short mode_flags
,
1172 nodemask_t
*nmask
, unsigned long flags
)
1174 struct mm_struct
*mm
= current
->mm
;
1175 struct mempolicy
*new;
1178 LIST_HEAD(pagelist
);
1180 if (flags
& ~(unsigned long)MPOL_MF_VALID
)
1182 if ((flags
& MPOL_MF_MOVE_ALL
) && !capable(CAP_SYS_NICE
))
1185 if (start
& ~PAGE_MASK
)
1188 if (mode
== MPOL_DEFAULT
)
1189 flags
&= ~MPOL_MF_STRICT
;
1191 len
= (len
+ PAGE_SIZE
- 1) & PAGE_MASK
;
1199 new = mpol_new(mode
, mode_flags
, nmask
);
1201 return PTR_ERR(new);
1203 if (flags
& MPOL_MF_LAZY
)
1204 new->flags
|= MPOL_F_MOF
;
1207 * If we are using the default policy then operation
1208 * on discontinuous address spaces is okay after all
1211 flags
|= MPOL_MF_DISCONTIG_OK
;
1213 pr_debug("mbind %lx-%lx mode:%d flags:%d nodes:%lx\n",
1214 start
, start
+ len
, mode
, mode_flags
,
1215 nmask
? nodes_addr(*nmask
)[0] : NUMA_NO_NODE
);
1217 if (flags
& (MPOL_MF_MOVE
| MPOL_MF_MOVE_ALL
)) {
1219 err
= migrate_prep();
1224 NODEMASK_SCRATCH(scratch
);
1226 down_write(&mm
->mmap_sem
);
1228 err
= mpol_set_nodemask(new, nmask
, scratch
);
1229 task_unlock(current
);
1231 up_write(&mm
->mmap_sem
);
1234 NODEMASK_SCRATCH_FREE(scratch
);
1239 err
= queue_pages_range(mm
, start
, end
, nmask
,
1240 flags
| MPOL_MF_INVERT
, &pagelist
);
1242 err
= mbind_range(mm
, start
, end
, new);
1247 if (!list_empty(&pagelist
)) {
1248 WARN_ON_ONCE(flags
& MPOL_MF_LAZY
);
1249 nr_failed
= migrate_pages(&pagelist
, new_page
, NULL
,
1250 start
, MIGRATE_SYNC
, MR_MEMPOLICY_MBIND
);
1252 putback_movable_pages(&pagelist
);
1255 if (nr_failed
&& (flags
& MPOL_MF_STRICT
))
1258 putback_movable_pages(&pagelist
);
1260 up_write(&mm
->mmap_sem
);
1267 * User space interface with variable sized bitmaps for nodelists.
1270 /* Copy a node mask from user space. */
1271 static int get_nodes(nodemask_t
*nodes
, const unsigned long __user
*nmask
,
1272 unsigned long maxnode
)
1275 unsigned long nlongs
;
1276 unsigned long endmask
;
1279 nodes_clear(*nodes
);
1280 if (maxnode
== 0 || !nmask
)
1282 if (maxnode
> PAGE_SIZE
*BITS_PER_BYTE
)
1285 nlongs
= BITS_TO_LONGS(maxnode
);
1286 if ((maxnode
% BITS_PER_LONG
) == 0)
1289 endmask
= (1UL << (maxnode
% BITS_PER_LONG
)) - 1;
1291 /* When the user specified more nodes than supported just check
1292 if the non supported part is all zero. */
1293 if (nlongs
> BITS_TO_LONGS(MAX_NUMNODES
)) {
1294 if (nlongs
> PAGE_SIZE
/sizeof(long))
1296 for (k
= BITS_TO_LONGS(MAX_NUMNODES
); k
< nlongs
; k
++) {
1298 if (get_user(t
, nmask
+ k
))
1300 if (k
== nlongs
- 1) {
1306 nlongs
= BITS_TO_LONGS(MAX_NUMNODES
);
1310 if (copy_from_user(nodes_addr(*nodes
), nmask
, nlongs
*sizeof(unsigned long)))
1312 nodes_addr(*nodes
)[nlongs
-1] &= endmask
;
1316 /* Copy a kernel node mask to user space */
1317 static int copy_nodes_to_user(unsigned long __user
*mask
, unsigned long maxnode
,
1320 unsigned long copy
= ALIGN(maxnode
-1, 64) / 8;
1321 const int nbytes
= BITS_TO_LONGS(MAX_NUMNODES
) * sizeof(long);
1323 if (copy
> nbytes
) {
1324 if (copy
> PAGE_SIZE
)
1326 if (clear_user((char __user
*)mask
+ nbytes
, copy
- nbytes
))
1330 return copy_to_user(mask
, nodes_addr(*nodes
), copy
) ? -EFAULT
: 0;
1333 SYSCALL_DEFINE6(mbind
, unsigned long, start
, unsigned long, len
,
1334 unsigned long, mode
, const unsigned long __user
*, nmask
,
1335 unsigned long, maxnode
, unsigned, flags
)
1339 unsigned short mode_flags
;
1341 mode_flags
= mode
& MPOL_MODE_FLAGS
;
1342 mode
&= ~MPOL_MODE_FLAGS
;
1343 if (mode
>= MPOL_MAX
)
1345 if ((mode_flags
& MPOL_F_STATIC_NODES
) &&
1346 (mode_flags
& MPOL_F_RELATIVE_NODES
))
1348 err
= get_nodes(&nodes
, nmask
, maxnode
);
1351 return do_mbind(start
, len
, mode
, mode_flags
, &nodes
, flags
);
1354 /* Set the process memory policy */
1355 SYSCALL_DEFINE3(set_mempolicy
, int, mode
, const unsigned long __user
*, nmask
,
1356 unsigned long, maxnode
)
1360 unsigned short flags
;
1362 flags
= mode
& MPOL_MODE_FLAGS
;
1363 mode
&= ~MPOL_MODE_FLAGS
;
1364 if ((unsigned int)mode
>= MPOL_MAX
)
1366 if ((flags
& MPOL_F_STATIC_NODES
) && (flags
& MPOL_F_RELATIVE_NODES
))
1368 err
= get_nodes(&nodes
, nmask
, maxnode
);
1371 return do_set_mempolicy(mode
, flags
, &nodes
);
1374 SYSCALL_DEFINE4(migrate_pages
, pid_t
, pid
, unsigned long, maxnode
,
1375 const unsigned long __user
*, old_nodes
,
1376 const unsigned long __user
*, new_nodes
)
1378 const struct cred
*cred
= current_cred(), *tcred
;
1379 struct mm_struct
*mm
= NULL
;
1380 struct task_struct
*task
;
1381 nodemask_t task_nodes
;
1385 NODEMASK_SCRATCH(scratch
);
1390 old
= &scratch
->mask1
;
1391 new = &scratch
->mask2
;
1393 err
= get_nodes(old
, old_nodes
, maxnode
);
1397 err
= get_nodes(new, new_nodes
, maxnode
);
1401 /* Find the mm_struct */
1403 task
= pid
? find_task_by_vpid(pid
) : current
;
1409 get_task_struct(task
);
1414 * Check if this process has the right to modify the specified
1415 * process. The right exists if the process has administrative
1416 * capabilities, superuser privileges or the same
1417 * userid as the target process.
1419 tcred
= __task_cred(task
);
1420 if (!uid_eq(cred
->euid
, tcred
->suid
) && !uid_eq(cred
->euid
, tcred
->uid
) &&
1421 !uid_eq(cred
->uid
, tcred
->suid
) && !uid_eq(cred
->uid
, tcred
->uid
) &&
1422 !capable(CAP_SYS_NICE
)) {
1429 task_nodes
= cpuset_mems_allowed(task
);
1430 /* Is the user allowed to access the target nodes? */
1431 if (!nodes_subset(*new, task_nodes
) && !capable(CAP_SYS_NICE
)) {
1436 if (!nodes_subset(*new, node_states
[N_MEMORY
])) {
1441 err
= security_task_movememory(task
);
1445 mm
= get_task_mm(task
);
1446 put_task_struct(task
);
1453 err
= do_migrate_pages(mm
, old
, new,
1454 capable(CAP_SYS_NICE
) ? MPOL_MF_MOVE_ALL
: MPOL_MF_MOVE
);
1458 NODEMASK_SCRATCH_FREE(scratch
);
1463 put_task_struct(task
);
1469 /* Retrieve NUMA policy */
1470 SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1471 unsigned long __user
*, nmask
, unsigned long, maxnode
,
1472 unsigned long, addr
, unsigned long, flags
)
1475 int uninitialized_var(pval
);
1478 if (nmask
!= NULL
&& maxnode
< MAX_NUMNODES
)
1481 err
= do_get_mempolicy(&pval
, &nodes
, addr
, flags
);
1486 if (policy
&& put_user(pval
, policy
))
1490 err
= copy_nodes_to_user(nmask
, maxnode
, &nodes
);
1495 #ifdef CONFIG_COMPAT
1497 COMPAT_SYSCALL_DEFINE5(get_mempolicy
, int __user
*, policy
,
1498 compat_ulong_t __user
*, nmask
,
1499 compat_ulong_t
, maxnode
,
1500 compat_ulong_t
, addr
, compat_ulong_t
, flags
)
1503 unsigned long __user
*nm
= NULL
;
1504 unsigned long nr_bits
, alloc_size
;
1505 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1507 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1508 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1511 nm
= compat_alloc_user_space(alloc_size
);
1513 err
= sys_get_mempolicy(policy
, nm
, nr_bits
+1, addr
, flags
);
1515 if (!err
&& nmask
) {
1516 unsigned long copy_size
;
1517 copy_size
= min_t(unsigned long, sizeof(bm
), alloc_size
);
1518 err
= copy_from_user(bm
, nm
, copy_size
);
1519 /* ensure entire bitmap is zeroed */
1520 err
|= clear_user(nmask
, ALIGN(maxnode
-1, 8) / 8);
1521 err
|= compat_put_bitmap(nmask
, bm
, nr_bits
);
1527 COMPAT_SYSCALL_DEFINE3(set_mempolicy
, int, mode
, compat_ulong_t __user
*, nmask
,
1528 compat_ulong_t
, maxnode
)
1531 unsigned long __user
*nm
= NULL
;
1532 unsigned long nr_bits
, alloc_size
;
1533 DECLARE_BITMAP(bm
, MAX_NUMNODES
);
1535 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1536 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1539 err
= compat_get_bitmap(bm
, nmask
, nr_bits
);
1540 nm
= compat_alloc_user_space(alloc_size
);
1541 err
|= copy_to_user(nm
, bm
, alloc_size
);
1547 return sys_set_mempolicy(mode
, nm
, nr_bits
+1);
1550 COMPAT_SYSCALL_DEFINE6(mbind
, compat_ulong_t
, start
, compat_ulong_t
, len
,
1551 compat_ulong_t
, mode
, compat_ulong_t __user
*, nmask
,
1552 compat_ulong_t
, maxnode
, compat_ulong_t
, flags
)
1555 unsigned long __user
*nm
= NULL
;
1556 unsigned long nr_bits
, alloc_size
;
1559 nr_bits
= min_t(unsigned long, maxnode
-1, MAX_NUMNODES
);
1560 alloc_size
= ALIGN(nr_bits
, BITS_PER_LONG
) / 8;
1563 err
= compat_get_bitmap(nodes_addr(bm
), nmask
, nr_bits
);
1564 nm
= compat_alloc_user_space(alloc_size
);
1565 err
|= copy_to_user(nm
, nodes_addr(bm
), alloc_size
);
1571 return sys_mbind(start
, len
, mode
, nm
, nr_bits
+1, flags
);
1576 struct mempolicy
*__get_vma_policy(struct vm_area_struct
*vma
,
1579 struct mempolicy
*pol
= NULL
;
1582 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1583 pol
= vma
->vm_ops
->get_policy(vma
, addr
);
1584 } else if (vma
->vm_policy
) {
1585 pol
= vma
->vm_policy
;
1588 * shmem_alloc_page() passes MPOL_F_SHARED policy with
1589 * a pseudo vma whose vma->vm_ops=NULL. Take a reference
1590 * count on these policies which will be dropped by
1591 * mpol_cond_put() later
1593 if (mpol_needs_cond_ref(pol
))
1602 * get_vma_policy(@vma, @addr)
1603 * @vma: virtual memory area whose policy is sought
1604 * @addr: address in @vma for shared policy lookup
1606 * Returns effective policy for a VMA at specified address.
1607 * Falls back to current->mempolicy or system default policy, as necessary.
1608 * Shared policies [those marked as MPOL_F_SHARED] require an extra reference
1609 * count--added by the get_policy() vm_op, as appropriate--to protect against
1610 * freeing by another task. It is the caller's responsibility to free the
1611 * extra reference for shared policies.
1613 static struct mempolicy
*get_vma_policy(struct vm_area_struct
*vma
,
1616 struct mempolicy
*pol
= __get_vma_policy(vma
, addr
);
1619 pol
= get_task_policy(current
);
1624 bool vma_policy_mof(struct vm_area_struct
*vma
)
1626 struct mempolicy
*pol
;
1628 if (vma
->vm_ops
&& vma
->vm_ops
->get_policy
) {
1631 pol
= vma
->vm_ops
->get_policy(vma
, vma
->vm_start
);
1632 if (pol
&& (pol
->flags
& MPOL_F_MOF
))
1639 pol
= vma
->vm_policy
;
1641 pol
= get_task_policy(current
);
1643 return pol
->flags
& MPOL_F_MOF
;
1646 static int apply_policy_zone(struct mempolicy
*policy
, enum zone_type zone
)
1648 enum zone_type dynamic_policy_zone
= policy_zone
;
1650 BUG_ON(dynamic_policy_zone
== ZONE_MOVABLE
);
1653 * if policy->v.nodes has movable memory only,
1654 * we apply policy when gfp_zone(gfp) = ZONE_MOVABLE only.
1656 * policy->v.nodes is intersect with node_states[N_MEMORY].
1657 * so if the following test faile, it implies
1658 * policy->v.nodes has movable memory only.
1660 if (!nodes_intersects(policy
->v
.nodes
, node_states
[N_HIGH_MEMORY
]))
1661 dynamic_policy_zone
= ZONE_MOVABLE
;
1663 return zone
>= dynamic_policy_zone
;
1667 * Return a nodemask representing a mempolicy for filtering nodes for
1670 static nodemask_t
*policy_nodemask(gfp_t gfp
, struct mempolicy
*policy
)
1672 /* Lower zones don't get a nodemask applied for MPOL_BIND */
1673 if (unlikely(policy
->mode
== MPOL_BIND
) &&
1674 apply_policy_zone(policy
, gfp_zone(gfp
)) &&
1675 cpuset_nodemask_valid_mems_allowed(&policy
->v
.nodes
))
1676 return &policy
->v
.nodes
;
1681 /* Return a zonelist indicated by gfp for node representing a mempolicy */
1682 static struct zonelist
*policy_zonelist(gfp_t gfp
, struct mempolicy
*policy
,
1685 switch (policy
->mode
) {
1686 case MPOL_PREFERRED
:
1687 if (!(policy
->flags
& MPOL_F_LOCAL
))
1688 nd
= policy
->v
.preferred_node
;
1692 * Normally, MPOL_BIND allocations are node-local within the
1693 * allowed nodemask. However, if __GFP_THISNODE is set and the
1694 * current node isn't part of the mask, we use the zonelist for
1695 * the first node in the mask instead.
1697 if (unlikely(gfp
& __GFP_THISNODE
) &&
1698 unlikely(!node_isset(nd
, policy
->v
.nodes
)))
1699 nd
= first_node(policy
->v
.nodes
);
1704 return node_zonelist(nd
, gfp
);
1707 /* Do dynamic interleaving for a process */
1708 static unsigned interleave_nodes(struct mempolicy
*policy
)
1711 struct task_struct
*me
= current
;
1714 next
= next_node(nid
, policy
->v
.nodes
);
1715 if (next
>= MAX_NUMNODES
)
1716 next
= first_node(policy
->v
.nodes
);
1717 if (next
< MAX_NUMNODES
)
1723 * Depending on the memory policy provide a node from which to allocate the
1726 unsigned int mempolicy_slab_node(void)
1728 struct mempolicy
*policy
;
1729 int node
= numa_mem_id();
1734 policy
= current
->mempolicy
;
1735 if (!policy
|| policy
->flags
& MPOL_F_LOCAL
)
1738 switch (policy
->mode
) {
1739 case MPOL_PREFERRED
:
1741 * handled MPOL_F_LOCAL above
1743 return policy
->v
.preferred_node
;
1745 case MPOL_INTERLEAVE
:
1746 return interleave_nodes(policy
);
1750 * Follow bind policy behavior and start allocation at the
1753 struct zonelist
*zonelist
;
1755 enum zone_type highest_zoneidx
= gfp_zone(GFP_KERNEL
);
1756 zonelist
= &NODE_DATA(node
)->node_zonelists
[0];
1757 (void)first_zones_zonelist(zonelist
, highest_zoneidx
,
1760 return zone
? zone
->node
: node
;
1768 /* Do static interleaving for a VMA with known offset. */
1769 static unsigned offset_il_node(struct mempolicy
*pol
,
1770 struct vm_area_struct
*vma
, unsigned long off
)
1772 unsigned nnodes
= nodes_weight(pol
->v
.nodes
);
1775 int nid
= NUMA_NO_NODE
;
1778 return numa_node_id();
1779 target
= (unsigned int)off
% nnodes
;
1782 nid
= next_node(nid
, pol
->v
.nodes
);
1784 } while (c
<= target
);
1788 /* Determine a node number for interleave */
1789 static inline unsigned interleave_nid(struct mempolicy
*pol
,
1790 struct vm_area_struct
*vma
, unsigned long addr
, int shift
)
1796 * for small pages, there is no difference between
1797 * shift and PAGE_SHIFT, so the bit-shift is safe.
1798 * for huge pages, since vm_pgoff is in units of small
1799 * pages, we need to shift off the always 0 bits to get
1802 BUG_ON(shift
< PAGE_SHIFT
);
1803 off
= vma
->vm_pgoff
>> (shift
- PAGE_SHIFT
);
1804 off
+= (addr
- vma
->vm_start
) >> shift
;
1805 return offset_il_node(pol
, vma
, off
);
1807 return interleave_nodes(pol
);
1811 * Return the bit number of a random bit set in the nodemask.
1812 * (returns NUMA_NO_NODE if nodemask is empty)
1814 int node_random(const nodemask_t
*maskp
)
1816 int w
, bit
= NUMA_NO_NODE
;
1818 w
= nodes_weight(*maskp
);
1820 bit
= bitmap_ord_to_pos(maskp
->bits
,
1821 get_random_int() % w
, MAX_NUMNODES
);
1825 #ifdef CONFIG_HUGETLBFS
1827 * huge_zonelist(@vma, @addr, @gfp_flags, @mpol)
1828 * @vma: virtual memory area whose policy is sought
1829 * @addr: address in @vma for shared policy lookup and interleave policy
1830 * @gfp_flags: for requested zone
1831 * @mpol: pointer to mempolicy pointer for reference counted mempolicy
1832 * @nodemask: pointer to nodemask pointer for MPOL_BIND nodemask
1834 * Returns a zonelist suitable for a huge page allocation and a pointer
1835 * to the struct mempolicy for conditional unref after allocation.
1836 * If the effective policy is 'BIND, returns a pointer to the mempolicy's
1837 * @nodemask for filtering the zonelist.
1839 * Must be protected by read_mems_allowed_begin()
1841 struct zonelist
*huge_zonelist(struct vm_area_struct
*vma
, unsigned long addr
,
1842 gfp_t gfp_flags
, struct mempolicy
**mpol
,
1843 nodemask_t
**nodemask
)
1845 struct zonelist
*zl
;
1847 *mpol
= get_vma_policy(vma
, addr
);
1848 *nodemask
= NULL
; /* assume !MPOL_BIND */
1850 if (unlikely((*mpol
)->mode
== MPOL_INTERLEAVE
)) {
1851 zl
= node_zonelist(interleave_nid(*mpol
, vma
, addr
,
1852 huge_page_shift(hstate_vma(vma
))), gfp_flags
);
1854 zl
= policy_zonelist(gfp_flags
, *mpol
, numa_node_id());
1855 if ((*mpol
)->mode
== MPOL_BIND
)
1856 *nodemask
= &(*mpol
)->v
.nodes
;
1862 * init_nodemask_of_mempolicy
1864 * If the current task's mempolicy is "default" [NULL], return 'false'
1865 * to indicate default policy. Otherwise, extract the policy nodemask
1866 * for 'bind' or 'interleave' policy into the argument nodemask, or
1867 * initialize the argument nodemask to contain the single node for
1868 * 'preferred' or 'local' policy and return 'true' to indicate presence
1869 * of non-default mempolicy.
1871 * We don't bother with reference counting the mempolicy [mpol_get/put]
1872 * because the current task is examining it's own mempolicy and a task's
1873 * mempolicy is only ever changed by the task itself.
1875 * N.B., it is the caller's responsibility to free a returned nodemask.
1877 bool init_nodemask_of_mempolicy(nodemask_t
*mask
)
1879 struct mempolicy
*mempolicy
;
1882 if (!(mask
&& current
->mempolicy
))
1886 mempolicy
= current
->mempolicy
;
1887 switch (mempolicy
->mode
) {
1888 case MPOL_PREFERRED
:
1889 if (mempolicy
->flags
& MPOL_F_LOCAL
)
1890 nid
= numa_node_id();
1892 nid
= mempolicy
->v
.preferred_node
;
1893 init_nodemask_of_node(mask
, nid
);
1898 case MPOL_INTERLEAVE
:
1899 *mask
= mempolicy
->v
.nodes
;
1905 task_unlock(current
);
1912 * mempolicy_nodemask_intersects
1914 * If tsk's mempolicy is "default" [NULL], return 'true' to indicate default
1915 * policy. Otherwise, check for intersection between mask and the policy
1916 * nodemask for 'bind' or 'interleave' policy. For 'perferred' or 'local'
1917 * policy, always return true since it may allocate elsewhere on fallback.
1919 * Takes task_lock(tsk) to prevent freeing of its mempolicy.
1921 bool mempolicy_nodemask_intersects(struct task_struct
*tsk
,
1922 const nodemask_t
*mask
)
1924 struct mempolicy
*mempolicy
;
1930 mempolicy
= tsk
->mempolicy
;
1934 switch (mempolicy
->mode
) {
1935 case MPOL_PREFERRED
:
1937 * MPOL_PREFERRED and MPOL_F_LOCAL are only preferred nodes to
1938 * allocate from, they may fallback to other nodes when oom.
1939 * Thus, it's possible for tsk to have allocated memory from
1944 case MPOL_INTERLEAVE
:
1945 ret
= nodes_intersects(mempolicy
->v
.nodes
, *mask
);
1955 /* Allocate a page in interleaved policy.
1956 Own path because it needs to do special accounting. */
1957 static struct page
*alloc_page_interleave(gfp_t gfp
, unsigned order
,
1960 struct zonelist
*zl
;
1963 zl
= node_zonelist(nid
, gfp
);
1964 page
= __alloc_pages(gfp
, order
, zl
);
1965 if (page
&& page_zone(page
) == zonelist_zone(&zl
->_zonerefs
[0]))
1966 inc_zone_page_state(page
, NUMA_INTERLEAVE_HIT
);
1971 * alloc_pages_vma - Allocate a page for a VMA.
1974 * %GFP_USER user allocation.
1975 * %GFP_KERNEL kernel allocations,
1976 * %GFP_HIGHMEM highmem/user allocations,
1977 * %GFP_FS allocation should not call back into a file system.
1978 * %GFP_ATOMIC don't sleep.
1980 * @order:Order of the GFP allocation.
1981 * @vma: Pointer to VMA or NULL if not available.
1982 * @addr: Virtual Address of the allocation. Must be inside the VMA.
1983 * @node: Which node to prefer for allocation (modulo policy).
1984 * @hugepage: for hugepages try only the preferred node if possible
1986 * This function allocates a page from the kernel page pool and applies
1987 * a NUMA policy associated with the VMA or the current process.
1988 * When VMA is not NULL caller must hold down_read on the mmap_sem of the
1989 * mm_struct of the VMA to prevent it from going away. Should be used for
1990 * all allocations for pages that will be mapped into user space. Returns
1991 * NULL when no page can be allocated.
1994 alloc_pages_vma(gfp_t gfp
, int order
, struct vm_area_struct
*vma
,
1995 unsigned long addr
, int node
, bool hugepage
)
1997 struct mempolicy
*pol
;
1999 unsigned int cpuset_mems_cookie
;
2000 struct zonelist
*zl
;
2004 pol
= get_vma_policy(vma
, addr
);
2005 cpuset_mems_cookie
= read_mems_allowed_begin();
2007 if (pol
->mode
== MPOL_INTERLEAVE
) {
2010 nid
= interleave_nid(pol
, vma
, addr
, PAGE_SHIFT
+ order
);
2012 page
= alloc_page_interleave(gfp
, order
, nid
);
2016 if (unlikely(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE
) && hugepage
)) {
2017 int hpage_node
= node
;
2020 * For hugepage allocation and non-interleave policy which
2021 * allows the current node (or other explicitly preferred
2022 * node) we only try to allocate from the current/preferred
2023 * node and don't fall back to other nodes, as the cost of
2024 * remote accesses would likely offset THP benefits.
2026 * If the policy is interleave, or does not allow the current
2027 * node in its nodemask, we allocate the standard way.
2029 if (pol
->mode
== MPOL_PREFERRED
&&
2030 !(pol
->flags
& MPOL_F_LOCAL
))
2031 hpage_node
= pol
->v
.preferred_node
;
2033 nmask
= policy_nodemask(gfp
, pol
);
2034 if (!nmask
|| node_isset(hpage_node
, *nmask
)) {
2036 page
= __alloc_pages_node(hpage_node
,
2037 gfp
| __GFP_THISNODE
, order
);
2042 nmask
= policy_nodemask(gfp
, pol
);
2043 zl
= policy_zonelist(gfp
, pol
, node
);
2045 page
= __alloc_pages_nodemask(gfp
, order
, zl
, nmask
);
2047 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
2053 * alloc_pages_current - Allocate pages.
2056 * %GFP_USER user allocation,
2057 * %GFP_KERNEL kernel allocation,
2058 * %GFP_HIGHMEM highmem allocation,
2059 * %GFP_FS don't call back into a file system.
2060 * %GFP_ATOMIC don't sleep.
2061 * @order: Power of two of allocation size in pages. 0 is a single page.
2063 * Allocate a page from the kernel page pool. When not in
2064 * interrupt context and apply the current process NUMA policy.
2065 * Returns NULL when no page can be allocated.
2067 * Don't call cpuset_update_task_memory_state() unless
2068 * 1) it's ok to take cpuset_sem (can WAIT), and
2069 * 2) allocating for current task (not interrupt).
2071 struct page
*alloc_pages_current(gfp_t gfp
, unsigned order
)
2073 struct mempolicy
*pol
= &default_policy
;
2075 unsigned int cpuset_mems_cookie
;
2077 if (!in_interrupt() && !(gfp
& __GFP_THISNODE
))
2078 pol
= get_task_policy(current
);
2081 cpuset_mems_cookie
= read_mems_allowed_begin();
2084 * No reference counting needed for current->mempolicy
2085 * nor system default_policy
2087 if (pol
->mode
== MPOL_INTERLEAVE
)
2088 page
= alloc_page_interleave(gfp
, order
, interleave_nodes(pol
));
2090 page
= __alloc_pages_nodemask(gfp
, order
,
2091 policy_zonelist(gfp
, pol
, numa_node_id()),
2092 policy_nodemask(gfp
, pol
));
2094 if (unlikely(!page
&& read_mems_allowed_retry(cpuset_mems_cookie
)))
2099 EXPORT_SYMBOL(alloc_pages_current
);
2101 int vma_dup_policy(struct vm_area_struct
*src
, struct vm_area_struct
*dst
)
2103 struct mempolicy
*pol
= mpol_dup(vma_policy(src
));
2106 return PTR_ERR(pol
);
2107 dst
->vm_policy
= pol
;
2112 * If mpol_dup() sees current->cpuset == cpuset_being_rebound, then it
2113 * rebinds the mempolicy its copying by calling mpol_rebind_policy()
2114 * with the mems_allowed returned by cpuset_mems_allowed(). This
2115 * keeps mempolicies cpuset relative after its cpuset moves. See
2116 * further kernel/cpuset.c update_nodemask().
2118 * current's mempolicy may be rebinded by the other task(the task that changes
2119 * cpuset's mems), so we needn't do rebind work for current task.
2122 /* Slow path of a mempolicy duplicate */
2123 struct mempolicy
*__mpol_dup(struct mempolicy
*old
)
2125 struct mempolicy
*new = kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
2128 return ERR_PTR(-ENOMEM
);
2130 /* task's mempolicy is protected by alloc_lock */
2131 if (old
== current
->mempolicy
) {
2134 task_unlock(current
);
2138 if (current_cpuset_is_being_rebound()) {
2139 nodemask_t mems
= cpuset_mems_allowed(current
);
2140 if (new->flags
& MPOL_F_REBINDING
)
2141 mpol_rebind_policy(new, &mems
, MPOL_REBIND_STEP2
);
2143 mpol_rebind_policy(new, &mems
, MPOL_REBIND_ONCE
);
2145 atomic_set(&new->refcnt
, 1);
2149 /* Slow path of a mempolicy comparison */
2150 bool __mpol_equal(struct mempolicy
*a
, struct mempolicy
*b
)
2154 if (a
->mode
!= b
->mode
)
2156 if (a
->flags
!= b
->flags
)
2158 if (mpol_store_user_nodemask(a
))
2159 if (!nodes_equal(a
->w
.user_nodemask
, b
->w
.user_nodemask
))
2165 case MPOL_INTERLEAVE
:
2166 return !!nodes_equal(a
->v
.nodes
, b
->v
.nodes
);
2167 case MPOL_PREFERRED
:
2168 return a
->v
.preferred_node
== b
->v
.preferred_node
;
2176 * Shared memory backing store policy support.
2178 * Remember policies even when nobody has shared memory mapped.
2179 * The policies are kept in Red-Black tree linked from the inode.
2180 * They are protected by the sp->lock rwlock, which should be held
2181 * for any accesses to the tree.
2185 * lookup first element intersecting start-end. Caller holds sp->lock for
2186 * reading or for writing
2188 static struct sp_node
*
2189 sp_lookup(struct shared_policy
*sp
, unsigned long start
, unsigned long end
)
2191 struct rb_node
*n
= sp
->root
.rb_node
;
2194 struct sp_node
*p
= rb_entry(n
, struct sp_node
, nd
);
2196 if (start
>= p
->end
)
2198 else if (end
<= p
->start
)
2206 struct sp_node
*w
= NULL
;
2207 struct rb_node
*prev
= rb_prev(n
);
2210 w
= rb_entry(prev
, struct sp_node
, nd
);
2211 if (w
->end
<= start
)
2215 return rb_entry(n
, struct sp_node
, nd
);
2219 * Insert a new shared policy into the list. Caller holds sp->lock for
2222 static void sp_insert(struct shared_policy
*sp
, struct sp_node
*new)
2224 struct rb_node
**p
= &sp
->root
.rb_node
;
2225 struct rb_node
*parent
= NULL
;
2230 nd
= rb_entry(parent
, struct sp_node
, nd
);
2231 if (new->start
< nd
->start
)
2233 else if (new->end
> nd
->end
)
2234 p
= &(*p
)->rb_right
;
2238 rb_link_node(&new->nd
, parent
, p
);
2239 rb_insert_color(&new->nd
, &sp
->root
);
2240 pr_debug("inserting %lx-%lx: %d\n", new->start
, new->end
,
2241 new->policy
? new->policy
->mode
: 0);
2244 /* Find shared policy intersecting idx */
2246 mpol_shared_policy_lookup(struct shared_policy
*sp
, unsigned long idx
)
2248 struct mempolicy
*pol
= NULL
;
2251 if (!sp
->root
.rb_node
)
2253 read_lock(&sp
->lock
);
2254 sn
= sp_lookup(sp
, idx
, idx
+1);
2256 mpol_get(sn
->policy
);
2259 read_unlock(&sp
->lock
);
2263 static void sp_free(struct sp_node
*n
)
2265 mpol_put(n
->policy
);
2266 kmem_cache_free(sn_cache
, n
);
2270 * mpol_misplaced - check whether current page node is valid in policy
2272 * @page: page to be checked
2273 * @vma: vm area where page mapped
2274 * @addr: virtual address where page mapped
2276 * Lookup current policy node id for vma,addr and "compare to" page's
2280 * -1 - not misplaced, page is in the right node
2281 * node - node id where the page should be
2283 * Policy determination "mimics" alloc_page_vma().
2284 * Called from fault path where we know the vma and faulting address.
2286 int mpol_misplaced(struct page
*page
, struct vm_area_struct
*vma
, unsigned long addr
)
2288 struct mempolicy
*pol
;
2290 int curnid
= page_to_nid(page
);
2291 unsigned long pgoff
;
2292 int thiscpu
= raw_smp_processor_id();
2293 int thisnid
= cpu_to_node(thiscpu
);
2299 pol
= get_vma_policy(vma
, addr
);
2300 if (!(pol
->flags
& MPOL_F_MOF
))
2303 switch (pol
->mode
) {
2304 case MPOL_INTERLEAVE
:
2305 BUG_ON(addr
>= vma
->vm_end
);
2306 BUG_ON(addr
< vma
->vm_start
);
2308 pgoff
= vma
->vm_pgoff
;
2309 pgoff
+= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
2310 polnid
= offset_il_node(pol
, vma
, pgoff
);
2313 case MPOL_PREFERRED
:
2314 if (pol
->flags
& MPOL_F_LOCAL
)
2315 polnid
= numa_node_id();
2317 polnid
= pol
->v
.preferred_node
;
2322 * allows binding to multiple nodes.
2323 * use current page if in policy nodemask,
2324 * else select nearest allowed node, if any.
2325 * If no allowed nodes, use current [!misplaced].
2327 if (node_isset(curnid
, pol
->v
.nodes
))
2329 (void)first_zones_zonelist(
2330 node_zonelist(numa_node_id(), GFP_HIGHUSER
),
2331 gfp_zone(GFP_HIGHUSER
),
2332 &pol
->v
.nodes
, &zone
);
2333 polnid
= zone
->node
;
2340 /* Migrate the page towards the node whose CPU is referencing it */
2341 if (pol
->flags
& MPOL_F_MORON
) {
2344 if (!should_numa_migrate_memory(current
, page
, curnid
, thiscpu
))
2348 if (curnid
!= polnid
)
2356 static void sp_delete(struct shared_policy
*sp
, struct sp_node
*n
)
2358 pr_debug("deleting %lx-l%lx\n", n
->start
, n
->end
);
2359 rb_erase(&n
->nd
, &sp
->root
);
2363 static void sp_node_init(struct sp_node
*node
, unsigned long start
,
2364 unsigned long end
, struct mempolicy
*pol
)
2366 node
->start
= start
;
2371 static struct sp_node
*sp_alloc(unsigned long start
, unsigned long end
,
2372 struct mempolicy
*pol
)
2375 struct mempolicy
*newpol
;
2377 n
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2381 newpol
= mpol_dup(pol
);
2382 if (IS_ERR(newpol
)) {
2383 kmem_cache_free(sn_cache
, n
);
2386 newpol
->flags
|= MPOL_F_SHARED
;
2387 sp_node_init(n
, start
, end
, newpol
);
2392 /* Replace a policy range. */
2393 static int shared_policy_replace(struct shared_policy
*sp
, unsigned long start
,
2394 unsigned long end
, struct sp_node
*new)
2397 struct sp_node
*n_new
= NULL
;
2398 struct mempolicy
*mpol_new
= NULL
;
2402 write_lock(&sp
->lock
);
2403 n
= sp_lookup(sp
, start
, end
);
2404 /* Take care of old policies in the same range. */
2405 while (n
&& n
->start
< end
) {
2406 struct rb_node
*next
= rb_next(&n
->nd
);
2407 if (n
->start
>= start
) {
2413 /* Old policy spanning whole new range. */
2418 *mpol_new
= *n
->policy
;
2419 atomic_set(&mpol_new
->refcnt
, 1);
2420 sp_node_init(n_new
, end
, n
->end
, mpol_new
);
2422 sp_insert(sp
, n_new
);
2431 n
= rb_entry(next
, struct sp_node
, nd
);
2435 write_unlock(&sp
->lock
);
2442 kmem_cache_free(sn_cache
, n_new
);
2447 write_unlock(&sp
->lock
);
2449 n_new
= kmem_cache_alloc(sn_cache
, GFP_KERNEL
);
2452 mpol_new
= kmem_cache_alloc(policy_cache
, GFP_KERNEL
);
2459 * mpol_shared_policy_init - initialize shared policy for inode
2460 * @sp: pointer to inode shared policy
2461 * @mpol: struct mempolicy to install
2463 * Install non-NULL @mpol in inode's shared policy rb-tree.
2464 * On entry, the current task has a reference on a non-NULL @mpol.
2465 * This must be released on exit.
2466 * This is called at get_inode() calls and we can use GFP_KERNEL.
2468 void mpol_shared_policy_init(struct shared_policy
*sp
, struct mempolicy
*mpol
)
2472 sp
->root
= RB_ROOT
; /* empty tree == default mempolicy */
2473 rwlock_init(&sp
->lock
);
2476 struct vm_area_struct pvma
;
2477 struct mempolicy
*new;
2478 NODEMASK_SCRATCH(scratch
);
2482 /* contextualize the tmpfs mount point mempolicy */
2483 new = mpol_new(mpol
->mode
, mpol
->flags
, &mpol
->w
.user_nodemask
);
2485 goto free_scratch
; /* no valid nodemask intersection */
2488 ret
= mpol_set_nodemask(new, &mpol
->w
.user_nodemask
, scratch
);
2489 task_unlock(current
);
2493 /* Create pseudo-vma that contains just the policy */
2494 memset(&pvma
, 0, sizeof(struct vm_area_struct
));
2495 pvma
.vm_end
= TASK_SIZE
; /* policy covers entire file */
2496 mpol_set_shared_policy(sp
, &pvma
, new); /* adds ref */
2499 mpol_put(new); /* drop initial ref */
2501 NODEMASK_SCRATCH_FREE(scratch
);
2503 mpol_put(mpol
); /* drop our incoming ref on sb mpol */
2507 int mpol_set_shared_policy(struct shared_policy
*info
,
2508 struct vm_area_struct
*vma
, struct mempolicy
*npol
)
2511 struct sp_node
*new = NULL
;
2512 unsigned long sz
= vma_pages(vma
);
2514 pr_debug("set_shared_policy %lx sz %lu %d %d %lx\n",
2516 sz
, npol
? npol
->mode
: -1,
2517 npol
? npol
->flags
: -1,
2518 npol
? nodes_addr(npol
->v
.nodes
)[0] : NUMA_NO_NODE
);
2521 new = sp_alloc(vma
->vm_pgoff
, vma
->vm_pgoff
+ sz
, npol
);
2525 err
= shared_policy_replace(info
, vma
->vm_pgoff
, vma
->vm_pgoff
+sz
, new);
2531 /* Free a backing policy store on inode delete. */
2532 void mpol_free_shared_policy(struct shared_policy
*p
)
2535 struct rb_node
*next
;
2537 if (!p
->root
.rb_node
)
2539 write_lock(&p
->lock
);
2540 next
= rb_first(&p
->root
);
2542 n
= rb_entry(next
, struct sp_node
, nd
);
2543 next
= rb_next(&n
->nd
);
2546 write_unlock(&p
->lock
);
2549 #ifdef CONFIG_NUMA_BALANCING
2550 static int __initdata numabalancing_override
;
2552 static void __init
check_numabalancing_enable(void)
2554 bool numabalancing_default
= false;
2556 if (IS_ENABLED(CONFIG_NUMA_BALANCING_DEFAULT_ENABLED
))
2557 numabalancing_default
= true;
2559 /* Parsed by setup_numabalancing. override == 1 enables, -1 disables */
2560 if (numabalancing_override
)
2561 set_numabalancing_state(numabalancing_override
== 1);
2563 if (num_online_nodes() > 1 && !numabalancing_override
) {
2564 pr_info("%s automatic NUMA balancing. "
2565 "Configure with numa_balancing= or the "
2566 "kernel.numa_balancing sysctl",
2567 numabalancing_default
? "Enabling" : "Disabling");
2568 set_numabalancing_state(numabalancing_default
);
2572 static int __init
setup_numabalancing(char *str
)
2578 if (!strcmp(str
, "enable")) {
2579 numabalancing_override
= 1;
2581 } else if (!strcmp(str
, "disable")) {
2582 numabalancing_override
= -1;
2587 pr_warn("Unable to parse numa_balancing=\n");
2591 __setup("numa_balancing=", setup_numabalancing
);
2593 static inline void __init
check_numabalancing_enable(void)
2596 #endif /* CONFIG_NUMA_BALANCING */
2598 /* assumes fs == KERNEL_DS */
2599 void __init
numa_policy_init(void)
2601 nodemask_t interleave_nodes
;
2602 unsigned long largest
= 0;
2603 int nid
, prefer
= 0;
2605 policy_cache
= kmem_cache_create("numa_policy",
2606 sizeof(struct mempolicy
),
2607 0, SLAB_PANIC
, NULL
);
2609 sn_cache
= kmem_cache_create("shared_policy_node",
2610 sizeof(struct sp_node
),
2611 0, SLAB_PANIC
, NULL
);
2613 for_each_node(nid
) {
2614 preferred_node_policy
[nid
] = (struct mempolicy
) {
2615 .refcnt
= ATOMIC_INIT(1),
2616 .mode
= MPOL_PREFERRED
,
2617 .flags
= MPOL_F_MOF
| MPOL_F_MORON
,
2618 .v
= { .preferred_node
= nid
, },
2623 * Set interleaving policy for system init. Interleaving is only
2624 * enabled across suitably sized nodes (default is >= 16MB), or
2625 * fall back to the largest node if they're all smaller.
2627 nodes_clear(interleave_nodes
);
2628 for_each_node_state(nid
, N_MEMORY
) {
2629 unsigned long total_pages
= node_present_pages(nid
);
2631 /* Preserve the largest node */
2632 if (largest
< total_pages
) {
2633 largest
= total_pages
;
2637 /* Interleave this node? */
2638 if ((total_pages
<< PAGE_SHIFT
) >= (16 << 20))
2639 node_set(nid
, interleave_nodes
);
2642 /* All too small, use the largest */
2643 if (unlikely(nodes_empty(interleave_nodes
)))
2644 node_set(prefer
, interleave_nodes
);
2646 if (do_set_mempolicy(MPOL_INTERLEAVE
, 0, &interleave_nodes
))
2647 pr_err("%s: interleaving failed\n", __func__
);
2649 check_numabalancing_enable();
2652 /* Reset policy of current process to default */
2653 void numa_default_policy(void)
2655 do_set_mempolicy(MPOL_DEFAULT
, 0, NULL
);
2659 * Parse and format mempolicy from/to strings
2663 * "local" is implemented internally by MPOL_PREFERRED with MPOL_F_LOCAL flag.
2665 static const char * const policy_modes
[] =
2667 [MPOL_DEFAULT
] = "default",
2668 [MPOL_PREFERRED
] = "prefer",
2669 [MPOL_BIND
] = "bind",
2670 [MPOL_INTERLEAVE
] = "interleave",
2671 [MPOL_LOCAL
] = "local",
2677 * mpol_parse_str - parse string to mempolicy, for tmpfs mpol mount option.
2678 * @str: string containing mempolicy to parse
2679 * @mpol: pointer to struct mempolicy pointer, returned on success.
2682 * <mode>[=<flags>][:<nodelist>]
2684 * On success, returns 0, else 1
2686 int mpol_parse_str(char *str
, struct mempolicy
**mpol
)
2688 struct mempolicy
*new = NULL
;
2689 unsigned short mode
;
2690 unsigned short mode_flags
;
2692 char *nodelist
= strchr(str
, ':');
2693 char *flags
= strchr(str
, '=');
2697 /* NUL-terminate mode or flags string */
2699 if (nodelist_parse(nodelist
, nodes
))
2701 if (!nodes_subset(nodes
, node_states
[N_MEMORY
]))
2707 *flags
++ = '\0'; /* terminate mode string */
2709 for (mode
= 0; mode
< MPOL_MAX
; mode
++) {
2710 if (!strcmp(str
, policy_modes
[mode
])) {
2714 if (mode
>= MPOL_MAX
)
2718 case MPOL_PREFERRED
:
2720 * Insist on a nodelist of one node only
2723 char *rest
= nodelist
;
2724 while (isdigit(*rest
))
2730 case MPOL_INTERLEAVE
:
2732 * Default to online nodes with memory if no nodelist
2735 nodes
= node_states
[N_MEMORY
];
2739 * Don't allow a nodelist; mpol_new() checks flags
2743 mode
= MPOL_PREFERRED
;
2747 * Insist on a empty nodelist
2754 * Insist on a nodelist
2763 * Currently, we only support two mutually exclusive
2766 if (!strcmp(flags
, "static"))
2767 mode_flags
|= MPOL_F_STATIC_NODES
;
2768 else if (!strcmp(flags
, "relative"))
2769 mode_flags
|= MPOL_F_RELATIVE_NODES
;
2774 new = mpol_new(mode
, mode_flags
, &nodes
);
2779 * Save nodes for mpol_to_str() to show the tmpfs mount options
2780 * for /proc/mounts, /proc/pid/mounts and /proc/pid/mountinfo.
2782 if (mode
!= MPOL_PREFERRED
)
2783 new->v
.nodes
= nodes
;
2785 new->v
.preferred_node
= first_node(nodes
);
2787 new->flags
|= MPOL_F_LOCAL
;
2790 * Save nodes for contextualization: this will be used to "clone"
2791 * the mempolicy in a specific context [cpuset] at a later time.
2793 new->w
.user_nodemask
= nodes
;
2798 /* Restore string for error message */
2807 #endif /* CONFIG_TMPFS */
2810 * mpol_to_str - format a mempolicy structure for printing
2811 * @buffer: to contain formatted mempolicy string
2812 * @maxlen: length of @buffer
2813 * @pol: pointer to mempolicy to be formatted
2815 * Convert @pol into a string. If @buffer is too short, truncate the string.
2816 * Recommend a @maxlen of at least 32 for the longest mode, "interleave", the
2817 * longest flag, "relative", and to display at least a few node ids.
2819 void mpol_to_str(char *buffer
, int maxlen
, struct mempolicy
*pol
)
2822 nodemask_t nodes
= NODE_MASK_NONE
;
2823 unsigned short mode
= MPOL_DEFAULT
;
2824 unsigned short flags
= 0;
2826 if (pol
&& pol
!= &default_policy
&& !(pol
->flags
& MPOL_F_MORON
)) {
2834 case MPOL_PREFERRED
:
2835 if (flags
& MPOL_F_LOCAL
)
2838 node_set(pol
->v
.preferred_node
, nodes
);
2841 case MPOL_INTERLEAVE
:
2842 nodes
= pol
->v
.nodes
;
2846 snprintf(p
, maxlen
, "unknown");
2850 p
+= snprintf(p
, maxlen
, "%s", policy_modes
[mode
]);
2852 if (flags
& MPOL_MODE_FLAGS
) {
2853 p
+= snprintf(p
, buffer
+ maxlen
- p
, "=");
2856 * Currently, the only defined flags are mutually exclusive
2858 if (flags
& MPOL_F_STATIC_NODES
)
2859 p
+= snprintf(p
, buffer
+ maxlen
- p
, "static");
2860 else if (flags
& MPOL_F_RELATIVE_NODES
)
2861 p
+= snprintf(p
, buffer
+ maxlen
- p
, "relative");
2864 if (!nodes_empty(nodes
))
2865 p
+= scnprintf(p
, buffer
+ maxlen
- p
, ":%*pbl",
2866 nodemask_pr_args(&nodes
));