6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/mmdebug.h>
35 #include <linux/perf_event.h>
36 #include <linux/audit.h>
37 #include <linux/khugepaged.h>
38 #include <linux/uprobes.h>
39 #include <linux/rbtree_augmented.h>
40 #include <linux/sched/sysctl.h>
41 #include <linux/notifier.h>
42 #include <linux/memory.h>
43 #include <linux/printk.h>
44 #include <linux/userfaultfd_k.h>
46 #include <asm/uaccess.h>
47 #include <asm/cacheflush.h>
49 #include <asm/mmu_context.h>
53 #ifndef arch_mmap_check
54 #define arch_mmap_check(addr, len, flags) (0)
57 #ifndef arch_rebalance_pgtables
58 #define arch_rebalance_pgtables(addr, len) (addr)
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
62 const int mmap_rnd_bits_min
= CONFIG_ARCH_MMAP_RND_BITS_MIN
;
63 const int mmap_rnd_bits_max
= CONFIG_ARCH_MMAP_RND_BITS_MAX
;
64 int mmap_rnd_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_BITS
;
66 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
67 const int mmap_rnd_compat_bits_min
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MIN
;
68 const int mmap_rnd_compat_bits_max
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS_MAX
;
69 int mmap_rnd_compat_bits __read_mostly
= CONFIG_ARCH_MMAP_RND_COMPAT_BITS
;
73 static void unmap_region(struct mm_struct
*mm
,
74 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
75 unsigned long start
, unsigned long end
);
77 /* description of effects of mapping type and prot in current implementation.
78 * this is due to the limited x86 page protection hardware. The expected
79 * behavior is in parens:
82 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
83 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
84 * w: (no) no w: (no) no w: (yes) yes w: (no) no
85 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
87 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
88 * w: (no) no w: (no) no w: (copy) copy w: (no) no
89 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
92 pgprot_t protection_map
[16] = {
93 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
94 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
97 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
99 return __pgprot(pgprot_val(protection_map
[vm_flags
&
100 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
101 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
103 EXPORT_SYMBOL(vm_get_page_prot
);
105 static pgprot_t
vm_pgprot_modify(pgprot_t oldprot
, unsigned long vm_flags
)
107 return pgprot_modify(oldprot
, vm_get_page_prot(vm_flags
));
110 /* Update vma->vm_page_prot to reflect vma->vm_flags. */
111 void vma_set_page_prot(struct vm_area_struct
*vma
)
113 unsigned long vm_flags
= vma
->vm_flags
;
115 vma
->vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
);
116 if (vma_wants_writenotify(vma
)) {
117 vm_flags
&= ~VM_SHARED
;
118 vma
->vm_page_prot
= vm_pgprot_modify(vma
->vm_page_prot
,
124 int sysctl_overcommit_memory __read_mostly
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
125 int sysctl_overcommit_ratio __read_mostly
= 50; /* default is 50% */
126 unsigned long sysctl_overcommit_kbytes __read_mostly
;
127 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
128 unsigned long sysctl_user_reserve_kbytes __read_mostly
= 1UL << 17; /* 128MB */
129 unsigned long sysctl_admin_reserve_kbytes __read_mostly
= 1UL << 13; /* 8MB */
131 * Make sure vm_committed_as in one cacheline and not cacheline shared with
132 * other variables. It can be updated by several CPUs frequently.
134 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp
;
137 * The global memory commitment made in the system can be a metric
138 * that can be used to drive ballooning decisions when Linux is hosted
139 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
140 * balancing memory across competing virtual machines that are hosted.
141 * Several metrics drive this policy engine including the guest reported
144 unsigned long vm_memory_committed(void)
146 return percpu_counter_read_positive(&vm_committed_as
);
148 EXPORT_SYMBOL_GPL(vm_memory_committed
);
151 * Check that a process has enough memory to allocate a new virtual
152 * mapping. 0 means there is enough memory for the allocation to
153 * succeed and -ENOMEM implies there is not.
155 * We currently support three overcommit policies, which are set via the
156 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
158 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
159 * Additional code 2002 Jul 20 by Robert Love.
161 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
163 * Note this is a helper function intended to be used by LSMs which
164 * wish to use this logic.
166 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
168 long free
, allowed
, reserve
;
170 VM_WARN_ONCE(percpu_counter_read(&vm_committed_as
) <
171 -(s64
)vm_committed_as_batch
* num_online_cpus(),
172 "memory commitment underflow");
174 vm_acct_memory(pages
);
177 * Sometimes we want to use more memory than we have
179 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
182 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
183 free
= global_page_state(NR_FREE_PAGES
);
184 free
+= global_page_state(NR_FILE_PAGES
);
187 * shmem pages shouldn't be counted as free in this
188 * case, they can't be purged, only swapped out, and
189 * that won't affect the overall amount of available
190 * memory in the system.
192 free
-= global_page_state(NR_SHMEM
);
194 free
+= get_nr_swap_pages();
197 * Any slabs which are created with the
198 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
199 * which are reclaimable, under pressure. The dentry
200 * cache and most inode caches should fall into this
202 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
205 * Leave reserved pages. The pages are not for anonymous pages.
207 if (free
<= totalreserve_pages
)
210 free
-= totalreserve_pages
;
213 * Reserve some for root
216 free
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
224 allowed
= vm_commit_limit();
226 * Reserve some for root
229 allowed
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
232 * Don't let a single process grow so big a user can't recover
235 reserve
= sysctl_user_reserve_kbytes
>> (PAGE_SHIFT
- 10);
236 allowed
-= min_t(long, mm
->total_vm
/ 32, reserve
);
239 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
242 vm_unacct_memory(pages
);
248 * Requires inode->i_mapping->i_mmap_rwsem
250 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
251 struct file
*file
, struct address_space
*mapping
)
253 if (vma
->vm_flags
& VM_DENYWRITE
)
254 atomic_inc(&file_inode(file
)->i_writecount
);
255 if (vma
->vm_flags
& VM_SHARED
)
256 mapping_unmap_writable(mapping
);
258 flush_dcache_mmap_lock(mapping
);
259 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
260 flush_dcache_mmap_unlock(mapping
);
264 * Unlink a file-based vm structure from its interval tree, to hide
265 * vma from rmap and vmtruncate before freeing its page tables.
267 void unlink_file_vma(struct vm_area_struct
*vma
)
269 struct file
*file
= vma
->vm_file
;
272 struct address_space
*mapping
= file
->f_mapping
;
273 i_mmap_lock_write(mapping
);
274 __remove_shared_vm_struct(vma
, file
, mapping
);
275 i_mmap_unlock_write(mapping
);
280 * Close a vm structure and free it, returning the next.
282 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
284 struct vm_area_struct
*next
= vma
->vm_next
;
287 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
288 vma
->vm_ops
->close(vma
);
291 mpol_put(vma_policy(vma
));
292 kmem_cache_free(vm_area_cachep
, vma
);
296 static unsigned long do_brk(unsigned long addr
, unsigned long len
);
298 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
300 unsigned long retval
;
301 unsigned long newbrk
, oldbrk
;
302 struct mm_struct
*mm
= current
->mm
;
303 unsigned long min_brk
;
306 down_write(&mm
->mmap_sem
);
308 #ifdef CONFIG_COMPAT_BRK
310 * CONFIG_COMPAT_BRK can still be overridden by setting
311 * randomize_va_space to 2, which will still cause mm->start_brk
312 * to be arbitrarily shifted
314 if (current
->brk_randomized
)
315 min_brk
= mm
->start_brk
;
317 min_brk
= mm
->end_data
;
319 min_brk
= mm
->start_brk
;
325 * Check against rlimit here. If this check is done later after the test
326 * of oldbrk with newbrk then it can escape the test and let the data
327 * segment grow beyond its set limit the in case where the limit is
328 * not page aligned -Ram Gupta
330 if (check_data_rlimit(rlimit(RLIMIT_DATA
), brk
, mm
->start_brk
,
331 mm
->end_data
, mm
->start_data
))
334 newbrk
= PAGE_ALIGN(brk
);
335 oldbrk
= PAGE_ALIGN(mm
->brk
);
336 if (oldbrk
== newbrk
)
339 /* Always allow shrinking brk. */
340 if (brk
<= mm
->brk
) {
341 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
346 /* Check against existing mmap mappings. */
347 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
350 /* Ok, looks good - let it rip. */
351 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
356 populate
= newbrk
> oldbrk
&& (mm
->def_flags
& VM_LOCKED
) != 0;
357 up_write(&mm
->mmap_sem
);
359 mm_populate(oldbrk
, newbrk
- oldbrk
);
364 up_write(&mm
->mmap_sem
);
368 static long vma_compute_subtree_gap(struct vm_area_struct
*vma
)
370 unsigned long max
, subtree_gap
;
373 max
-= vma
->vm_prev
->vm_end
;
374 if (vma
->vm_rb
.rb_left
) {
375 subtree_gap
= rb_entry(vma
->vm_rb
.rb_left
,
376 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
377 if (subtree_gap
> max
)
380 if (vma
->vm_rb
.rb_right
) {
381 subtree_gap
= rb_entry(vma
->vm_rb
.rb_right
,
382 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
383 if (subtree_gap
> max
)
389 #ifdef CONFIG_DEBUG_VM_RB
390 static int browse_rb(struct rb_root
*root
)
392 int i
= 0, j
, bug
= 0;
393 struct rb_node
*nd
, *pn
= NULL
;
394 unsigned long prev
= 0, pend
= 0;
396 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
397 struct vm_area_struct
*vma
;
398 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
399 if (vma
->vm_start
< prev
) {
400 pr_emerg("vm_start %lx < prev %lx\n",
401 vma
->vm_start
, prev
);
404 if (vma
->vm_start
< pend
) {
405 pr_emerg("vm_start %lx < pend %lx\n",
406 vma
->vm_start
, pend
);
409 if (vma
->vm_start
> vma
->vm_end
) {
410 pr_emerg("vm_start %lx > vm_end %lx\n",
411 vma
->vm_start
, vma
->vm_end
);
414 if (vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
)) {
415 pr_emerg("free gap %lx, correct %lx\n",
417 vma_compute_subtree_gap(vma
));
422 prev
= vma
->vm_start
;
426 for (nd
= pn
; nd
; nd
= rb_prev(nd
))
429 pr_emerg("backwards %d, forwards %d\n", j
, i
);
435 static void validate_mm_rb(struct rb_root
*root
, struct vm_area_struct
*ignore
)
439 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
440 struct vm_area_struct
*vma
;
441 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
442 VM_BUG_ON_VMA(vma
!= ignore
&&
443 vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
),
448 static void validate_mm(struct mm_struct
*mm
)
452 unsigned long highest_address
= 0;
453 struct vm_area_struct
*vma
= mm
->mmap
;
456 struct anon_vma_chain
*avc
;
458 vma_lock_anon_vma(vma
);
459 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
460 anon_vma_interval_tree_verify(avc
);
461 vma_unlock_anon_vma(vma
);
462 highest_address
= vma
->vm_end
;
466 if (i
!= mm
->map_count
) {
467 pr_emerg("map_count %d vm_next %d\n", mm
->map_count
, i
);
470 if (highest_address
!= mm
->highest_vm_end
) {
471 pr_emerg("mm->highest_vm_end %lx, found %lx\n",
472 mm
->highest_vm_end
, highest_address
);
475 i
= browse_rb(&mm
->mm_rb
);
476 if (i
!= mm
->map_count
) {
478 pr_emerg("map_count %d rb %d\n", mm
->map_count
, i
);
481 VM_BUG_ON_MM(bug
, mm
);
484 #define validate_mm_rb(root, ignore) do { } while (0)
485 #define validate_mm(mm) do { } while (0)
488 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks
, struct vm_area_struct
, vm_rb
,
489 unsigned long, rb_subtree_gap
, vma_compute_subtree_gap
)
492 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
493 * vma->vm_prev->vm_end values changed, without modifying the vma's position
496 static void vma_gap_update(struct vm_area_struct
*vma
)
499 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
500 * function that does exacltly what we want.
502 vma_gap_callbacks_propagate(&vma
->vm_rb
, NULL
);
505 static inline void vma_rb_insert(struct vm_area_struct
*vma
,
506 struct rb_root
*root
)
508 /* All rb_subtree_gap values must be consistent prior to insertion */
509 validate_mm_rb(root
, NULL
);
511 rb_insert_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
514 static void vma_rb_erase(struct vm_area_struct
*vma
, struct rb_root
*root
)
517 * All rb_subtree_gap values must be consistent prior to erase,
518 * with the possible exception of the vma being erased.
520 validate_mm_rb(root
, vma
);
523 * Note rb_erase_augmented is a fairly large inline function,
524 * so make sure we instantiate it only once with our desired
525 * augmented rbtree callbacks.
527 rb_erase_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
531 * vma has some anon_vma assigned, and is already inserted on that
532 * anon_vma's interval trees.
534 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
535 * vma must be removed from the anon_vma's interval trees using
536 * anon_vma_interval_tree_pre_update_vma().
538 * After the update, the vma will be reinserted using
539 * anon_vma_interval_tree_post_update_vma().
541 * The entire update must be protected by exclusive mmap_sem and by
542 * the root anon_vma's mutex.
545 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct
*vma
)
547 struct anon_vma_chain
*avc
;
549 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
550 anon_vma_interval_tree_remove(avc
, &avc
->anon_vma
->rb_root
);
554 anon_vma_interval_tree_post_update_vma(struct vm_area_struct
*vma
)
556 struct anon_vma_chain
*avc
;
558 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
559 anon_vma_interval_tree_insert(avc
, &avc
->anon_vma
->rb_root
);
562 static int find_vma_links(struct mm_struct
*mm
, unsigned long addr
,
563 unsigned long end
, struct vm_area_struct
**pprev
,
564 struct rb_node
***rb_link
, struct rb_node
**rb_parent
)
566 struct rb_node
**__rb_link
, *__rb_parent
, *rb_prev
;
568 __rb_link
= &mm
->mm_rb
.rb_node
;
569 rb_prev
= __rb_parent
= NULL
;
572 struct vm_area_struct
*vma_tmp
;
574 __rb_parent
= *__rb_link
;
575 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
577 if (vma_tmp
->vm_end
> addr
) {
578 /* Fail if an existing vma overlaps the area */
579 if (vma_tmp
->vm_start
< end
)
581 __rb_link
= &__rb_parent
->rb_left
;
583 rb_prev
= __rb_parent
;
584 __rb_link
= &__rb_parent
->rb_right
;
590 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
591 *rb_link
= __rb_link
;
592 *rb_parent
= __rb_parent
;
596 static unsigned long count_vma_pages_range(struct mm_struct
*mm
,
597 unsigned long addr
, unsigned long end
)
599 unsigned long nr_pages
= 0;
600 struct vm_area_struct
*vma
;
602 /* Find first overlaping mapping */
603 vma
= find_vma_intersection(mm
, addr
, end
);
607 nr_pages
= (min(end
, vma
->vm_end
) -
608 max(addr
, vma
->vm_start
)) >> PAGE_SHIFT
;
610 /* Iterate over the rest of the overlaps */
611 for (vma
= vma
->vm_next
; vma
; vma
= vma
->vm_next
) {
612 unsigned long overlap_len
;
614 if (vma
->vm_start
> end
)
617 overlap_len
= min(end
, vma
->vm_end
) - vma
->vm_start
;
618 nr_pages
+= overlap_len
>> PAGE_SHIFT
;
624 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
625 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
627 /* Update tracking information for the gap following the new vma. */
629 vma_gap_update(vma
->vm_next
);
631 mm
->highest_vm_end
= vma
->vm_end
;
634 * vma->vm_prev wasn't known when we followed the rbtree to find the
635 * correct insertion point for that vma. As a result, we could not
636 * update the vma vm_rb parents rb_subtree_gap values on the way down.
637 * So, we first insert the vma with a zero rb_subtree_gap value
638 * (to be consistent with what we did on the way down), and then
639 * immediately update the gap to the correct value. Finally we
640 * rebalance the rbtree after all augmented values have been set.
642 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
643 vma
->rb_subtree_gap
= 0;
645 vma_rb_insert(vma
, &mm
->mm_rb
);
648 static void __vma_link_file(struct vm_area_struct
*vma
)
654 struct address_space
*mapping
= file
->f_mapping
;
656 if (vma
->vm_flags
& VM_DENYWRITE
)
657 atomic_dec(&file_inode(file
)->i_writecount
);
658 if (vma
->vm_flags
& VM_SHARED
)
659 atomic_inc(&mapping
->i_mmap_writable
);
661 flush_dcache_mmap_lock(mapping
);
662 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
663 flush_dcache_mmap_unlock(mapping
);
668 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
669 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
670 struct rb_node
*rb_parent
)
672 __vma_link_list(mm
, vma
, prev
, rb_parent
);
673 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
676 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
677 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
678 struct rb_node
*rb_parent
)
680 struct address_space
*mapping
= NULL
;
683 mapping
= vma
->vm_file
->f_mapping
;
684 i_mmap_lock_write(mapping
);
687 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
688 __vma_link_file(vma
);
691 i_mmap_unlock_write(mapping
);
698 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
699 * mm's list and rbtree. It has already been inserted into the interval tree.
701 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
703 struct vm_area_struct
*prev
;
704 struct rb_node
**rb_link
, *rb_parent
;
706 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
707 &prev
, &rb_link
, &rb_parent
))
709 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
714 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
715 struct vm_area_struct
*prev
)
717 struct vm_area_struct
*next
;
719 vma_rb_erase(vma
, &mm
->mm_rb
);
720 prev
->vm_next
= next
= vma
->vm_next
;
722 next
->vm_prev
= prev
;
725 vmacache_invalidate(mm
);
729 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
730 * is already present in an i_mmap tree without adjusting the tree.
731 * The following helper function should be used when such adjustments
732 * are necessary. The "insert" vma (if any) is to be inserted
733 * before we drop the necessary locks.
735 int vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
736 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
738 struct mm_struct
*mm
= vma
->vm_mm
;
739 struct vm_area_struct
*next
= vma
->vm_next
;
740 struct vm_area_struct
*importer
= NULL
;
741 struct address_space
*mapping
= NULL
;
742 struct rb_root
*root
= NULL
;
743 struct anon_vma
*anon_vma
= NULL
;
744 struct file
*file
= vma
->vm_file
;
745 bool start_changed
= false, end_changed
= false;
746 long adjust_next
= 0;
749 if (next
&& !insert
) {
750 struct vm_area_struct
*exporter
= NULL
;
752 if (end
>= next
->vm_end
) {
754 * vma expands, overlapping all the next, and
755 * perhaps the one after too (mprotect case 6).
757 again
: remove_next
= 1 + (end
> next
->vm_end
);
761 } else if (end
> next
->vm_start
) {
763 * vma expands, overlapping part of the next:
764 * mprotect case 5 shifting the boundary up.
766 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
769 } else if (end
< vma
->vm_end
) {
771 * vma shrinks, and !insert tells it's not
772 * split_vma inserting another: so it must be
773 * mprotect case 4 shifting the boundary down.
775 adjust_next
= -((vma
->vm_end
- end
) >> PAGE_SHIFT
);
781 * Easily overlooked: when mprotect shifts the boundary,
782 * make sure the expanding vma has anon_vma set if the
783 * shrinking vma had, to cover any anon pages imported.
785 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
788 importer
->anon_vma
= exporter
->anon_vma
;
789 error
= anon_vma_clone(importer
, exporter
);
796 mapping
= file
->f_mapping
;
797 root
= &mapping
->i_mmap
;
798 uprobe_munmap(vma
, vma
->vm_start
, vma
->vm_end
);
801 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
803 i_mmap_lock_write(mapping
);
806 * Put into interval tree now, so instantiated pages
807 * are visible to arm/parisc __flush_dcache_page
808 * throughout; but we cannot insert into address
809 * space until vma start or end is updated.
811 __vma_link_file(insert
);
815 vma_adjust_trans_huge(vma
, start
, end
, adjust_next
);
817 anon_vma
= vma
->anon_vma
;
818 if (!anon_vma
&& adjust_next
)
819 anon_vma
= next
->anon_vma
;
821 VM_BUG_ON_VMA(adjust_next
&& next
->anon_vma
&&
822 anon_vma
!= next
->anon_vma
, next
);
823 anon_vma_lock_write(anon_vma
);
824 anon_vma_interval_tree_pre_update_vma(vma
);
826 anon_vma_interval_tree_pre_update_vma(next
);
830 flush_dcache_mmap_lock(mapping
);
831 vma_interval_tree_remove(vma
, root
);
833 vma_interval_tree_remove(next
, root
);
836 if (start
!= vma
->vm_start
) {
837 vma
->vm_start
= start
;
838 start_changed
= true;
840 if (end
!= vma
->vm_end
) {
844 vma
->vm_pgoff
= pgoff
;
846 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
847 next
->vm_pgoff
+= adjust_next
;
852 vma_interval_tree_insert(next
, root
);
853 vma_interval_tree_insert(vma
, root
);
854 flush_dcache_mmap_unlock(mapping
);
859 * vma_merge has merged next into vma, and needs
860 * us to remove next before dropping the locks.
862 __vma_unlink(mm
, next
, vma
);
864 __remove_shared_vm_struct(next
, file
, mapping
);
867 * split_vma has split insert from vma, and needs
868 * us to insert it before dropping the locks
869 * (it may either follow vma or precede it).
871 __insert_vm_struct(mm
, insert
);
877 mm
->highest_vm_end
= end
;
878 else if (!adjust_next
)
879 vma_gap_update(next
);
884 anon_vma_interval_tree_post_update_vma(vma
);
886 anon_vma_interval_tree_post_update_vma(next
);
887 anon_vma_unlock_write(anon_vma
);
890 i_mmap_unlock_write(mapping
);
901 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
905 anon_vma_merge(vma
, next
);
907 mpol_put(vma_policy(next
));
908 kmem_cache_free(vm_area_cachep
, next
);
910 * In mprotect's case 6 (see comments on vma_merge),
911 * we must remove another next too. It would clutter
912 * up the code too much to do both in one go.
915 if (remove_next
== 2)
918 vma_gap_update(next
);
920 mm
->highest_vm_end
= end
;
931 * If the vma has a ->close operation then the driver probably needs to release
932 * per-vma resources, so we don't attempt to merge those.
934 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
935 struct file
*file
, unsigned long vm_flags
,
936 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
939 * VM_SOFTDIRTY should not prevent from VMA merging, if we
940 * match the flags but dirty bit -- the caller should mark
941 * merged VMA as dirty. If dirty bit won't be excluded from
942 * comparison, we increase pressue on the memory system forcing
943 * the kernel to generate new VMAs when old one could be
946 if ((vma
->vm_flags
^ vm_flags
) & ~VM_SOFTDIRTY
)
948 if (vma
->vm_file
!= file
)
950 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
952 if (!is_mergeable_vm_userfaultfd_ctx(vma
, vm_userfaultfd_ctx
))
957 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
958 struct anon_vma
*anon_vma2
,
959 struct vm_area_struct
*vma
)
962 * The list_is_singular() test is to avoid merging VMA cloned from
963 * parents. This can improve scalability caused by anon_vma lock.
965 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
966 list_is_singular(&vma
->anon_vma_chain
)))
968 return anon_vma1
== anon_vma2
;
972 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
973 * in front of (at a lower virtual address and file offset than) the vma.
975 * We cannot merge two vmas if they have differently assigned (non-NULL)
976 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
978 * We don't check here for the merged mmap wrapping around the end of pagecache
979 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
980 * wrap, nor mmaps which cover the final page at index -1UL.
983 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
984 struct anon_vma
*anon_vma
, struct file
*file
,
986 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
988 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
989 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
990 if (vma
->vm_pgoff
== vm_pgoff
)
997 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
998 * beyond (at a higher virtual address and file offset than) the vma.
1000 * We cannot merge two vmas if they have differently assigned (non-NULL)
1001 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
1004 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
1005 struct anon_vma
*anon_vma
, struct file
*file
,
1007 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1009 if (is_mergeable_vma(vma
, file
, vm_flags
, vm_userfaultfd_ctx
) &&
1010 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
1012 vm_pglen
= vma_pages(vma
);
1013 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
1020 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
1021 * whether that can be merged with its predecessor or its successor.
1022 * Or both (it neatly fills a hole).
1024 * In most cases - when called for mmap, brk or mremap - [addr,end) is
1025 * certain not to be mapped by the time vma_merge is called; but when
1026 * called for mprotect, it is certain to be already mapped (either at
1027 * an offset within prev, or at the start of next), and the flags of
1028 * this area are about to be changed to vm_flags - and the no-change
1029 * case has already been eliminated.
1031 * The following mprotect cases have to be considered, where AAAA is
1032 * the area passed down from mprotect_fixup, never extending beyond one
1033 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
1035 * AAAA AAAA AAAA AAAA
1036 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
1037 * cannot merge might become might become might become
1038 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
1039 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
1040 * mremap move: PPPPNNNNNNNN 8
1042 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1043 * might become case 1 below case 2 below case 3 below
1045 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1046 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1048 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
1049 struct vm_area_struct
*prev
, unsigned long addr
,
1050 unsigned long end
, unsigned long vm_flags
,
1051 struct anon_vma
*anon_vma
, struct file
*file
,
1052 pgoff_t pgoff
, struct mempolicy
*policy
,
1053 struct vm_userfaultfd_ctx vm_userfaultfd_ctx
)
1055 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
1056 struct vm_area_struct
*area
, *next
;
1060 * We later require that vma->vm_flags == vm_flags,
1061 * so this tests vma->vm_flags & VM_SPECIAL, too.
1063 if (vm_flags
& VM_SPECIAL
)
1067 next
= prev
->vm_next
;
1071 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
1072 next
= next
->vm_next
;
1075 * Can it merge with the predecessor?
1077 if (prev
&& prev
->vm_end
== addr
&&
1078 mpol_equal(vma_policy(prev
), policy
) &&
1079 can_vma_merge_after(prev
, vm_flags
,
1080 anon_vma
, file
, pgoff
,
1081 vm_userfaultfd_ctx
)) {
1083 * OK, it can. Can we now merge in the successor as well?
1085 if (next
&& end
== next
->vm_start
&&
1086 mpol_equal(policy
, vma_policy(next
)) &&
1087 can_vma_merge_before(next
, vm_flags
,
1090 vm_userfaultfd_ctx
) &&
1091 is_mergeable_anon_vma(prev
->anon_vma
,
1092 next
->anon_vma
, NULL
)) {
1094 err
= vma_adjust(prev
, prev
->vm_start
,
1095 next
->vm_end
, prev
->vm_pgoff
, NULL
);
1096 } else /* cases 2, 5, 7 */
1097 err
= vma_adjust(prev
, prev
->vm_start
,
1098 end
, prev
->vm_pgoff
, NULL
);
1101 khugepaged_enter_vma_merge(prev
, vm_flags
);
1106 * Can this new request be merged in front of next?
1108 if (next
&& end
== next
->vm_start
&&
1109 mpol_equal(policy
, vma_policy(next
)) &&
1110 can_vma_merge_before(next
, vm_flags
,
1111 anon_vma
, file
, pgoff
+pglen
,
1112 vm_userfaultfd_ctx
)) {
1113 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
1114 err
= vma_adjust(prev
, prev
->vm_start
,
1115 addr
, prev
->vm_pgoff
, NULL
);
1116 else /* cases 3, 8 */
1117 err
= vma_adjust(area
, addr
, next
->vm_end
,
1118 next
->vm_pgoff
- pglen
, NULL
);
1121 khugepaged_enter_vma_merge(area
, vm_flags
);
1129 * Rough compatbility check to quickly see if it's even worth looking
1130 * at sharing an anon_vma.
1132 * They need to have the same vm_file, and the flags can only differ
1133 * in things that mprotect may change.
1135 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1136 * we can merge the two vma's. For example, we refuse to merge a vma if
1137 * there is a vm_ops->close() function, because that indicates that the
1138 * driver is doing some kind of reference counting. But that doesn't
1139 * really matter for the anon_vma sharing case.
1141 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1143 return a
->vm_end
== b
->vm_start
&&
1144 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
1145 a
->vm_file
== b
->vm_file
&&
1146 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
|VM_SOFTDIRTY
)) &&
1147 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
1151 * Do some basic sanity checking to see if we can re-use the anon_vma
1152 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1153 * the same as 'old', the other will be the new one that is trying
1154 * to share the anon_vma.
1156 * NOTE! This runs with mm_sem held for reading, so it is possible that
1157 * the anon_vma of 'old' is concurrently in the process of being set up
1158 * by another page fault trying to merge _that_. But that's ok: if it
1159 * is being set up, that automatically means that it will be a singleton
1160 * acceptable for merging, so we can do all of this optimistically. But
1161 * we do that READ_ONCE() to make sure that we never re-load the pointer.
1163 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1164 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1165 * is to return an anon_vma that is "complex" due to having gone through
1168 * We also make sure that the two vma's are compatible (adjacent,
1169 * and with the same memory policies). That's all stable, even with just
1170 * a read lock on the mm_sem.
1172 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1174 if (anon_vma_compatible(a
, b
)) {
1175 struct anon_vma
*anon_vma
= READ_ONCE(old
->anon_vma
);
1177 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
1184 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1185 * neighbouring vmas for a suitable anon_vma, before it goes off
1186 * to allocate a new anon_vma. It checks because a repetitive
1187 * sequence of mprotects and faults may otherwise lead to distinct
1188 * anon_vmas being allocated, preventing vma merge in subsequent
1191 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
1193 struct anon_vma
*anon_vma
;
1194 struct vm_area_struct
*near
;
1196 near
= vma
->vm_next
;
1200 anon_vma
= reusable_anon_vma(near
, vma
, near
);
1204 near
= vma
->vm_prev
;
1208 anon_vma
= reusable_anon_vma(near
, near
, vma
);
1213 * There's no absolute need to look only at touching neighbours:
1214 * we could search further afield for "compatible" anon_vmas.
1215 * But it would probably just be a waste of time searching,
1216 * or lead to too many vmas hanging off the same anon_vma.
1217 * We're trying to allow mprotect remerging later on,
1218 * not trying to minimize memory used for anon_vmas.
1224 * If a hint addr is less than mmap_min_addr change hint to be as
1225 * low as possible but still greater than mmap_min_addr
1227 static inline unsigned long round_hint_to_min(unsigned long hint
)
1230 if (((void *)hint
!= NULL
) &&
1231 (hint
< mmap_min_addr
))
1232 return PAGE_ALIGN(mmap_min_addr
);
1236 static inline int mlock_future_check(struct mm_struct
*mm
,
1237 unsigned long flags
,
1240 unsigned long locked
, lock_limit
;
1242 /* mlock MCL_FUTURE? */
1243 if (flags
& VM_LOCKED
) {
1244 locked
= len
>> PAGE_SHIFT
;
1245 locked
+= mm
->locked_vm
;
1246 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1247 lock_limit
>>= PAGE_SHIFT
;
1248 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1255 * The caller must hold down_write(¤t->mm->mmap_sem).
1257 unsigned long do_mmap(struct file
*file
, unsigned long addr
,
1258 unsigned long len
, unsigned long prot
,
1259 unsigned long flags
, vm_flags_t vm_flags
,
1260 unsigned long pgoff
, unsigned long *populate
)
1262 struct mm_struct
*mm
= current
->mm
;
1270 * Does the application expect PROT_READ to imply PROT_EXEC?
1272 * (the exception is when the underlying filesystem is noexec
1273 * mounted, in which case we dont add PROT_EXEC.)
1275 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
1276 if (!(file
&& path_noexec(&file
->f_path
)))
1279 if (!(flags
& MAP_FIXED
))
1280 addr
= round_hint_to_min(addr
);
1282 /* Careful about overflows.. */
1283 len
= PAGE_ALIGN(len
);
1287 /* offset overflow? */
1288 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
1291 /* Too many mappings? */
1292 if (mm
->map_count
> sysctl_max_map_count
)
1295 /* Obtain the address to map to. we verify (or select) it and ensure
1296 * that it represents a valid section of the address space.
1298 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
1299 if (offset_in_page(addr
))
1302 /* Do simple checking here so the lower-level routines won't have
1303 * to. we assume access permissions have been handled by the open
1304 * of the memory object, so we don't do any here.
1306 vm_flags
|= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
) |
1307 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1309 if (flags
& MAP_LOCKED
)
1310 if (!can_do_mlock())
1313 if (mlock_future_check(mm
, vm_flags
, len
))
1317 struct inode
*inode
= file_inode(file
);
1319 switch (flags
& MAP_TYPE
) {
1321 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1325 * Make sure we don't allow writing to an append-only
1328 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1332 * Make sure there are no mandatory locks on the file.
1334 if (locks_verify_locked(file
))
1337 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1338 if (!(file
->f_mode
& FMODE_WRITE
))
1339 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1343 if (!(file
->f_mode
& FMODE_READ
))
1345 if (path_noexec(&file
->f_path
)) {
1346 if (vm_flags
& VM_EXEC
)
1348 vm_flags
&= ~VM_MAYEXEC
;
1351 if (!file
->f_op
->mmap
)
1353 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1361 switch (flags
& MAP_TYPE
) {
1363 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1369 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1373 * Set pgoff according to addr for anon_vma.
1375 pgoff
= addr
>> PAGE_SHIFT
;
1383 * Set 'VM_NORESERVE' if we should not account for the
1384 * memory use of this mapping.
1386 if (flags
& MAP_NORESERVE
) {
1387 /* We honor MAP_NORESERVE if allowed to overcommit */
1388 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1389 vm_flags
|= VM_NORESERVE
;
1391 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1392 if (file
&& is_file_hugepages(file
))
1393 vm_flags
|= VM_NORESERVE
;
1396 addr
= mmap_region(file
, addr
, len
, vm_flags
, pgoff
);
1397 if (!IS_ERR_VALUE(addr
) &&
1398 ((vm_flags
& VM_LOCKED
) ||
1399 (flags
& (MAP_POPULATE
| MAP_NONBLOCK
)) == MAP_POPULATE
))
1404 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1405 unsigned long, prot
, unsigned long, flags
,
1406 unsigned long, fd
, unsigned long, pgoff
)
1408 struct file
*file
= NULL
;
1409 unsigned long retval
;
1411 if (!(flags
& MAP_ANONYMOUS
)) {
1412 audit_mmap_fd(fd
, flags
);
1416 if (is_file_hugepages(file
))
1417 len
= ALIGN(len
, huge_page_size(hstate_file(file
)));
1419 if (unlikely(flags
& MAP_HUGETLB
&& !is_file_hugepages(file
)))
1421 } else if (flags
& MAP_HUGETLB
) {
1422 struct user_struct
*user
= NULL
;
1425 hs
= hstate_sizelog((flags
>> MAP_HUGE_SHIFT
) & SHM_HUGE_MASK
);
1429 len
= ALIGN(len
, huge_page_size(hs
));
1431 * VM_NORESERVE is used because the reservations will be
1432 * taken when vm_ops->mmap() is called
1433 * A dummy user value is used because we are not locking
1434 * memory so no accounting is necessary
1436 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
,
1438 &user
, HUGETLB_ANONHUGE_INODE
,
1439 (flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1441 return PTR_ERR(file
);
1444 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1446 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1453 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1454 struct mmap_arg_struct
{
1458 unsigned long flags
;
1460 unsigned long offset
;
1463 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1465 struct mmap_arg_struct a
;
1467 if (copy_from_user(&a
, arg
, sizeof(a
)))
1469 if (offset_in_page(a
.offset
))
1472 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1473 a
.offset
>> PAGE_SHIFT
);
1475 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1478 * Some shared mappigns will want the pages marked read-only
1479 * to track write events. If so, we'll downgrade vm_page_prot
1480 * to the private version (using protection_map[] without the
1483 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1485 vm_flags_t vm_flags
= vma
->vm_flags
;
1486 const struct vm_operations_struct
*vm_ops
= vma
->vm_ops
;
1488 /* If it was private or non-writable, the write bit is already clear */
1489 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1492 /* The backer wishes to know when pages are first written to? */
1493 if (vm_ops
&& (vm_ops
->page_mkwrite
|| vm_ops
->pfn_mkwrite
))
1496 /* The open routine did something to the protections that pgprot_modify
1497 * won't preserve? */
1498 if (pgprot_val(vma
->vm_page_prot
) !=
1499 pgprot_val(vm_pgprot_modify(vma
->vm_page_prot
, vm_flags
)))
1502 /* Do we need to track softdirty? */
1503 if (IS_ENABLED(CONFIG_MEM_SOFT_DIRTY
) && !(vm_flags
& VM_SOFTDIRTY
))
1506 /* Specialty mapping? */
1507 if (vm_flags
& VM_PFNMAP
)
1510 /* Can the mapping track the dirty pages? */
1511 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1512 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1516 * We account for memory if it's a private writeable mapping,
1517 * not hugepages and VM_NORESERVE wasn't set.
1519 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1522 * hugetlb has its own accounting separate from the core VM
1523 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1525 if (file
&& is_file_hugepages(file
))
1528 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1531 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1532 unsigned long len
, vm_flags_t vm_flags
, unsigned long pgoff
)
1534 struct mm_struct
*mm
= current
->mm
;
1535 struct vm_area_struct
*vma
, *prev
;
1537 struct rb_node
**rb_link
, *rb_parent
;
1538 unsigned long charged
= 0;
1540 /* Check against address space limit. */
1541 if (!may_expand_vm(mm
, vm_flags
, len
>> PAGE_SHIFT
)) {
1542 unsigned long nr_pages
;
1545 * MAP_FIXED may remove pages of mappings that intersects with
1546 * requested mapping. Account for the pages it would unmap.
1548 nr_pages
= count_vma_pages_range(mm
, addr
, addr
+ len
);
1550 if (!may_expand_vm(mm
, vm_flags
,
1551 (len
>> PAGE_SHIFT
) - nr_pages
))
1555 /* Clear old maps */
1556 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
1558 if (do_munmap(mm
, addr
, len
))
1563 * Private writable mapping: check memory availability
1565 if (accountable_mapping(file
, vm_flags
)) {
1566 charged
= len
>> PAGE_SHIFT
;
1567 if (security_vm_enough_memory_mm(mm
, charged
))
1569 vm_flags
|= VM_ACCOUNT
;
1573 * Can we just expand an old mapping?
1575 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
,
1576 NULL
, file
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
1581 * Determine the object being mapped and call the appropriate
1582 * specific mapper. the address has already been validated, but
1583 * not unmapped, but the maps are removed from the list.
1585 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1592 vma
->vm_start
= addr
;
1593 vma
->vm_end
= addr
+ len
;
1594 vma
->vm_flags
= vm_flags
;
1595 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1596 vma
->vm_pgoff
= pgoff
;
1597 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1600 if (vm_flags
& VM_DENYWRITE
) {
1601 error
= deny_write_access(file
);
1605 if (vm_flags
& VM_SHARED
) {
1606 error
= mapping_map_writable(file
->f_mapping
);
1608 goto allow_write_and_free_vma
;
1611 /* ->mmap() can change vma->vm_file, but must guarantee that
1612 * vma_link() below can deny write-access if VM_DENYWRITE is set
1613 * and map writably if VM_SHARED is set. This usually means the
1614 * new file must not have been exposed to user-space, yet.
1616 vma
->vm_file
= get_file(file
);
1617 error
= file
->f_op
->mmap(file
, vma
);
1619 goto unmap_and_free_vma
;
1621 /* Can addr have changed??
1623 * Answer: Yes, several device drivers can do it in their
1624 * f_op->mmap method. -DaveM
1625 * Bug: If addr is changed, prev, rb_link, rb_parent should
1626 * be updated for vma_link()
1628 WARN_ON_ONCE(addr
!= vma
->vm_start
);
1630 addr
= vma
->vm_start
;
1631 vm_flags
= vma
->vm_flags
;
1632 } else if (vm_flags
& VM_SHARED
) {
1633 error
= shmem_zero_setup(vma
);
1638 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1639 /* Once vma denies write, undo our temporary denial count */
1641 if (vm_flags
& VM_SHARED
)
1642 mapping_unmap_writable(file
->f_mapping
);
1643 if (vm_flags
& VM_DENYWRITE
)
1644 allow_write_access(file
);
1646 file
= vma
->vm_file
;
1648 perf_event_mmap(vma
);
1650 vm_stat_account(mm
, vm_flags
, len
>> PAGE_SHIFT
);
1651 if (vm_flags
& VM_LOCKED
) {
1652 if (!((vm_flags
& VM_SPECIAL
) || is_vm_hugetlb_page(vma
) ||
1653 vma
== get_gate_vma(current
->mm
)))
1654 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1656 vma
->vm_flags
&= VM_LOCKED_CLEAR_MASK
;
1663 * New (or expanded) vma always get soft dirty status.
1664 * Otherwise user-space soft-dirty page tracker won't
1665 * be able to distinguish situation when vma area unmapped,
1666 * then new mapped in-place (which must be aimed as
1667 * a completely new data area).
1669 vma
->vm_flags
|= VM_SOFTDIRTY
;
1671 vma_set_page_prot(vma
);
1676 vma
->vm_file
= NULL
;
1679 /* Undo any partial mapping done by a device driver. */
1680 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1682 if (vm_flags
& VM_SHARED
)
1683 mapping_unmap_writable(file
->f_mapping
);
1684 allow_write_and_free_vma
:
1685 if (vm_flags
& VM_DENYWRITE
)
1686 allow_write_access(file
);
1688 kmem_cache_free(vm_area_cachep
, vma
);
1691 vm_unacct_memory(charged
);
1695 unsigned long unmapped_area(struct vm_unmapped_area_info
*info
)
1698 * We implement the search by looking for an rbtree node that
1699 * immediately follows a suitable gap. That is,
1700 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1701 * - gap_end = vma->vm_start >= info->low_limit + length;
1702 * - gap_end - gap_start >= length
1705 struct mm_struct
*mm
= current
->mm
;
1706 struct vm_area_struct
*vma
;
1707 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1709 /* Adjust search length to account for worst case alignment overhead */
1710 length
= info
->length
+ info
->align_mask
;
1711 if (length
< info
->length
)
1714 /* Adjust search limits by the desired length */
1715 if (info
->high_limit
< length
)
1717 high_limit
= info
->high_limit
- length
;
1719 if (info
->low_limit
> high_limit
)
1721 low_limit
= info
->low_limit
+ length
;
1723 /* Check if rbtree root looks promising */
1724 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1726 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1727 if (vma
->rb_subtree_gap
< length
)
1731 /* Visit left subtree if it looks promising */
1732 gap_end
= vma
->vm_start
;
1733 if (gap_end
>= low_limit
&& vma
->vm_rb
.rb_left
) {
1734 struct vm_area_struct
*left
=
1735 rb_entry(vma
->vm_rb
.rb_left
,
1736 struct vm_area_struct
, vm_rb
);
1737 if (left
->rb_subtree_gap
>= length
) {
1743 gap_start
= vma
->vm_prev
? vma
->vm_prev
->vm_end
: 0;
1745 /* Check if current node has a suitable gap */
1746 if (gap_start
> high_limit
)
1748 if (gap_end
>= low_limit
&& gap_end
- gap_start
>= length
)
1751 /* Visit right subtree if it looks promising */
1752 if (vma
->vm_rb
.rb_right
) {
1753 struct vm_area_struct
*right
=
1754 rb_entry(vma
->vm_rb
.rb_right
,
1755 struct vm_area_struct
, vm_rb
);
1756 if (right
->rb_subtree_gap
>= length
) {
1762 /* Go back up the rbtree to find next candidate node */
1764 struct rb_node
*prev
= &vma
->vm_rb
;
1765 if (!rb_parent(prev
))
1767 vma
= rb_entry(rb_parent(prev
),
1768 struct vm_area_struct
, vm_rb
);
1769 if (prev
== vma
->vm_rb
.rb_left
) {
1770 gap_start
= vma
->vm_prev
->vm_end
;
1771 gap_end
= vma
->vm_start
;
1778 /* Check highest gap, which does not precede any rbtree node */
1779 gap_start
= mm
->highest_vm_end
;
1780 gap_end
= ULONG_MAX
; /* Only for VM_BUG_ON below */
1781 if (gap_start
> high_limit
)
1785 /* We found a suitable gap. Clip it with the original low_limit. */
1786 if (gap_start
< info
->low_limit
)
1787 gap_start
= info
->low_limit
;
1789 /* Adjust gap address to the desired alignment */
1790 gap_start
+= (info
->align_offset
- gap_start
) & info
->align_mask
;
1792 VM_BUG_ON(gap_start
+ info
->length
> info
->high_limit
);
1793 VM_BUG_ON(gap_start
+ info
->length
> gap_end
);
1797 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info
*info
)
1799 struct mm_struct
*mm
= current
->mm
;
1800 struct vm_area_struct
*vma
;
1801 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1803 /* Adjust search length to account for worst case alignment overhead */
1804 length
= info
->length
+ info
->align_mask
;
1805 if (length
< info
->length
)
1809 * Adjust search limits by the desired length.
1810 * See implementation comment at top of unmapped_area().
1812 gap_end
= info
->high_limit
;
1813 if (gap_end
< length
)
1815 high_limit
= gap_end
- length
;
1817 if (info
->low_limit
> high_limit
)
1819 low_limit
= info
->low_limit
+ length
;
1821 /* Check highest gap, which does not precede any rbtree node */
1822 gap_start
= mm
->highest_vm_end
;
1823 if (gap_start
<= high_limit
)
1826 /* Check if rbtree root looks promising */
1827 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1829 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1830 if (vma
->rb_subtree_gap
< length
)
1834 /* Visit right subtree if it looks promising */
1835 gap_start
= vma
->vm_prev
? vma
->vm_prev
->vm_end
: 0;
1836 if (gap_start
<= high_limit
&& vma
->vm_rb
.rb_right
) {
1837 struct vm_area_struct
*right
=
1838 rb_entry(vma
->vm_rb
.rb_right
,
1839 struct vm_area_struct
, vm_rb
);
1840 if (right
->rb_subtree_gap
>= length
) {
1847 /* Check if current node has a suitable gap */
1848 gap_end
= vma
->vm_start
;
1849 if (gap_end
< low_limit
)
1851 if (gap_start
<= high_limit
&& gap_end
- gap_start
>= length
)
1854 /* Visit left subtree if it looks promising */
1855 if (vma
->vm_rb
.rb_left
) {
1856 struct vm_area_struct
*left
=
1857 rb_entry(vma
->vm_rb
.rb_left
,
1858 struct vm_area_struct
, vm_rb
);
1859 if (left
->rb_subtree_gap
>= length
) {
1865 /* Go back up the rbtree to find next candidate node */
1867 struct rb_node
*prev
= &vma
->vm_rb
;
1868 if (!rb_parent(prev
))
1870 vma
= rb_entry(rb_parent(prev
),
1871 struct vm_area_struct
, vm_rb
);
1872 if (prev
== vma
->vm_rb
.rb_right
) {
1873 gap_start
= vma
->vm_prev
?
1874 vma
->vm_prev
->vm_end
: 0;
1881 /* We found a suitable gap. Clip it with the original high_limit. */
1882 if (gap_end
> info
->high_limit
)
1883 gap_end
= info
->high_limit
;
1886 /* Compute highest gap address at the desired alignment */
1887 gap_end
-= info
->length
;
1888 gap_end
-= (gap_end
- info
->align_offset
) & info
->align_mask
;
1890 VM_BUG_ON(gap_end
< info
->low_limit
);
1891 VM_BUG_ON(gap_end
< gap_start
);
1895 /* Get an address range which is currently unmapped.
1896 * For shmat() with addr=0.
1898 * Ugly calling convention alert:
1899 * Return value with the low bits set means error value,
1901 * if (ret & ~PAGE_MASK)
1904 * This function "knows" that -ENOMEM has the bits set.
1906 #ifndef HAVE_ARCH_UNMAPPED_AREA
1908 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1909 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1911 struct mm_struct
*mm
= current
->mm
;
1912 struct vm_area_struct
*vma
;
1913 struct vm_unmapped_area_info info
;
1915 if (len
> TASK_SIZE
- mmap_min_addr
)
1918 if (flags
& MAP_FIXED
)
1922 addr
= PAGE_ALIGN(addr
);
1923 vma
= find_vma(mm
, addr
);
1924 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
1925 (!vma
|| addr
+ len
<= vma
->vm_start
))
1931 info
.low_limit
= mm
->mmap_base
;
1932 info
.high_limit
= TASK_SIZE
;
1933 info
.align_mask
= 0;
1934 return vm_unmapped_area(&info
);
1939 * This mmap-allocator allocates new areas top-down from below the
1940 * stack's low limit (the base):
1942 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1944 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1945 const unsigned long len
, const unsigned long pgoff
,
1946 const unsigned long flags
)
1948 struct vm_area_struct
*vma
;
1949 struct mm_struct
*mm
= current
->mm
;
1950 unsigned long addr
= addr0
;
1951 struct vm_unmapped_area_info info
;
1953 /* requested length too big for entire address space */
1954 if (len
> TASK_SIZE
- mmap_min_addr
)
1957 if (flags
& MAP_FIXED
)
1960 /* requesting a specific address */
1962 addr
= PAGE_ALIGN(addr
);
1963 vma
= find_vma(mm
, addr
);
1964 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
1965 (!vma
|| addr
+ len
<= vma
->vm_start
))
1969 info
.flags
= VM_UNMAPPED_AREA_TOPDOWN
;
1971 info
.low_limit
= max(PAGE_SIZE
, mmap_min_addr
);
1972 info
.high_limit
= mm
->mmap_base
;
1973 info
.align_mask
= 0;
1974 addr
= vm_unmapped_area(&info
);
1977 * A failed mmap() very likely causes application failure,
1978 * so fall back to the bottom-up function here. This scenario
1979 * can happen with large stack limits and large mmap()
1982 if (offset_in_page(addr
)) {
1983 VM_BUG_ON(addr
!= -ENOMEM
);
1985 info
.low_limit
= TASK_UNMAPPED_BASE
;
1986 info
.high_limit
= TASK_SIZE
;
1987 addr
= vm_unmapped_area(&info
);
1995 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1996 unsigned long pgoff
, unsigned long flags
)
1998 unsigned long (*get_area
)(struct file
*, unsigned long,
1999 unsigned long, unsigned long, unsigned long);
2001 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
2005 /* Careful about overflows.. */
2006 if (len
> TASK_SIZE
)
2009 get_area
= current
->mm
->get_unmapped_area
;
2010 if (file
&& file
->f_op
->get_unmapped_area
)
2011 get_area
= file
->f_op
->get_unmapped_area
;
2012 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
2013 if (IS_ERR_VALUE(addr
))
2016 if (addr
> TASK_SIZE
- len
)
2018 if (offset_in_page(addr
))
2021 addr
= arch_rebalance_pgtables(addr
, len
);
2022 error
= security_mmap_addr(addr
);
2023 return error
? error
: addr
;
2026 EXPORT_SYMBOL(get_unmapped_area
);
2028 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2029 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
2031 struct rb_node
*rb_node
;
2032 struct vm_area_struct
*vma
;
2034 /* Check the cache first. */
2035 vma
= vmacache_find(mm
, addr
);
2039 rb_node
= mm
->mm_rb
.rb_node
;
2042 struct vm_area_struct
*tmp
;
2044 tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2046 if (tmp
->vm_end
> addr
) {
2048 if (tmp
->vm_start
<= addr
)
2050 rb_node
= rb_node
->rb_left
;
2052 rb_node
= rb_node
->rb_right
;
2056 vmacache_update(addr
, vma
);
2060 EXPORT_SYMBOL(find_vma
);
2063 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2065 struct vm_area_struct
*
2066 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
2067 struct vm_area_struct
**pprev
)
2069 struct vm_area_struct
*vma
;
2071 vma
= find_vma(mm
, addr
);
2073 *pprev
= vma
->vm_prev
;
2075 struct rb_node
*rb_node
= mm
->mm_rb
.rb_node
;
2078 *pprev
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2079 rb_node
= rb_node
->rb_right
;
2086 * Verify that the stack growth is acceptable and
2087 * update accounting. This is shared with both the
2088 * grow-up and grow-down cases.
2090 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
2092 struct mm_struct
*mm
= vma
->vm_mm
;
2093 struct rlimit
*rlim
= current
->signal
->rlim
;
2094 unsigned long new_start
, actual_size
;
2096 /* address space limit tests */
2097 if (!may_expand_vm(mm
, vma
->vm_flags
, grow
))
2100 /* Stack limit test */
2102 if (size
&& (vma
->vm_flags
& (VM_GROWSUP
| VM_GROWSDOWN
)))
2103 actual_size
-= PAGE_SIZE
;
2104 if (actual_size
> READ_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
))
2107 /* mlock limit tests */
2108 if (vma
->vm_flags
& VM_LOCKED
) {
2109 unsigned long locked
;
2110 unsigned long limit
;
2111 locked
= mm
->locked_vm
+ grow
;
2112 limit
= READ_ONCE(rlim
[RLIMIT_MEMLOCK
].rlim_cur
);
2113 limit
>>= PAGE_SHIFT
;
2114 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
2118 /* Check to ensure the stack will not grow into a hugetlb-only region */
2119 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
2121 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
2125 * Overcommit.. This must be the final test, as it will
2126 * update security statistics.
2128 if (security_vm_enough_memory_mm(mm
, grow
))
2134 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2136 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2137 * vma is the last one with address > vma->vm_end. Have to extend vma.
2139 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
2141 struct mm_struct
*mm
= vma
->vm_mm
;
2144 if (!(vma
->vm_flags
& VM_GROWSUP
))
2148 * We must make sure the anon_vma is allocated
2149 * so that the anon_vma locking is not a noop.
2151 if (unlikely(anon_vma_prepare(vma
)))
2153 vma_lock_anon_vma(vma
);
2156 * vma->vm_start/vm_end cannot change under us because the caller
2157 * is required to hold the mmap_sem in read mode. We need the
2158 * anon_vma lock to serialize against concurrent expand_stacks.
2159 * Also guard against wrapping around to address 0.
2161 if (address
< PAGE_ALIGN(address
+4))
2162 address
= PAGE_ALIGN(address
+4);
2164 vma_unlock_anon_vma(vma
);
2169 /* Somebody else might have raced and expanded it already */
2170 if (address
> vma
->vm_end
) {
2171 unsigned long size
, grow
;
2173 size
= address
- vma
->vm_start
;
2174 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
2177 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
2178 error
= acct_stack_growth(vma
, size
, grow
);
2181 * vma_gap_update() doesn't support concurrent
2182 * updates, but we only hold a shared mmap_sem
2183 * lock here, so we need to protect against
2184 * concurrent vma expansions.
2185 * vma_lock_anon_vma() doesn't help here, as
2186 * we don't guarantee that all growable vmas
2187 * in a mm share the same root anon vma.
2188 * So, we reuse mm->page_table_lock to guard
2189 * against concurrent vma expansions.
2191 spin_lock(&mm
->page_table_lock
);
2192 if (vma
->vm_flags
& VM_LOCKED
)
2193 mm
->locked_vm
+= grow
;
2194 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2195 anon_vma_interval_tree_pre_update_vma(vma
);
2196 vma
->vm_end
= address
;
2197 anon_vma_interval_tree_post_update_vma(vma
);
2199 vma_gap_update(vma
->vm_next
);
2201 mm
->highest_vm_end
= address
;
2202 spin_unlock(&mm
->page_table_lock
);
2204 perf_event_mmap(vma
);
2208 vma_unlock_anon_vma(vma
);
2209 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2213 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2216 * vma is the first one with address < vma->vm_start. Have to extend vma.
2218 int expand_downwards(struct vm_area_struct
*vma
,
2219 unsigned long address
)
2221 struct mm_struct
*mm
= vma
->vm_mm
;
2225 * We must make sure the anon_vma is allocated
2226 * so that the anon_vma locking is not a noop.
2228 if (unlikely(anon_vma_prepare(vma
)))
2231 address
&= PAGE_MASK
;
2232 error
= security_mmap_addr(address
);
2236 vma_lock_anon_vma(vma
);
2239 * vma->vm_start/vm_end cannot change under us because the caller
2240 * is required to hold the mmap_sem in read mode. We need the
2241 * anon_vma lock to serialize against concurrent expand_stacks.
2244 /* Somebody else might have raced and expanded it already */
2245 if (address
< vma
->vm_start
) {
2246 unsigned long size
, grow
;
2248 size
= vma
->vm_end
- address
;
2249 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
2252 if (grow
<= vma
->vm_pgoff
) {
2253 error
= acct_stack_growth(vma
, size
, grow
);
2256 * vma_gap_update() doesn't support concurrent
2257 * updates, but we only hold a shared mmap_sem
2258 * lock here, so we need to protect against
2259 * concurrent vma expansions.
2260 * vma_lock_anon_vma() doesn't help here, as
2261 * we don't guarantee that all growable vmas
2262 * in a mm share the same root anon vma.
2263 * So, we reuse mm->page_table_lock to guard
2264 * against concurrent vma expansions.
2266 spin_lock(&mm
->page_table_lock
);
2267 if (vma
->vm_flags
& VM_LOCKED
)
2268 mm
->locked_vm
+= grow
;
2269 vm_stat_account(mm
, vma
->vm_flags
, grow
);
2270 anon_vma_interval_tree_pre_update_vma(vma
);
2271 vma
->vm_start
= address
;
2272 vma
->vm_pgoff
-= grow
;
2273 anon_vma_interval_tree_post_update_vma(vma
);
2274 vma_gap_update(vma
);
2275 spin_unlock(&mm
->page_table_lock
);
2277 perf_event_mmap(vma
);
2281 vma_unlock_anon_vma(vma
);
2282 khugepaged_enter_vma_merge(vma
, vma
->vm_flags
);
2288 * Note how expand_stack() refuses to expand the stack all the way to
2289 * abut the next virtual mapping, *unless* that mapping itself is also
2290 * a stack mapping. We want to leave room for a guard page, after all
2291 * (the guard page itself is not added here, that is done by the
2292 * actual page faulting logic)
2294 * This matches the behavior of the guard page logic (see mm/memory.c:
2295 * check_stack_guard_page()), which only allows the guard page to be
2296 * removed under these circumstances.
2298 #ifdef CONFIG_STACK_GROWSUP
2299 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2301 struct vm_area_struct
*next
;
2303 address
&= PAGE_MASK
;
2304 next
= vma
->vm_next
;
2305 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
) {
2306 if (!(next
->vm_flags
& VM_GROWSUP
))
2309 return expand_upwards(vma
, address
);
2312 struct vm_area_struct
*
2313 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2315 struct vm_area_struct
*vma
, *prev
;
2318 vma
= find_vma_prev(mm
, addr
, &prev
);
2319 if (vma
&& (vma
->vm_start
<= addr
))
2321 if (!prev
|| expand_stack(prev
, addr
))
2323 if (prev
->vm_flags
& VM_LOCKED
)
2324 populate_vma_page_range(prev
, addr
, prev
->vm_end
, NULL
);
2328 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2330 struct vm_area_struct
*prev
;
2332 address
&= PAGE_MASK
;
2333 prev
= vma
->vm_prev
;
2334 if (prev
&& prev
->vm_end
== address
) {
2335 if (!(prev
->vm_flags
& VM_GROWSDOWN
))
2338 return expand_downwards(vma
, address
);
2341 struct vm_area_struct
*
2342 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2344 struct vm_area_struct
*vma
;
2345 unsigned long start
;
2348 vma
= find_vma(mm
, addr
);
2351 if (vma
->vm_start
<= addr
)
2353 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
2355 start
= vma
->vm_start
;
2356 if (expand_stack(vma
, addr
))
2358 if (vma
->vm_flags
& VM_LOCKED
)
2359 populate_vma_page_range(vma
, addr
, start
, NULL
);
2364 EXPORT_SYMBOL_GPL(find_extend_vma
);
2367 * Ok - we have the memory areas we should free on the vma list,
2368 * so release them, and do the vma updates.
2370 * Called with the mm semaphore held.
2372 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2374 unsigned long nr_accounted
= 0;
2376 /* Update high watermark before we lower total_vm */
2377 update_hiwater_vm(mm
);
2379 long nrpages
= vma_pages(vma
);
2381 if (vma
->vm_flags
& VM_ACCOUNT
)
2382 nr_accounted
+= nrpages
;
2383 vm_stat_account(mm
, vma
->vm_flags
, -nrpages
);
2384 vma
= remove_vma(vma
);
2386 vm_unacct_memory(nr_accounted
);
2391 * Get rid of page table information in the indicated region.
2393 * Called with the mm semaphore held.
2395 static void unmap_region(struct mm_struct
*mm
,
2396 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
2397 unsigned long start
, unsigned long end
)
2399 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
2400 struct mmu_gather tlb
;
2403 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2404 update_hiwater_rss(mm
);
2405 unmap_vmas(&tlb
, vma
, start
, end
);
2406 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
2407 next
? next
->vm_start
: USER_PGTABLES_CEILING
);
2408 tlb_finish_mmu(&tlb
, start
, end
);
2412 * Create a list of vma's touched by the unmap, removing them from the mm's
2413 * vma list as we go..
2416 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2417 struct vm_area_struct
*prev
, unsigned long end
)
2419 struct vm_area_struct
**insertion_point
;
2420 struct vm_area_struct
*tail_vma
= NULL
;
2422 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
2423 vma
->vm_prev
= NULL
;
2425 vma_rb_erase(vma
, &mm
->mm_rb
);
2429 } while (vma
&& vma
->vm_start
< end
);
2430 *insertion_point
= vma
;
2432 vma
->vm_prev
= prev
;
2433 vma_gap_update(vma
);
2435 mm
->highest_vm_end
= prev
? prev
->vm_end
: 0;
2436 tail_vma
->vm_next
= NULL
;
2438 /* Kill the cache */
2439 vmacache_invalidate(mm
);
2443 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2444 * munmap path where it doesn't make sense to fail.
2446 static int __split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2447 unsigned long addr
, int new_below
)
2449 struct vm_area_struct
*new;
2452 if (is_vm_hugetlb_page(vma
) && (addr
&
2453 ~(huge_page_mask(hstate_vma(vma
)))))
2456 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2460 /* most fields are the same, copy all, and then fixup */
2463 INIT_LIST_HEAD(&new->anon_vma_chain
);
2468 new->vm_start
= addr
;
2469 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
2472 err
= vma_dup_policy(vma
, new);
2476 err
= anon_vma_clone(new, vma
);
2481 get_file(new->vm_file
);
2483 if (new->vm_ops
&& new->vm_ops
->open
)
2484 new->vm_ops
->open(new);
2487 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
2488 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
2490 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
2496 /* Clean everything up if vma_adjust failed. */
2497 if (new->vm_ops
&& new->vm_ops
->close
)
2498 new->vm_ops
->close(new);
2501 unlink_anon_vmas(new);
2503 mpol_put(vma_policy(new));
2505 kmem_cache_free(vm_area_cachep
, new);
2510 * Split a vma into two pieces at address 'addr', a new vma is allocated
2511 * either for the first part or the tail.
2513 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2514 unsigned long addr
, int new_below
)
2516 if (mm
->map_count
>= sysctl_max_map_count
)
2519 return __split_vma(mm
, vma
, addr
, new_below
);
2522 /* Munmap is split into 2 main parts -- this part which finds
2523 * what needs doing, and the areas themselves, which do the
2524 * work. This now handles partial unmappings.
2525 * Jeremy Fitzhardinge <jeremy@goop.org>
2527 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
2530 struct vm_area_struct
*vma
, *prev
, *last
;
2532 if ((offset_in_page(start
)) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2535 len
= PAGE_ALIGN(len
);
2539 /* Find the first overlapping VMA */
2540 vma
= find_vma(mm
, start
);
2543 prev
= vma
->vm_prev
;
2544 /* we have start < vma->vm_end */
2546 /* if it doesn't overlap, we have nothing.. */
2548 if (vma
->vm_start
>= end
)
2552 * If we need to split any vma, do it now to save pain later.
2554 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2555 * unmapped vm_area_struct will remain in use: so lower split_vma
2556 * places tmp vma above, and higher split_vma places tmp vma below.
2558 if (start
> vma
->vm_start
) {
2562 * Make sure that map_count on return from munmap() will
2563 * not exceed its limit; but let map_count go just above
2564 * its limit temporarily, to help free resources as expected.
2566 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2569 error
= __split_vma(mm
, vma
, start
, 0);
2575 /* Does it split the last one? */
2576 last
= find_vma(mm
, end
);
2577 if (last
&& end
> last
->vm_start
) {
2578 int error
= __split_vma(mm
, last
, end
, 1);
2582 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2585 * unlock any mlock()ed ranges before detaching vmas
2587 if (mm
->locked_vm
) {
2588 struct vm_area_struct
*tmp
= vma
;
2589 while (tmp
&& tmp
->vm_start
< end
) {
2590 if (tmp
->vm_flags
& VM_LOCKED
) {
2591 mm
->locked_vm
-= vma_pages(tmp
);
2592 munlock_vma_pages_all(tmp
);
2599 * Remove the vma's, and unmap the actual pages
2601 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2602 unmap_region(mm
, vma
, prev
, start
, end
);
2604 arch_unmap(mm
, vma
, start
, end
);
2606 /* Fix up all other VM information */
2607 remove_vma_list(mm
, vma
);
2612 int vm_munmap(unsigned long start
, size_t len
)
2615 struct mm_struct
*mm
= current
->mm
;
2617 down_write(&mm
->mmap_sem
);
2618 ret
= do_munmap(mm
, start
, len
);
2619 up_write(&mm
->mmap_sem
);
2622 EXPORT_SYMBOL(vm_munmap
);
2624 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2626 profile_munmap(addr
);
2627 return vm_munmap(addr
, len
);
2632 * Emulation of deprecated remap_file_pages() syscall.
2634 SYSCALL_DEFINE5(remap_file_pages
, unsigned long, start
, unsigned long, size
,
2635 unsigned long, prot
, unsigned long, pgoff
, unsigned long, flags
)
2638 struct mm_struct
*mm
= current
->mm
;
2639 struct vm_area_struct
*vma
;
2640 unsigned long populate
= 0;
2641 unsigned long ret
= -EINVAL
;
2644 pr_warn_once("%s (%d) uses deprecated remap_file_pages() syscall. "
2645 "See Documentation/vm/remap_file_pages.txt.\n",
2646 current
->comm
, current
->pid
);
2650 start
= start
& PAGE_MASK
;
2651 size
= size
& PAGE_MASK
;
2653 if (start
+ size
<= start
)
2656 /* Does pgoff wrap? */
2657 if (pgoff
+ (size
>> PAGE_SHIFT
) < pgoff
)
2660 down_write(&mm
->mmap_sem
);
2661 vma
= find_vma(mm
, start
);
2663 if (!vma
|| !(vma
->vm_flags
& VM_SHARED
))
2666 if (start
< vma
->vm_start
|| start
+ size
> vma
->vm_end
)
2669 if (pgoff
== linear_page_index(vma
, start
)) {
2674 prot
|= vma
->vm_flags
& VM_READ
? PROT_READ
: 0;
2675 prot
|= vma
->vm_flags
& VM_WRITE
? PROT_WRITE
: 0;
2676 prot
|= vma
->vm_flags
& VM_EXEC
? PROT_EXEC
: 0;
2678 flags
&= MAP_NONBLOCK
;
2679 flags
|= MAP_SHARED
| MAP_FIXED
| MAP_POPULATE
;
2680 if (vma
->vm_flags
& VM_LOCKED
) {
2681 flags
|= MAP_LOCKED
;
2682 /* drop PG_Mlocked flag for over-mapped range */
2683 munlock_vma_pages_range(vma
, start
, start
+ size
);
2686 file
= get_file(vma
->vm_file
);
2687 ret
= do_mmap_pgoff(vma
->vm_file
, start
, size
,
2688 prot
, flags
, pgoff
, &populate
);
2691 up_write(&mm
->mmap_sem
);
2693 mm_populate(ret
, populate
);
2694 if (!IS_ERR_VALUE(ret
))
2699 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2701 #ifdef CONFIG_DEBUG_VM
2702 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2704 up_read(&mm
->mmap_sem
);
2710 * this is really a simplified "do_mmap". it only handles
2711 * anonymous maps. eventually we may be able to do some
2712 * brk-specific accounting here.
2714 static unsigned long do_brk(unsigned long addr
, unsigned long len
)
2716 struct mm_struct
*mm
= current
->mm
;
2717 struct vm_area_struct
*vma
, *prev
;
2718 unsigned long flags
;
2719 struct rb_node
**rb_link
, *rb_parent
;
2720 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2723 len
= PAGE_ALIGN(len
);
2727 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2729 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2730 if (offset_in_page(error
))
2733 error
= mlock_future_check(mm
, mm
->def_flags
, len
);
2738 * mm->mmap_sem is required to protect against another thread
2739 * changing the mappings in case we sleep.
2741 verify_mm_writelocked(mm
);
2744 * Clear old maps. this also does some error checking for us
2746 while (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
,
2748 if (do_munmap(mm
, addr
, len
))
2752 /* Check against address space limits *after* clearing old maps... */
2753 if (!may_expand_vm(mm
, flags
, len
>> PAGE_SHIFT
))
2756 if (mm
->map_count
> sysctl_max_map_count
)
2759 if (security_vm_enough_memory_mm(mm
, len
>> PAGE_SHIFT
))
2762 /* Can we just expand an old private anonymous mapping? */
2763 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2764 NULL
, NULL
, pgoff
, NULL
, NULL_VM_UFFD_CTX
);
2769 * create a vma struct for an anonymous mapping
2771 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2773 vm_unacct_memory(len
>> PAGE_SHIFT
);
2777 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2779 vma
->vm_start
= addr
;
2780 vma
->vm_end
= addr
+ len
;
2781 vma
->vm_pgoff
= pgoff
;
2782 vma
->vm_flags
= flags
;
2783 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2784 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2786 perf_event_mmap(vma
);
2787 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2788 mm
->data_vm
+= len
>> PAGE_SHIFT
;
2789 if (flags
& VM_LOCKED
)
2790 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2791 vma
->vm_flags
|= VM_SOFTDIRTY
;
2795 unsigned long vm_brk(unsigned long addr
, unsigned long len
)
2797 struct mm_struct
*mm
= current
->mm
;
2801 down_write(&mm
->mmap_sem
);
2802 ret
= do_brk(addr
, len
);
2803 populate
= ((mm
->def_flags
& VM_LOCKED
) != 0);
2804 up_write(&mm
->mmap_sem
);
2806 mm_populate(addr
, len
);
2809 EXPORT_SYMBOL(vm_brk
);
2811 /* Release all mmaps. */
2812 void exit_mmap(struct mm_struct
*mm
)
2814 struct mmu_gather tlb
;
2815 struct vm_area_struct
*vma
;
2816 unsigned long nr_accounted
= 0;
2818 /* mm's last user has gone, and its about to be pulled down */
2819 mmu_notifier_release(mm
);
2821 if (mm
->locked_vm
) {
2824 if (vma
->vm_flags
& VM_LOCKED
)
2825 munlock_vma_pages_all(vma
);
2833 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2838 tlb_gather_mmu(&tlb
, mm
, 0, -1);
2839 /* update_hiwater_rss(mm) here? but nobody should be looking */
2840 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2841 unmap_vmas(&tlb
, vma
, 0, -1);
2843 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, USER_PGTABLES_CEILING
);
2844 tlb_finish_mmu(&tlb
, 0, -1);
2847 * Walk the list again, actually closing and freeing it,
2848 * with preemption enabled, without holding any MM locks.
2851 if (vma
->vm_flags
& VM_ACCOUNT
)
2852 nr_accounted
+= vma_pages(vma
);
2853 vma
= remove_vma(vma
);
2855 vm_unacct_memory(nr_accounted
);
2858 /* Insert vm structure into process list sorted by address
2859 * and into the inode's i_mmap tree. If vm_file is non-NULL
2860 * then i_mmap_rwsem is taken here.
2862 int insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2864 struct vm_area_struct
*prev
;
2865 struct rb_node
**rb_link
, *rb_parent
;
2867 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
2868 &prev
, &rb_link
, &rb_parent
))
2870 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2871 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2875 * The vm_pgoff of a purely anonymous vma should be irrelevant
2876 * until its first write fault, when page's anon_vma and index
2877 * are set. But now set the vm_pgoff it will almost certainly
2878 * end up with (unless mremap moves it elsewhere before that
2879 * first wfault), so /proc/pid/maps tells a consistent story.
2881 * By setting it to reflect the virtual start address of the
2882 * vma, merges and splits can happen in a seamless way, just
2883 * using the existing file pgoff checks and manipulations.
2884 * Similarly in do_mmap_pgoff and in do_brk.
2886 if (vma_is_anonymous(vma
)) {
2887 BUG_ON(vma
->anon_vma
);
2888 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2891 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2896 * Copy the vma structure to a new location in the same mm,
2897 * prior to moving page table entries, to effect an mremap move.
2899 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2900 unsigned long addr
, unsigned long len
, pgoff_t pgoff
,
2901 bool *need_rmap_locks
)
2903 struct vm_area_struct
*vma
= *vmap
;
2904 unsigned long vma_start
= vma
->vm_start
;
2905 struct mm_struct
*mm
= vma
->vm_mm
;
2906 struct vm_area_struct
*new_vma
, *prev
;
2907 struct rb_node
**rb_link
, *rb_parent
;
2908 bool faulted_in_anon_vma
= true;
2911 * If anonymous vma has not yet been faulted, update new pgoff
2912 * to match new location, to increase its chance of merging.
2914 if (unlikely(vma_is_anonymous(vma
) && !vma
->anon_vma
)) {
2915 pgoff
= addr
>> PAGE_SHIFT
;
2916 faulted_in_anon_vma
= false;
2919 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
))
2920 return NULL
; /* should never get here */
2921 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2922 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
),
2923 vma
->vm_userfaultfd_ctx
);
2926 * Source vma may have been merged into new_vma
2928 if (unlikely(vma_start
>= new_vma
->vm_start
&&
2929 vma_start
< new_vma
->vm_end
)) {
2931 * The only way we can get a vma_merge with
2932 * self during an mremap is if the vma hasn't
2933 * been faulted in yet and we were allowed to
2934 * reset the dst vma->vm_pgoff to the
2935 * destination address of the mremap to allow
2936 * the merge to happen. mremap must change the
2937 * vm_pgoff linearity between src and dst vmas
2938 * (in turn preventing a vma_merge) to be
2939 * safe. It is only safe to keep the vm_pgoff
2940 * linear if there are no pages mapped yet.
2942 VM_BUG_ON_VMA(faulted_in_anon_vma
, new_vma
);
2943 *vmap
= vma
= new_vma
;
2945 *need_rmap_locks
= (new_vma
->vm_pgoff
<= vma
->vm_pgoff
);
2947 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2951 new_vma
->vm_start
= addr
;
2952 new_vma
->vm_end
= addr
+ len
;
2953 new_vma
->vm_pgoff
= pgoff
;
2954 if (vma_dup_policy(vma
, new_vma
))
2956 INIT_LIST_HEAD(&new_vma
->anon_vma_chain
);
2957 if (anon_vma_clone(new_vma
, vma
))
2958 goto out_free_mempol
;
2959 if (new_vma
->vm_file
)
2960 get_file(new_vma
->vm_file
);
2961 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2962 new_vma
->vm_ops
->open(new_vma
);
2963 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2964 *need_rmap_locks
= false;
2969 mpol_put(vma_policy(new_vma
));
2971 kmem_cache_free(vm_area_cachep
, new_vma
);
2977 * Return true if the calling process may expand its vm space by the passed
2980 bool may_expand_vm(struct mm_struct
*mm
, vm_flags_t flags
, unsigned long npages
)
2982 if (mm
->total_vm
+ npages
> rlimit(RLIMIT_AS
) >> PAGE_SHIFT
)
2985 if ((flags
& (VM_WRITE
| VM_SHARED
| (VM_STACK_FLAGS
&
2986 (VM_GROWSUP
| VM_GROWSDOWN
)))) == VM_WRITE
)
2987 return mm
->data_vm
+ npages
<= rlimit(RLIMIT_DATA
);
2992 void vm_stat_account(struct mm_struct
*mm
, vm_flags_t flags
, long npages
)
2994 mm
->total_vm
+= npages
;
2996 if ((flags
& (VM_EXEC
| VM_WRITE
)) == VM_EXEC
)
2997 mm
->exec_vm
+= npages
;
2998 else if (flags
& (VM_STACK_FLAGS
& (VM_GROWSUP
| VM_GROWSDOWN
)))
2999 mm
->stack_vm
+= npages
;
3000 else if ((flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
)
3001 mm
->data_vm
+= npages
;
3004 static int special_mapping_fault(struct vm_area_struct
*vma
,
3005 struct vm_fault
*vmf
);
3008 * Having a close hook prevents vma merging regardless of flags.
3010 static void special_mapping_close(struct vm_area_struct
*vma
)
3014 static const char *special_mapping_name(struct vm_area_struct
*vma
)
3016 return ((struct vm_special_mapping
*)vma
->vm_private_data
)->name
;
3019 static const struct vm_operations_struct special_mapping_vmops
= {
3020 .close
= special_mapping_close
,
3021 .fault
= special_mapping_fault
,
3022 .name
= special_mapping_name
,
3025 static const struct vm_operations_struct legacy_special_mapping_vmops
= {
3026 .close
= special_mapping_close
,
3027 .fault
= special_mapping_fault
,
3030 static int special_mapping_fault(struct vm_area_struct
*vma
,
3031 struct vm_fault
*vmf
)
3034 struct page
**pages
;
3036 if (vma
->vm_ops
== &legacy_special_mapping_vmops
)
3037 pages
= vma
->vm_private_data
;
3039 pages
= ((struct vm_special_mapping
*)vma
->vm_private_data
)->
3042 for (pgoff
= vmf
->pgoff
; pgoff
&& *pages
; ++pages
)
3046 struct page
*page
= *pages
;
3052 return VM_FAULT_SIGBUS
;
3055 static struct vm_area_struct
*__install_special_mapping(
3056 struct mm_struct
*mm
,
3057 unsigned long addr
, unsigned long len
,
3058 unsigned long vm_flags
, void *priv
,
3059 const struct vm_operations_struct
*ops
)
3062 struct vm_area_struct
*vma
;
3064 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
3065 if (unlikely(vma
== NULL
))
3066 return ERR_PTR(-ENOMEM
);
3068 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
3070 vma
->vm_start
= addr
;
3071 vma
->vm_end
= addr
+ len
;
3073 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
| VM_SOFTDIRTY
;
3074 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
3077 vma
->vm_private_data
= priv
;
3079 ret
= insert_vm_struct(mm
, vma
);
3083 vm_stat_account(mm
, vma
->vm_flags
, len
>> PAGE_SHIFT
);
3085 perf_event_mmap(vma
);
3090 kmem_cache_free(vm_area_cachep
, vma
);
3091 return ERR_PTR(ret
);
3095 * Called with mm->mmap_sem held for writing.
3096 * Insert a new vma covering the given region, with the given flags.
3097 * Its pages are supplied by the given array of struct page *.
3098 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
3099 * The region past the last page supplied will always produce SIGBUS.
3100 * The array pointer and the pages it points to are assumed to stay alive
3101 * for as long as this mapping might exist.
3103 struct vm_area_struct
*_install_special_mapping(
3104 struct mm_struct
*mm
,
3105 unsigned long addr
, unsigned long len
,
3106 unsigned long vm_flags
, const struct vm_special_mapping
*spec
)
3108 return __install_special_mapping(mm
, addr
, len
, vm_flags
, (void *)spec
,
3109 &special_mapping_vmops
);
3112 int install_special_mapping(struct mm_struct
*mm
,
3113 unsigned long addr
, unsigned long len
,
3114 unsigned long vm_flags
, struct page
**pages
)
3116 struct vm_area_struct
*vma
= __install_special_mapping(
3117 mm
, addr
, len
, vm_flags
, (void *)pages
,
3118 &legacy_special_mapping_vmops
);
3120 return PTR_ERR_OR_ZERO(vma
);
3123 static DEFINE_MUTEX(mm_all_locks_mutex
);
3125 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
3127 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3129 * The LSB of head.next can't change from under us
3130 * because we hold the mm_all_locks_mutex.
3132 down_write_nest_lock(&anon_vma
->root
->rwsem
, &mm
->mmap_sem
);
3134 * We can safely modify head.next after taking the
3135 * anon_vma->root->rwsem. If some other vma in this mm shares
3136 * the same anon_vma we won't take it again.
3138 * No need of atomic instructions here, head.next
3139 * can't change from under us thanks to the
3140 * anon_vma->root->rwsem.
3142 if (__test_and_set_bit(0, (unsigned long *)
3143 &anon_vma
->root
->rb_root
.rb_node
))
3148 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
3150 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3152 * AS_MM_ALL_LOCKS can't change from under us because
3153 * we hold the mm_all_locks_mutex.
3155 * Operations on ->flags have to be atomic because
3156 * even if AS_MM_ALL_LOCKS is stable thanks to the
3157 * mm_all_locks_mutex, there may be other cpus
3158 * changing other bitflags in parallel to us.
3160 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
3162 down_write_nest_lock(&mapping
->i_mmap_rwsem
, &mm
->mmap_sem
);
3167 * This operation locks against the VM for all pte/vma/mm related
3168 * operations that could ever happen on a certain mm. This includes
3169 * vmtruncate, try_to_unmap, and all page faults.
3171 * The caller must take the mmap_sem in write mode before calling
3172 * mm_take_all_locks(). The caller isn't allowed to release the
3173 * mmap_sem until mm_drop_all_locks() returns.
3175 * mmap_sem in write mode is required in order to block all operations
3176 * that could modify pagetables and free pages without need of
3177 * altering the vma layout. It's also needed in write mode to avoid new
3178 * anon_vmas to be associated with existing vmas.
3180 * A single task can't take more than one mm_take_all_locks() in a row
3181 * or it would deadlock.
3183 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3184 * mapping->flags avoid to take the same lock twice, if more than one
3185 * vma in this mm is backed by the same anon_vma or address_space.
3187 * We take locks in following order, accordingly to comment at beginning
3189 * - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
3191 * - all i_mmap_rwsem locks;
3192 * - all anon_vma->rwseml
3194 * We can take all locks within these types randomly because the VM code
3195 * doesn't nest them and we protected from parallel mm_take_all_locks() by
3196 * mm_all_locks_mutex.
3198 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3199 * that may have to take thousand of locks.
3201 * mm_take_all_locks() can fail if it's interrupted by signals.
3203 int mm_take_all_locks(struct mm_struct
*mm
)
3205 struct vm_area_struct
*vma
;
3206 struct anon_vma_chain
*avc
;
3208 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3210 mutex_lock(&mm_all_locks_mutex
);
3212 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3213 if (signal_pending(current
))
3215 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3216 is_vm_hugetlb_page(vma
))
3217 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3220 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3221 if (signal_pending(current
))
3223 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
3224 !is_vm_hugetlb_page(vma
))
3225 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3228 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3229 if (signal_pending(current
))
3232 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3233 vm_lock_anon_vma(mm
, avc
->anon_vma
);
3239 mm_drop_all_locks(mm
);
3243 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
3245 if (test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3247 * The LSB of head.next can't change to 0 from under
3248 * us because we hold the mm_all_locks_mutex.
3250 * We must however clear the bitflag before unlocking
3251 * the vma so the users using the anon_vma->rb_root will
3252 * never see our bitflag.
3254 * No need of atomic instructions here, head.next
3255 * can't change from under us until we release the
3256 * anon_vma->root->rwsem.
3258 if (!__test_and_clear_bit(0, (unsigned long *)
3259 &anon_vma
->root
->rb_root
.rb_node
))
3261 anon_vma_unlock_write(anon_vma
);
3265 static void vm_unlock_mapping(struct address_space
*mapping
)
3267 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3269 * AS_MM_ALL_LOCKS can't change to 0 from under us
3270 * because we hold the mm_all_locks_mutex.
3272 i_mmap_unlock_write(mapping
);
3273 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
3280 * The mmap_sem cannot be released by the caller until
3281 * mm_drop_all_locks() returns.
3283 void mm_drop_all_locks(struct mm_struct
*mm
)
3285 struct vm_area_struct
*vma
;
3286 struct anon_vma_chain
*avc
;
3288 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3289 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
3291 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3293 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3294 vm_unlock_anon_vma(avc
->anon_vma
);
3295 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3296 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
3299 mutex_unlock(&mm_all_locks_mutex
);
3303 * initialise the VMA slab
3305 void __init
mmap_init(void)
3309 ret
= percpu_counter_init(&vm_committed_as
, 0, GFP_KERNEL
);
3314 * Initialise sysctl_user_reserve_kbytes.
3316 * This is intended to prevent a user from starting a single memory hogging
3317 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3320 * The default value is min(3% of free memory, 128MB)
3321 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3323 static int init_user_reserve(void)
3325 unsigned long free_kbytes
;
3327 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3329 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
3332 subsys_initcall(init_user_reserve
);
3335 * Initialise sysctl_admin_reserve_kbytes.
3337 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3338 * to log in and kill a memory hogging process.
3340 * Systems with more than 256MB will reserve 8MB, enough to recover
3341 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3342 * only reserve 3% of free pages by default.
3344 static int init_admin_reserve(void)
3346 unsigned long free_kbytes
;
3348 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3350 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
3353 subsys_initcall(init_admin_reserve
);
3356 * Reinititalise user and admin reserves if memory is added or removed.
3358 * The default user reserve max is 128MB, and the default max for the
3359 * admin reserve is 8MB. These are usually, but not always, enough to
3360 * enable recovery from a memory hogging process using login/sshd, a shell,
3361 * and tools like top. It may make sense to increase or even disable the
3362 * reserve depending on the existence of swap or variations in the recovery
3363 * tools. So, the admin may have changed them.
3365 * If memory is added and the reserves have been eliminated or increased above
3366 * the default max, then we'll trust the admin.
3368 * If memory is removed and there isn't enough free memory, then we
3369 * need to reset the reserves.
3371 * Otherwise keep the reserve set by the admin.
3373 static int reserve_mem_notifier(struct notifier_block
*nb
,
3374 unsigned long action
, void *data
)
3376 unsigned long tmp
, free_kbytes
;
3380 /* Default max is 128MB. Leave alone if modified by operator. */
3381 tmp
= sysctl_user_reserve_kbytes
;
3382 if (0 < tmp
&& tmp
< (1UL << 17))
3383 init_user_reserve();
3385 /* Default max is 8MB. Leave alone if modified by operator. */
3386 tmp
= sysctl_admin_reserve_kbytes
;
3387 if (0 < tmp
&& tmp
< (1UL << 13))
3388 init_admin_reserve();
3392 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3394 if (sysctl_user_reserve_kbytes
> free_kbytes
) {
3395 init_user_reserve();
3396 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3397 sysctl_user_reserve_kbytes
);
3400 if (sysctl_admin_reserve_kbytes
> free_kbytes
) {
3401 init_admin_reserve();
3402 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3403 sysctl_admin_reserve_kbytes
);
3412 static struct notifier_block reserve_mem_nb
= {
3413 .notifier_call
= reserve_mem_notifier
,
3416 static int __meminit
init_reserve_notifier(void)
3418 if (register_hotmemory_notifier(&reserve_mem_nb
))
3419 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3423 subsys_initcall(init_reserve_notifier
);