4 * Replacement code for mm functions to support CPU's that don't
5 * have any form of memory management unit (thus no virtual memory).
7 * See Documentation/nommu-mmap.txt
9 * Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10 * Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11 * Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12 * Copyright (c) 2002 Greg Ungerer <gerg@snapgear.com>
13 * Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 #include <linux/export.h>
20 #include <linux/vmacache.h>
21 #include <linux/mman.h>
22 #include <linux/swap.h>
23 #include <linux/file.h>
24 #include <linux/highmem.h>
25 #include <linux/pagemap.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/blkdev.h>
29 #include <linux/backing-dev.h>
30 #include <linux/compiler.h>
31 #include <linux/mount.h>
32 #include <linux/personality.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/audit.h>
36 #include <linux/sched/sysctl.h>
37 #include <linux/printk.h>
39 #include <asm/uaccess.h>
41 #include <asm/tlbflush.h>
42 #include <asm/mmu_context.h>
46 EXPORT_SYMBOL(high_memory
);
48 unsigned long max_mapnr
;
49 EXPORT_SYMBOL(max_mapnr
);
50 unsigned long highest_memmap_pfn
;
51 struct percpu_counter vm_committed_as
;
52 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
53 int sysctl_overcommit_ratio
= 50; /* default is 50% */
54 unsigned long sysctl_overcommit_kbytes __read_mostly
;
55 int sysctl_max_map_count
= DEFAULT_MAX_MAP_COUNT
;
56 int sysctl_nr_trim_pages
= CONFIG_NOMMU_INITIAL_TRIM_EXCESS
;
57 unsigned long sysctl_user_reserve_kbytes __read_mostly
= 1UL << 17; /* 128MB */
58 unsigned long sysctl_admin_reserve_kbytes __read_mostly
= 1UL << 13; /* 8MB */
59 int heap_stack_gap
= 0;
61 atomic_long_t mmap_pages_allocated
;
64 * The global memory commitment made in the system can be a metric
65 * that can be used to drive ballooning decisions when Linux is hosted
66 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
67 * balancing memory across competing virtual machines that are hosted.
68 * Several metrics drive this policy engine including the guest reported
71 unsigned long vm_memory_committed(void)
73 return percpu_counter_read_positive(&vm_committed_as
);
76 EXPORT_SYMBOL_GPL(vm_memory_committed
);
78 EXPORT_SYMBOL(mem_map
);
80 /* list of mapped, potentially shareable regions */
81 static struct kmem_cache
*vm_region_jar
;
82 struct rb_root nommu_region_tree
= RB_ROOT
;
83 DECLARE_RWSEM(nommu_region_sem
);
85 const struct vm_operations_struct generic_file_vm_ops
= {
89 * Return the total memory allocated for this pointer, not
90 * just what the caller asked for.
92 * Doesn't have to be accurate, i.e. may have races.
94 unsigned int kobjsize(const void *objp
)
99 * If the object we have should not have ksize performed on it,
102 if (!objp
|| !virt_addr_valid(objp
))
105 page
= virt_to_head_page(objp
);
108 * If the allocator sets PageSlab, we know the pointer came from
115 * If it's not a compound page, see if we have a matching VMA
116 * region. This test is intentionally done in reverse order,
117 * so if there's no VMA, we still fall through and hand back
118 * PAGE_SIZE for 0-order pages.
120 if (!PageCompound(page
)) {
121 struct vm_area_struct
*vma
;
123 vma
= find_vma(current
->mm
, (unsigned long)objp
);
125 return vma
->vm_end
- vma
->vm_start
;
129 * The ksize() function is only guaranteed to work for pointers
130 * returned by kmalloc(). So handle arbitrary pointers here.
132 return PAGE_SIZE
<< compound_order(page
);
135 long __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
136 unsigned long start
, unsigned long nr_pages
,
137 unsigned int foll_flags
, struct page
**pages
,
138 struct vm_area_struct
**vmas
, int *nonblocking
)
140 struct vm_area_struct
*vma
;
141 unsigned long vm_flags
;
144 /* calculate required read or write permissions.
145 * If FOLL_FORCE is set, we only require the "MAY" flags.
147 vm_flags
= (foll_flags
& FOLL_WRITE
) ?
148 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
149 vm_flags
&= (foll_flags
& FOLL_FORCE
) ?
150 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
152 for (i
= 0; i
< nr_pages
; i
++) {
153 vma
= find_vma(mm
, start
);
155 goto finish_or_fault
;
157 /* protect what we can, including chardevs */
158 if ((vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
159 !(vm_flags
& vma
->vm_flags
))
160 goto finish_or_fault
;
163 pages
[i
] = virt_to_page(start
);
165 page_cache_get(pages
[i
]);
169 start
= (start
+ PAGE_SIZE
) & PAGE_MASK
;
175 return i
? : -EFAULT
;
179 * get a list of pages in an address range belonging to the specified process
180 * and indicate the VMA that covers each page
181 * - this is potentially dodgy as we may end incrementing the page count of a
182 * slab page or a secondary page from a compound page
183 * - don't permit access to VMAs that don't support it, such as I/O mappings
185 long get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
186 unsigned long start
, unsigned long nr_pages
,
187 int write
, int force
, struct page
**pages
,
188 struct vm_area_struct
**vmas
)
197 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
,
200 EXPORT_SYMBOL(get_user_pages
);
202 long get_user_pages_locked(struct task_struct
*tsk
, struct mm_struct
*mm
,
203 unsigned long start
, unsigned long nr_pages
,
204 int write
, int force
, struct page
**pages
,
207 return get_user_pages(tsk
, mm
, start
, nr_pages
, write
, force
,
210 EXPORT_SYMBOL(get_user_pages_locked
);
212 long __get_user_pages_unlocked(struct task_struct
*tsk
, struct mm_struct
*mm
,
213 unsigned long start
, unsigned long nr_pages
,
214 int write
, int force
, struct page
**pages
,
215 unsigned int gup_flags
)
218 down_read(&mm
->mmap_sem
);
219 ret
= get_user_pages(tsk
, mm
, start
, nr_pages
, write
, force
,
221 up_read(&mm
->mmap_sem
);
224 EXPORT_SYMBOL(__get_user_pages_unlocked
);
226 long get_user_pages_unlocked(struct task_struct
*tsk
, struct mm_struct
*mm
,
227 unsigned long start
, unsigned long nr_pages
,
228 int write
, int force
, struct page
**pages
)
230 return __get_user_pages_unlocked(tsk
, mm
, start
, nr_pages
, write
,
233 EXPORT_SYMBOL(get_user_pages_unlocked
);
236 * follow_pfn - look up PFN at a user virtual address
237 * @vma: memory mapping
238 * @address: user virtual address
239 * @pfn: location to store found PFN
241 * Only IO mappings and raw PFN mappings are allowed.
243 * Returns zero and the pfn at @pfn on success, -ve otherwise.
245 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
248 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
251 *pfn
= address
>> PAGE_SHIFT
;
254 EXPORT_SYMBOL(follow_pfn
);
256 LIST_HEAD(vmap_area_list
);
258 void vfree(const void *addr
)
262 EXPORT_SYMBOL(vfree
);
264 void *__vmalloc(unsigned long size
, gfp_t gfp_mask
, pgprot_t prot
)
267 * You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
268 * returns only a logical address.
270 return kmalloc(size
, (gfp_mask
| __GFP_COMP
) & ~__GFP_HIGHMEM
);
272 EXPORT_SYMBOL(__vmalloc
);
274 void *vmalloc_user(unsigned long size
)
278 ret
= __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
281 struct vm_area_struct
*vma
;
283 down_write(¤t
->mm
->mmap_sem
);
284 vma
= find_vma(current
->mm
, (unsigned long)ret
);
286 vma
->vm_flags
|= VM_USERMAP
;
287 up_write(¤t
->mm
->mmap_sem
);
292 EXPORT_SYMBOL(vmalloc_user
);
294 struct page
*vmalloc_to_page(const void *addr
)
296 return virt_to_page(addr
);
298 EXPORT_SYMBOL(vmalloc_to_page
);
300 unsigned long vmalloc_to_pfn(const void *addr
)
302 return page_to_pfn(virt_to_page(addr
));
304 EXPORT_SYMBOL(vmalloc_to_pfn
);
306 long vread(char *buf
, char *addr
, unsigned long count
)
308 /* Don't allow overflow */
309 if ((unsigned long) buf
+ count
< count
)
310 count
= -(unsigned long) buf
;
312 memcpy(buf
, addr
, count
);
316 long vwrite(char *buf
, char *addr
, unsigned long count
)
318 /* Don't allow overflow */
319 if ((unsigned long) addr
+ count
< count
)
320 count
= -(unsigned long) addr
;
322 memcpy(addr
, buf
, count
);
327 * vmalloc - allocate virtually contiguous memory
329 * @size: allocation size
331 * Allocate enough pages to cover @size from the page level
332 * allocator and map them into contiguous kernel virtual space.
334 * For tight control over page level allocator and protection flags
335 * use __vmalloc() instead.
337 void *vmalloc(unsigned long size
)
339 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL
);
341 EXPORT_SYMBOL(vmalloc
);
344 * vzalloc - allocate virtually contiguous memory with zero fill
346 * @size: allocation size
348 * Allocate enough pages to cover @size from the page level
349 * allocator and map them into contiguous kernel virtual space.
350 * The memory allocated is set to zero.
352 * For tight control over page level allocator and protection flags
353 * use __vmalloc() instead.
355 void *vzalloc(unsigned long size
)
357 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
| __GFP_ZERO
,
360 EXPORT_SYMBOL(vzalloc
);
363 * vmalloc_node - allocate memory on a specific node
364 * @size: allocation size
367 * Allocate enough pages to cover @size from the page level
368 * allocator and map them into contiguous kernel virtual space.
370 * For tight control over page level allocator and protection flags
371 * use __vmalloc() instead.
373 void *vmalloc_node(unsigned long size
, int node
)
375 return vmalloc(size
);
377 EXPORT_SYMBOL(vmalloc_node
);
380 * vzalloc_node - allocate memory on a specific node with zero fill
381 * @size: allocation size
384 * Allocate enough pages to cover @size from the page level
385 * allocator and map them into contiguous kernel virtual space.
386 * The memory allocated is set to zero.
388 * For tight control over page level allocator and protection flags
389 * use __vmalloc() instead.
391 void *vzalloc_node(unsigned long size
, int node
)
393 return vzalloc(size
);
395 EXPORT_SYMBOL(vzalloc_node
);
397 #ifndef PAGE_KERNEL_EXEC
398 # define PAGE_KERNEL_EXEC PAGE_KERNEL
402 * vmalloc_exec - allocate virtually contiguous, executable memory
403 * @size: allocation size
405 * Kernel-internal function to allocate enough pages to cover @size
406 * the page level allocator and map them into contiguous and
407 * executable kernel virtual space.
409 * For tight control over page level allocator and protection flags
410 * use __vmalloc() instead.
413 void *vmalloc_exec(unsigned long size
)
415 return __vmalloc(size
, GFP_KERNEL
| __GFP_HIGHMEM
, PAGE_KERNEL_EXEC
);
419 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
420 * @size: allocation size
422 * Allocate enough 32bit PA addressable pages to cover @size from the
423 * page level allocator and map them into contiguous kernel virtual space.
425 void *vmalloc_32(unsigned long size
)
427 return __vmalloc(size
, GFP_KERNEL
, PAGE_KERNEL
);
429 EXPORT_SYMBOL(vmalloc_32
);
432 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
433 * @size: allocation size
435 * The resulting memory area is 32bit addressable and zeroed so it can be
436 * mapped to userspace without leaking data.
438 * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
439 * remap_vmalloc_range() are permissible.
441 void *vmalloc_32_user(unsigned long size
)
444 * We'll have to sort out the ZONE_DMA bits for 64-bit,
445 * but for now this can simply use vmalloc_user() directly.
447 return vmalloc_user(size
);
449 EXPORT_SYMBOL(vmalloc_32_user
);
451 void *vmap(struct page
**pages
, unsigned int count
, unsigned long flags
, pgprot_t prot
)
458 void vunmap(const void *addr
)
462 EXPORT_SYMBOL(vunmap
);
464 void *vm_map_ram(struct page
**pages
, unsigned int count
, int node
, pgprot_t prot
)
469 EXPORT_SYMBOL(vm_map_ram
);
471 void vm_unmap_ram(const void *mem
, unsigned int count
)
475 EXPORT_SYMBOL(vm_unmap_ram
);
477 void vm_unmap_aliases(void)
480 EXPORT_SYMBOL_GPL(vm_unmap_aliases
);
483 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
486 void __weak
vmalloc_sync_all(void)
491 * alloc_vm_area - allocate a range of kernel address space
492 * @size: size of the area
494 * Returns: NULL on failure, vm_struct on success
496 * This function reserves a range of kernel address space, and
497 * allocates pagetables to map that range. No actual mappings
498 * are created. If the kernel address space is not shared
499 * between processes, it syncs the pagetable across all
502 struct vm_struct
*alloc_vm_area(size_t size
, pte_t
**ptes
)
507 EXPORT_SYMBOL_GPL(alloc_vm_area
);
509 void free_vm_area(struct vm_struct
*area
)
513 EXPORT_SYMBOL_GPL(free_vm_area
);
515 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
520 EXPORT_SYMBOL(vm_insert_page
);
523 * sys_brk() for the most part doesn't need the global kernel
524 * lock, except when an application is doing something nasty
525 * like trying to un-brk an area that has already been mapped
526 * to a regular file. in this case, the unmapping will need
527 * to invoke file system routines that need the global lock.
529 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
531 struct mm_struct
*mm
= current
->mm
;
533 if (brk
< mm
->start_brk
|| brk
> mm
->context
.end_brk
)
540 * Always allow shrinking brk
542 if (brk
<= mm
->brk
) {
548 * Ok, looks good - let it rip.
550 flush_icache_range(mm
->brk
, brk
);
551 return mm
->brk
= brk
;
555 * initialise the VMA and region record slabs
557 void __init
mmap_init(void)
561 ret
= percpu_counter_init(&vm_committed_as
, 0, GFP_KERNEL
);
563 vm_region_jar
= KMEM_CACHE(vm_region
, SLAB_PANIC
|SLAB_ACCOUNT
);
567 * validate the region tree
568 * - the caller must hold the region lock
570 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
571 static noinline
void validate_nommu_regions(void)
573 struct vm_region
*region
, *last
;
574 struct rb_node
*p
, *lastp
;
576 lastp
= rb_first(&nommu_region_tree
);
580 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
581 BUG_ON(last
->vm_end
<= last
->vm_start
);
582 BUG_ON(last
->vm_top
< last
->vm_end
);
584 while ((p
= rb_next(lastp
))) {
585 region
= rb_entry(p
, struct vm_region
, vm_rb
);
586 last
= rb_entry(lastp
, struct vm_region
, vm_rb
);
588 BUG_ON(region
->vm_end
<= region
->vm_start
);
589 BUG_ON(region
->vm_top
< region
->vm_end
);
590 BUG_ON(region
->vm_start
< last
->vm_top
);
596 static void validate_nommu_regions(void)
602 * add a region into the global tree
604 static void add_nommu_region(struct vm_region
*region
)
606 struct vm_region
*pregion
;
607 struct rb_node
**p
, *parent
;
609 validate_nommu_regions();
612 p
= &nommu_region_tree
.rb_node
;
615 pregion
= rb_entry(parent
, struct vm_region
, vm_rb
);
616 if (region
->vm_start
< pregion
->vm_start
)
618 else if (region
->vm_start
> pregion
->vm_start
)
620 else if (pregion
== region
)
626 rb_link_node(®ion
->vm_rb
, parent
, p
);
627 rb_insert_color(®ion
->vm_rb
, &nommu_region_tree
);
629 validate_nommu_regions();
633 * delete a region from the global tree
635 static void delete_nommu_region(struct vm_region
*region
)
637 BUG_ON(!nommu_region_tree
.rb_node
);
639 validate_nommu_regions();
640 rb_erase(®ion
->vm_rb
, &nommu_region_tree
);
641 validate_nommu_regions();
645 * free a contiguous series of pages
647 static void free_page_series(unsigned long from
, unsigned long to
)
649 for (; from
< to
; from
+= PAGE_SIZE
) {
650 struct page
*page
= virt_to_page(from
);
652 atomic_long_dec(&mmap_pages_allocated
);
658 * release a reference to a region
659 * - the caller must hold the region semaphore for writing, which this releases
660 * - the region may not have been added to the tree yet, in which case vm_top
661 * will equal vm_start
663 static void __put_nommu_region(struct vm_region
*region
)
664 __releases(nommu_region_sem
)
666 BUG_ON(!nommu_region_tree
.rb_node
);
668 if (--region
->vm_usage
== 0) {
669 if (region
->vm_top
> region
->vm_start
)
670 delete_nommu_region(region
);
671 up_write(&nommu_region_sem
);
674 fput(region
->vm_file
);
676 /* IO memory and memory shared directly out of the pagecache
677 * from ramfs/tmpfs mustn't be released here */
678 if (region
->vm_flags
& VM_MAPPED_COPY
)
679 free_page_series(region
->vm_start
, region
->vm_top
);
680 kmem_cache_free(vm_region_jar
, region
);
682 up_write(&nommu_region_sem
);
687 * release a reference to a region
689 static void put_nommu_region(struct vm_region
*region
)
691 down_write(&nommu_region_sem
);
692 __put_nommu_region(region
);
696 * update protection on a vma
698 static void protect_vma(struct vm_area_struct
*vma
, unsigned long flags
)
701 struct mm_struct
*mm
= vma
->vm_mm
;
702 long start
= vma
->vm_start
& PAGE_MASK
;
703 while (start
< vma
->vm_end
) {
704 protect_page(mm
, start
, flags
);
707 update_protections(mm
);
712 * add a VMA into a process's mm_struct in the appropriate place in the list
713 * and tree and add to the address space's page tree also if not an anonymous
715 * - should be called with mm->mmap_sem held writelocked
717 static void add_vma_to_mm(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
719 struct vm_area_struct
*pvma
, *prev
;
720 struct address_space
*mapping
;
721 struct rb_node
**p
, *parent
, *rb_prev
;
723 BUG_ON(!vma
->vm_region
);
728 protect_vma(vma
, vma
->vm_flags
);
730 /* add the VMA to the mapping */
732 mapping
= vma
->vm_file
->f_mapping
;
734 i_mmap_lock_write(mapping
);
735 flush_dcache_mmap_lock(mapping
);
736 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
737 flush_dcache_mmap_unlock(mapping
);
738 i_mmap_unlock_write(mapping
);
741 /* add the VMA to the tree */
742 parent
= rb_prev
= NULL
;
743 p
= &mm
->mm_rb
.rb_node
;
746 pvma
= rb_entry(parent
, struct vm_area_struct
, vm_rb
);
748 /* sort by: start addr, end addr, VMA struct addr in that order
749 * (the latter is necessary as we may get identical VMAs) */
750 if (vma
->vm_start
< pvma
->vm_start
)
752 else if (vma
->vm_start
> pvma
->vm_start
) {
755 } else if (vma
->vm_end
< pvma
->vm_end
)
757 else if (vma
->vm_end
> pvma
->vm_end
) {
760 } else if (vma
< pvma
)
762 else if (vma
> pvma
) {
769 rb_link_node(&vma
->vm_rb
, parent
, p
);
770 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
772 /* add VMA to the VMA list also */
775 prev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
777 __vma_link_list(mm
, vma
, prev
, parent
);
781 * delete a VMA from its owning mm_struct and address space
783 static void delete_vma_from_mm(struct vm_area_struct
*vma
)
786 struct address_space
*mapping
;
787 struct mm_struct
*mm
= vma
->vm_mm
;
788 struct task_struct
*curr
= current
;
793 for (i
= 0; i
< VMACACHE_SIZE
; i
++) {
794 /* if the vma is cached, invalidate the entire cache */
795 if (curr
->vmacache
[i
] == vma
) {
796 vmacache_invalidate(mm
);
801 /* remove the VMA from the mapping */
803 mapping
= vma
->vm_file
->f_mapping
;
805 i_mmap_lock_write(mapping
);
806 flush_dcache_mmap_lock(mapping
);
807 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
808 flush_dcache_mmap_unlock(mapping
);
809 i_mmap_unlock_write(mapping
);
812 /* remove from the MM's tree and list */
813 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
816 vma
->vm_prev
->vm_next
= vma
->vm_next
;
818 mm
->mmap
= vma
->vm_next
;
821 vma
->vm_next
->vm_prev
= vma
->vm_prev
;
825 * destroy a VMA record
827 static void delete_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
829 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
830 vma
->vm_ops
->close(vma
);
833 put_nommu_region(vma
->vm_region
);
834 kmem_cache_free(vm_area_cachep
, vma
);
838 * look up the first VMA in which addr resides, NULL if none
839 * - should be called with mm->mmap_sem at least held readlocked
841 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
843 struct vm_area_struct
*vma
;
845 /* check the cache first */
846 vma
= vmacache_find(mm
, addr
);
850 /* trawl the list (there may be multiple mappings in which addr
852 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
853 if (vma
->vm_start
> addr
)
855 if (vma
->vm_end
> addr
) {
856 vmacache_update(addr
, vma
);
863 EXPORT_SYMBOL(find_vma
);
867 * - we don't extend stack VMAs under NOMMU conditions
869 struct vm_area_struct
*find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
871 return find_vma(mm
, addr
);
875 * expand a stack to a given address
876 * - not supported under NOMMU conditions
878 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
884 * look up the first VMA exactly that exactly matches addr
885 * - should be called with mm->mmap_sem at least held readlocked
887 static struct vm_area_struct
*find_vma_exact(struct mm_struct
*mm
,
891 struct vm_area_struct
*vma
;
892 unsigned long end
= addr
+ len
;
894 /* check the cache first */
895 vma
= vmacache_find_exact(mm
, addr
, end
);
899 /* trawl the list (there may be multiple mappings in which addr
901 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
902 if (vma
->vm_start
< addr
)
904 if (vma
->vm_start
> addr
)
906 if (vma
->vm_end
== end
) {
907 vmacache_update(addr
, vma
);
916 * determine whether a mapping should be permitted and, if so, what sort of
917 * mapping we're capable of supporting
919 static int validate_mmap_request(struct file
*file
,
925 unsigned long *_capabilities
)
927 unsigned long capabilities
, rlen
;
930 /* do the simple checks first */
931 if (flags
& MAP_FIXED
)
934 if ((flags
& MAP_TYPE
) != MAP_PRIVATE
&&
935 (flags
& MAP_TYPE
) != MAP_SHARED
)
941 /* Careful about overflows.. */
942 rlen
= PAGE_ALIGN(len
);
943 if (!rlen
|| rlen
> TASK_SIZE
)
946 /* offset overflow? */
947 if ((pgoff
+ (rlen
>> PAGE_SHIFT
)) < pgoff
)
951 /* files must support mmap */
952 if (!file
->f_op
->mmap
)
955 /* work out if what we've got could possibly be shared
956 * - we support chardevs that provide their own "memory"
957 * - we support files/blockdevs that are memory backed
959 if (file
->f_op
->mmap_capabilities
) {
960 capabilities
= file
->f_op
->mmap_capabilities(file
);
962 /* no explicit capabilities set, so assume some
964 switch (file_inode(file
)->i_mode
& S_IFMT
) {
967 capabilities
= NOMMU_MAP_COPY
;
982 /* eliminate any capabilities that we can't support on this
984 if (!file
->f_op
->get_unmapped_area
)
985 capabilities
&= ~NOMMU_MAP_DIRECT
;
986 if (!(file
->f_mode
& FMODE_CAN_READ
))
987 capabilities
&= ~NOMMU_MAP_COPY
;
989 /* The file shall have been opened with read permission. */
990 if (!(file
->f_mode
& FMODE_READ
))
993 if (flags
& MAP_SHARED
) {
994 /* do checks for writing, appending and locking */
995 if ((prot
& PROT_WRITE
) &&
996 !(file
->f_mode
& FMODE_WRITE
))
999 if (IS_APPEND(file_inode(file
)) &&
1000 (file
->f_mode
& FMODE_WRITE
))
1003 if (locks_verify_locked(file
))
1006 if (!(capabilities
& NOMMU_MAP_DIRECT
))
1009 /* we mustn't privatise shared mappings */
1010 capabilities
&= ~NOMMU_MAP_COPY
;
1012 /* we're going to read the file into private memory we
1014 if (!(capabilities
& NOMMU_MAP_COPY
))
1017 /* we don't permit a private writable mapping to be
1018 * shared with the backing device */
1019 if (prot
& PROT_WRITE
)
1020 capabilities
&= ~NOMMU_MAP_DIRECT
;
1023 if (capabilities
& NOMMU_MAP_DIRECT
) {
1024 if (((prot
& PROT_READ
) && !(capabilities
& NOMMU_MAP_READ
)) ||
1025 ((prot
& PROT_WRITE
) && !(capabilities
& NOMMU_MAP_WRITE
)) ||
1026 ((prot
& PROT_EXEC
) && !(capabilities
& NOMMU_MAP_EXEC
))
1028 capabilities
&= ~NOMMU_MAP_DIRECT
;
1029 if (flags
& MAP_SHARED
) {
1030 pr_warn("MAP_SHARED not completely supported on !MMU\n");
1036 /* handle executable mappings and implied executable
1038 if (path_noexec(&file
->f_path
)) {
1039 if (prot
& PROT_EXEC
)
1041 } else if ((prot
& PROT_READ
) && !(prot
& PROT_EXEC
)) {
1042 /* handle implication of PROT_EXEC by PROT_READ */
1043 if (current
->personality
& READ_IMPLIES_EXEC
) {
1044 if (capabilities
& NOMMU_MAP_EXEC
)
1047 } else if ((prot
& PROT_READ
) &&
1048 (prot
& PROT_EXEC
) &&
1049 !(capabilities
& NOMMU_MAP_EXEC
)
1051 /* backing file is not executable, try to copy */
1052 capabilities
&= ~NOMMU_MAP_DIRECT
;
1055 /* anonymous mappings are always memory backed and can be
1058 capabilities
= NOMMU_MAP_COPY
;
1060 /* handle PROT_EXEC implication by PROT_READ */
1061 if ((prot
& PROT_READ
) &&
1062 (current
->personality
& READ_IMPLIES_EXEC
))
1066 /* allow the security API to have its say */
1067 ret
= security_mmap_addr(addr
);
1072 *_capabilities
= capabilities
;
1077 * we've determined that we can make the mapping, now translate what we
1078 * now know into VMA flags
1080 static unsigned long determine_vm_flags(struct file
*file
,
1082 unsigned long flags
,
1083 unsigned long capabilities
)
1085 unsigned long vm_flags
;
1087 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
);
1088 /* vm_flags |= mm->def_flags; */
1090 if (!(capabilities
& NOMMU_MAP_DIRECT
)) {
1091 /* attempt to share read-only copies of mapped file chunks */
1092 vm_flags
|= VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1093 if (file
&& !(prot
& PROT_WRITE
))
1094 vm_flags
|= VM_MAYSHARE
;
1096 /* overlay a shareable mapping on the backing device or inode
1097 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1099 vm_flags
|= VM_MAYSHARE
| (capabilities
& NOMMU_VMFLAGS
);
1100 if (flags
& MAP_SHARED
)
1101 vm_flags
|= VM_SHARED
;
1104 /* refuse to let anyone share private mappings with this process if
1105 * it's being traced - otherwise breakpoints set in it may interfere
1106 * with another untraced process
1108 if ((flags
& MAP_PRIVATE
) && current
->ptrace
)
1109 vm_flags
&= ~VM_MAYSHARE
;
1115 * set up a shared mapping on a file (the driver or filesystem provides and
1118 static int do_mmap_shared_file(struct vm_area_struct
*vma
)
1122 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1124 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1130 /* getting -ENOSYS indicates that direct mmap isn't possible (as
1131 * opposed to tried but failed) so we can only give a suitable error as
1132 * it's not possible to make a private copy if MAP_SHARED was given */
1137 * set up a private mapping or an anonymous shared mapping
1139 static int do_mmap_private(struct vm_area_struct
*vma
,
1140 struct vm_region
*region
,
1142 unsigned long capabilities
)
1144 unsigned long total
, point
;
1148 /* invoke the file's mapping function so that it can keep track of
1149 * shared mappings on devices or memory
1150 * - VM_MAYSHARE will be set if it may attempt to share
1152 if (capabilities
& NOMMU_MAP_DIRECT
) {
1153 ret
= vma
->vm_file
->f_op
->mmap(vma
->vm_file
, vma
);
1155 /* shouldn't return success if we're not sharing */
1156 BUG_ON(!(vma
->vm_flags
& VM_MAYSHARE
));
1157 vma
->vm_region
->vm_top
= vma
->vm_region
->vm_end
;
1163 /* getting an ENOSYS error indicates that direct mmap isn't
1164 * possible (as opposed to tried but failed) so we'll try to
1165 * make a private copy of the data and map that instead */
1169 /* allocate some memory to hold the mapping
1170 * - note that this may not return a page-aligned address if the object
1171 * we're allocating is smaller than a page
1173 order
= get_order(len
);
1175 point
= len
>> PAGE_SHIFT
;
1177 /* we don't want to allocate a power-of-2 sized page set */
1178 if (sysctl_nr_trim_pages
&& total
- point
>= sysctl_nr_trim_pages
)
1181 base
= alloc_pages_exact(total
<< PAGE_SHIFT
, GFP_KERNEL
);
1185 atomic_long_add(total
, &mmap_pages_allocated
);
1187 region
->vm_flags
= vma
->vm_flags
|= VM_MAPPED_COPY
;
1188 region
->vm_start
= (unsigned long) base
;
1189 region
->vm_end
= region
->vm_start
+ len
;
1190 region
->vm_top
= region
->vm_start
+ (total
<< PAGE_SHIFT
);
1192 vma
->vm_start
= region
->vm_start
;
1193 vma
->vm_end
= region
->vm_start
+ len
;
1196 /* read the contents of a file into the copy */
1197 mm_segment_t old_fs
;
1200 fpos
= vma
->vm_pgoff
;
1201 fpos
<<= PAGE_SHIFT
;
1205 ret
= __vfs_read(vma
->vm_file
, base
, len
, &fpos
);
1211 /* clear the last little bit */
1213 memset(base
+ ret
, 0, len
- ret
);
1220 free_page_series(region
->vm_start
, region
->vm_top
);
1221 region
->vm_start
= vma
->vm_start
= 0;
1222 region
->vm_end
= vma
->vm_end
= 0;
1227 pr_err("Allocation of length %lu from process %d (%s) failed\n",
1228 len
, current
->pid
, current
->comm
);
1234 * handle mapping creation for uClinux
1236 unsigned long do_mmap(struct file
*file
,
1240 unsigned long flags
,
1241 vm_flags_t vm_flags
,
1242 unsigned long pgoff
,
1243 unsigned long *populate
)
1245 struct vm_area_struct
*vma
;
1246 struct vm_region
*region
;
1248 unsigned long capabilities
, result
;
1253 /* decide whether we should attempt the mapping, and if so what sort of
1255 ret
= validate_mmap_request(file
, addr
, len
, prot
, flags
, pgoff
,
1260 /* we ignore the address hint */
1262 len
= PAGE_ALIGN(len
);
1264 /* we've determined that we can make the mapping, now translate what we
1265 * now know into VMA flags */
1266 vm_flags
|= determine_vm_flags(file
, prot
, flags
, capabilities
);
1268 /* we're going to need to record the mapping */
1269 region
= kmem_cache_zalloc(vm_region_jar
, GFP_KERNEL
);
1271 goto error_getting_region
;
1273 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1275 goto error_getting_vma
;
1277 region
->vm_usage
= 1;
1278 region
->vm_flags
= vm_flags
;
1279 region
->vm_pgoff
= pgoff
;
1281 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1282 vma
->vm_flags
= vm_flags
;
1283 vma
->vm_pgoff
= pgoff
;
1286 region
->vm_file
= get_file(file
);
1287 vma
->vm_file
= get_file(file
);
1290 down_write(&nommu_region_sem
);
1292 /* if we want to share, we need to check for regions created by other
1293 * mmap() calls that overlap with our proposed mapping
1294 * - we can only share with a superset match on most regular files
1295 * - shared mappings on character devices and memory backed files are
1296 * permitted to overlap inexactly as far as we are concerned for in
1297 * these cases, sharing is handled in the driver or filesystem rather
1300 if (vm_flags
& VM_MAYSHARE
) {
1301 struct vm_region
*pregion
;
1302 unsigned long pglen
, rpglen
, pgend
, rpgend
, start
;
1304 pglen
= (len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1305 pgend
= pgoff
+ pglen
;
1307 for (rb
= rb_first(&nommu_region_tree
); rb
; rb
= rb_next(rb
)) {
1308 pregion
= rb_entry(rb
, struct vm_region
, vm_rb
);
1310 if (!(pregion
->vm_flags
& VM_MAYSHARE
))
1313 /* search for overlapping mappings on the same file */
1314 if (file_inode(pregion
->vm_file
) !=
1318 if (pregion
->vm_pgoff
>= pgend
)
1321 rpglen
= pregion
->vm_end
- pregion
->vm_start
;
1322 rpglen
= (rpglen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1323 rpgend
= pregion
->vm_pgoff
+ rpglen
;
1324 if (pgoff
>= rpgend
)
1327 /* handle inexactly overlapping matches between
1329 if ((pregion
->vm_pgoff
!= pgoff
|| rpglen
!= pglen
) &&
1330 !(pgoff
>= pregion
->vm_pgoff
&& pgend
<= rpgend
)) {
1331 /* new mapping is not a subset of the region */
1332 if (!(capabilities
& NOMMU_MAP_DIRECT
))
1333 goto sharing_violation
;
1337 /* we've found a region we can share */
1338 pregion
->vm_usage
++;
1339 vma
->vm_region
= pregion
;
1340 start
= pregion
->vm_start
;
1341 start
+= (pgoff
- pregion
->vm_pgoff
) << PAGE_SHIFT
;
1342 vma
->vm_start
= start
;
1343 vma
->vm_end
= start
+ len
;
1345 if (pregion
->vm_flags
& VM_MAPPED_COPY
)
1346 vma
->vm_flags
|= VM_MAPPED_COPY
;
1348 ret
= do_mmap_shared_file(vma
);
1350 vma
->vm_region
= NULL
;
1353 pregion
->vm_usage
--;
1355 goto error_just_free
;
1358 fput(region
->vm_file
);
1359 kmem_cache_free(vm_region_jar
, region
);
1365 /* obtain the address at which to make a shared mapping
1366 * - this is the hook for quasi-memory character devices to
1367 * tell us the location of a shared mapping
1369 if (capabilities
& NOMMU_MAP_DIRECT
) {
1370 addr
= file
->f_op
->get_unmapped_area(file
, addr
, len
,
1372 if (IS_ERR_VALUE(addr
)) {
1375 goto error_just_free
;
1377 /* the driver refused to tell us where to site
1378 * the mapping so we'll have to attempt to copy
1381 if (!(capabilities
& NOMMU_MAP_COPY
))
1382 goto error_just_free
;
1384 capabilities
&= ~NOMMU_MAP_DIRECT
;
1386 vma
->vm_start
= region
->vm_start
= addr
;
1387 vma
->vm_end
= region
->vm_end
= addr
+ len
;
1392 vma
->vm_region
= region
;
1394 /* set up the mapping
1395 * - the region is filled in if NOMMU_MAP_DIRECT is still set
1397 if (file
&& vma
->vm_flags
& VM_SHARED
)
1398 ret
= do_mmap_shared_file(vma
);
1400 ret
= do_mmap_private(vma
, region
, len
, capabilities
);
1402 goto error_just_free
;
1403 add_nommu_region(region
);
1405 /* clear anonymous mappings that don't ask for uninitialized data */
1406 if (!vma
->vm_file
&& !(flags
& MAP_UNINITIALIZED
))
1407 memset((void *)region
->vm_start
, 0,
1408 region
->vm_end
- region
->vm_start
);
1410 /* okay... we have a mapping; now we have to register it */
1411 result
= vma
->vm_start
;
1413 current
->mm
->total_vm
+= len
>> PAGE_SHIFT
;
1416 add_vma_to_mm(current
->mm
, vma
);
1418 /* we flush the region from the icache only when the first executable
1419 * mapping of it is made */
1420 if (vma
->vm_flags
& VM_EXEC
&& !region
->vm_icache_flushed
) {
1421 flush_icache_range(region
->vm_start
, region
->vm_end
);
1422 region
->vm_icache_flushed
= true;
1425 up_write(&nommu_region_sem
);
1430 up_write(&nommu_region_sem
);
1432 if (region
->vm_file
)
1433 fput(region
->vm_file
);
1434 kmem_cache_free(vm_region_jar
, region
);
1437 kmem_cache_free(vm_area_cachep
, vma
);
1441 up_write(&nommu_region_sem
);
1442 pr_warn("Attempt to share mismatched mappings\n");
1447 kmem_cache_free(vm_region_jar
, region
);
1448 pr_warn("Allocation of vma for %lu byte allocation from process %d failed\n",
1453 error_getting_region
:
1454 pr_warn("Allocation of vm region for %lu byte allocation from process %d failed\n",
1460 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1461 unsigned long, prot
, unsigned long, flags
,
1462 unsigned long, fd
, unsigned long, pgoff
)
1464 struct file
*file
= NULL
;
1465 unsigned long retval
= -EBADF
;
1467 audit_mmap_fd(fd
, flags
);
1468 if (!(flags
& MAP_ANONYMOUS
)) {
1474 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1476 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1484 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1485 struct mmap_arg_struct
{
1489 unsigned long flags
;
1491 unsigned long offset
;
1494 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1496 struct mmap_arg_struct a
;
1498 if (copy_from_user(&a
, arg
, sizeof(a
)))
1500 if (offset_in_page(a
.offset
))
1503 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1504 a
.offset
>> PAGE_SHIFT
);
1506 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1509 * split a vma into two pieces at address 'addr', a new vma is allocated either
1510 * for the first part or the tail.
1512 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1513 unsigned long addr
, int new_below
)
1515 struct vm_area_struct
*new;
1516 struct vm_region
*region
;
1517 unsigned long npages
;
1519 /* we're only permitted to split anonymous regions (these should have
1520 * only a single usage on the region) */
1524 if (mm
->map_count
>= sysctl_max_map_count
)
1527 region
= kmem_cache_alloc(vm_region_jar
, GFP_KERNEL
);
1531 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1533 kmem_cache_free(vm_region_jar
, region
);
1537 /* most fields are the same, copy all, and then fixup */
1539 *region
= *vma
->vm_region
;
1540 new->vm_region
= region
;
1542 npages
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
1545 region
->vm_top
= region
->vm_end
= new->vm_end
= addr
;
1547 region
->vm_start
= new->vm_start
= addr
;
1548 region
->vm_pgoff
= new->vm_pgoff
+= npages
;
1551 if (new->vm_ops
&& new->vm_ops
->open
)
1552 new->vm_ops
->open(new);
1554 delete_vma_from_mm(vma
);
1555 down_write(&nommu_region_sem
);
1556 delete_nommu_region(vma
->vm_region
);
1558 vma
->vm_region
->vm_start
= vma
->vm_start
= addr
;
1559 vma
->vm_region
->vm_pgoff
= vma
->vm_pgoff
+= npages
;
1561 vma
->vm_region
->vm_end
= vma
->vm_end
= addr
;
1562 vma
->vm_region
->vm_top
= addr
;
1564 add_nommu_region(vma
->vm_region
);
1565 add_nommu_region(new->vm_region
);
1566 up_write(&nommu_region_sem
);
1567 add_vma_to_mm(mm
, vma
);
1568 add_vma_to_mm(mm
, new);
1573 * shrink a VMA by removing the specified chunk from either the beginning or
1576 static int shrink_vma(struct mm_struct
*mm
,
1577 struct vm_area_struct
*vma
,
1578 unsigned long from
, unsigned long to
)
1580 struct vm_region
*region
;
1582 /* adjust the VMA's pointers, which may reposition it in the MM's tree
1584 delete_vma_from_mm(vma
);
1585 if (from
> vma
->vm_start
)
1589 add_vma_to_mm(mm
, vma
);
1591 /* cut the backing region down to size */
1592 region
= vma
->vm_region
;
1593 BUG_ON(region
->vm_usage
!= 1);
1595 down_write(&nommu_region_sem
);
1596 delete_nommu_region(region
);
1597 if (from
> region
->vm_start
) {
1598 to
= region
->vm_top
;
1599 region
->vm_top
= region
->vm_end
= from
;
1601 region
->vm_start
= to
;
1603 add_nommu_region(region
);
1604 up_write(&nommu_region_sem
);
1606 free_page_series(from
, to
);
1612 * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1613 * VMA, though it need not cover the whole VMA
1615 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1617 struct vm_area_struct
*vma
;
1621 len
= PAGE_ALIGN(len
);
1627 /* find the first potentially overlapping VMA */
1628 vma
= find_vma(mm
, start
);
1632 pr_warn("munmap of memory not mmapped by process %d (%s): 0x%lx-0x%lx\n",
1633 current
->pid
, current
->comm
,
1634 start
, start
+ len
- 1);
1640 /* we're allowed to split an anonymous VMA but not a file-backed one */
1643 if (start
> vma
->vm_start
)
1645 if (end
== vma
->vm_end
)
1646 goto erase_whole_vma
;
1651 /* the chunk must be a subset of the VMA found */
1652 if (start
== vma
->vm_start
&& end
== vma
->vm_end
)
1653 goto erase_whole_vma
;
1654 if (start
< vma
->vm_start
|| end
> vma
->vm_end
)
1656 if (offset_in_page(start
))
1658 if (end
!= vma
->vm_end
&& offset_in_page(end
))
1660 if (start
!= vma
->vm_start
&& end
!= vma
->vm_end
) {
1661 ret
= split_vma(mm
, vma
, start
, 1);
1665 return shrink_vma(mm
, vma
, start
, end
);
1669 delete_vma_from_mm(vma
);
1670 delete_vma(mm
, vma
);
1673 EXPORT_SYMBOL(do_munmap
);
1675 int vm_munmap(unsigned long addr
, size_t len
)
1677 struct mm_struct
*mm
= current
->mm
;
1680 down_write(&mm
->mmap_sem
);
1681 ret
= do_munmap(mm
, addr
, len
);
1682 up_write(&mm
->mmap_sem
);
1685 EXPORT_SYMBOL(vm_munmap
);
1687 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
1689 return vm_munmap(addr
, len
);
1693 * release all the mappings made in a process's VM space
1695 void exit_mmap(struct mm_struct
*mm
)
1697 struct vm_area_struct
*vma
;
1704 while ((vma
= mm
->mmap
)) {
1705 mm
->mmap
= vma
->vm_next
;
1706 delete_vma_from_mm(vma
);
1707 delete_vma(mm
, vma
);
1712 unsigned long vm_brk(unsigned long addr
, unsigned long len
)
1718 * expand (or shrink) an existing mapping, potentially moving it at the same
1719 * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1721 * under NOMMU conditions, we only permit changing a mapping's size, and only
1722 * as long as it stays within the region allocated by do_mmap_private() and the
1723 * block is not shareable
1725 * MREMAP_FIXED is not supported under NOMMU conditions
1727 static unsigned long do_mremap(unsigned long addr
,
1728 unsigned long old_len
, unsigned long new_len
,
1729 unsigned long flags
, unsigned long new_addr
)
1731 struct vm_area_struct
*vma
;
1733 /* insanity checks first */
1734 old_len
= PAGE_ALIGN(old_len
);
1735 new_len
= PAGE_ALIGN(new_len
);
1736 if (old_len
== 0 || new_len
== 0)
1737 return (unsigned long) -EINVAL
;
1739 if (offset_in_page(addr
))
1742 if (flags
& MREMAP_FIXED
&& new_addr
!= addr
)
1743 return (unsigned long) -EINVAL
;
1745 vma
= find_vma_exact(current
->mm
, addr
, old_len
);
1747 return (unsigned long) -EINVAL
;
1749 if (vma
->vm_end
!= vma
->vm_start
+ old_len
)
1750 return (unsigned long) -EFAULT
;
1752 if (vma
->vm_flags
& VM_MAYSHARE
)
1753 return (unsigned long) -EPERM
;
1755 if (new_len
> vma
->vm_region
->vm_end
- vma
->vm_region
->vm_start
)
1756 return (unsigned long) -ENOMEM
;
1758 /* all checks complete - do it */
1759 vma
->vm_end
= vma
->vm_start
+ new_len
;
1760 return vma
->vm_start
;
1763 SYSCALL_DEFINE5(mremap
, unsigned long, addr
, unsigned long, old_len
,
1764 unsigned long, new_len
, unsigned long, flags
,
1765 unsigned long, new_addr
)
1769 down_write(¤t
->mm
->mmap_sem
);
1770 ret
= do_mremap(addr
, old_len
, new_len
, flags
, new_addr
);
1771 up_write(¤t
->mm
->mmap_sem
);
1775 struct page
*follow_page_mask(struct vm_area_struct
*vma
,
1776 unsigned long address
, unsigned int flags
,
1777 unsigned int *page_mask
)
1783 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
1784 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
1786 if (addr
!= (pfn
<< PAGE_SHIFT
))
1789 vma
->vm_flags
|= VM_IO
| VM_PFNMAP
| VM_DONTEXPAND
| VM_DONTDUMP
;
1792 EXPORT_SYMBOL(remap_pfn_range
);
1794 int vm_iomap_memory(struct vm_area_struct
*vma
, phys_addr_t start
, unsigned long len
)
1796 unsigned long pfn
= start
>> PAGE_SHIFT
;
1797 unsigned long vm_len
= vma
->vm_end
- vma
->vm_start
;
1799 pfn
+= vma
->vm_pgoff
;
1800 return io_remap_pfn_range(vma
, vma
->vm_start
, pfn
, vm_len
, vma
->vm_page_prot
);
1802 EXPORT_SYMBOL(vm_iomap_memory
);
1804 int remap_vmalloc_range(struct vm_area_struct
*vma
, void *addr
,
1805 unsigned long pgoff
)
1807 unsigned int size
= vma
->vm_end
- vma
->vm_start
;
1809 if (!(vma
->vm_flags
& VM_USERMAP
))
1812 vma
->vm_start
= (unsigned long)(addr
+ (pgoff
<< PAGE_SHIFT
));
1813 vma
->vm_end
= vma
->vm_start
+ size
;
1817 EXPORT_SYMBOL(remap_vmalloc_range
);
1819 unsigned long arch_get_unmapped_area(struct file
*file
, unsigned long addr
,
1820 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1825 void unmap_mapping_range(struct address_space
*mapping
,
1826 loff_t
const holebegin
, loff_t
const holelen
,
1830 EXPORT_SYMBOL(unmap_mapping_range
);
1833 * Check that a process has enough memory to allocate a new virtual
1834 * mapping. 0 means there is enough memory for the allocation to
1835 * succeed and -ENOMEM implies there is not.
1837 * We currently support three overcommit policies, which are set via the
1838 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
1840 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1841 * Additional code 2002 Jul 20 by Robert Love.
1843 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1845 * Note this is a helper function intended to be used by LSMs which
1846 * wish to use this logic.
1848 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
1850 long free
, allowed
, reserve
;
1852 vm_acct_memory(pages
);
1855 * Sometimes we want to use more memory than we have
1857 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
1860 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
1861 free
= global_page_state(NR_FREE_PAGES
);
1862 free
+= global_page_state(NR_FILE_PAGES
);
1865 * shmem pages shouldn't be counted as free in this
1866 * case, they can't be purged, only swapped out, and
1867 * that won't affect the overall amount of available
1868 * memory in the system.
1870 free
-= global_page_state(NR_SHMEM
);
1872 free
+= get_nr_swap_pages();
1875 * Any slabs which are created with the
1876 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1877 * which are reclaimable, under pressure. The dentry
1878 * cache and most inode caches should fall into this
1880 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
1883 * Leave reserved pages. The pages are not for anonymous pages.
1885 if (free
<= totalreserve_pages
)
1888 free
-= totalreserve_pages
;
1891 * Reserve some for root
1894 free
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
1902 allowed
= vm_commit_limit();
1904 * Reserve some 3% for root
1907 allowed
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
1910 * Don't let a single process grow so big a user can't recover
1913 reserve
= sysctl_user_reserve_kbytes
>> (PAGE_SHIFT
- 10);
1914 allowed
-= min_t(long, mm
->total_vm
/ 32, reserve
);
1917 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
1921 vm_unacct_memory(pages
);
1926 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1931 EXPORT_SYMBOL(filemap_fault
);
1933 void filemap_map_pages(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1937 EXPORT_SYMBOL(filemap_map_pages
);
1939 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
1940 unsigned long addr
, void *buf
, int len
, int write
)
1942 struct vm_area_struct
*vma
;
1944 down_read(&mm
->mmap_sem
);
1946 /* the access must start within one of the target process's mappings */
1947 vma
= find_vma(mm
, addr
);
1949 /* don't overrun this mapping */
1950 if (addr
+ len
>= vma
->vm_end
)
1951 len
= vma
->vm_end
- addr
;
1953 /* only read or write mappings where it is permitted */
1954 if (write
&& vma
->vm_flags
& VM_MAYWRITE
)
1955 copy_to_user_page(vma
, NULL
, addr
,
1956 (void *) addr
, buf
, len
);
1957 else if (!write
&& vma
->vm_flags
& VM_MAYREAD
)
1958 copy_from_user_page(vma
, NULL
, addr
,
1959 buf
, (void *) addr
, len
);
1966 up_read(&mm
->mmap_sem
);
1972 * @access_remote_vm - access another process' address space
1973 * @mm: the mm_struct of the target address space
1974 * @addr: start address to access
1975 * @buf: source or destination buffer
1976 * @len: number of bytes to transfer
1977 * @write: whether the access is a write
1979 * The caller must hold a reference on @mm.
1981 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
1982 void *buf
, int len
, int write
)
1984 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
1988 * Access another process' address space.
1989 * - source/target buffer must be kernel space
1991 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
, void *buf
, int len
, int write
)
1993 struct mm_struct
*mm
;
1995 if (addr
+ len
< addr
)
1998 mm
= get_task_mm(tsk
);
2002 len
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
2009 * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2010 * @inode: The inode to check
2011 * @size: The current filesize of the inode
2012 * @newsize: The proposed filesize of the inode
2014 * Check the shared mappings on an inode on behalf of a shrinking truncate to
2015 * make sure that that any outstanding VMAs aren't broken and then shrink the
2016 * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2017 * automatically grant mappings that are too large.
2019 int nommu_shrink_inode_mappings(struct inode
*inode
, size_t size
,
2022 struct vm_area_struct
*vma
;
2023 struct vm_region
*region
;
2025 size_t r_size
, r_top
;
2027 low
= newsize
>> PAGE_SHIFT
;
2028 high
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2030 down_write(&nommu_region_sem
);
2031 i_mmap_lock_read(inode
->i_mapping
);
2033 /* search for VMAs that fall within the dead zone */
2034 vma_interval_tree_foreach(vma
, &inode
->i_mapping
->i_mmap
, low
, high
) {
2035 /* found one - only interested if it's shared out of the page
2037 if (vma
->vm_flags
& VM_SHARED
) {
2038 i_mmap_unlock_read(inode
->i_mapping
);
2039 up_write(&nommu_region_sem
);
2040 return -ETXTBSY
; /* not quite true, but near enough */
2044 /* reduce any regions that overlap the dead zone - if in existence,
2045 * these will be pointed to by VMAs that don't overlap the dead zone
2047 * we don't check for any regions that start beyond the EOF as there
2050 vma_interval_tree_foreach(vma
, &inode
->i_mapping
->i_mmap
, 0, ULONG_MAX
) {
2051 if (!(vma
->vm_flags
& VM_SHARED
))
2054 region
= vma
->vm_region
;
2055 r_size
= region
->vm_top
- region
->vm_start
;
2056 r_top
= (region
->vm_pgoff
<< PAGE_SHIFT
) + r_size
;
2058 if (r_top
> newsize
) {
2059 region
->vm_top
-= r_top
- newsize
;
2060 if (region
->vm_end
> region
->vm_top
)
2061 region
->vm_end
= region
->vm_top
;
2065 i_mmap_unlock_read(inode
->i_mapping
);
2066 up_write(&nommu_region_sem
);
2071 * Initialise sysctl_user_reserve_kbytes.
2073 * This is intended to prevent a user from starting a single memory hogging
2074 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
2077 * The default value is min(3% of free memory, 128MB)
2078 * 128MB is enough to recover with sshd/login, bash, and top/kill.
2080 static int __meminit
init_user_reserve(void)
2082 unsigned long free_kbytes
;
2084 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
2086 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
2089 subsys_initcall(init_user_reserve
);
2092 * Initialise sysctl_admin_reserve_kbytes.
2094 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
2095 * to log in and kill a memory hogging process.
2097 * Systems with more than 256MB will reserve 8MB, enough to recover
2098 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
2099 * only reserve 3% of free pages by default.
2101 static int __meminit
init_admin_reserve(void)
2103 unsigned long free_kbytes
;
2105 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
2107 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
2110 subsys_initcall(init_admin_reserve
);