1 // SPDX-License-Identifier: GPL-2.0
3 * Performance events core code:
5 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
6 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
7 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
8 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
13 #include <linux/cpu.h>
14 #include <linux/smp.h>
15 #include <linux/idr.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/tick.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/export.h>
29 #include <linux/vmalloc.h>
30 #include <linux/hardirq.h>
31 #include <linux/hugetlb.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53 #include <linux/min_heap.h>
57 #include <asm/irq_regs.h>
59 typedef int (*remote_function_f
)(void *);
61 struct remote_function_call
{
62 struct task_struct
*p
;
63 remote_function_f func
;
68 static void remote_function(void *data
)
70 struct remote_function_call
*tfc
= data
;
71 struct task_struct
*p
= tfc
->p
;
75 if (task_cpu(p
) != smp_processor_id())
79 * Now that we're on right CPU with IRQs disabled, we can test
80 * if we hit the right task without races.
83 tfc
->ret
= -ESRCH
; /* No such (running) process */
88 tfc
->ret
= tfc
->func(tfc
->info
);
92 * task_function_call - call a function on the cpu on which a task runs
93 * @p: the task to evaluate
94 * @func: the function to be called
95 * @info: the function call argument
97 * Calls the function @func when the task is currently running. This might
98 * be on the current CPU, which just calls the function directly. This will
99 * retry due to any failures in smp_call_function_single(), such as if the
100 * task_cpu() goes offline concurrently.
102 * returns @func return value or -ESRCH or -ENXIO when the process isn't running
105 task_function_call(struct task_struct
*p
, remote_function_f func
, void *info
)
107 struct remote_function_call data
= {
116 ret
= smp_call_function_single(task_cpu(p
), remote_function
,
131 * cpu_function_call - call a function on the cpu
132 * @func: the function to be called
133 * @info: the function call argument
135 * Calls the function @func on the remote cpu.
137 * returns: @func return value or -ENXIO when the cpu is offline
139 static int cpu_function_call(int cpu
, remote_function_f func
, void *info
)
141 struct remote_function_call data
= {
145 .ret
= -ENXIO
, /* No such CPU */
148 smp_call_function_single(cpu
, remote_function
, &data
, 1);
153 static inline struct perf_cpu_context
*
154 __get_cpu_context(struct perf_event_context
*ctx
)
156 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
159 static void perf_ctx_lock(struct perf_cpu_context
*cpuctx
,
160 struct perf_event_context
*ctx
)
162 raw_spin_lock(&cpuctx
->ctx
.lock
);
164 raw_spin_lock(&ctx
->lock
);
167 static void perf_ctx_unlock(struct perf_cpu_context
*cpuctx
,
168 struct perf_event_context
*ctx
)
171 raw_spin_unlock(&ctx
->lock
);
172 raw_spin_unlock(&cpuctx
->ctx
.lock
);
175 #define TASK_TOMBSTONE ((void *)-1L)
177 static bool is_kernel_event(struct perf_event
*event
)
179 return READ_ONCE(event
->owner
) == TASK_TOMBSTONE
;
183 * On task ctx scheduling...
185 * When !ctx->nr_events a task context will not be scheduled. This means
186 * we can disable the scheduler hooks (for performance) without leaving
187 * pending task ctx state.
189 * This however results in two special cases:
191 * - removing the last event from a task ctx; this is relatively straight
192 * forward and is done in __perf_remove_from_context.
194 * - adding the first event to a task ctx; this is tricky because we cannot
195 * rely on ctx->is_active and therefore cannot use event_function_call().
196 * See perf_install_in_context().
198 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
201 typedef void (*event_f
)(struct perf_event
*, struct perf_cpu_context
*,
202 struct perf_event_context
*, void *);
204 struct event_function_struct
{
205 struct perf_event
*event
;
210 static int event_function(void *info
)
212 struct event_function_struct
*efs
= info
;
213 struct perf_event
*event
= efs
->event
;
214 struct perf_event_context
*ctx
= event
->ctx
;
215 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
216 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
219 lockdep_assert_irqs_disabled();
221 perf_ctx_lock(cpuctx
, task_ctx
);
223 * Since we do the IPI call without holding ctx->lock things can have
224 * changed, double check we hit the task we set out to hit.
227 if (ctx
->task
!= current
) {
233 * We only use event_function_call() on established contexts,
234 * and event_function() is only ever called when active (or
235 * rather, we'll have bailed in task_function_call() or the
236 * above ctx->task != current test), therefore we must have
237 * ctx->is_active here.
239 WARN_ON_ONCE(!ctx
->is_active
);
241 * And since we have ctx->is_active, cpuctx->task_ctx must
244 WARN_ON_ONCE(task_ctx
!= ctx
);
246 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
249 efs
->func(event
, cpuctx
, ctx
, efs
->data
);
251 perf_ctx_unlock(cpuctx
, task_ctx
);
256 static void event_function_call(struct perf_event
*event
, event_f func
, void *data
)
258 struct perf_event_context
*ctx
= event
->ctx
;
259 struct task_struct
*task
= READ_ONCE(ctx
->task
); /* verified in event_function */
260 struct event_function_struct efs
= {
266 if (!event
->parent
) {
268 * If this is a !child event, we must hold ctx::mutex to
269 * stabilize the the event->ctx relation. See
270 * perf_event_ctx_lock().
272 lockdep_assert_held(&ctx
->mutex
);
276 cpu_function_call(event
->cpu
, event_function
, &efs
);
280 if (task
== TASK_TOMBSTONE
)
284 if (!task_function_call(task
, event_function
, &efs
))
287 raw_spin_lock_irq(&ctx
->lock
);
289 * Reload the task pointer, it might have been changed by
290 * a concurrent perf_event_context_sched_out().
293 if (task
== TASK_TOMBSTONE
) {
294 raw_spin_unlock_irq(&ctx
->lock
);
297 if (ctx
->is_active
) {
298 raw_spin_unlock_irq(&ctx
->lock
);
301 func(event
, NULL
, ctx
, data
);
302 raw_spin_unlock_irq(&ctx
->lock
);
306 * Similar to event_function_call() + event_function(), but hard assumes IRQs
307 * are already disabled and we're on the right CPU.
309 static void event_function_local(struct perf_event
*event
, event_f func
, void *data
)
311 struct perf_event_context
*ctx
= event
->ctx
;
312 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
313 struct task_struct
*task
= READ_ONCE(ctx
->task
);
314 struct perf_event_context
*task_ctx
= NULL
;
316 lockdep_assert_irqs_disabled();
319 if (task
== TASK_TOMBSTONE
)
325 perf_ctx_lock(cpuctx
, task_ctx
);
328 if (task
== TASK_TOMBSTONE
)
333 * We must be either inactive or active and the right task,
334 * otherwise we're screwed, since we cannot IPI to somewhere
337 if (ctx
->is_active
) {
338 if (WARN_ON_ONCE(task
!= current
))
341 if (WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
))
345 WARN_ON_ONCE(&cpuctx
->ctx
!= ctx
);
348 func(event
, cpuctx
, ctx
, data
);
350 perf_ctx_unlock(cpuctx
, task_ctx
);
353 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
354 PERF_FLAG_FD_OUTPUT |\
355 PERF_FLAG_PID_CGROUP |\
356 PERF_FLAG_FD_CLOEXEC)
359 * branch priv levels that need permission checks
361 #define PERF_SAMPLE_BRANCH_PERM_PLM \
362 (PERF_SAMPLE_BRANCH_KERNEL |\
363 PERF_SAMPLE_BRANCH_HV)
366 EVENT_FLEXIBLE
= 0x1,
369 /* see ctx_resched() for details */
371 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
375 * perf_sched_events : >0 events exist
376 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
379 static void perf_sched_delayed(struct work_struct
*work
);
380 DEFINE_STATIC_KEY_FALSE(perf_sched_events
);
381 static DECLARE_DELAYED_WORK(perf_sched_work
, perf_sched_delayed
);
382 static DEFINE_MUTEX(perf_sched_mutex
);
383 static atomic_t perf_sched_count
;
385 static DEFINE_PER_CPU(atomic_t
, perf_cgroup_events
);
386 static DEFINE_PER_CPU(int, perf_sched_cb_usages
);
387 static DEFINE_PER_CPU(struct pmu_event_list
, pmu_sb_events
);
389 static atomic_t nr_mmap_events __read_mostly
;
390 static atomic_t nr_comm_events __read_mostly
;
391 static atomic_t nr_namespaces_events __read_mostly
;
392 static atomic_t nr_task_events __read_mostly
;
393 static atomic_t nr_freq_events __read_mostly
;
394 static atomic_t nr_switch_events __read_mostly
;
395 static atomic_t nr_ksymbol_events __read_mostly
;
396 static atomic_t nr_bpf_events __read_mostly
;
397 static atomic_t nr_cgroup_events __read_mostly
;
398 static atomic_t nr_text_poke_events __read_mostly
;
400 static LIST_HEAD(pmus
);
401 static DEFINE_MUTEX(pmus_lock
);
402 static struct srcu_struct pmus_srcu
;
403 static cpumask_var_t perf_online_mask
;
406 * perf event paranoia level:
407 * -1 - not paranoid at all
408 * 0 - disallow raw tracepoint access for unpriv
409 * 1 - disallow cpu events for unpriv
410 * 2 - disallow kernel profiling for unpriv
412 int sysctl_perf_event_paranoid __read_mostly
= 2;
414 /* Minimum for 512 kiB + 1 user control page */
415 int sysctl_perf_event_mlock __read_mostly
= 512 + (PAGE_SIZE
/ 1024); /* 'free' kiB per user */
418 * max perf event sample rate
420 #define DEFAULT_MAX_SAMPLE_RATE 100000
421 #define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
422 #define DEFAULT_CPU_TIME_MAX_PERCENT 25
424 int sysctl_perf_event_sample_rate __read_mostly
= DEFAULT_MAX_SAMPLE_RATE
;
426 static int max_samples_per_tick __read_mostly
= DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE
, HZ
);
427 static int perf_sample_period_ns __read_mostly
= DEFAULT_SAMPLE_PERIOD_NS
;
429 static int perf_sample_allowed_ns __read_mostly
=
430 DEFAULT_SAMPLE_PERIOD_NS
* DEFAULT_CPU_TIME_MAX_PERCENT
/ 100;
432 static void update_perf_cpu_limits(void)
434 u64 tmp
= perf_sample_period_ns
;
436 tmp
*= sysctl_perf_cpu_time_max_percent
;
437 tmp
= div_u64(tmp
, 100);
441 WRITE_ONCE(perf_sample_allowed_ns
, tmp
);
444 static bool perf_rotate_context(struct perf_cpu_context
*cpuctx
);
446 int perf_proc_update_handler(struct ctl_table
*table
, int write
,
447 void *buffer
, size_t *lenp
, loff_t
*ppos
)
450 int perf_cpu
= sysctl_perf_cpu_time_max_percent
;
452 * If throttling is disabled don't allow the write:
454 if (write
&& (perf_cpu
== 100 || perf_cpu
== 0))
457 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
461 max_samples_per_tick
= DIV_ROUND_UP(sysctl_perf_event_sample_rate
, HZ
);
462 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
463 update_perf_cpu_limits();
468 int sysctl_perf_cpu_time_max_percent __read_mostly
= DEFAULT_CPU_TIME_MAX_PERCENT
;
470 int perf_cpu_time_max_percent_handler(struct ctl_table
*table
, int write
,
471 void *buffer
, size_t *lenp
, loff_t
*ppos
)
473 int ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
478 if (sysctl_perf_cpu_time_max_percent
== 100 ||
479 sysctl_perf_cpu_time_max_percent
== 0) {
481 "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
482 WRITE_ONCE(perf_sample_allowed_ns
, 0);
484 update_perf_cpu_limits();
491 * perf samples are done in some very critical code paths (NMIs).
492 * If they take too much CPU time, the system can lock up and not
493 * get any real work done. This will drop the sample rate when
494 * we detect that events are taking too long.
496 #define NR_ACCUMULATED_SAMPLES 128
497 static DEFINE_PER_CPU(u64
, running_sample_length
);
499 static u64 __report_avg
;
500 static u64 __report_allowed
;
502 static void perf_duration_warn(struct irq_work
*w
)
504 printk_ratelimited(KERN_INFO
505 "perf: interrupt took too long (%lld > %lld), lowering "
506 "kernel.perf_event_max_sample_rate to %d\n",
507 __report_avg
, __report_allowed
,
508 sysctl_perf_event_sample_rate
);
511 static DEFINE_IRQ_WORK(perf_duration_work
, perf_duration_warn
);
513 void perf_sample_event_took(u64 sample_len_ns
)
515 u64 max_len
= READ_ONCE(perf_sample_allowed_ns
);
523 /* Decay the counter by 1 average sample. */
524 running_len
= __this_cpu_read(running_sample_length
);
525 running_len
-= running_len
/NR_ACCUMULATED_SAMPLES
;
526 running_len
+= sample_len_ns
;
527 __this_cpu_write(running_sample_length
, running_len
);
530 * Note: this will be biased artifically low until we have
531 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
532 * from having to maintain a count.
534 avg_len
= running_len
/NR_ACCUMULATED_SAMPLES
;
535 if (avg_len
<= max_len
)
538 __report_avg
= avg_len
;
539 __report_allowed
= max_len
;
542 * Compute a throttle threshold 25% below the current duration.
544 avg_len
+= avg_len
/ 4;
545 max
= (TICK_NSEC
/ 100) * sysctl_perf_cpu_time_max_percent
;
551 WRITE_ONCE(perf_sample_allowed_ns
, avg_len
);
552 WRITE_ONCE(max_samples_per_tick
, max
);
554 sysctl_perf_event_sample_rate
= max
* HZ
;
555 perf_sample_period_ns
= NSEC_PER_SEC
/ sysctl_perf_event_sample_rate
;
557 if (!irq_work_queue(&perf_duration_work
)) {
558 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
559 "kernel.perf_event_max_sample_rate to %d\n",
560 __report_avg
, __report_allowed
,
561 sysctl_perf_event_sample_rate
);
565 static atomic64_t perf_event_id
;
567 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
568 enum event_type_t event_type
);
570 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
571 enum event_type_t event_type
,
572 struct task_struct
*task
);
574 static void update_context_time(struct perf_event_context
*ctx
);
575 static u64
perf_event_time(struct perf_event
*event
);
577 void __weak
perf_event_print_debug(void) { }
579 extern __weak
const char *perf_pmu_name(void)
584 static inline u64
perf_clock(void)
586 return local_clock();
589 static inline u64
perf_event_clock(struct perf_event
*event
)
591 return event
->clock();
595 * State based event timekeeping...
597 * The basic idea is to use event->state to determine which (if any) time
598 * fields to increment with the current delta. This means we only need to
599 * update timestamps when we change state or when they are explicitly requested
602 * Event groups make things a little more complicated, but not terribly so. The
603 * rules for a group are that if the group leader is OFF the entire group is
604 * OFF, irrespecive of what the group member states are. This results in
605 * __perf_effective_state().
607 * A futher ramification is that when a group leader flips between OFF and
608 * !OFF, we need to update all group member times.
611 * NOTE: perf_event_time() is based on the (cgroup) context time, and thus we
612 * need to make sure the relevant context time is updated before we try and
613 * update our timestamps.
616 static __always_inline
enum perf_event_state
617 __perf_effective_state(struct perf_event
*event
)
619 struct perf_event
*leader
= event
->group_leader
;
621 if (leader
->state
<= PERF_EVENT_STATE_OFF
)
622 return leader
->state
;
627 static __always_inline
void
628 __perf_update_times(struct perf_event
*event
, u64 now
, u64
*enabled
, u64
*running
)
630 enum perf_event_state state
= __perf_effective_state(event
);
631 u64 delta
= now
- event
->tstamp
;
633 *enabled
= event
->total_time_enabled
;
634 if (state
>= PERF_EVENT_STATE_INACTIVE
)
637 *running
= event
->total_time_running
;
638 if (state
>= PERF_EVENT_STATE_ACTIVE
)
642 static void perf_event_update_time(struct perf_event
*event
)
644 u64 now
= perf_event_time(event
);
646 __perf_update_times(event
, now
, &event
->total_time_enabled
,
647 &event
->total_time_running
);
651 static void perf_event_update_sibling_time(struct perf_event
*leader
)
653 struct perf_event
*sibling
;
655 for_each_sibling_event(sibling
, leader
)
656 perf_event_update_time(sibling
);
660 perf_event_set_state(struct perf_event
*event
, enum perf_event_state state
)
662 if (event
->state
== state
)
665 perf_event_update_time(event
);
667 * If a group leader gets enabled/disabled all its siblings
670 if ((event
->state
< 0) ^ (state
< 0))
671 perf_event_update_sibling_time(event
);
673 WRITE_ONCE(event
->state
, state
);
676 #ifdef CONFIG_CGROUP_PERF
679 perf_cgroup_match(struct perf_event
*event
)
681 struct perf_event_context
*ctx
= event
->ctx
;
682 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
684 /* @event doesn't care about cgroup */
688 /* wants specific cgroup scope but @cpuctx isn't associated with any */
693 * Cgroup scoping is recursive. An event enabled for a cgroup is
694 * also enabled for all its descendant cgroups. If @cpuctx's
695 * cgroup is a descendant of @event's (the test covers identity
696 * case), it's a match.
698 return cgroup_is_descendant(cpuctx
->cgrp
->css
.cgroup
,
699 event
->cgrp
->css
.cgroup
);
702 static inline void perf_detach_cgroup(struct perf_event
*event
)
704 css_put(&event
->cgrp
->css
);
708 static inline int is_cgroup_event(struct perf_event
*event
)
710 return event
->cgrp
!= NULL
;
713 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
715 struct perf_cgroup_info
*t
;
717 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
721 static inline void __update_cgrp_time(struct perf_cgroup
*cgrp
)
723 struct perf_cgroup_info
*info
;
728 info
= this_cpu_ptr(cgrp
->info
);
730 info
->time
+= now
- info
->timestamp
;
731 info
->timestamp
= now
;
734 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
736 struct perf_cgroup
*cgrp
= cpuctx
->cgrp
;
737 struct cgroup_subsys_state
*css
;
740 for (css
= &cgrp
->css
; css
; css
= css
->parent
) {
741 cgrp
= container_of(css
, struct perf_cgroup
, css
);
742 __update_cgrp_time(cgrp
);
747 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
749 struct perf_cgroup
*cgrp
;
752 * ensure we access cgroup data only when needed and
753 * when we know the cgroup is pinned (css_get)
755 if (!is_cgroup_event(event
))
758 cgrp
= perf_cgroup_from_task(current
, event
->ctx
);
760 * Do not update time when cgroup is not active
762 if (cgroup_is_descendant(cgrp
->css
.cgroup
, event
->cgrp
->css
.cgroup
))
763 __update_cgrp_time(event
->cgrp
);
767 perf_cgroup_set_timestamp(struct task_struct
*task
,
768 struct perf_event_context
*ctx
)
770 struct perf_cgroup
*cgrp
;
771 struct perf_cgroup_info
*info
;
772 struct cgroup_subsys_state
*css
;
775 * ctx->lock held by caller
776 * ensure we do not access cgroup data
777 * unless we have the cgroup pinned (css_get)
779 if (!task
|| !ctx
->nr_cgroups
)
782 cgrp
= perf_cgroup_from_task(task
, ctx
);
784 for (css
= &cgrp
->css
; css
; css
= css
->parent
) {
785 cgrp
= container_of(css
, struct perf_cgroup
, css
);
786 info
= this_cpu_ptr(cgrp
->info
);
787 info
->timestamp
= ctx
->timestamp
;
791 static DEFINE_PER_CPU(struct list_head
, cgrp_cpuctx_list
);
793 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
794 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
797 * reschedule events based on the cgroup constraint of task.
799 * mode SWOUT : schedule out everything
800 * mode SWIN : schedule in based on cgroup for next
802 static void perf_cgroup_switch(struct task_struct
*task
, int mode
)
804 struct perf_cpu_context
*cpuctx
;
805 struct list_head
*list
;
809 * Disable interrupts and preemption to avoid this CPU's
810 * cgrp_cpuctx_entry to change under us.
812 local_irq_save(flags
);
814 list
= this_cpu_ptr(&cgrp_cpuctx_list
);
815 list_for_each_entry(cpuctx
, list
, cgrp_cpuctx_entry
) {
816 WARN_ON_ONCE(cpuctx
->ctx
.nr_cgroups
== 0);
818 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
819 perf_pmu_disable(cpuctx
->ctx
.pmu
);
821 if (mode
& PERF_CGROUP_SWOUT
) {
822 cpu_ctx_sched_out(cpuctx
, EVENT_ALL
);
824 * must not be done before ctxswout due
825 * to event_filter_match() in event_sched_out()
830 if (mode
& PERF_CGROUP_SWIN
) {
831 WARN_ON_ONCE(cpuctx
->cgrp
);
833 * set cgrp before ctxsw in to allow
834 * event_filter_match() to not have to pass
836 * we pass the cpuctx->ctx to perf_cgroup_from_task()
837 * because cgorup events are only per-cpu
839 cpuctx
->cgrp
= perf_cgroup_from_task(task
,
841 cpu_ctx_sched_in(cpuctx
, EVENT_ALL
, task
);
843 perf_pmu_enable(cpuctx
->ctx
.pmu
);
844 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
847 local_irq_restore(flags
);
850 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
851 struct task_struct
*next
)
853 struct perf_cgroup
*cgrp1
;
854 struct perf_cgroup
*cgrp2
= NULL
;
858 * we come here when we know perf_cgroup_events > 0
859 * we do not need to pass the ctx here because we know
860 * we are holding the rcu lock
862 cgrp1
= perf_cgroup_from_task(task
, NULL
);
863 cgrp2
= perf_cgroup_from_task(next
, NULL
);
866 * only schedule out current cgroup events if we know
867 * that we are switching to a different cgroup. Otherwise,
868 * do no touch the cgroup events.
871 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
);
876 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
877 struct task_struct
*task
)
879 struct perf_cgroup
*cgrp1
;
880 struct perf_cgroup
*cgrp2
= NULL
;
884 * we come here when we know perf_cgroup_events > 0
885 * we do not need to pass the ctx here because we know
886 * we are holding the rcu lock
888 cgrp1
= perf_cgroup_from_task(task
, NULL
);
889 cgrp2
= perf_cgroup_from_task(prev
, NULL
);
892 * only need to schedule in cgroup events if we are changing
893 * cgroup during ctxsw. Cgroup events were not scheduled
894 * out of ctxsw out if that was not the case.
897 perf_cgroup_switch(task
, PERF_CGROUP_SWIN
);
902 static int perf_cgroup_ensure_storage(struct perf_event
*event
,
903 struct cgroup_subsys_state
*css
)
905 struct perf_cpu_context
*cpuctx
;
906 struct perf_event
**storage
;
907 int cpu
, heap_size
, ret
= 0;
910 * Allow storage to have sufficent space for an iterator for each
911 * possibly nested cgroup plus an iterator for events with no cgroup.
913 for (heap_size
= 1; css
; css
= css
->parent
)
916 for_each_possible_cpu(cpu
) {
917 cpuctx
= per_cpu_ptr(event
->pmu
->pmu_cpu_context
, cpu
);
918 if (heap_size
<= cpuctx
->heap_size
)
921 storage
= kmalloc_node(heap_size
* sizeof(struct perf_event
*),
922 GFP_KERNEL
, cpu_to_node(cpu
));
928 raw_spin_lock_irq(&cpuctx
->ctx
.lock
);
929 if (cpuctx
->heap_size
< heap_size
) {
930 swap(cpuctx
->heap
, storage
);
931 if (storage
== cpuctx
->heap_default
)
933 cpuctx
->heap_size
= heap_size
;
935 raw_spin_unlock_irq(&cpuctx
->ctx
.lock
);
943 static inline int perf_cgroup_connect(int fd
, struct perf_event
*event
,
944 struct perf_event_attr
*attr
,
945 struct perf_event
*group_leader
)
947 struct perf_cgroup
*cgrp
;
948 struct cgroup_subsys_state
*css
;
949 struct fd f
= fdget(fd
);
955 css
= css_tryget_online_from_dir(f
.file
->f_path
.dentry
,
956 &perf_event_cgrp_subsys
);
962 ret
= perf_cgroup_ensure_storage(event
, css
);
966 cgrp
= container_of(css
, struct perf_cgroup
, css
);
970 * all events in a group must monitor
971 * the same cgroup because a task belongs
972 * to only one perf cgroup at a time
974 if (group_leader
&& group_leader
->cgrp
!= cgrp
) {
975 perf_detach_cgroup(event
);
984 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
986 struct perf_cgroup_info
*t
;
987 t
= per_cpu_ptr(event
->cgrp
->info
, event
->cpu
);
988 event
->shadow_ctx_time
= now
- t
->timestamp
;
992 perf_cgroup_event_enable(struct perf_event
*event
, struct perf_event_context
*ctx
)
994 struct perf_cpu_context
*cpuctx
;
996 if (!is_cgroup_event(event
))
1000 * Because cgroup events are always per-cpu events,
1001 * @ctx == &cpuctx->ctx.
1003 cpuctx
= container_of(ctx
, struct perf_cpu_context
, ctx
);
1006 * Since setting cpuctx->cgrp is conditional on the current @cgrp
1007 * matching the event's cgroup, we must do this for every new event,
1008 * because if the first would mismatch, the second would not try again
1009 * and we would leave cpuctx->cgrp unset.
1011 if (ctx
->is_active
&& !cpuctx
->cgrp
) {
1012 struct perf_cgroup
*cgrp
= perf_cgroup_from_task(current
, ctx
);
1014 if (cgroup_is_descendant(cgrp
->css
.cgroup
, event
->cgrp
->css
.cgroup
))
1015 cpuctx
->cgrp
= cgrp
;
1018 if (ctx
->nr_cgroups
++)
1021 list_add(&cpuctx
->cgrp_cpuctx_entry
,
1022 per_cpu_ptr(&cgrp_cpuctx_list
, event
->cpu
));
1026 perf_cgroup_event_disable(struct perf_event
*event
, struct perf_event_context
*ctx
)
1028 struct perf_cpu_context
*cpuctx
;
1030 if (!is_cgroup_event(event
))
1034 * Because cgroup events are always per-cpu events,
1035 * @ctx == &cpuctx->ctx.
1037 cpuctx
= container_of(ctx
, struct perf_cpu_context
, ctx
);
1039 if (--ctx
->nr_cgroups
)
1042 if (ctx
->is_active
&& cpuctx
->cgrp
)
1043 cpuctx
->cgrp
= NULL
;
1045 list_del(&cpuctx
->cgrp_cpuctx_entry
);
1048 #else /* !CONFIG_CGROUP_PERF */
1051 perf_cgroup_match(struct perf_event
*event
)
1056 static inline void perf_detach_cgroup(struct perf_event
*event
)
1059 static inline int is_cgroup_event(struct perf_event
*event
)
1064 static inline void update_cgrp_time_from_event(struct perf_event
*event
)
1068 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context
*cpuctx
)
1072 static inline void perf_cgroup_sched_out(struct task_struct
*task
,
1073 struct task_struct
*next
)
1077 static inline void perf_cgroup_sched_in(struct task_struct
*prev
,
1078 struct task_struct
*task
)
1082 static inline int perf_cgroup_connect(pid_t pid
, struct perf_event
*event
,
1083 struct perf_event_attr
*attr
,
1084 struct perf_event
*group_leader
)
1090 perf_cgroup_set_timestamp(struct task_struct
*task
,
1091 struct perf_event_context
*ctx
)
1096 perf_cgroup_switch(struct task_struct
*task
, struct task_struct
*next
)
1101 perf_cgroup_set_shadow_time(struct perf_event
*event
, u64 now
)
1105 static inline u64
perf_cgroup_event_time(struct perf_event
*event
)
1111 perf_cgroup_event_enable(struct perf_event
*event
, struct perf_event_context
*ctx
)
1116 perf_cgroup_event_disable(struct perf_event
*event
, struct perf_event_context
*ctx
)
1122 * set default to be dependent on timer tick just
1123 * like original code
1125 #define PERF_CPU_HRTIMER (1000 / HZ)
1127 * function must be called with interrupts disabled
1129 static enum hrtimer_restart
perf_mux_hrtimer_handler(struct hrtimer
*hr
)
1131 struct perf_cpu_context
*cpuctx
;
1134 lockdep_assert_irqs_disabled();
1136 cpuctx
= container_of(hr
, struct perf_cpu_context
, hrtimer
);
1137 rotations
= perf_rotate_context(cpuctx
);
1139 raw_spin_lock(&cpuctx
->hrtimer_lock
);
1141 hrtimer_forward_now(hr
, cpuctx
->hrtimer_interval
);
1143 cpuctx
->hrtimer_active
= 0;
1144 raw_spin_unlock(&cpuctx
->hrtimer_lock
);
1146 return rotations
? HRTIMER_RESTART
: HRTIMER_NORESTART
;
1149 static void __perf_mux_hrtimer_init(struct perf_cpu_context
*cpuctx
, int cpu
)
1151 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
1152 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
1155 /* no multiplexing needed for SW PMU */
1156 if (pmu
->task_ctx_nr
== perf_sw_context
)
1160 * check default is sane, if not set then force to
1161 * default interval (1/tick)
1163 interval
= pmu
->hrtimer_interval_ms
;
1165 interval
= pmu
->hrtimer_interval_ms
= PERF_CPU_HRTIMER
;
1167 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* interval
);
1169 raw_spin_lock_init(&cpuctx
->hrtimer_lock
);
1170 hrtimer_init(timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED_HARD
);
1171 timer
->function
= perf_mux_hrtimer_handler
;
1174 static int perf_mux_hrtimer_restart(struct perf_cpu_context
*cpuctx
)
1176 struct hrtimer
*timer
= &cpuctx
->hrtimer
;
1177 struct pmu
*pmu
= cpuctx
->ctx
.pmu
;
1178 unsigned long flags
;
1180 /* not for SW PMU */
1181 if (pmu
->task_ctx_nr
== perf_sw_context
)
1184 raw_spin_lock_irqsave(&cpuctx
->hrtimer_lock
, flags
);
1185 if (!cpuctx
->hrtimer_active
) {
1186 cpuctx
->hrtimer_active
= 1;
1187 hrtimer_forward_now(timer
, cpuctx
->hrtimer_interval
);
1188 hrtimer_start_expires(timer
, HRTIMER_MODE_ABS_PINNED_HARD
);
1190 raw_spin_unlock_irqrestore(&cpuctx
->hrtimer_lock
, flags
);
1195 void perf_pmu_disable(struct pmu
*pmu
)
1197 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1199 pmu
->pmu_disable(pmu
);
1202 void perf_pmu_enable(struct pmu
*pmu
)
1204 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
1206 pmu
->pmu_enable(pmu
);
1209 static DEFINE_PER_CPU(struct list_head
, active_ctx_list
);
1212 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1213 * perf_event_task_tick() are fully serialized because they're strictly cpu
1214 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1215 * disabled, while perf_event_task_tick is called from IRQ context.
1217 static void perf_event_ctx_activate(struct perf_event_context
*ctx
)
1219 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
1221 lockdep_assert_irqs_disabled();
1223 WARN_ON(!list_empty(&ctx
->active_ctx_list
));
1225 list_add(&ctx
->active_ctx_list
, head
);
1228 static void perf_event_ctx_deactivate(struct perf_event_context
*ctx
)
1230 lockdep_assert_irqs_disabled();
1232 WARN_ON(list_empty(&ctx
->active_ctx_list
));
1234 list_del_init(&ctx
->active_ctx_list
);
1237 static void get_ctx(struct perf_event_context
*ctx
)
1239 refcount_inc(&ctx
->refcount
);
1242 static void *alloc_task_ctx_data(struct pmu
*pmu
)
1244 if (pmu
->task_ctx_cache
)
1245 return kmem_cache_zalloc(pmu
->task_ctx_cache
, GFP_KERNEL
);
1250 static void free_task_ctx_data(struct pmu
*pmu
, void *task_ctx_data
)
1252 if (pmu
->task_ctx_cache
&& task_ctx_data
)
1253 kmem_cache_free(pmu
->task_ctx_cache
, task_ctx_data
);
1256 static void free_ctx(struct rcu_head
*head
)
1258 struct perf_event_context
*ctx
;
1260 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
1261 free_task_ctx_data(ctx
->pmu
, ctx
->task_ctx_data
);
1265 static void put_ctx(struct perf_event_context
*ctx
)
1267 if (refcount_dec_and_test(&ctx
->refcount
)) {
1268 if (ctx
->parent_ctx
)
1269 put_ctx(ctx
->parent_ctx
);
1270 if (ctx
->task
&& ctx
->task
!= TASK_TOMBSTONE
)
1271 put_task_struct(ctx
->task
);
1272 call_rcu(&ctx
->rcu_head
, free_ctx
);
1277 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1278 * perf_pmu_migrate_context() we need some magic.
1280 * Those places that change perf_event::ctx will hold both
1281 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1283 * Lock ordering is by mutex address. There are two other sites where
1284 * perf_event_context::mutex nests and those are:
1286 * - perf_event_exit_task_context() [ child , 0 ]
1287 * perf_event_exit_event()
1288 * put_event() [ parent, 1 ]
1290 * - perf_event_init_context() [ parent, 0 ]
1291 * inherit_task_group()
1294 * perf_event_alloc()
1296 * perf_try_init_event() [ child , 1 ]
1298 * While it appears there is an obvious deadlock here -- the parent and child
1299 * nesting levels are inverted between the two. This is in fact safe because
1300 * life-time rules separate them. That is an exiting task cannot fork, and a
1301 * spawning task cannot (yet) exit.
1303 * But remember that that these are parent<->child context relations, and
1304 * migration does not affect children, therefore these two orderings should not
1307 * The change in perf_event::ctx does not affect children (as claimed above)
1308 * because the sys_perf_event_open() case will install a new event and break
1309 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1310 * concerned with cpuctx and that doesn't have children.
1312 * The places that change perf_event::ctx will issue:
1314 * perf_remove_from_context();
1315 * synchronize_rcu();
1316 * perf_install_in_context();
1318 * to affect the change. The remove_from_context() + synchronize_rcu() should
1319 * quiesce the event, after which we can install it in the new location. This
1320 * means that only external vectors (perf_fops, prctl) can perturb the event
1321 * while in transit. Therefore all such accessors should also acquire
1322 * perf_event_context::mutex to serialize against this.
1324 * However; because event->ctx can change while we're waiting to acquire
1325 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1330 * task_struct::perf_event_mutex
1331 * perf_event_context::mutex
1332 * perf_event::child_mutex;
1333 * perf_event_context::lock
1334 * perf_event::mmap_mutex
1336 * perf_addr_filters_head::lock
1340 * cpuctx->mutex / perf_event_context::mutex
1342 static struct perf_event_context
*
1343 perf_event_ctx_lock_nested(struct perf_event
*event
, int nesting
)
1345 struct perf_event_context
*ctx
;
1349 ctx
= READ_ONCE(event
->ctx
);
1350 if (!refcount_inc_not_zero(&ctx
->refcount
)) {
1356 mutex_lock_nested(&ctx
->mutex
, nesting
);
1357 if (event
->ctx
!= ctx
) {
1358 mutex_unlock(&ctx
->mutex
);
1366 static inline struct perf_event_context
*
1367 perf_event_ctx_lock(struct perf_event
*event
)
1369 return perf_event_ctx_lock_nested(event
, 0);
1372 static void perf_event_ctx_unlock(struct perf_event
*event
,
1373 struct perf_event_context
*ctx
)
1375 mutex_unlock(&ctx
->mutex
);
1380 * This must be done under the ctx->lock, such as to serialize against
1381 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1382 * calling scheduler related locks and ctx->lock nests inside those.
1384 static __must_check
struct perf_event_context
*
1385 unclone_ctx(struct perf_event_context
*ctx
)
1387 struct perf_event_context
*parent_ctx
= ctx
->parent_ctx
;
1389 lockdep_assert_held(&ctx
->lock
);
1392 ctx
->parent_ctx
= NULL
;
1398 static u32
perf_event_pid_type(struct perf_event
*event
, struct task_struct
*p
,
1403 * only top level events have the pid namespace they were created in
1406 event
= event
->parent
;
1408 nr
= __task_pid_nr_ns(p
, type
, event
->ns
);
1409 /* avoid -1 if it is idle thread or runs in another ns */
1410 if (!nr
&& !pid_alive(p
))
1415 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
1417 return perf_event_pid_type(event
, p
, PIDTYPE_TGID
);
1420 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
1422 return perf_event_pid_type(event
, p
, PIDTYPE_PID
);
1426 * If we inherit events we want to return the parent event id
1429 static u64
primary_event_id(struct perf_event
*event
)
1434 id
= event
->parent
->id
;
1440 * Get the perf_event_context for a task and lock it.
1442 * This has to cope with with the fact that until it is locked,
1443 * the context could get moved to another task.
1445 static struct perf_event_context
*
1446 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
1448 struct perf_event_context
*ctx
;
1452 * One of the few rules of preemptible RCU is that one cannot do
1453 * rcu_read_unlock() while holding a scheduler (or nested) lock when
1454 * part of the read side critical section was irqs-enabled -- see
1455 * rcu_read_unlock_special().
1457 * Since ctx->lock nests under rq->lock we must ensure the entire read
1458 * side critical section has interrupts disabled.
1460 local_irq_save(*flags
);
1462 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
1465 * If this context is a clone of another, it might
1466 * get swapped for another underneath us by
1467 * perf_event_task_sched_out, though the
1468 * rcu_read_lock() protects us from any context
1469 * getting freed. Lock the context and check if it
1470 * got swapped before we could get the lock, and retry
1471 * if so. If we locked the right context, then it
1472 * can't get swapped on us any more.
1474 raw_spin_lock(&ctx
->lock
);
1475 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
1476 raw_spin_unlock(&ctx
->lock
);
1478 local_irq_restore(*flags
);
1482 if (ctx
->task
== TASK_TOMBSTONE
||
1483 !refcount_inc_not_zero(&ctx
->refcount
)) {
1484 raw_spin_unlock(&ctx
->lock
);
1487 WARN_ON_ONCE(ctx
->task
!= task
);
1492 local_irq_restore(*flags
);
1497 * Get the context for a task and increment its pin_count so it
1498 * can't get swapped to another task. This also increments its
1499 * reference count so that the context can't get freed.
1501 static struct perf_event_context
*
1502 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
1504 struct perf_event_context
*ctx
;
1505 unsigned long flags
;
1507 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
1510 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1515 static void perf_unpin_context(struct perf_event_context
*ctx
)
1517 unsigned long flags
;
1519 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1521 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1525 * Update the record of the current time in a context.
1527 static void update_context_time(struct perf_event_context
*ctx
)
1529 u64 now
= perf_clock();
1531 ctx
->time
+= now
- ctx
->timestamp
;
1532 ctx
->timestamp
= now
;
1535 static u64
perf_event_time(struct perf_event
*event
)
1537 struct perf_event_context
*ctx
= event
->ctx
;
1539 if (is_cgroup_event(event
))
1540 return perf_cgroup_event_time(event
);
1542 return ctx
? ctx
->time
: 0;
1545 static enum event_type_t
get_event_type(struct perf_event
*event
)
1547 struct perf_event_context
*ctx
= event
->ctx
;
1548 enum event_type_t event_type
;
1550 lockdep_assert_held(&ctx
->lock
);
1553 * It's 'group type', really, because if our group leader is
1554 * pinned, so are we.
1556 if (event
->group_leader
!= event
)
1557 event
= event
->group_leader
;
1559 event_type
= event
->attr
.pinned
? EVENT_PINNED
: EVENT_FLEXIBLE
;
1561 event_type
|= EVENT_CPU
;
1567 * Helper function to initialize event group nodes.
1569 static void init_event_group(struct perf_event
*event
)
1571 RB_CLEAR_NODE(&event
->group_node
);
1572 event
->group_index
= 0;
1576 * Extract pinned or flexible groups from the context
1577 * based on event attrs bits.
1579 static struct perf_event_groups
*
1580 get_event_groups(struct perf_event
*event
, struct perf_event_context
*ctx
)
1582 if (event
->attr
.pinned
)
1583 return &ctx
->pinned_groups
;
1585 return &ctx
->flexible_groups
;
1589 * Helper function to initializes perf_event_group trees.
1591 static void perf_event_groups_init(struct perf_event_groups
*groups
)
1593 groups
->tree
= RB_ROOT
;
1598 * Compare function for event groups;
1600 * Implements complex key that first sorts by CPU and then by virtual index
1601 * which provides ordering when rotating groups for the same CPU.
1604 perf_event_groups_less(struct perf_event
*left
, struct perf_event
*right
)
1606 if (left
->cpu
< right
->cpu
)
1608 if (left
->cpu
> right
->cpu
)
1611 #ifdef CONFIG_CGROUP_PERF
1612 if (left
->cgrp
!= right
->cgrp
) {
1613 if (!left
->cgrp
|| !left
->cgrp
->css
.cgroup
) {
1615 * Left has no cgroup but right does, no cgroups come
1620 if (!right
->cgrp
|| !right
->cgrp
->css
.cgroup
) {
1622 * Right has no cgroup but left does, no cgroups come
1627 /* Two dissimilar cgroups, order by id. */
1628 if (left
->cgrp
->css
.cgroup
->kn
->id
< right
->cgrp
->css
.cgroup
->kn
->id
)
1635 if (left
->group_index
< right
->group_index
)
1637 if (left
->group_index
> right
->group_index
)
1644 * Insert @event into @groups' tree; using {@event->cpu, ++@groups->index} for
1645 * key (see perf_event_groups_less). This places it last inside the CPU
1649 perf_event_groups_insert(struct perf_event_groups
*groups
,
1650 struct perf_event
*event
)
1652 struct perf_event
*node_event
;
1653 struct rb_node
*parent
;
1654 struct rb_node
**node
;
1656 event
->group_index
= ++groups
->index
;
1658 node
= &groups
->tree
.rb_node
;
1663 node_event
= container_of(*node
, struct perf_event
, group_node
);
1665 if (perf_event_groups_less(event
, node_event
))
1666 node
= &parent
->rb_left
;
1668 node
= &parent
->rb_right
;
1671 rb_link_node(&event
->group_node
, parent
, node
);
1672 rb_insert_color(&event
->group_node
, &groups
->tree
);
1676 * Helper function to insert event into the pinned or flexible groups.
1679 add_event_to_groups(struct perf_event
*event
, struct perf_event_context
*ctx
)
1681 struct perf_event_groups
*groups
;
1683 groups
= get_event_groups(event
, ctx
);
1684 perf_event_groups_insert(groups
, event
);
1688 * Delete a group from a tree.
1691 perf_event_groups_delete(struct perf_event_groups
*groups
,
1692 struct perf_event
*event
)
1694 WARN_ON_ONCE(RB_EMPTY_NODE(&event
->group_node
) ||
1695 RB_EMPTY_ROOT(&groups
->tree
));
1697 rb_erase(&event
->group_node
, &groups
->tree
);
1698 init_event_group(event
);
1702 * Helper function to delete event from its groups.
1705 del_event_from_groups(struct perf_event
*event
, struct perf_event_context
*ctx
)
1707 struct perf_event_groups
*groups
;
1709 groups
= get_event_groups(event
, ctx
);
1710 perf_event_groups_delete(groups
, event
);
1714 * Get the leftmost event in the cpu/cgroup subtree.
1716 static struct perf_event
*
1717 perf_event_groups_first(struct perf_event_groups
*groups
, int cpu
,
1718 struct cgroup
*cgrp
)
1720 struct perf_event
*node_event
= NULL
, *match
= NULL
;
1721 struct rb_node
*node
= groups
->tree
.rb_node
;
1722 #ifdef CONFIG_CGROUP_PERF
1723 u64 node_cgrp_id
, cgrp_id
= 0;
1726 cgrp_id
= cgrp
->kn
->id
;
1730 node_event
= container_of(node
, struct perf_event
, group_node
);
1732 if (cpu
< node_event
->cpu
) {
1733 node
= node
->rb_left
;
1736 if (cpu
> node_event
->cpu
) {
1737 node
= node
->rb_right
;
1740 #ifdef CONFIG_CGROUP_PERF
1742 if (node_event
->cgrp
&& node_event
->cgrp
->css
.cgroup
)
1743 node_cgrp_id
= node_event
->cgrp
->css
.cgroup
->kn
->id
;
1745 if (cgrp_id
< node_cgrp_id
) {
1746 node
= node
->rb_left
;
1749 if (cgrp_id
> node_cgrp_id
) {
1750 node
= node
->rb_right
;
1755 node
= node
->rb_left
;
1762 * Like rb_entry_next_safe() for the @cpu subtree.
1764 static struct perf_event
*
1765 perf_event_groups_next(struct perf_event
*event
)
1767 struct perf_event
*next
;
1768 #ifdef CONFIG_CGROUP_PERF
1769 u64 curr_cgrp_id
= 0;
1770 u64 next_cgrp_id
= 0;
1773 next
= rb_entry_safe(rb_next(&event
->group_node
), typeof(*event
), group_node
);
1774 if (next
== NULL
|| next
->cpu
!= event
->cpu
)
1777 #ifdef CONFIG_CGROUP_PERF
1778 if (event
->cgrp
&& event
->cgrp
->css
.cgroup
)
1779 curr_cgrp_id
= event
->cgrp
->css
.cgroup
->kn
->id
;
1781 if (next
->cgrp
&& next
->cgrp
->css
.cgroup
)
1782 next_cgrp_id
= next
->cgrp
->css
.cgroup
->kn
->id
;
1784 if (curr_cgrp_id
!= next_cgrp_id
)
1791 * Iterate through the whole groups tree.
1793 #define perf_event_groups_for_each(event, groups) \
1794 for (event = rb_entry_safe(rb_first(&((groups)->tree)), \
1795 typeof(*event), group_node); event; \
1796 event = rb_entry_safe(rb_next(&event->group_node), \
1797 typeof(*event), group_node))
1800 * Add an event from the lists for its context.
1801 * Must be called with ctx->mutex and ctx->lock held.
1804 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1806 lockdep_assert_held(&ctx
->lock
);
1808 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
1809 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
1811 event
->tstamp
= perf_event_time(event
);
1814 * If we're a stand alone event or group leader, we go to the context
1815 * list, group events are kept attached to the group so that
1816 * perf_group_detach can, at all times, locate all siblings.
1818 if (event
->group_leader
== event
) {
1819 event
->group_caps
= event
->event_caps
;
1820 add_event_to_groups(event
, ctx
);
1823 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
1825 if (event
->attr
.inherit_stat
)
1828 if (event
->state
> PERF_EVENT_STATE_OFF
)
1829 perf_cgroup_event_enable(event
, ctx
);
1835 * Initialize event state based on the perf_event_attr::disabled.
1837 static inline void perf_event__state_init(struct perf_event
*event
)
1839 event
->state
= event
->attr
.disabled
? PERF_EVENT_STATE_OFF
:
1840 PERF_EVENT_STATE_INACTIVE
;
1843 static void __perf_event_read_size(struct perf_event
*event
, int nr_siblings
)
1845 int entry
= sizeof(u64
); /* value */
1849 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1850 size
+= sizeof(u64
);
1852 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1853 size
+= sizeof(u64
);
1855 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
1856 entry
+= sizeof(u64
);
1858 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1860 size
+= sizeof(u64
);
1864 event
->read_size
= size
;
1867 static void __perf_event_header_size(struct perf_event
*event
, u64 sample_type
)
1869 struct perf_sample_data
*data
;
1872 if (sample_type
& PERF_SAMPLE_IP
)
1873 size
+= sizeof(data
->ip
);
1875 if (sample_type
& PERF_SAMPLE_ADDR
)
1876 size
+= sizeof(data
->addr
);
1878 if (sample_type
& PERF_SAMPLE_PERIOD
)
1879 size
+= sizeof(data
->period
);
1881 if (sample_type
& PERF_SAMPLE_WEIGHT
)
1882 size
+= sizeof(data
->weight
);
1884 if (sample_type
& PERF_SAMPLE_READ
)
1885 size
+= event
->read_size
;
1887 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
1888 size
+= sizeof(data
->data_src
.val
);
1890 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
1891 size
+= sizeof(data
->txn
);
1893 if (sample_type
& PERF_SAMPLE_PHYS_ADDR
)
1894 size
+= sizeof(data
->phys_addr
);
1896 if (sample_type
& PERF_SAMPLE_CGROUP
)
1897 size
+= sizeof(data
->cgroup
);
1899 event
->header_size
= size
;
1903 * Called at perf_event creation and when events are attached/detached from a
1906 static void perf_event__header_size(struct perf_event
*event
)
1908 __perf_event_read_size(event
,
1909 event
->group_leader
->nr_siblings
);
1910 __perf_event_header_size(event
, event
->attr
.sample_type
);
1913 static void perf_event__id_header_size(struct perf_event
*event
)
1915 struct perf_sample_data
*data
;
1916 u64 sample_type
= event
->attr
.sample_type
;
1919 if (sample_type
& PERF_SAMPLE_TID
)
1920 size
+= sizeof(data
->tid_entry
);
1922 if (sample_type
& PERF_SAMPLE_TIME
)
1923 size
+= sizeof(data
->time
);
1925 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
1926 size
+= sizeof(data
->id
);
1928 if (sample_type
& PERF_SAMPLE_ID
)
1929 size
+= sizeof(data
->id
);
1931 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
1932 size
+= sizeof(data
->stream_id
);
1934 if (sample_type
& PERF_SAMPLE_CPU
)
1935 size
+= sizeof(data
->cpu_entry
);
1937 event
->id_header_size
= size
;
1940 static bool perf_event_validate_size(struct perf_event
*event
)
1943 * The values computed here will be over-written when we actually
1946 __perf_event_read_size(event
, event
->group_leader
->nr_siblings
+ 1);
1947 __perf_event_header_size(event
, event
->attr
.sample_type
& ~PERF_SAMPLE_READ
);
1948 perf_event__id_header_size(event
);
1951 * Sum the lot; should not exceed the 64k limit we have on records.
1952 * Conservative limit to allow for callchains and other variable fields.
1954 if (event
->read_size
+ event
->header_size
+
1955 event
->id_header_size
+ sizeof(struct perf_event_header
) >= 16*1024)
1961 static void perf_group_attach(struct perf_event
*event
)
1963 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
1965 lockdep_assert_held(&event
->ctx
->lock
);
1968 * We can have double attach due to group movement in perf_event_open.
1970 if (event
->attach_state
& PERF_ATTACH_GROUP
)
1973 event
->attach_state
|= PERF_ATTACH_GROUP
;
1975 if (group_leader
== event
)
1978 WARN_ON_ONCE(group_leader
->ctx
!= event
->ctx
);
1980 group_leader
->group_caps
&= event
->event_caps
;
1982 list_add_tail(&event
->sibling_list
, &group_leader
->sibling_list
);
1983 group_leader
->nr_siblings
++;
1985 perf_event__header_size(group_leader
);
1987 for_each_sibling_event(pos
, group_leader
)
1988 perf_event__header_size(pos
);
1992 * Remove an event from the lists for its context.
1993 * Must be called with ctx->mutex and ctx->lock held.
1996 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
1998 WARN_ON_ONCE(event
->ctx
!= ctx
);
1999 lockdep_assert_held(&ctx
->lock
);
2002 * We can have double detach due to exit/hot-unplug + close.
2004 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
2007 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
2010 if (event
->attr
.inherit_stat
)
2013 list_del_rcu(&event
->event_entry
);
2015 if (event
->group_leader
== event
)
2016 del_event_from_groups(event
, ctx
);
2019 * If event was in error state, then keep it
2020 * that way, otherwise bogus counts will be
2021 * returned on read(). The only way to get out
2022 * of error state is by explicit re-enabling
2025 if (event
->state
> PERF_EVENT_STATE_OFF
) {
2026 perf_cgroup_event_disable(event
, ctx
);
2027 perf_event_set_state(event
, PERF_EVENT_STATE_OFF
);
2034 perf_aux_output_match(struct perf_event
*event
, struct perf_event
*aux_event
)
2036 if (!has_aux(aux_event
))
2039 if (!event
->pmu
->aux_output_match
)
2042 return event
->pmu
->aux_output_match(aux_event
);
2045 static void put_event(struct perf_event
*event
);
2046 static void event_sched_out(struct perf_event
*event
,
2047 struct perf_cpu_context
*cpuctx
,
2048 struct perf_event_context
*ctx
);
2050 static void perf_put_aux_event(struct perf_event
*event
)
2052 struct perf_event_context
*ctx
= event
->ctx
;
2053 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2054 struct perf_event
*iter
;
2057 * If event uses aux_event tear down the link
2059 if (event
->aux_event
) {
2060 iter
= event
->aux_event
;
2061 event
->aux_event
= NULL
;
2067 * If the event is an aux_event, tear down all links to
2068 * it from other events.
2070 for_each_sibling_event(iter
, event
->group_leader
) {
2071 if (iter
->aux_event
!= event
)
2074 iter
->aux_event
= NULL
;
2078 * If it's ACTIVE, schedule it out and put it into ERROR
2079 * state so that we don't try to schedule it again. Note
2080 * that perf_event_enable() will clear the ERROR status.
2082 event_sched_out(iter
, cpuctx
, ctx
);
2083 perf_event_set_state(event
, PERF_EVENT_STATE_ERROR
);
2087 static bool perf_need_aux_event(struct perf_event
*event
)
2089 return !!event
->attr
.aux_output
|| !!event
->attr
.aux_sample_size
;
2092 static int perf_get_aux_event(struct perf_event
*event
,
2093 struct perf_event
*group_leader
)
2096 * Our group leader must be an aux event if we want to be
2097 * an aux_output. This way, the aux event will precede its
2098 * aux_output events in the group, and therefore will always
2105 * aux_output and aux_sample_size are mutually exclusive.
2107 if (event
->attr
.aux_output
&& event
->attr
.aux_sample_size
)
2110 if (event
->attr
.aux_output
&&
2111 !perf_aux_output_match(event
, group_leader
))
2114 if (event
->attr
.aux_sample_size
&& !group_leader
->pmu
->snapshot_aux
)
2117 if (!atomic_long_inc_not_zero(&group_leader
->refcount
))
2121 * Link aux_outputs to their aux event; this is undone in
2122 * perf_group_detach() by perf_put_aux_event(). When the
2123 * group in torn down, the aux_output events loose their
2124 * link to the aux_event and can't schedule any more.
2126 event
->aux_event
= group_leader
;
2131 static inline struct list_head
*get_event_list(struct perf_event
*event
)
2133 struct perf_event_context
*ctx
= event
->ctx
;
2134 return event
->attr
.pinned
? &ctx
->pinned_active
: &ctx
->flexible_active
;
2137 static void perf_group_detach(struct perf_event
*event
)
2139 struct perf_event
*sibling
, *tmp
;
2140 struct perf_event_context
*ctx
= event
->ctx
;
2142 lockdep_assert_held(&ctx
->lock
);
2145 * We can have double detach due to exit/hot-unplug + close.
2147 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
2150 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
2152 perf_put_aux_event(event
);
2155 * If this is a sibling, remove it from its group.
2157 if (event
->group_leader
!= event
) {
2158 list_del_init(&event
->sibling_list
);
2159 event
->group_leader
->nr_siblings
--;
2164 * If this was a group event with sibling events then
2165 * upgrade the siblings to singleton events by adding them
2166 * to whatever list we are on.
2168 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, sibling_list
) {
2170 sibling
->group_leader
= sibling
;
2171 list_del_init(&sibling
->sibling_list
);
2173 /* Inherit group flags from the previous leader */
2174 sibling
->group_caps
= event
->group_caps
;
2176 if (!RB_EMPTY_NODE(&event
->group_node
)) {
2177 add_event_to_groups(sibling
, event
->ctx
);
2179 if (sibling
->state
== PERF_EVENT_STATE_ACTIVE
)
2180 list_add_tail(&sibling
->active_list
, get_event_list(sibling
));
2183 WARN_ON_ONCE(sibling
->ctx
!= event
->ctx
);
2187 perf_event__header_size(event
->group_leader
);
2189 for_each_sibling_event(tmp
, event
->group_leader
)
2190 perf_event__header_size(tmp
);
2193 static bool is_orphaned_event(struct perf_event
*event
)
2195 return event
->state
== PERF_EVENT_STATE_DEAD
;
2198 static inline int __pmu_filter_match(struct perf_event
*event
)
2200 struct pmu
*pmu
= event
->pmu
;
2201 return pmu
->filter_match
? pmu
->filter_match(event
) : 1;
2205 * Check whether we should attempt to schedule an event group based on
2206 * PMU-specific filtering. An event group can consist of HW and SW events,
2207 * potentially with a SW leader, so we must check all the filters, to
2208 * determine whether a group is schedulable:
2210 static inline int pmu_filter_match(struct perf_event
*event
)
2212 struct perf_event
*sibling
;
2214 if (!__pmu_filter_match(event
))
2217 for_each_sibling_event(sibling
, event
) {
2218 if (!__pmu_filter_match(sibling
))
2226 event_filter_match(struct perf_event
*event
)
2228 return (event
->cpu
== -1 || event
->cpu
== smp_processor_id()) &&
2229 perf_cgroup_match(event
) && pmu_filter_match(event
);
2233 event_sched_out(struct perf_event
*event
,
2234 struct perf_cpu_context
*cpuctx
,
2235 struct perf_event_context
*ctx
)
2237 enum perf_event_state state
= PERF_EVENT_STATE_INACTIVE
;
2239 WARN_ON_ONCE(event
->ctx
!= ctx
);
2240 lockdep_assert_held(&ctx
->lock
);
2242 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2246 * Asymmetry; we only schedule events _IN_ through ctx_sched_in(), but
2247 * we can schedule events _OUT_ individually through things like
2248 * __perf_remove_from_context().
2250 list_del_init(&event
->active_list
);
2252 perf_pmu_disable(event
->pmu
);
2254 event
->pmu
->del(event
, 0);
2257 if (READ_ONCE(event
->pending_disable
) >= 0) {
2258 WRITE_ONCE(event
->pending_disable
, -1);
2259 perf_cgroup_event_disable(event
, ctx
);
2260 state
= PERF_EVENT_STATE_OFF
;
2262 perf_event_set_state(event
, state
);
2264 if (!is_software_event(event
))
2265 cpuctx
->active_oncpu
--;
2266 if (!--ctx
->nr_active
)
2267 perf_event_ctx_deactivate(ctx
);
2268 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
2270 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
2271 cpuctx
->exclusive
= 0;
2273 perf_pmu_enable(event
->pmu
);
2277 group_sched_out(struct perf_event
*group_event
,
2278 struct perf_cpu_context
*cpuctx
,
2279 struct perf_event_context
*ctx
)
2281 struct perf_event
*event
;
2283 if (group_event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2286 perf_pmu_disable(ctx
->pmu
);
2288 event_sched_out(group_event
, cpuctx
, ctx
);
2291 * Schedule out siblings (if any):
2293 for_each_sibling_event(event
, group_event
)
2294 event_sched_out(event
, cpuctx
, ctx
);
2296 perf_pmu_enable(ctx
->pmu
);
2298 if (group_event
->attr
.exclusive
)
2299 cpuctx
->exclusive
= 0;
2302 #define DETACH_GROUP 0x01UL
2305 * Cross CPU call to remove a performance event
2307 * We disable the event on the hardware level first. After that we
2308 * remove it from the context list.
2311 __perf_remove_from_context(struct perf_event
*event
,
2312 struct perf_cpu_context
*cpuctx
,
2313 struct perf_event_context
*ctx
,
2316 unsigned long flags
= (unsigned long)info
;
2318 if (ctx
->is_active
& EVENT_TIME
) {
2319 update_context_time(ctx
);
2320 update_cgrp_time_from_cpuctx(cpuctx
);
2323 event_sched_out(event
, cpuctx
, ctx
);
2324 if (flags
& DETACH_GROUP
)
2325 perf_group_detach(event
);
2326 list_del_event(event
, ctx
);
2328 if (!ctx
->nr_events
&& ctx
->is_active
) {
2330 ctx
->rotate_necessary
= 0;
2332 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
2333 cpuctx
->task_ctx
= NULL
;
2339 * Remove the event from a task's (or a CPU's) list of events.
2341 * If event->ctx is a cloned context, callers must make sure that
2342 * every task struct that event->ctx->task could possibly point to
2343 * remains valid. This is OK when called from perf_release since
2344 * that only calls us on the top-level context, which can't be a clone.
2345 * When called from perf_event_exit_task, it's OK because the
2346 * context has been detached from its task.
2348 static void perf_remove_from_context(struct perf_event
*event
, unsigned long flags
)
2350 struct perf_event_context
*ctx
= event
->ctx
;
2352 lockdep_assert_held(&ctx
->mutex
);
2354 event_function_call(event
, __perf_remove_from_context
, (void *)flags
);
2357 * The above event_function_call() can NO-OP when it hits
2358 * TASK_TOMBSTONE. In that case we must already have been detached
2359 * from the context (by perf_event_exit_event()) but the grouping
2360 * might still be in-tact.
2362 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
2363 if ((flags
& DETACH_GROUP
) &&
2364 (event
->attach_state
& PERF_ATTACH_GROUP
)) {
2366 * Since in that case we cannot possibly be scheduled, simply
2369 raw_spin_lock_irq(&ctx
->lock
);
2370 perf_group_detach(event
);
2371 raw_spin_unlock_irq(&ctx
->lock
);
2376 * Cross CPU call to disable a performance event
2378 static void __perf_event_disable(struct perf_event
*event
,
2379 struct perf_cpu_context
*cpuctx
,
2380 struct perf_event_context
*ctx
,
2383 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
2386 if (ctx
->is_active
& EVENT_TIME
) {
2387 update_context_time(ctx
);
2388 update_cgrp_time_from_event(event
);
2391 if (event
== event
->group_leader
)
2392 group_sched_out(event
, cpuctx
, ctx
);
2394 event_sched_out(event
, cpuctx
, ctx
);
2396 perf_event_set_state(event
, PERF_EVENT_STATE_OFF
);
2397 perf_cgroup_event_disable(event
, ctx
);
2403 * If event->ctx is a cloned context, callers must make sure that
2404 * every task struct that event->ctx->task could possibly point to
2405 * remains valid. This condition is satisfied when called through
2406 * perf_event_for_each_child or perf_event_for_each because they
2407 * hold the top-level event's child_mutex, so any descendant that
2408 * goes to exit will block in perf_event_exit_event().
2410 * When called from perf_pending_event it's OK because event->ctx
2411 * is the current context on this CPU and preemption is disabled,
2412 * hence we can't get into perf_event_task_sched_out for this context.
2414 static void _perf_event_disable(struct perf_event
*event
)
2416 struct perf_event_context
*ctx
= event
->ctx
;
2418 raw_spin_lock_irq(&ctx
->lock
);
2419 if (event
->state
<= PERF_EVENT_STATE_OFF
) {
2420 raw_spin_unlock_irq(&ctx
->lock
);
2423 raw_spin_unlock_irq(&ctx
->lock
);
2425 event_function_call(event
, __perf_event_disable
, NULL
);
2428 void perf_event_disable_local(struct perf_event
*event
)
2430 event_function_local(event
, __perf_event_disable
, NULL
);
2434 * Strictly speaking kernel users cannot create groups and therefore this
2435 * interface does not need the perf_event_ctx_lock() magic.
2437 void perf_event_disable(struct perf_event
*event
)
2439 struct perf_event_context
*ctx
;
2441 ctx
= perf_event_ctx_lock(event
);
2442 _perf_event_disable(event
);
2443 perf_event_ctx_unlock(event
, ctx
);
2445 EXPORT_SYMBOL_GPL(perf_event_disable
);
2447 void perf_event_disable_inatomic(struct perf_event
*event
)
2449 WRITE_ONCE(event
->pending_disable
, smp_processor_id());
2450 /* can fail, see perf_pending_event_disable() */
2451 irq_work_queue(&event
->pending
);
2454 static void perf_set_shadow_time(struct perf_event
*event
,
2455 struct perf_event_context
*ctx
)
2458 * use the correct time source for the time snapshot
2460 * We could get by without this by leveraging the
2461 * fact that to get to this function, the caller
2462 * has most likely already called update_context_time()
2463 * and update_cgrp_time_xx() and thus both timestamp
2464 * are identical (or very close). Given that tstamp is,
2465 * already adjusted for cgroup, we could say that:
2466 * tstamp - ctx->timestamp
2468 * tstamp - cgrp->timestamp.
2470 * Then, in perf_output_read(), the calculation would
2471 * work with no changes because:
2472 * - event is guaranteed scheduled in
2473 * - no scheduled out in between
2474 * - thus the timestamp would be the same
2476 * But this is a bit hairy.
2478 * So instead, we have an explicit cgroup call to remain
2479 * within the time time source all along. We believe it
2480 * is cleaner and simpler to understand.
2482 if (is_cgroup_event(event
))
2483 perf_cgroup_set_shadow_time(event
, event
->tstamp
);
2485 event
->shadow_ctx_time
= event
->tstamp
- ctx
->timestamp
;
2488 #define MAX_INTERRUPTS (~0ULL)
2490 static void perf_log_throttle(struct perf_event
*event
, int enable
);
2491 static void perf_log_itrace_start(struct perf_event
*event
);
2494 event_sched_in(struct perf_event
*event
,
2495 struct perf_cpu_context
*cpuctx
,
2496 struct perf_event_context
*ctx
)
2500 WARN_ON_ONCE(event
->ctx
!= ctx
);
2502 lockdep_assert_held(&ctx
->lock
);
2504 if (event
->state
<= PERF_EVENT_STATE_OFF
)
2507 WRITE_ONCE(event
->oncpu
, smp_processor_id());
2509 * Order event::oncpu write to happen before the ACTIVE state is
2510 * visible. This allows perf_event_{stop,read}() to observe the correct
2511 * ->oncpu if it sees ACTIVE.
2514 perf_event_set_state(event
, PERF_EVENT_STATE_ACTIVE
);
2517 * Unthrottle events, since we scheduled we might have missed several
2518 * ticks already, also for a heavily scheduling task there is little
2519 * guarantee it'll get a tick in a timely manner.
2521 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
2522 perf_log_throttle(event
, 1);
2523 event
->hw
.interrupts
= 0;
2526 perf_pmu_disable(event
->pmu
);
2528 perf_set_shadow_time(event
, ctx
);
2530 perf_log_itrace_start(event
);
2532 if (event
->pmu
->add(event
, PERF_EF_START
)) {
2533 perf_event_set_state(event
, PERF_EVENT_STATE_INACTIVE
);
2539 if (!is_software_event(event
))
2540 cpuctx
->active_oncpu
++;
2541 if (!ctx
->nr_active
++)
2542 perf_event_ctx_activate(ctx
);
2543 if (event
->attr
.freq
&& event
->attr
.sample_freq
)
2546 if (event
->attr
.exclusive
)
2547 cpuctx
->exclusive
= 1;
2550 perf_pmu_enable(event
->pmu
);
2556 group_sched_in(struct perf_event
*group_event
,
2557 struct perf_cpu_context
*cpuctx
,
2558 struct perf_event_context
*ctx
)
2560 struct perf_event
*event
, *partial_group
= NULL
;
2561 struct pmu
*pmu
= ctx
->pmu
;
2563 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
2566 pmu
->start_txn(pmu
, PERF_PMU_TXN_ADD
);
2568 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
2569 pmu
->cancel_txn(pmu
);
2570 perf_mux_hrtimer_restart(cpuctx
);
2575 * Schedule in siblings as one group (if any):
2577 for_each_sibling_event(event
, group_event
) {
2578 if (event_sched_in(event
, cpuctx
, ctx
)) {
2579 partial_group
= event
;
2584 if (!pmu
->commit_txn(pmu
))
2589 * Groups can be scheduled in as one unit only, so undo any
2590 * partial group before returning:
2591 * The events up to the failed event are scheduled out normally.
2593 for_each_sibling_event(event
, group_event
) {
2594 if (event
== partial_group
)
2597 event_sched_out(event
, cpuctx
, ctx
);
2599 event_sched_out(group_event
, cpuctx
, ctx
);
2601 pmu
->cancel_txn(pmu
);
2603 perf_mux_hrtimer_restart(cpuctx
);
2609 * Work out whether we can put this event group on the CPU now.
2611 static int group_can_go_on(struct perf_event
*event
,
2612 struct perf_cpu_context
*cpuctx
,
2616 * Groups consisting entirely of software events can always go on.
2618 if (event
->group_caps
& PERF_EV_CAP_SOFTWARE
)
2621 * If an exclusive group is already on, no other hardware
2624 if (cpuctx
->exclusive
)
2627 * If this group is exclusive and there are already
2628 * events on the CPU, it can't go on.
2630 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
2633 * Otherwise, try to add it if all previous groups were able
2639 static void add_event_to_ctx(struct perf_event
*event
,
2640 struct perf_event_context
*ctx
)
2642 list_add_event(event
, ctx
);
2643 perf_group_attach(event
);
2646 static void ctx_sched_out(struct perf_event_context
*ctx
,
2647 struct perf_cpu_context
*cpuctx
,
2648 enum event_type_t event_type
);
2650 ctx_sched_in(struct perf_event_context
*ctx
,
2651 struct perf_cpu_context
*cpuctx
,
2652 enum event_type_t event_type
,
2653 struct task_struct
*task
);
2655 static void task_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
2656 struct perf_event_context
*ctx
,
2657 enum event_type_t event_type
)
2659 if (!cpuctx
->task_ctx
)
2662 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
2665 ctx_sched_out(ctx
, cpuctx
, event_type
);
2668 static void perf_event_sched_in(struct perf_cpu_context
*cpuctx
,
2669 struct perf_event_context
*ctx
,
2670 struct task_struct
*task
)
2672 cpu_ctx_sched_in(cpuctx
, EVENT_PINNED
, task
);
2674 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
, task
);
2675 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
, task
);
2677 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
, task
);
2681 * We want to maintain the following priority of scheduling:
2682 * - CPU pinned (EVENT_CPU | EVENT_PINNED)
2683 * - task pinned (EVENT_PINNED)
2684 * - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2685 * - task flexible (EVENT_FLEXIBLE).
2687 * In order to avoid unscheduling and scheduling back in everything every
2688 * time an event is added, only do it for the groups of equal priority and
2691 * This can be called after a batch operation on task events, in which case
2692 * event_type is a bit mask of the types of events involved. For CPU events,
2693 * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2695 static void ctx_resched(struct perf_cpu_context
*cpuctx
,
2696 struct perf_event_context
*task_ctx
,
2697 enum event_type_t event_type
)
2699 enum event_type_t ctx_event_type
;
2700 bool cpu_event
= !!(event_type
& EVENT_CPU
);
2703 * If pinned groups are involved, flexible groups also need to be
2706 if (event_type
& EVENT_PINNED
)
2707 event_type
|= EVENT_FLEXIBLE
;
2709 ctx_event_type
= event_type
& EVENT_ALL
;
2711 perf_pmu_disable(cpuctx
->ctx
.pmu
);
2713 task_ctx_sched_out(cpuctx
, task_ctx
, event_type
);
2716 * Decide which cpu ctx groups to schedule out based on the types
2717 * of events that caused rescheduling:
2718 * - EVENT_CPU: schedule out corresponding groups;
2719 * - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2720 * - otherwise, do nothing more.
2723 cpu_ctx_sched_out(cpuctx
, ctx_event_type
);
2724 else if (ctx_event_type
& EVENT_PINNED
)
2725 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
2727 perf_event_sched_in(cpuctx
, task_ctx
, current
);
2728 perf_pmu_enable(cpuctx
->ctx
.pmu
);
2731 void perf_pmu_resched(struct pmu
*pmu
)
2733 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
2734 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
2736 perf_ctx_lock(cpuctx
, task_ctx
);
2737 ctx_resched(cpuctx
, task_ctx
, EVENT_ALL
|EVENT_CPU
);
2738 perf_ctx_unlock(cpuctx
, task_ctx
);
2742 * Cross CPU call to install and enable a performance event
2744 * Very similar to remote_function() + event_function() but cannot assume that
2745 * things like ctx->is_active and cpuctx->task_ctx are set.
2747 static int __perf_install_in_context(void *info
)
2749 struct perf_event
*event
= info
;
2750 struct perf_event_context
*ctx
= event
->ctx
;
2751 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
2752 struct perf_event_context
*task_ctx
= cpuctx
->task_ctx
;
2753 bool reprogram
= true;
2756 raw_spin_lock(&cpuctx
->ctx
.lock
);
2758 raw_spin_lock(&ctx
->lock
);
2761 reprogram
= (ctx
->task
== current
);
2764 * If the task is running, it must be running on this CPU,
2765 * otherwise we cannot reprogram things.
2767 * If its not running, we don't care, ctx->lock will
2768 * serialize against it becoming runnable.
2770 if (task_curr(ctx
->task
) && !reprogram
) {
2775 WARN_ON_ONCE(reprogram
&& cpuctx
->task_ctx
&& cpuctx
->task_ctx
!= ctx
);
2776 } else if (task_ctx
) {
2777 raw_spin_lock(&task_ctx
->lock
);
2780 #ifdef CONFIG_CGROUP_PERF
2781 if (event
->state
> PERF_EVENT_STATE_OFF
&& is_cgroup_event(event
)) {
2783 * If the current cgroup doesn't match the event's
2784 * cgroup, we should not try to schedule it.
2786 struct perf_cgroup
*cgrp
= perf_cgroup_from_task(current
, ctx
);
2787 reprogram
= cgroup_is_descendant(cgrp
->css
.cgroup
,
2788 event
->cgrp
->css
.cgroup
);
2793 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2794 add_event_to_ctx(event
, ctx
);
2795 ctx_resched(cpuctx
, task_ctx
, get_event_type(event
));
2797 add_event_to_ctx(event
, ctx
);
2801 perf_ctx_unlock(cpuctx
, task_ctx
);
2806 static bool exclusive_event_installable(struct perf_event
*event
,
2807 struct perf_event_context
*ctx
);
2810 * Attach a performance event to a context.
2812 * Very similar to event_function_call, see comment there.
2815 perf_install_in_context(struct perf_event_context
*ctx
,
2816 struct perf_event
*event
,
2819 struct task_struct
*task
= READ_ONCE(ctx
->task
);
2821 lockdep_assert_held(&ctx
->mutex
);
2823 WARN_ON_ONCE(!exclusive_event_installable(event
, ctx
));
2825 if (event
->cpu
!= -1)
2829 * Ensures that if we can observe event->ctx, both the event and ctx
2830 * will be 'complete'. See perf_iterate_sb_cpu().
2832 smp_store_release(&event
->ctx
, ctx
);
2835 * perf_event_attr::disabled events will not run and can be initialized
2836 * without IPI. Except when this is the first event for the context, in
2837 * that case we need the magic of the IPI to set ctx->is_active.
2839 * The IOC_ENABLE that is sure to follow the creation of a disabled
2840 * event will issue the IPI and reprogram the hardware.
2842 if (__perf_effective_state(event
) == PERF_EVENT_STATE_OFF
&& ctx
->nr_events
) {
2843 raw_spin_lock_irq(&ctx
->lock
);
2844 if (ctx
->task
== TASK_TOMBSTONE
) {
2845 raw_spin_unlock_irq(&ctx
->lock
);
2848 add_event_to_ctx(event
, ctx
);
2849 raw_spin_unlock_irq(&ctx
->lock
);
2854 cpu_function_call(cpu
, __perf_install_in_context
, event
);
2859 * Should not happen, we validate the ctx is still alive before calling.
2861 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
))
2865 * Installing events is tricky because we cannot rely on ctx->is_active
2866 * to be set in case this is the nr_events 0 -> 1 transition.
2868 * Instead we use task_curr(), which tells us if the task is running.
2869 * However, since we use task_curr() outside of rq::lock, we can race
2870 * against the actual state. This means the result can be wrong.
2872 * If we get a false positive, we retry, this is harmless.
2874 * If we get a false negative, things are complicated. If we are after
2875 * perf_event_context_sched_in() ctx::lock will serialize us, and the
2876 * value must be correct. If we're before, it doesn't matter since
2877 * perf_event_context_sched_in() will program the counter.
2879 * However, this hinges on the remote context switch having observed
2880 * our task->perf_event_ctxp[] store, such that it will in fact take
2881 * ctx::lock in perf_event_context_sched_in().
2883 * We do this by task_function_call(), if the IPI fails to hit the task
2884 * we know any future context switch of task must see the
2885 * perf_event_ctpx[] store.
2889 * This smp_mb() orders the task->perf_event_ctxp[] store with the
2890 * task_cpu() load, such that if the IPI then does not find the task
2891 * running, a future context switch of that task must observe the
2896 if (!task_function_call(task
, __perf_install_in_context
, event
))
2899 raw_spin_lock_irq(&ctx
->lock
);
2901 if (WARN_ON_ONCE(task
== TASK_TOMBSTONE
)) {
2903 * Cannot happen because we already checked above (which also
2904 * cannot happen), and we hold ctx->mutex, which serializes us
2905 * against perf_event_exit_task_context().
2907 raw_spin_unlock_irq(&ctx
->lock
);
2911 * If the task is not running, ctx->lock will avoid it becoming so,
2912 * thus we can safely install the event.
2914 if (task_curr(task
)) {
2915 raw_spin_unlock_irq(&ctx
->lock
);
2918 add_event_to_ctx(event
, ctx
);
2919 raw_spin_unlock_irq(&ctx
->lock
);
2923 * Cross CPU call to enable a performance event
2925 static void __perf_event_enable(struct perf_event
*event
,
2926 struct perf_cpu_context
*cpuctx
,
2927 struct perf_event_context
*ctx
,
2930 struct perf_event
*leader
= event
->group_leader
;
2931 struct perf_event_context
*task_ctx
;
2933 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2934 event
->state
<= PERF_EVENT_STATE_ERROR
)
2938 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
2940 perf_event_set_state(event
, PERF_EVENT_STATE_INACTIVE
);
2941 perf_cgroup_event_enable(event
, ctx
);
2943 if (!ctx
->is_active
)
2946 if (!event_filter_match(event
)) {
2947 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2952 * If the event is in a group and isn't the group leader,
2953 * then don't put it on unless the group is on.
2955 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
) {
2956 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
2960 task_ctx
= cpuctx
->task_ctx
;
2962 WARN_ON_ONCE(task_ctx
!= ctx
);
2964 ctx_resched(cpuctx
, task_ctx
, get_event_type(event
));
2970 * If event->ctx is a cloned context, callers must make sure that
2971 * every task struct that event->ctx->task could possibly point to
2972 * remains valid. This condition is satisfied when called through
2973 * perf_event_for_each_child or perf_event_for_each as described
2974 * for perf_event_disable.
2976 static void _perf_event_enable(struct perf_event
*event
)
2978 struct perf_event_context
*ctx
= event
->ctx
;
2980 raw_spin_lock_irq(&ctx
->lock
);
2981 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
||
2982 event
->state
< PERF_EVENT_STATE_ERROR
) {
2983 raw_spin_unlock_irq(&ctx
->lock
);
2988 * If the event is in error state, clear that first.
2990 * That way, if we see the event in error state below, we know that it
2991 * has gone back into error state, as distinct from the task having
2992 * been scheduled away before the cross-call arrived.
2994 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2995 event
->state
= PERF_EVENT_STATE_OFF
;
2996 raw_spin_unlock_irq(&ctx
->lock
);
2998 event_function_call(event
, __perf_event_enable
, NULL
);
3002 * See perf_event_disable();
3004 void perf_event_enable(struct perf_event
*event
)
3006 struct perf_event_context
*ctx
;
3008 ctx
= perf_event_ctx_lock(event
);
3009 _perf_event_enable(event
);
3010 perf_event_ctx_unlock(event
, ctx
);
3012 EXPORT_SYMBOL_GPL(perf_event_enable
);
3014 struct stop_event_data
{
3015 struct perf_event
*event
;
3016 unsigned int restart
;
3019 static int __perf_event_stop(void *info
)
3021 struct stop_event_data
*sd
= info
;
3022 struct perf_event
*event
= sd
->event
;
3024 /* if it's already INACTIVE, do nothing */
3025 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
3028 /* matches smp_wmb() in event_sched_in() */
3032 * There is a window with interrupts enabled before we get here,
3033 * so we need to check again lest we try to stop another CPU's event.
3035 if (READ_ONCE(event
->oncpu
) != smp_processor_id())
3038 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3041 * May race with the actual stop (through perf_pmu_output_stop()),
3042 * but it is only used for events with AUX ring buffer, and such
3043 * events will refuse to restart because of rb::aux_mmap_count==0,
3044 * see comments in perf_aux_output_begin().
3046 * Since this is happening on an event-local CPU, no trace is lost
3050 event
->pmu
->start(event
, 0);
3055 static int perf_event_stop(struct perf_event
*event
, int restart
)
3057 struct stop_event_data sd
= {
3064 if (READ_ONCE(event
->state
) != PERF_EVENT_STATE_ACTIVE
)
3067 /* matches smp_wmb() in event_sched_in() */
3071 * We only want to restart ACTIVE events, so if the event goes
3072 * inactive here (event->oncpu==-1), there's nothing more to do;
3073 * fall through with ret==-ENXIO.
3075 ret
= cpu_function_call(READ_ONCE(event
->oncpu
),
3076 __perf_event_stop
, &sd
);
3077 } while (ret
== -EAGAIN
);
3083 * In order to contain the amount of racy and tricky in the address filter
3084 * configuration management, it is a two part process:
3086 * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
3087 * we update the addresses of corresponding vmas in
3088 * event::addr_filter_ranges array and bump the event::addr_filters_gen;
3089 * (p2) when an event is scheduled in (pmu::add), it calls
3090 * perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
3091 * if the generation has changed since the previous call.
3093 * If (p1) happens while the event is active, we restart it to force (p2).
3095 * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
3096 * pre-existing mappings, called once when new filters arrive via SET_FILTER
3098 * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
3099 * registered mapping, called for every new mmap(), with mm::mmap_lock down
3101 * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
3104 void perf_event_addr_filters_sync(struct perf_event
*event
)
3106 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
3108 if (!has_addr_filter(event
))
3111 raw_spin_lock(&ifh
->lock
);
3112 if (event
->addr_filters_gen
!= event
->hw
.addr_filters_gen
) {
3113 event
->pmu
->addr_filters_sync(event
);
3114 event
->hw
.addr_filters_gen
= event
->addr_filters_gen
;
3116 raw_spin_unlock(&ifh
->lock
);
3118 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync
);
3120 static int _perf_event_refresh(struct perf_event
*event
, int refresh
)
3123 * not supported on inherited events
3125 if (event
->attr
.inherit
|| !is_sampling_event(event
))
3128 atomic_add(refresh
, &event
->event_limit
);
3129 _perf_event_enable(event
);
3135 * See perf_event_disable()
3137 int perf_event_refresh(struct perf_event
*event
, int refresh
)
3139 struct perf_event_context
*ctx
;
3142 ctx
= perf_event_ctx_lock(event
);
3143 ret
= _perf_event_refresh(event
, refresh
);
3144 perf_event_ctx_unlock(event
, ctx
);
3148 EXPORT_SYMBOL_GPL(perf_event_refresh
);
3150 static int perf_event_modify_breakpoint(struct perf_event
*bp
,
3151 struct perf_event_attr
*attr
)
3155 _perf_event_disable(bp
);
3157 err
= modify_user_hw_breakpoint_check(bp
, attr
, true);
3159 if (!bp
->attr
.disabled
)
3160 _perf_event_enable(bp
);
3165 static int perf_event_modify_attr(struct perf_event
*event
,
3166 struct perf_event_attr
*attr
)
3168 if (event
->attr
.type
!= attr
->type
)
3171 switch (event
->attr
.type
) {
3172 case PERF_TYPE_BREAKPOINT
:
3173 return perf_event_modify_breakpoint(event
, attr
);
3175 /* Place holder for future additions. */
3180 static void ctx_sched_out(struct perf_event_context
*ctx
,
3181 struct perf_cpu_context
*cpuctx
,
3182 enum event_type_t event_type
)
3184 struct perf_event
*event
, *tmp
;
3185 int is_active
= ctx
->is_active
;
3187 lockdep_assert_held(&ctx
->lock
);
3189 if (likely(!ctx
->nr_events
)) {
3191 * See __perf_remove_from_context().
3193 WARN_ON_ONCE(ctx
->is_active
);
3195 WARN_ON_ONCE(cpuctx
->task_ctx
);
3199 ctx
->is_active
&= ~event_type
;
3200 if (!(ctx
->is_active
& EVENT_ALL
))
3204 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
3205 if (!ctx
->is_active
)
3206 cpuctx
->task_ctx
= NULL
;
3210 * Always update time if it was set; not only when it changes.
3211 * Otherwise we can 'forget' to update time for any but the last
3212 * context we sched out. For example:
3214 * ctx_sched_out(.event_type = EVENT_FLEXIBLE)
3215 * ctx_sched_out(.event_type = EVENT_PINNED)
3217 * would only update time for the pinned events.
3219 if (is_active
& EVENT_TIME
) {
3220 /* update (and stop) ctx time */
3221 update_context_time(ctx
);
3222 update_cgrp_time_from_cpuctx(cpuctx
);
3225 is_active
^= ctx
->is_active
; /* changed bits */
3227 if (!ctx
->nr_active
|| !(is_active
& EVENT_ALL
))
3230 perf_pmu_disable(ctx
->pmu
);
3231 if (is_active
& EVENT_PINNED
) {
3232 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_active
, active_list
)
3233 group_sched_out(event
, cpuctx
, ctx
);
3236 if (is_active
& EVENT_FLEXIBLE
) {
3237 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_active
, active_list
)
3238 group_sched_out(event
, cpuctx
, ctx
);
3241 * Since we cleared EVENT_FLEXIBLE, also clear
3242 * rotate_necessary, is will be reset by
3243 * ctx_flexible_sched_in() when needed.
3245 ctx
->rotate_necessary
= 0;
3247 perf_pmu_enable(ctx
->pmu
);
3251 * Test whether two contexts are equivalent, i.e. whether they have both been
3252 * cloned from the same version of the same context.
3254 * Equivalence is measured using a generation number in the context that is
3255 * incremented on each modification to it; see unclone_ctx(), list_add_event()
3256 * and list_del_event().
3258 static int context_equiv(struct perf_event_context
*ctx1
,
3259 struct perf_event_context
*ctx2
)
3261 lockdep_assert_held(&ctx1
->lock
);
3262 lockdep_assert_held(&ctx2
->lock
);
3264 /* Pinning disables the swap optimization */
3265 if (ctx1
->pin_count
|| ctx2
->pin_count
)
3268 /* If ctx1 is the parent of ctx2 */
3269 if (ctx1
== ctx2
->parent_ctx
&& ctx1
->generation
== ctx2
->parent_gen
)
3272 /* If ctx2 is the parent of ctx1 */
3273 if (ctx1
->parent_ctx
== ctx2
&& ctx1
->parent_gen
== ctx2
->generation
)
3277 * If ctx1 and ctx2 have the same parent; we flatten the parent
3278 * hierarchy, see perf_event_init_context().
3280 if (ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
&&
3281 ctx1
->parent_gen
== ctx2
->parent_gen
)
3288 static void __perf_event_sync_stat(struct perf_event
*event
,
3289 struct perf_event
*next_event
)
3293 if (!event
->attr
.inherit_stat
)
3297 * Update the event value, we cannot use perf_event_read()
3298 * because we're in the middle of a context switch and have IRQs
3299 * disabled, which upsets smp_call_function_single(), however
3300 * we know the event must be on the current CPU, therefore we
3301 * don't need to use it.
3303 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
3304 event
->pmu
->read(event
);
3306 perf_event_update_time(event
);
3309 * In order to keep per-task stats reliable we need to flip the event
3310 * values when we flip the contexts.
3312 value
= local64_read(&next_event
->count
);
3313 value
= local64_xchg(&event
->count
, value
);
3314 local64_set(&next_event
->count
, value
);
3316 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
3317 swap(event
->total_time_running
, next_event
->total_time_running
);
3320 * Since we swizzled the values, update the user visible data too.
3322 perf_event_update_userpage(event
);
3323 perf_event_update_userpage(next_event
);
3326 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
3327 struct perf_event_context
*next_ctx
)
3329 struct perf_event
*event
, *next_event
;
3334 update_context_time(ctx
);
3336 event
= list_first_entry(&ctx
->event_list
,
3337 struct perf_event
, event_entry
);
3339 next_event
= list_first_entry(&next_ctx
->event_list
,
3340 struct perf_event
, event_entry
);
3342 while (&event
->event_entry
!= &ctx
->event_list
&&
3343 &next_event
->event_entry
!= &next_ctx
->event_list
) {
3345 __perf_event_sync_stat(event
, next_event
);
3347 event
= list_next_entry(event
, event_entry
);
3348 next_event
= list_next_entry(next_event
, event_entry
);
3352 static void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
3353 struct task_struct
*next
)
3355 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
3356 struct perf_event_context
*next_ctx
;
3357 struct perf_event_context
*parent
, *next_parent
;
3358 struct perf_cpu_context
*cpuctx
;
3364 cpuctx
= __get_cpu_context(ctx
);
3365 if (!cpuctx
->task_ctx
)
3369 next_ctx
= next
->perf_event_ctxp
[ctxn
];
3373 parent
= rcu_dereference(ctx
->parent_ctx
);
3374 next_parent
= rcu_dereference(next_ctx
->parent_ctx
);
3376 /* If neither context have a parent context; they cannot be clones. */
3377 if (!parent
&& !next_parent
)
3380 if (next_parent
== ctx
|| next_ctx
== parent
|| next_parent
== parent
) {
3382 * Looks like the two contexts are clones, so we might be
3383 * able to optimize the context switch. We lock both
3384 * contexts and check that they are clones under the
3385 * lock (including re-checking that neither has been
3386 * uncloned in the meantime). It doesn't matter which
3387 * order we take the locks because no other cpu could
3388 * be trying to lock both of these tasks.
3390 raw_spin_lock(&ctx
->lock
);
3391 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
3392 if (context_equiv(ctx
, next_ctx
)) {
3393 struct pmu
*pmu
= ctx
->pmu
;
3395 WRITE_ONCE(ctx
->task
, next
);
3396 WRITE_ONCE(next_ctx
->task
, task
);
3399 * PMU specific parts of task perf context can require
3400 * additional synchronization. As an example of such
3401 * synchronization see implementation details of Intel
3402 * LBR call stack data profiling;
3404 if (pmu
->swap_task_ctx
)
3405 pmu
->swap_task_ctx(ctx
, next_ctx
);
3407 swap(ctx
->task_ctx_data
, next_ctx
->task_ctx_data
);
3410 * RCU_INIT_POINTER here is safe because we've not
3411 * modified the ctx and the above modification of
3412 * ctx->task and ctx->task_ctx_data are immaterial
3413 * since those values are always verified under
3414 * ctx->lock which we're now holding.
3416 RCU_INIT_POINTER(task
->perf_event_ctxp
[ctxn
], next_ctx
);
3417 RCU_INIT_POINTER(next
->perf_event_ctxp
[ctxn
], ctx
);
3421 perf_event_sync_stat(ctx
, next_ctx
);
3423 raw_spin_unlock(&next_ctx
->lock
);
3424 raw_spin_unlock(&ctx
->lock
);
3430 raw_spin_lock(&ctx
->lock
);
3431 task_ctx_sched_out(cpuctx
, ctx
, EVENT_ALL
);
3432 raw_spin_unlock(&ctx
->lock
);
3436 static DEFINE_PER_CPU(struct list_head
, sched_cb_list
);
3438 void perf_sched_cb_dec(struct pmu
*pmu
)
3440 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
3442 this_cpu_dec(perf_sched_cb_usages
);
3444 if (!--cpuctx
->sched_cb_usage
)
3445 list_del(&cpuctx
->sched_cb_entry
);
3449 void perf_sched_cb_inc(struct pmu
*pmu
)
3451 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
3453 if (!cpuctx
->sched_cb_usage
++)
3454 list_add(&cpuctx
->sched_cb_entry
, this_cpu_ptr(&sched_cb_list
));
3456 this_cpu_inc(perf_sched_cb_usages
);
3460 * This function provides the context switch callback to the lower code
3461 * layer. It is invoked ONLY when the context switch callback is enabled.
3463 * This callback is relevant even to per-cpu events; for example multi event
3464 * PEBS requires this to provide PID/TID information. This requires we flush
3465 * all queued PEBS records before we context switch to a new task.
3467 static void perf_pmu_sched_task(struct task_struct
*prev
,
3468 struct task_struct
*next
,
3471 struct perf_cpu_context
*cpuctx
;
3477 list_for_each_entry(cpuctx
, this_cpu_ptr(&sched_cb_list
), sched_cb_entry
) {
3478 pmu
= cpuctx
->ctx
.pmu
; /* software PMUs will not have sched_task */
3480 if (WARN_ON_ONCE(!pmu
->sched_task
))
3483 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
3484 perf_pmu_disable(pmu
);
3486 pmu
->sched_task(cpuctx
->task_ctx
, sched_in
);
3488 perf_pmu_enable(pmu
);
3489 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
3493 static void perf_event_switch(struct task_struct
*task
,
3494 struct task_struct
*next_prev
, bool sched_in
);
3496 #define for_each_task_context_nr(ctxn) \
3497 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3500 * Called from scheduler to remove the events of the current task,
3501 * with interrupts disabled.
3503 * We stop each event and update the event value in event->count.
3505 * This does not protect us against NMI, but disable()
3506 * sets the disabled bit in the control field of event _before_
3507 * accessing the event control register. If a NMI hits, then it will
3508 * not restart the event.
3510 void __perf_event_task_sched_out(struct task_struct
*task
,
3511 struct task_struct
*next
)
3515 if (__this_cpu_read(perf_sched_cb_usages
))
3516 perf_pmu_sched_task(task
, next
, false);
3518 if (atomic_read(&nr_switch_events
))
3519 perf_event_switch(task
, next
, false);
3521 for_each_task_context_nr(ctxn
)
3522 perf_event_context_sched_out(task
, ctxn
, next
);
3525 * if cgroup events exist on this CPU, then we need
3526 * to check if we have to switch out PMU state.
3527 * cgroup event are system-wide mode only
3529 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
3530 perf_cgroup_sched_out(task
, next
);
3534 * Called with IRQs disabled
3536 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
3537 enum event_type_t event_type
)
3539 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
3542 static bool perf_less_group_idx(const void *l
, const void *r
)
3544 const struct perf_event
*le
= *(const struct perf_event
**)l
;
3545 const struct perf_event
*re
= *(const struct perf_event
**)r
;
3547 return le
->group_index
< re
->group_index
;
3550 static void swap_ptr(void *l
, void *r
)
3552 void **lp
= l
, **rp
= r
;
3557 static const struct min_heap_callbacks perf_min_heap
= {
3558 .elem_size
= sizeof(struct perf_event
*),
3559 .less
= perf_less_group_idx
,
3563 static void __heap_add(struct min_heap
*heap
, struct perf_event
*event
)
3565 struct perf_event
**itrs
= heap
->data
;
3568 itrs
[heap
->nr
] = event
;
3573 static noinline
int visit_groups_merge(struct perf_cpu_context
*cpuctx
,
3574 struct perf_event_groups
*groups
, int cpu
,
3575 int (*func
)(struct perf_event
*, void *),
3578 #ifdef CONFIG_CGROUP_PERF
3579 struct cgroup_subsys_state
*css
= NULL
;
3581 /* Space for per CPU and/or any CPU event iterators. */
3582 struct perf_event
*itrs
[2];
3583 struct min_heap event_heap
;
3584 struct perf_event
**evt
;
3588 event_heap
= (struct min_heap
){
3589 .data
= cpuctx
->heap
,
3591 .size
= cpuctx
->heap_size
,
3594 lockdep_assert_held(&cpuctx
->ctx
.lock
);
3596 #ifdef CONFIG_CGROUP_PERF
3598 css
= &cpuctx
->cgrp
->css
;
3601 event_heap
= (struct min_heap
){
3604 .size
= ARRAY_SIZE(itrs
),
3606 /* Events not within a CPU context may be on any CPU. */
3607 __heap_add(&event_heap
, perf_event_groups_first(groups
, -1, NULL
));
3609 evt
= event_heap
.data
;
3611 __heap_add(&event_heap
, perf_event_groups_first(groups
, cpu
, NULL
));
3613 #ifdef CONFIG_CGROUP_PERF
3614 for (; css
; css
= css
->parent
)
3615 __heap_add(&event_heap
, perf_event_groups_first(groups
, cpu
, css
->cgroup
));
3618 min_heapify_all(&event_heap
, &perf_min_heap
);
3620 while (event_heap
.nr
) {
3621 ret
= func(*evt
, data
);
3625 *evt
= perf_event_groups_next(*evt
);
3627 min_heapify(&event_heap
, 0, &perf_min_heap
);
3629 min_heap_pop(&event_heap
, &perf_min_heap
);
3635 static int merge_sched_in(struct perf_event
*event
, void *data
)
3637 struct perf_event_context
*ctx
= event
->ctx
;
3638 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
3639 int *can_add_hw
= data
;
3641 if (event
->state
<= PERF_EVENT_STATE_OFF
)
3644 if (!event_filter_match(event
))
3647 if (group_can_go_on(event
, cpuctx
, *can_add_hw
)) {
3648 if (!group_sched_in(event
, cpuctx
, ctx
))
3649 list_add_tail(&event
->active_list
, get_event_list(event
));
3652 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
3653 if (event
->attr
.pinned
) {
3654 perf_cgroup_event_disable(event
, ctx
);
3655 perf_event_set_state(event
, PERF_EVENT_STATE_ERROR
);
3659 ctx
->rotate_necessary
= 1;
3666 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
3667 struct perf_cpu_context
*cpuctx
)
3671 if (ctx
!= &cpuctx
->ctx
)
3674 visit_groups_merge(cpuctx
, &ctx
->pinned_groups
,
3676 merge_sched_in
, &can_add_hw
);
3680 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
3681 struct perf_cpu_context
*cpuctx
)
3685 if (ctx
!= &cpuctx
->ctx
)
3688 visit_groups_merge(cpuctx
, &ctx
->flexible_groups
,
3690 merge_sched_in
, &can_add_hw
);
3694 ctx_sched_in(struct perf_event_context
*ctx
,
3695 struct perf_cpu_context
*cpuctx
,
3696 enum event_type_t event_type
,
3697 struct task_struct
*task
)
3699 int is_active
= ctx
->is_active
;
3702 lockdep_assert_held(&ctx
->lock
);
3704 if (likely(!ctx
->nr_events
))
3707 ctx
->is_active
|= (event_type
| EVENT_TIME
);
3710 cpuctx
->task_ctx
= ctx
;
3712 WARN_ON_ONCE(cpuctx
->task_ctx
!= ctx
);
3715 is_active
^= ctx
->is_active
; /* changed bits */
3717 if (is_active
& EVENT_TIME
) {
3718 /* start ctx time */
3720 ctx
->timestamp
= now
;
3721 perf_cgroup_set_timestamp(task
, ctx
);
3725 * First go through the list and put on any pinned groups
3726 * in order to give them the best chance of going on.
3728 if (is_active
& EVENT_PINNED
)
3729 ctx_pinned_sched_in(ctx
, cpuctx
);
3731 /* Then walk through the lower prio flexible groups */
3732 if (is_active
& EVENT_FLEXIBLE
)
3733 ctx_flexible_sched_in(ctx
, cpuctx
);
3736 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
3737 enum event_type_t event_type
,
3738 struct task_struct
*task
)
3740 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
3742 ctx_sched_in(ctx
, cpuctx
, event_type
, task
);
3745 static void perf_event_context_sched_in(struct perf_event_context
*ctx
,
3746 struct task_struct
*task
)
3748 struct perf_cpu_context
*cpuctx
;
3750 cpuctx
= __get_cpu_context(ctx
);
3751 if (cpuctx
->task_ctx
== ctx
)
3754 perf_ctx_lock(cpuctx
, ctx
);
3756 * We must check ctx->nr_events while holding ctx->lock, such
3757 * that we serialize against perf_install_in_context().
3759 if (!ctx
->nr_events
)
3762 perf_pmu_disable(ctx
->pmu
);
3764 * We want to keep the following priority order:
3765 * cpu pinned (that don't need to move), task pinned,
3766 * cpu flexible, task flexible.
3768 * However, if task's ctx is not carrying any pinned
3769 * events, no need to flip the cpuctx's events around.
3771 if (!RB_EMPTY_ROOT(&ctx
->pinned_groups
.tree
))
3772 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
3773 perf_event_sched_in(cpuctx
, ctx
, task
);
3774 perf_pmu_enable(ctx
->pmu
);
3777 perf_ctx_unlock(cpuctx
, ctx
);
3781 * Called from scheduler to add the events of the current task
3782 * with interrupts disabled.
3784 * We restore the event value and then enable it.
3786 * This does not protect us against NMI, but enable()
3787 * sets the enabled bit in the control field of event _before_
3788 * accessing the event control register. If a NMI hits, then it will
3789 * keep the event running.
3791 void __perf_event_task_sched_in(struct task_struct
*prev
,
3792 struct task_struct
*task
)
3794 struct perf_event_context
*ctx
;
3798 * If cgroup events exist on this CPU, then we need to check if we have
3799 * to switch in PMU state; cgroup event are system-wide mode only.
3801 * Since cgroup events are CPU events, we must schedule these in before
3802 * we schedule in the task events.
3804 if (atomic_read(this_cpu_ptr(&perf_cgroup_events
)))
3805 perf_cgroup_sched_in(prev
, task
);
3807 for_each_task_context_nr(ctxn
) {
3808 ctx
= task
->perf_event_ctxp
[ctxn
];
3812 perf_event_context_sched_in(ctx
, task
);
3815 if (atomic_read(&nr_switch_events
))
3816 perf_event_switch(task
, prev
, true);
3818 if (__this_cpu_read(perf_sched_cb_usages
))
3819 perf_pmu_sched_task(prev
, task
, true);
3822 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
3824 u64 frequency
= event
->attr
.sample_freq
;
3825 u64 sec
= NSEC_PER_SEC
;
3826 u64 divisor
, dividend
;
3828 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
3830 count_fls
= fls64(count
);
3831 nsec_fls
= fls64(nsec
);
3832 frequency_fls
= fls64(frequency
);
3836 * We got @count in @nsec, with a target of sample_freq HZ
3837 * the target period becomes:
3840 * period = -------------------
3841 * @nsec * sample_freq
3846 * Reduce accuracy by one bit such that @a and @b converge
3847 * to a similar magnitude.
3849 #define REDUCE_FLS(a, b) \
3851 if (a##_fls > b##_fls) { \
3861 * Reduce accuracy until either term fits in a u64, then proceed with
3862 * the other, so that finally we can do a u64/u64 division.
3864 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
3865 REDUCE_FLS(nsec
, frequency
);
3866 REDUCE_FLS(sec
, count
);
3869 if (count_fls
+ sec_fls
> 64) {
3870 divisor
= nsec
* frequency
;
3872 while (count_fls
+ sec_fls
> 64) {
3873 REDUCE_FLS(count
, sec
);
3877 dividend
= count
* sec
;
3879 dividend
= count
* sec
;
3881 while (nsec_fls
+ frequency_fls
> 64) {
3882 REDUCE_FLS(nsec
, frequency
);
3886 divisor
= nsec
* frequency
;
3892 return div64_u64(dividend
, divisor
);
3895 static DEFINE_PER_CPU(int, perf_throttled_count
);
3896 static DEFINE_PER_CPU(u64
, perf_throttled_seq
);
3898 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
, bool disable
)
3900 struct hw_perf_event
*hwc
= &event
->hw
;
3901 s64 period
, sample_period
;
3904 period
= perf_calculate_period(event
, nsec
, count
);
3906 delta
= (s64
)(period
- hwc
->sample_period
);
3907 delta
= (delta
+ 7) / 8; /* low pass filter */
3909 sample_period
= hwc
->sample_period
+ delta
;
3914 hwc
->sample_period
= sample_period
;
3916 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
3918 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3920 local64_set(&hwc
->period_left
, 0);
3923 event
->pmu
->start(event
, PERF_EF_RELOAD
);
3928 * combine freq adjustment with unthrottling to avoid two passes over the
3929 * events. At the same time, make sure, having freq events does not change
3930 * the rate of unthrottling as that would introduce bias.
3932 static void perf_adjust_freq_unthr_context(struct perf_event_context
*ctx
,
3935 struct perf_event
*event
;
3936 struct hw_perf_event
*hwc
;
3937 u64 now
, period
= TICK_NSEC
;
3941 * only need to iterate over all events iff:
3942 * - context have events in frequency mode (needs freq adjust)
3943 * - there are events to unthrottle on this cpu
3945 if (!(ctx
->nr_freq
|| needs_unthr
))
3948 raw_spin_lock(&ctx
->lock
);
3949 perf_pmu_disable(ctx
->pmu
);
3951 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3952 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
3955 if (!event_filter_match(event
))
3958 perf_pmu_disable(event
->pmu
);
3962 if (hwc
->interrupts
== MAX_INTERRUPTS
) {
3963 hwc
->interrupts
= 0;
3964 perf_log_throttle(event
, 1);
3965 event
->pmu
->start(event
, 0);
3968 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
3972 * stop the event and update event->count
3974 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
3976 now
= local64_read(&event
->count
);
3977 delta
= now
- hwc
->freq_count_stamp
;
3978 hwc
->freq_count_stamp
= now
;
3982 * reload only if value has changed
3983 * we have stopped the event so tell that
3984 * to perf_adjust_period() to avoid stopping it
3988 perf_adjust_period(event
, period
, delta
, false);
3990 event
->pmu
->start(event
, delta
> 0 ? PERF_EF_RELOAD
: 0);
3992 perf_pmu_enable(event
->pmu
);
3995 perf_pmu_enable(ctx
->pmu
);
3996 raw_spin_unlock(&ctx
->lock
);
4000 * Move @event to the tail of the @ctx's elegible events.
4002 static void rotate_ctx(struct perf_event_context
*ctx
, struct perf_event
*event
)
4005 * Rotate the first entry last of non-pinned groups. Rotation might be
4006 * disabled by the inheritance code.
4008 if (ctx
->rotate_disable
)
4011 perf_event_groups_delete(&ctx
->flexible_groups
, event
);
4012 perf_event_groups_insert(&ctx
->flexible_groups
, event
);
4015 /* pick an event from the flexible_groups to rotate */
4016 static inline struct perf_event
*
4017 ctx_event_to_rotate(struct perf_event_context
*ctx
)
4019 struct perf_event
*event
;
4021 /* pick the first active flexible event */
4022 event
= list_first_entry_or_null(&ctx
->flexible_active
,
4023 struct perf_event
, active_list
);
4025 /* if no active flexible event, pick the first event */
4027 event
= rb_entry_safe(rb_first(&ctx
->flexible_groups
.tree
),
4028 typeof(*event
), group_node
);
4032 * Unconditionally clear rotate_necessary; if ctx_flexible_sched_in()
4033 * finds there are unschedulable events, it will set it again.
4035 ctx
->rotate_necessary
= 0;
4040 static bool perf_rotate_context(struct perf_cpu_context
*cpuctx
)
4042 struct perf_event
*cpu_event
= NULL
, *task_event
= NULL
;
4043 struct perf_event_context
*task_ctx
= NULL
;
4044 int cpu_rotate
, task_rotate
;
4047 * Since we run this from IRQ context, nobody can install new
4048 * events, thus the event count values are stable.
4051 cpu_rotate
= cpuctx
->ctx
.rotate_necessary
;
4052 task_ctx
= cpuctx
->task_ctx
;
4053 task_rotate
= task_ctx
? task_ctx
->rotate_necessary
: 0;
4055 if (!(cpu_rotate
|| task_rotate
))
4058 perf_ctx_lock(cpuctx
, cpuctx
->task_ctx
);
4059 perf_pmu_disable(cpuctx
->ctx
.pmu
);
4062 task_event
= ctx_event_to_rotate(task_ctx
);
4064 cpu_event
= ctx_event_to_rotate(&cpuctx
->ctx
);
4067 * As per the order given at ctx_resched() first 'pop' task flexible
4068 * and then, if needed CPU flexible.
4070 if (task_event
|| (task_ctx
&& cpu_event
))
4071 ctx_sched_out(task_ctx
, cpuctx
, EVENT_FLEXIBLE
);
4073 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
4076 rotate_ctx(task_ctx
, task_event
);
4078 rotate_ctx(&cpuctx
->ctx
, cpu_event
);
4080 perf_event_sched_in(cpuctx
, task_ctx
, current
);
4082 perf_pmu_enable(cpuctx
->ctx
.pmu
);
4083 perf_ctx_unlock(cpuctx
, cpuctx
->task_ctx
);
4088 void perf_event_task_tick(void)
4090 struct list_head
*head
= this_cpu_ptr(&active_ctx_list
);
4091 struct perf_event_context
*ctx
, *tmp
;
4094 lockdep_assert_irqs_disabled();
4096 __this_cpu_inc(perf_throttled_seq
);
4097 throttled
= __this_cpu_xchg(perf_throttled_count
, 0);
4098 tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
4100 list_for_each_entry_safe(ctx
, tmp
, head
, active_ctx_list
)
4101 perf_adjust_freq_unthr_context(ctx
, throttled
);
4104 static int event_enable_on_exec(struct perf_event
*event
,
4105 struct perf_event_context
*ctx
)
4107 if (!event
->attr
.enable_on_exec
)
4110 event
->attr
.enable_on_exec
= 0;
4111 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
4114 perf_event_set_state(event
, PERF_EVENT_STATE_INACTIVE
);
4120 * Enable all of a task's events that have been marked enable-on-exec.
4121 * This expects task == current.
4123 static void perf_event_enable_on_exec(int ctxn
)
4125 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
4126 enum event_type_t event_type
= 0;
4127 struct perf_cpu_context
*cpuctx
;
4128 struct perf_event
*event
;
4129 unsigned long flags
;
4132 local_irq_save(flags
);
4133 ctx
= current
->perf_event_ctxp
[ctxn
];
4134 if (!ctx
|| !ctx
->nr_events
)
4137 cpuctx
= __get_cpu_context(ctx
);
4138 perf_ctx_lock(cpuctx
, ctx
);
4139 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
4140 list_for_each_entry(event
, &ctx
->event_list
, event_entry
) {
4141 enabled
|= event_enable_on_exec(event
, ctx
);
4142 event_type
|= get_event_type(event
);
4146 * Unclone and reschedule this context if we enabled any event.
4149 clone_ctx
= unclone_ctx(ctx
);
4150 ctx_resched(cpuctx
, ctx
, event_type
);
4152 ctx_sched_in(ctx
, cpuctx
, EVENT_TIME
, current
);
4154 perf_ctx_unlock(cpuctx
, ctx
);
4157 local_irq_restore(flags
);
4163 struct perf_read_data
{
4164 struct perf_event
*event
;
4169 static int __perf_event_read_cpu(struct perf_event
*event
, int event_cpu
)
4171 u16 local_pkg
, event_pkg
;
4173 if (event
->group_caps
& PERF_EV_CAP_READ_ACTIVE_PKG
) {
4174 int local_cpu
= smp_processor_id();
4176 event_pkg
= topology_physical_package_id(event_cpu
);
4177 local_pkg
= topology_physical_package_id(local_cpu
);
4179 if (event_pkg
== local_pkg
)
4187 * Cross CPU call to read the hardware event
4189 static void __perf_event_read(void *info
)
4191 struct perf_read_data
*data
= info
;
4192 struct perf_event
*sub
, *event
= data
->event
;
4193 struct perf_event_context
*ctx
= event
->ctx
;
4194 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
4195 struct pmu
*pmu
= event
->pmu
;
4198 * If this is a task context, we need to check whether it is
4199 * the current task context of this cpu. If not it has been
4200 * scheduled out before the smp call arrived. In that case
4201 * event->count would have been updated to a recent sample
4202 * when the event was scheduled out.
4204 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
4207 raw_spin_lock(&ctx
->lock
);
4208 if (ctx
->is_active
& EVENT_TIME
) {
4209 update_context_time(ctx
);
4210 update_cgrp_time_from_event(event
);
4213 perf_event_update_time(event
);
4215 perf_event_update_sibling_time(event
);
4217 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
4226 pmu
->start_txn(pmu
, PERF_PMU_TXN_READ
);
4230 for_each_sibling_event(sub
, event
) {
4231 if (sub
->state
== PERF_EVENT_STATE_ACTIVE
) {
4233 * Use sibling's PMU rather than @event's since
4234 * sibling could be on different (eg: software) PMU.
4236 sub
->pmu
->read(sub
);
4240 data
->ret
= pmu
->commit_txn(pmu
);
4243 raw_spin_unlock(&ctx
->lock
);
4246 static inline u64
perf_event_count(struct perf_event
*event
)
4248 return local64_read(&event
->count
) + atomic64_read(&event
->child_count
);
4252 * NMI-safe method to read a local event, that is an event that
4254 * - either for the current task, or for this CPU
4255 * - does not have inherit set, for inherited task events
4256 * will not be local and we cannot read them atomically
4257 * - must not have a pmu::count method
4259 int perf_event_read_local(struct perf_event
*event
, u64
*value
,
4260 u64
*enabled
, u64
*running
)
4262 unsigned long flags
;
4266 * Disabling interrupts avoids all counter scheduling (context
4267 * switches, timer based rotation and IPIs).
4269 local_irq_save(flags
);
4272 * It must not be an event with inherit set, we cannot read
4273 * all child counters from atomic context.
4275 if (event
->attr
.inherit
) {
4280 /* If this is a per-task event, it must be for current */
4281 if ((event
->attach_state
& PERF_ATTACH_TASK
) &&
4282 event
->hw
.target
!= current
) {
4287 /* If this is a per-CPU event, it must be for this CPU */
4288 if (!(event
->attach_state
& PERF_ATTACH_TASK
) &&
4289 event
->cpu
!= smp_processor_id()) {
4294 /* If this is a pinned event it must be running on this CPU */
4295 if (event
->attr
.pinned
&& event
->oncpu
!= smp_processor_id()) {
4301 * If the event is currently on this CPU, its either a per-task event,
4302 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
4305 if (event
->oncpu
== smp_processor_id())
4306 event
->pmu
->read(event
);
4308 *value
= local64_read(&event
->count
);
4309 if (enabled
|| running
) {
4310 u64 now
= event
->shadow_ctx_time
+ perf_clock();
4311 u64 __enabled
, __running
;
4313 __perf_update_times(event
, now
, &__enabled
, &__running
);
4315 *enabled
= __enabled
;
4317 *running
= __running
;
4320 local_irq_restore(flags
);
4325 static int perf_event_read(struct perf_event
*event
, bool group
)
4327 enum perf_event_state state
= READ_ONCE(event
->state
);
4328 int event_cpu
, ret
= 0;
4331 * If event is enabled and currently active on a CPU, update the
4332 * value in the event structure:
4335 if (state
== PERF_EVENT_STATE_ACTIVE
) {
4336 struct perf_read_data data
;
4339 * Orders the ->state and ->oncpu loads such that if we see
4340 * ACTIVE we must also see the right ->oncpu.
4342 * Matches the smp_wmb() from event_sched_in().
4346 event_cpu
= READ_ONCE(event
->oncpu
);
4347 if ((unsigned)event_cpu
>= nr_cpu_ids
)
4350 data
= (struct perf_read_data
){
4357 event_cpu
= __perf_event_read_cpu(event
, event_cpu
);
4360 * Purposely ignore the smp_call_function_single() return
4363 * If event_cpu isn't a valid CPU it means the event got
4364 * scheduled out and that will have updated the event count.
4366 * Therefore, either way, we'll have an up-to-date event count
4369 (void)smp_call_function_single(event_cpu
, __perf_event_read
, &data
, 1);
4373 } else if (state
== PERF_EVENT_STATE_INACTIVE
) {
4374 struct perf_event_context
*ctx
= event
->ctx
;
4375 unsigned long flags
;
4377 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
4378 state
= event
->state
;
4379 if (state
!= PERF_EVENT_STATE_INACTIVE
) {
4380 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4385 * May read while context is not active (e.g., thread is
4386 * blocked), in that case we cannot update context time
4388 if (ctx
->is_active
& EVENT_TIME
) {
4389 update_context_time(ctx
);
4390 update_cgrp_time_from_event(event
);
4393 perf_event_update_time(event
);
4395 perf_event_update_sibling_time(event
);
4396 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4403 * Initialize the perf_event context in a task_struct:
4405 static void __perf_event_init_context(struct perf_event_context
*ctx
)
4407 raw_spin_lock_init(&ctx
->lock
);
4408 mutex_init(&ctx
->mutex
);
4409 INIT_LIST_HEAD(&ctx
->active_ctx_list
);
4410 perf_event_groups_init(&ctx
->pinned_groups
);
4411 perf_event_groups_init(&ctx
->flexible_groups
);
4412 INIT_LIST_HEAD(&ctx
->event_list
);
4413 INIT_LIST_HEAD(&ctx
->pinned_active
);
4414 INIT_LIST_HEAD(&ctx
->flexible_active
);
4415 refcount_set(&ctx
->refcount
, 1);
4418 static struct perf_event_context
*
4419 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
4421 struct perf_event_context
*ctx
;
4423 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
4427 __perf_event_init_context(ctx
);
4429 ctx
->task
= get_task_struct(task
);
4435 static struct task_struct
*
4436 find_lively_task_by_vpid(pid_t vpid
)
4438 struct task_struct
*task
;
4444 task
= find_task_by_vpid(vpid
);
4446 get_task_struct(task
);
4450 return ERR_PTR(-ESRCH
);
4456 * Returns a matching context with refcount and pincount.
4458 static struct perf_event_context
*
4459 find_get_context(struct pmu
*pmu
, struct task_struct
*task
,
4460 struct perf_event
*event
)
4462 struct perf_event_context
*ctx
, *clone_ctx
= NULL
;
4463 struct perf_cpu_context
*cpuctx
;
4464 void *task_ctx_data
= NULL
;
4465 unsigned long flags
;
4467 int cpu
= event
->cpu
;
4470 /* Must be root to operate on a CPU event: */
4471 err
= perf_allow_cpu(&event
->attr
);
4473 return ERR_PTR(err
);
4475 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
4484 ctxn
= pmu
->task_ctx_nr
;
4488 if (event
->attach_state
& PERF_ATTACH_TASK_DATA
) {
4489 task_ctx_data
= alloc_task_ctx_data(pmu
);
4490 if (!task_ctx_data
) {
4497 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
4499 clone_ctx
= unclone_ctx(ctx
);
4502 if (task_ctx_data
&& !ctx
->task_ctx_data
) {
4503 ctx
->task_ctx_data
= task_ctx_data
;
4504 task_ctx_data
= NULL
;
4506 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
4511 ctx
= alloc_perf_context(pmu
, task
);
4516 if (task_ctx_data
) {
4517 ctx
->task_ctx_data
= task_ctx_data
;
4518 task_ctx_data
= NULL
;
4522 mutex_lock(&task
->perf_event_mutex
);
4524 * If it has already passed perf_event_exit_task().
4525 * we must see PF_EXITING, it takes this mutex too.
4527 if (task
->flags
& PF_EXITING
)
4529 else if (task
->perf_event_ctxp
[ctxn
])
4534 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
4536 mutex_unlock(&task
->perf_event_mutex
);
4538 if (unlikely(err
)) {
4547 free_task_ctx_data(pmu
, task_ctx_data
);
4551 free_task_ctx_data(pmu
, task_ctx_data
);
4552 return ERR_PTR(err
);
4555 static void perf_event_free_filter(struct perf_event
*event
);
4556 static void perf_event_free_bpf_prog(struct perf_event
*event
);
4558 static void free_event_rcu(struct rcu_head
*head
)
4560 struct perf_event
*event
;
4562 event
= container_of(head
, struct perf_event
, rcu_head
);
4564 put_pid_ns(event
->ns
);
4565 perf_event_free_filter(event
);
4569 static void ring_buffer_attach(struct perf_event
*event
,
4570 struct perf_buffer
*rb
);
4572 static void detach_sb_event(struct perf_event
*event
)
4574 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
4576 raw_spin_lock(&pel
->lock
);
4577 list_del_rcu(&event
->sb_list
);
4578 raw_spin_unlock(&pel
->lock
);
4581 static bool is_sb_event(struct perf_event
*event
)
4583 struct perf_event_attr
*attr
= &event
->attr
;
4588 if (event
->attach_state
& PERF_ATTACH_TASK
)
4591 if (attr
->mmap
|| attr
->mmap_data
|| attr
->mmap2
||
4592 attr
->comm
|| attr
->comm_exec
||
4593 attr
->task
|| attr
->ksymbol
||
4594 attr
->context_switch
|| attr
->text_poke
||
4600 static void unaccount_pmu_sb_event(struct perf_event
*event
)
4602 if (is_sb_event(event
))
4603 detach_sb_event(event
);
4606 static void unaccount_event_cpu(struct perf_event
*event
, int cpu
)
4611 if (is_cgroup_event(event
))
4612 atomic_dec(&per_cpu(perf_cgroup_events
, cpu
));
4615 #ifdef CONFIG_NO_HZ_FULL
4616 static DEFINE_SPINLOCK(nr_freq_lock
);
4619 static void unaccount_freq_event_nohz(void)
4621 #ifdef CONFIG_NO_HZ_FULL
4622 spin_lock(&nr_freq_lock
);
4623 if (atomic_dec_and_test(&nr_freq_events
))
4624 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS
);
4625 spin_unlock(&nr_freq_lock
);
4629 static void unaccount_freq_event(void)
4631 if (tick_nohz_full_enabled())
4632 unaccount_freq_event_nohz();
4634 atomic_dec(&nr_freq_events
);
4637 static void unaccount_event(struct perf_event
*event
)
4644 if (event
->attach_state
& PERF_ATTACH_TASK
)
4646 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
4647 atomic_dec(&nr_mmap_events
);
4648 if (event
->attr
.comm
)
4649 atomic_dec(&nr_comm_events
);
4650 if (event
->attr
.namespaces
)
4651 atomic_dec(&nr_namespaces_events
);
4652 if (event
->attr
.cgroup
)
4653 atomic_dec(&nr_cgroup_events
);
4654 if (event
->attr
.task
)
4655 atomic_dec(&nr_task_events
);
4656 if (event
->attr
.freq
)
4657 unaccount_freq_event();
4658 if (event
->attr
.context_switch
) {
4660 atomic_dec(&nr_switch_events
);
4662 if (is_cgroup_event(event
))
4664 if (has_branch_stack(event
))
4666 if (event
->attr
.ksymbol
)
4667 atomic_dec(&nr_ksymbol_events
);
4668 if (event
->attr
.bpf_event
)
4669 atomic_dec(&nr_bpf_events
);
4670 if (event
->attr
.text_poke
)
4671 atomic_dec(&nr_text_poke_events
);
4674 if (!atomic_add_unless(&perf_sched_count
, -1, 1))
4675 schedule_delayed_work(&perf_sched_work
, HZ
);
4678 unaccount_event_cpu(event
, event
->cpu
);
4680 unaccount_pmu_sb_event(event
);
4683 static void perf_sched_delayed(struct work_struct
*work
)
4685 mutex_lock(&perf_sched_mutex
);
4686 if (atomic_dec_and_test(&perf_sched_count
))
4687 static_branch_disable(&perf_sched_events
);
4688 mutex_unlock(&perf_sched_mutex
);
4692 * The following implement mutual exclusion of events on "exclusive" pmus
4693 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4694 * at a time, so we disallow creating events that might conflict, namely:
4696 * 1) cpu-wide events in the presence of per-task events,
4697 * 2) per-task events in the presence of cpu-wide events,
4698 * 3) two matching events on the same context.
4700 * The former two cases are handled in the allocation path (perf_event_alloc(),
4701 * _free_event()), the latter -- before the first perf_install_in_context().
4703 static int exclusive_event_init(struct perf_event
*event
)
4705 struct pmu
*pmu
= event
->pmu
;
4707 if (!is_exclusive_pmu(pmu
))
4711 * Prevent co-existence of per-task and cpu-wide events on the
4712 * same exclusive pmu.
4714 * Negative pmu::exclusive_cnt means there are cpu-wide
4715 * events on this "exclusive" pmu, positive means there are
4718 * Since this is called in perf_event_alloc() path, event::ctx
4719 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4720 * to mean "per-task event", because unlike other attach states it
4721 * never gets cleared.
4723 if (event
->attach_state
& PERF_ATTACH_TASK
) {
4724 if (!atomic_inc_unless_negative(&pmu
->exclusive_cnt
))
4727 if (!atomic_dec_unless_positive(&pmu
->exclusive_cnt
))
4734 static void exclusive_event_destroy(struct perf_event
*event
)
4736 struct pmu
*pmu
= event
->pmu
;
4738 if (!is_exclusive_pmu(pmu
))
4741 /* see comment in exclusive_event_init() */
4742 if (event
->attach_state
& PERF_ATTACH_TASK
)
4743 atomic_dec(&pmu
->exclusive_cnt
);
4745 atomic_inc(&pmu
->exclusive_cnt
);
4748 static bool exclusive_event_match(struct perf_event
*e1
, struct perf_event
*e2
)
4750 if ((e1
->pmu
== e2
->pmu
) &&
4751 (e1
->cpu
== e2
->cpu
||
4758 static bool exclusive_event_installable(struct perf_event
*event
,
4759 struct perf_event_context
*ctx
)
4761 struct perf_event
*iter_event
;
4762 struct pmu
*pmu
= event
->pmu
;
4764 lockdep_assert_held(&ctx
->mutex
);
4766 if (!is_exclusive_pmu(pmu
))
4769 list_for_each_entry(iter_event
, &ctx
->event_list
, event_entry
) {
4770 if (exclusive_event_match(iter_event
, event
))
4777 static void perf_addr_filters_splice(struct perf_event
*event
,
4778 struct list_head
*head
);
4780 static void _free_event(struct perf_event
*event
)
4782 irq_work_sync(&event
->pending
);
4784 unaccount_event(event
);
4786 security_perf_event_free(event
);
4790 * Can happen when we close an event with re-directed output.
4792 * Since we have a 0 refcount, perf_mmap_close() will skip
4793 * over us; possibly making our ring_buffer_put() the last.
4795 mutex_lock(&event
->mmap_mutex
);
4796 ring_buffer_attach(event
, NULL
);
4797 mutex_unlock(&event
->mmap_mutex
);
4800 if (is_cgroup_event(event
))
4801 perf_detach_cgroup(event
);
4803 if (!event
->parent
) {
4804 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
4805 put_callchain_buffers();
4808 perf_event_free_bpf_prog(event
);
4809 perf_addr_filters_splice(event
, NULL
);
4810 kfree(event
->addr_filter_ranges
);
4813 event
->destroy(event
);
4816 * Must be after ->destroy(), due to uprobe_perf_close() using
4819 if (event
->hw
.target
)
4820 put_task_struct(event
->hw
.target
);
4823 * perf_event_free_task() relies on put_ctx() being 'last', in particular
4824 * all task references must be cleaned up.
4827 put_ctx(event
->ctx
);
4829 exclusive_event_destroy(event
);
4830 module_put(event
->pmu
->module
);
4832 call_rcu(&event
->rcu_head
, free_event_rcu
);
4836 * Used to free events which have a known refcount of 1, such as in error paths
4837 * where the event isn't exposed yet and inherited events.
4839 static void free_event(struct perf_event
*event
)
4841 if (WARN(atomic_long_cmpxchg(&event
->refcount
, 1, 0) != 1,
4842 "unexpected event refcount: %ld; ptr=%p\n",
4843 atomic_long_read(&event
->refcount
), event
)) {
4844 /* leak to avoid use-after-free */
4852 * Remove user event from the owner task.
4854 static void perf_remove_from_owner(struct perf_event
*event
)
4856 struct task_struct
*owner
;
4860 * Matches the smp_store_release() in perf_event_exit_task(). If we
4861 * observe !owner it means the list deletion is complete and we can
4862 * indeed free this event, otherwise we need to serialize on
4863 * owner->perf_event_mutex.
4865 owner
= READ_ONCE(event
->owner
);
4868 * Since delayed_put_task_struct() also drops the last
4869 * task reference we can safely take a new reference
4870 * while holding the rcu_read_lock().
4872 get_task_struct(owner
);
4878 * If we're here through perf_event_exit_task() we're already
4879 * holding ctx->mutex which would be an inversion wrt. the
4880 * normal lock order.
4882 * However we can safely take this lock because its the child
4885 mutex_lock_nested(&owner
->perf_event_mutex
, SINGLE_DEPTH_NESTING
);
4888 * We have to re-check the event->owner field, if it is cleared
4889 * we raced with perf_event_exit_task(), acquiring the mutex
4890 * ensured they're done, and we can proceed with freeing the
4894 list_del_init(&event
->owner_entry
);
4895 smp_store_release(&event
->owner
, NULL
);
4897 mutex_unlock(&owner
->perf_event_mutex
);
4898 put_task_struct(owner
);
4902 static void put_event(struct perf_event
*event
)
4904 if (!atomic_long_dec_and_test(&event
->refcount
))
4911 * Kill an event dead; while event:refcount will preserve the event
4912 * object, it will not preserve its functionality. Once the last 'user'
4913 * gives up the object, we'll destroy the thing.
4915 int perf_event_release_kernel(struct perf_event
*event
)
4917 struct perf_event_context
*ctx
= event
->ctx
;
4918 struct perf_event
*child
, *tmp
;
4919 LIST_HEAD(free_list
);
4922 * If we got here through err_file: fput(event_file); we will not have
4923 * attached to a context yet.
4926 WARN_ON_ONCE(event
->attach_state
&
4927 (PERF_ATTACH_CONTEXT
|PERF_ATTACH_GROUP
));
4931 if (!is_kernel_event(event
))
4932 perf_remove_from_owner(event
);
4934 ctx
= perf_event_ctx_lock(event
);
4935 WARN_ON_ONCE(ctx
->parent_ctx
);
4936 perf_remove_from_context(event
, DETACH_GROUP
);
4938 raw_spin_lock_irq(&ctx
->lock
);
4940 * Mark this event as STATE_DEAD, there is no external reference to it
4943 * Anybody acquiring event->child_mutex after the below loop _must_
4944 * also see this, most importantly inherit_event() which will avoid
4945 * placing more children on the list.
4947 * Thus this guarantees that we will in fact observe and kill _ALL_
4950 event
->state
= PERF_EVENT_STATE_DEAD
;
4951 raw_spin_unlock_irq(&ctx
->lock
);
4953 perf_event_ctx_unlock(event
, ctx
);
4956 mutex_lock(&event
->child_mutex
);
4957 list_for_each_entry(child
, &event
->child_list
, child_list
) {
4960 * Cannot change, child events are not migrated, see the
4961 * comment with perf_event_ctx_lock_nested().
4963 ctx
= READ_ONCE(child
->ctx
);
4965 * Since child_mutex nests inside ctx::mutex, we must jump
4966 * through hoops. We start by grabbing a reference on the ctx.
4968 * Since the event cannot get freed while we hold the
4969 * child_mutex, the context must also exist and have a !0
4975 * Now that we have a ctx ref, we can drop child_mutex, and
4976 * acquire ctx::mutex without fear of it going away. Then we
4977 * can re-acquire child_mutex.
4979 mutex_unlock(&event
->child_mutex
);
4980 mutex_lock(&ctx
->mutex
);
4981 mutex_lock(&event
->child_mutex
);
4984 * Now that we hold ctx::mutex and child_mutex, revalidate our
4985 * state, if child is still the first entry, it didn't get freed
4986 * and we can continue doing so.
4988 tmp
= list_first_entry_or_null(&event
->child_list
,
4989 struct perf_event
, child_list
);
4991 perf_remove_from_context(child
, DETACH_GROUP
);
4992 list_move(&child
->child_list
, &free_list
);
4994 * This matches the refcount bump in inherit_event();
4995 * this can't be the last reference.
5000 mutex_unlock(&event
->child_mutex
);
5001 mutex_unlock(&ctx
->mutex
);
5005 mutex_unlock(&event
->child_mutex
);
5007 list_for_each_entry_safe(child
, tmp
, &free_list
, child_list
) {
5008 void *var
= &child
->ctx
->refcount
;
5010 list_del(&child
->child_list
);
5014 * Wake any perf_event_free_task() waiting for this event to be
5017 smp_mb(); /* pairs with wait_var_event() */
5022 put_event(event
); /* Must be the 'last' reference */
5025 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
5028 * Called when the last reference to the file is gone.
5030 static int perf_release(struct inode
*inode
, struct file
*file
)
5032 perf_event_release_kernel(file
->private_data
);
5036 static u64
__perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
5038 struct perf_event
*child
;
5044 mutex_lock(&event
->child_mutex
);
5046 (void)perf_event_read(event
, false);
5047 total
+= perf_event_count(event
);
5049 *enabled
+= event
->total_time_enabled
+
5050 atomic64_read(&event
->child_total_time_enabled
);
5051 *running
+= event
->total_time_running
+
5052 atomic64_read(&event
->child_total_time_running
);
5054 list_for_each_entry(child
, &event
->child_list
, child_list
) {
5055 (void)perf_event_read(child
, false);
5056 total
+= perf_event_count(child
);
5057 *enabled
+= child
->total_time_enabled
;
5058 *running
+= child
->total_time_running
;
5060 mutex_unlock(&event
->child_mutex
);
5065 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
5067 struct perf_event_context
*ctx
;
5070 ctx
= perf_event_ctx_lock(event
);
5071 count
= __perf_event_read_value(event
, enabled
, running
);
5072 perf_event_ctx_unlock(event
, ctx
);
5076 EXPORT_SYMBOL_GPL(perf_event_read_value
);
5078 static int __perf_read_group_add(struct perf_event
*leader
,
5079 u64 read_format
, u64
*values
)
5081 struct perf_event_context
*ctx
= leader
->ctx
;
5082 struct perf_event
*sub
;
5083 unsigned long flags
;
5084 int n
= 1; /* skip @nr */
5087 ret
= perf_event_read(leader
, true);
5091 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
5094 * Since we co-schedule groups, {enabled,running} times of siblings
5095 * will be identical to those of the leader, so we only publish one
5098 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
5099 values
[n
++] += leader
->total_time_enabled
+
5100 atomic64_read(&leader
->child_total_time_enabled
);
5103 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
5104 values
[n
++] += leader
->total_time_running
+
5105 atomic64_read(&leader
->child_total_time_running
);
5109 * Write {count,id} tuples for every sibling.
5111 values
[n
++] += perf_event_count(leader
);
5112 if (read_format
& PERF_FORMAT_ID
)
5113 values
[n
++] = primary_event_id(leader
);
5115 for_each_sibling_event(sub
, leader
) {
5116 values
[n
++] += perf_event_count(sub
);
5117 if (read_format
& PERF_FORMAT_ID
)
5118 values
[n
++] = primary_event_id(sub
);
5121 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
5125 static int perf_read_group(struct perf_event
*event
,
5126 u64 read_format
, char __user
*buf
)
5128 struct perf_event
*leader
= event
->group_leader
, *child
;
5129 struct perf_event_context
*ctx
= leader
->ctx
;
5133 lockdep_assert_held(&ctx
->mutex
);
5135 values
= kzalloc(event
->read_size
, GFP_KERNEL
);
5139 values
[0] = 1 + leader
->nr_siblings
;
5142 * By locking the child_mutex of the leader we effectively
5143 * lock the child list of all siblings.. XXX explain how.
5145 mutex_lock(&leader
->child_mutex
);
5147 ret
= __perf_read_group_add(leader
, read_format
, values
);
5151 list_for_each_entry(child
, &leader
->child_list
, child_list
) {
5152 ret
= __perf_read_group_add(child
, read_format
, values
);
5157 mutex_unlock(&leader
->child_mutex
);
5159 ret
= event
->read_size
;
5160 if (copy_to_user(buf
, values
, event
->read_size
))
5165 mutex_unlock(&leader
->child_mutex
);
5171 static int perf_read_one(struct perf_event
*event
,
5172 u64 read_format
, char __user
*buf
)
5174 u64 enabled
, running
;
5178 values
[n
++] = __perf_event_read_value(event
, &enabled
, &running
);
5179 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
5180 values
[n
++] = enabled
;
5181 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
5182 values
[n
++] = running
;
5183 if (read_format
& PERF_FORMAT_ID
)
5184 values
[n
++] = primary_event_id(event
);
5186 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
5189 return n
* sizeof(u64
);
5192 static bool is_event_hup(struct perf_event
*event
)
5196 if (event
->state
> PERF_EVENT_STATE_EXIT
)
5199 mutex_lock(&event
->child_mutex
);
5200 no_children
= list_empty(&event
->child_list
);
5201 mutex_unlock(&event
->child_mutex
);
5206 * Read the performance event - simple non blocking version for now
5209 __perf_read(struct perf_event
*event
, char __user
*buf
, size_t count
)
5211 u64 read_format
= event
->attr
.read_format
;
5215 * Return end-of-file for a read on an event that is in
5216 * error state (i.e. because it was pinned but it couldn't be
5217 * scheduled on to the CPU at some point).
5219 if (event
->state
== PERF_EVENT_STATE_ERROR
)
5222 if (count
< event
->read_size
)
5225 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
5226 if (read_format
& PERF_FORMAT_GROUP
)
5227 ret
= perf_read_group(event
, read_format
, buf
);
5229 ret
= perf_read_one(event
, read_format
, buf
);
5235 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
5237 struct perf_event
*event
= file
->private_data
;
5238 struct perf_event_context
*ctx
;
5241 ret
= security_perf_event_read(event
);
5245 ctx
= perf_event_ctx_lock(event
);
5246 ret
= __perf_read(event
, buf
, count
);
5247 perf_event_ctx_unlock(event
, ctx
);
5252 static __poll_t
perf_poll(struct file
*file
, poll_table
*wait
)
5254 struct perf_event
*event
= file
->private_data
;
5255 struct perf_buffer
*rb
;
5256 __poll_t events
= EPOLLHUP
;
5258 poll_wait(file
, &event
->waitq
, wait
);
5260 if (is_event_hup(event
))
5264 * Pin the event->rb by taking event->mmap_mutex; otherwise
5265 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
5267 mutex_lock(&event
->mmap_mutex
);
5270 events
= atomic_xchg(&rb
->poll
, 0);
5271 mutex_unlock(&event
->mmap_mutex
);
5275 static void _perf_event_reset(struct perf_event
*event
)
5277 (void)perf_event_read(event
, false);
5278 local64_set(&event
->count
, 0);
5279 perf_event_update_userpage(event
);
5282 /* Assume it's not an event with inherit set. */
5283 u64
perf_event_pause(struct perf_event
*event
, bool reset
)
5285 struct perf_event_context
*ctx
;
5288 ctx
= perf_event_ctx_lock(event
);
5289 WARN_ON_ONCE(event
->attr
.inherit
);
5290 _perf_event_disable(event
);
5291 count
= local64_read(&event
->count
);
5293 local64_set(&event
->count
, 0);
5294 perf_event_ctx_unlock(event
, ctx
);
5298 EXPORT_SYMBOL_GPL(perf_event_pause
);
5301 * Holding the top-level event's child_mutex means that any
5302 * descendant process that has inherited this event will block
5303 * in perf_event_exit_event() if it goes to exit, thus satisfying the
5304 * task existence requirements of perf_event_enable/disable.
5306 static void perf_event_for_each_child(struct perf_event
*event
,
5307 void (*func
)(struct perf_event
*))
5309 struct perf_event
*child
;
5311 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
5313 mutex_lock(&event
->child_mutex
);
5315 list_for_each_entry(child
, &event
->child_list
, child_list
)
5317 mutex_unlock(&event
->child_mutex
);
5320 static void perf_event_for_each(struct perf_event
*event
,
5321 void (*func
)(struct perf_event
*))
5323 struct perf_event_context
*ctx
= event
->ctx
;
5324 struct perf_event
*sibling
;
5326 lockdep_assert_held(&ctx
->mutex
);
5328 event
= event
->group_leader
;
5330 perf_event_for_each_child(event
, func
);
5331 for_each_sibling_event(sibling
, event
)
5332 perf_event_for_each_child(sibling
, func
);
5335 static void __perf_event_period(struct perf_event
*event
,
5336 struct perf_cpu_context
*cpuctx
,
5337 struct perf_event_context
*ctx
,
5340 u64 value
= *((u64
*)info
);
5343 if (event
->attr
.freq
) {
5344 event
->attr
.sample_freq
= value
;
5346 event
->attr
.sample_period
= value
;
5347 event
->hw
.sample_period
= value
;
5350 active
= (event
->state
== PERF_EVENT_STATE_ACTIVE
);
5352 perf_pmu_disable(ctx
->pmu
);
5354 * We could be throttled; unthrottle now to avoid the tick
5355 * trying to unthrottle while we already re-started the event.
5357 if (event
->hw
.interrupts
== MAX_INTERRUPTS
) {
5358 event
->hw
.interrupts
= 0;
5359 perf_log_throttle(event
, 1);
5361 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
5364 local64_set(&event
->hw
.period_left
, 0);
5367 event
->pmu
->start(event
, PERF_EF_RELOAD
);
5368 perf_pmu_enable(ctx
->pmu
);
5372 static int perf_event_check_period(struct perf_event
*event
, u64 value
)
5374 return event
->pmu
->check_period(event
, value
);
5377 static int _perf_event_period(struct perf_event
*event
, u64 value
)
5379 if (!is_sampling_event(event
))
5385 if (event
->attr
.freq
&& value
> sysctl_perf_event_sample_rate
)
5388 if (perf_event_check_period(event
, value
))
5391 if (!event
->attr
.freq
&& (value
& (1ULL << 63)))
5394 event_function_call(event
, __perf_event_period
, &value
);
5399 int perf_event_period(struct perf_event
*event
, u64 value
)
5401 struct perf_event_context
*ctx
;
5404 ctx
= perf_event_ctx_lock(event
);
5405 ret
= _perf_event_period(event
, value
);
5406 perf_event_ctx_unlock(event
, ctx
);
5410 EXPORT_SYMBOL_GPL(perf_event_period
);
5412 static const struct file_operations perf_fops
;
5414 static inline int perf_fget_light(int fd
, struct fd
*p
)
5416 struct fd f
= fdget(fd
);
5420 if (f
.file
->f_op
!= &perf_fops
) {
5428 static int perf_event_set_output(struct perf_event
*event
,
5429 struct perf_event
*output_event
);
5430 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
5431 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
);
5432 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
5433 struct perf_event_attr
*attr
);
5435 static long _perf_ioctl(struct perf_event
*event
, unsigned int cmd
, unsigned long arg
)
5437 void (*func
)(struct perf_event
*);
5441 case PERF_EVENT_IOC_ENABLE
:
5442 func
= _perf_event_enable
;
5444 case PERF_EVENT_IOC_DISABLE
:
5445 func
= _perf_event_disable
;
5447 case PERF_EVENT_IOC_RESET
:
5448 func
= _perf_event_reset
;
5451 case PERF_EVENT_IOC_REFRESH
:
5452 return _perf_event_refresh(event
, arg
);
5454 case PERF_EVENT_IOC_PERIOD
:
5458 if (copy_from_user(&value
, (u64 __user
*)arg
, sizeof(value
)))
5461 return _perf_event_period(event
, value
);
5463 case PERF_EVENT_IOC_ID
:
5465 u64 id
= primary_event_id(event
);
5467 if (copy_to_user((void __user
*)arg
, &id
, sizeof(id
)))
5472 case PERF_EVENT_IOC_SET_OUTPUT
:
5476 struct perf_event
*output_event
;
5478 ret
= perf_fget_light(arg
, &output
);
5481 output_event
= output
.file
->private_data
;
5482 ret
= perf_event_set_output(event
, output_event
);
5485 ret
= perf_event_set_output(event
, NULL
);
5490 case PERF_EVENT_IOC_SET_FILTER
:
5491 return perf_event_set_filter(event
, (void __user
*)arg
);
5493 case PERF_EVENT_IOC_SET_BPF
:
5494 return perf_event_set_bpf_prog(event
, arg
);
5496 case PERF_EVENT_IOC_PAUSE_OUTPUT
: {
5497 struct perf_buffer
*rb
;
5500 rb
= rcu_dereference(event
->rb
);
5501 if (!rb
|| !rb
->nr_pages
) {
5505 rb_toggle_paused(rb
, !!arg
);
5510 case PERF_EVENT_IOC_QUERY_BPF
:
5511 return perf_event_query_prog_array(event
, (void __user
*)arg
);
5513 case PERF_EVENT_IOC_MODIFY_ATTRIBUTES
: {
5514 struct perf_event_attr new_attr
;
5515 int err
= perf_copy_attr((struct perf_event_attr __user
*)arg
,
5521 return perf_event_modify_attr(event
, &new_attr
);
5527 if (flags
& PERF_IOC_FLAG_GROUP
)
5528 perf_event_for_each(event
, func
);
5530 perf_event_for_each_child(event
, func
);
5535 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
5537 struct perf_event
*event
= file
->private_data
;
5538 struct perf_event_context
*ctx
;
5541 /* Treat ioctl like writes as it is likely a mutating operation. */
5542 ret
= security_perf_event_write(event
);
5546 ctx
= perf_event_ctx_lock(event
);
5547 ret
= _perf_ioctl(event
, cmd
, arg
);
5548 perf_event_ctx_unlock(event
, ctx
);
5553 #ifdef CONFIG_COMPAT
5554 static long perf_compat_ioctl(struct file
*file
, unsigned int cmd
,
5557 switch (_IOC_NR(cmd
)) {
5558 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER
):
5559 case _IOC_NR(PERF_EVENT_IOC_ID
):
5560 case _IOC_NR(PERF_EVENT_IOC_QUERY_BPF
):
5561 case _IOC_NR(PERF_EVENT_IOC_MODIFY_ATTRIBUTES
):
5562 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
5563 if (_IOC_SIZE(cmd
) == sizeof(compat_uptr_t
)) {
5564 cmd
&= ~IOCSIZE_MASK
;
5565 cmd
|= sizeof(void *) << IOCSIZE_SHIFT
;
5569 return perf_ioctl(file
, cmd
, arg
);
5572 # define perf_compat_ioctl NULL
5575 int perf_event_task_enable(void)
5577 struct perf_event_context
*ctx
;
5578 struct perf_event
*event
;
5580 mutex_lock(¤t
->perf_event_mutex
);
5581 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
5582 ctx
= perf_event_ctx_lock(event
);
5583 perf_event_for_each_child(event
, _perf_event_enable
);
5584 perf_event_ctx_unlock(event
, ctx
);
5586 mutex_unlock(¤t
->perf_event_mutex
);
5591 int perf_event_task_disable(void)
5593 struct perf_event_context
*ctx
;
5594 struct perf_event
*event
;
5596 mutex_lock(¤t
->perf_event_mutex
);
5597 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
) {
5598 ctx
= perf_event_ctx_lock(event
);
5599 perf_event_for_each_child(event
, _perf_event_disable
);
5600 perf_event_ctx_unlock(event
, ctx
);
5602 mutex_unlock(¤t
->perf_event_mutex
);
5607 static int perf_event_index(struct perf_event
*event
)
5609 if (event
->hw
.state
& PERF_HES_STOPPED
)
5612 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
5615 return event
->pmu
->event_idx(event
);
5618 static void calc_timer_values(struct perf_event
*event
,
5625 *now
= perf_clock();
5626 ctx_time
= event
->shadow_ctx_time
+ *now
;
5627 __perf_update_times(event
, ctx_time
, enabled
, running
);
5630 static void perf_event_init_userpage(struct perf_event
*event
)
5632 struct perf_event_mmap_page
*userpg
;
5633 struct perf_buffer
*rb
;
5636 rb
= rcu_dereference(event
->rb
);
5640 userpg
= rb
->user_page
;
5642 /* Allow new userspace to detect that bit 0 is deprecated */
5643 userpg
->cap_bit0_is_deprecated
= 1;
5644 userpg
->size
= offsetof(struct perf_event_mmap_page
, __reserved
);
5645 userpg
->data_offset
= PAGE_SIZE
;
5646 userpg
->data_size
= perf_data_size(rb
);
5652 void __weak
arch_perf_update_userpage(
5653 struct perf_event
*event
, struct perf_event_mmap_page
*userpg
, u64 now
)
5658 * Callers need to ensure there can be no nesting of this function, otherwise
5659 * the seqlock logic goes bad. We can not serialize this because the arch
5660 * code calls this from NMI context.
5662 void perf_event_update_userpage(struct perf_event
*event
)
5664 struct perf_event_mmap_page
*userpg
;
5665 struct perf_buffer
*rb
;
5666 u64 enabled
, running
, now
;
5669 rb
= rcu_dereference(event
->rb
);
5674 * compute total_time_enabled, total_time_running
5675 * based on snapshot values taken when the event
5676 * was last scheduled in.
5678 * we cannot simply called update_context_time()
5679 * because of locking issue as we can be called in
5682 calc_timer_values(event
, &now
, &enabled
, &running
);
5684 userpg
= rb
->user_page
;
5686 * Disable preemption to guarantee consistent time stamps are stored to
5692 userpg
->index
= perf_event_index(event
);
5693 userpg
->offset
= perf_event_count(event
);
5695 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
5697 userpg
->time_enabled
= enabled
+
5698 atomic64_read(&event
->child_total_time_enabled
);
5700 userpg
->time_running
= running
+
5701 atomic64_read(&event
->child_total_time_running
);
5703 arch_perf_update_userpage(event
, userpg
, now
);
5711 EXPORT_SYMBOL_GPL(perf_event_update_userpage
);
5713 static vm_fault_t
perf_mmap_fault(struct vm_fault
*vmf
)
5715 struct perf_event
*event
= vmf
->vma
->vm_file
->private_data
;
5716 struct perf_buffer
*rb
;
5717 vm_fault_t ret
= VM_FAULT_SIGBUS
;
5719 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
5720 if (vmf
->pgoff
== 0)
5726 rb
= rcu_dereference(event
->rb
);
5730 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
5733 vmf
->page
= perf_mmap_to_page(rb
, vmf
->pgoff
);
5737 get_page(vmf
->page
);
5738 vmf
->page
->mapping
= vmf
->vma
->vm_file
->f_mapping
;
5739 vmf
->page
->index
= vmf
->pgoff
;
5748 static void ring_buffer_attach(struct perf_event
*event
,
5749 struct perf_buffer
*rb
)
5751 struct perf_buffer
*old_rb
= NULL
;
5752 unsigned long flags
;
5756 * Should be impossible, we set this when removing
5757 * event->rb_entry and wait/clear when adding event->rb_entry.
5759 WARN_ON_ONCE(event
->rcu_pending
);
5762 spin_lock_irqsave(&old_rb
->event_lock
, flags
);
5763 list_del_rcu(&event
->rb_entry
);
5764 spin_unlock_irqrestore(&old_rb
->event_lock
, flags
);
5766 event
->rcu_batches
= get_state_synchronize_rcu();
5767 event
->rcu_pending
= 1;
5771 if (event
->rcu_pending
) {
5772 cond_synchronize_rcu(event
->rcu_batches
);
5773 event
->rcu_pending
= 0;
5776 spin_lock_irqsave(&rb
->event_lock
, flags
);
5777 list_add_rcu(&event
->rb_entry
, &rb
->event_list
);
5778 spin_unlock_irqrestore(&rb
->event_lock
, flags
);
5782 * Avoid racing with perf_mmap_close(AUX): stop the event
5783 * before swizzling the event::rb pointer; if it's getting
5784 * unmapped, its aux_mmap_count will be 0 and it won't
5785 * restart. See the comment in __perf_pmu_output_stop().
5787 * Data will inevitably be lost when set_output is done in
5788 * mid-air, but then again, whoever does it like this is
5789 * not in for the data anyway.
5792 perf_event_stop(event
, 0);
5794 rcu_assign_pointer(event
->rb
, rb
);
5797 ring_buffer_put(old_rb
);
5799 * Since we detached before setting the new rb, so that we
5800 * could attach the new rb, we could have missed a wakeup.
5803 wake_up_all(&event
->waitq
);
5807 static void ring_buffer_wakeup(struct perf_event
*event
)
5809 struct perf_buffer
*rb
;
5812 rb
= rcu_dereference(event
->rb
);
5814 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
)
5815 wake_up_all(&event
->waitq
);
5820 struct perf_buffer
*ring_buffer_get(struct perf_event
*event
)
5822 struct perf_buffer
*rb
;
5825 rb
= rcu_dereference(event
->rb
);
5827 if (!refcount_inc_not_zero(&rb
->refcount
))
5835 void ring_buffer_put(struct perf_buffer
*rb
)
5837 if (!refcount_dec_and_test(&rb
->refcount
))
5840 WARN_ON_ONCE(!list_empty(&rb
->event_list
));
5842 call_rcu(&rb
->rcu_head
, rb_free_rcu
);
5845 static void perf_mmap_open(struct vm_area_struct
*vma
)
5847 struct perf_event
*event
= vma
->vm_file
->private_data
;
5849 atomic_inc(&event
->mmap_count
);
5850 atomic_inc(&event
->rb
->mmap_count
);
5853 atomic_inc(&event
->rb
->aux_mmap_count
);
5855 if (event
->pmu
->event_mapped
)
5856 event
->pmu
->event_mapped(event
, vma
->vm_mm
);
5859 static void perf_pmu_output_stop(struct perf_event
*event
);
5862 * A buffer can be mmap()ed multiple times; either directly through the same
5863 * event, or through other events by use of perf_event_set_output().
5865 * In order to undo the VM accounting done by perf_mmap() we need to destroy
5866 * the buffer here, where we still have a VM context. This means we need
5867 * to detach all events redirecting to us.
5869 static void perf_mmap_close(struct vm_area_struct
*vma
)
5871 struct perf_event
*event
= vma
->vm_file
->private_data
;
5872 struct perf_buffer
*rb
= ring_buffer_get(event
);
5873 struct user_struct
*mmap_user
= rb
->mmap_user
;
5874 int mmap_locked
= rb
->mmap_locked
;
5875 unsigned long size
= perf_data_size(rb
);
5876 bool detach_rest
= false;
5878 if (event
->pmu
->event_unmapped
)
5879 event
->pmu
->event_unmapped(event
, vma
->vm_mm
);
5882 * rb->aux_mmap_count will always drop before rb->mmap_count and
5883 * event->mmap_count, so it is ok to use event->mmap_mutex to
5884 * serialize with perf_mmap here.
5886 if (rb_has_aux(rb
) && vma
->vm_pgoff
== rb
->aux_pgoff
&&
5887 atomic_dec_and_mutex_lock(&rb
->aux_mmap_count
, &event
->mmap_mutex
)) {
5889 * Stop all AUX events that are writing to this buffer,
5890 * so that we can free its AUX pages and corresponding PMU
5891 * data. Note that after rb::aux_mmap_count dropped to zero,
5892 * they won't start any more (see perf_aux_output_begin()).
5894 perf_pmu_output_stop(event
);
5896 /* now it's safe to free the pages */
5897 atomic_long_sub(rb
->aux_nr_pages
- rb
->aux_mmap_locked
, &mmap_user
->locked_vm
);
5898 atomic64_sub(rb
->aux_mmap_locked
, &vma
->vm_mm
->pinned_vm
);
5900 /* this has to be the last one */
5902 WARN_ON_ONCE(refcount_read(&rb
->aux_refcount
));
5904 mutex_unlock(&event
->mmap_mutex
);
5907 if (atomic_dec_and_test(&rb
->mmap_count
))
5910 if (!atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
))
5913 ring_buffer_attach(event
, NULL
);
5914 mutex_unlock(&event
->mmap_mutex
);
5916 /* If there's still other mmap()s of this buffer, we're done. */
5921 * No other mmap()s, detach from all other events that might redirect
5922 * into the now unreachable buffer. Somewhat complicated by the
5923 * fact that rb::event_lock otherwise nests inside mmap_mutex.
5927 list_for_each_entry_rcu(event
, &rb
->event_list
, rb_entry
) {
5928 if (!atomic_long_inc_not_zero(&event
->refcount
)) {
5930 * This event is en-route to free_event() which will
5931 * detach it and remove it from the list.
5937 mutex_lock(&event
->mmap_mutex
);
5939 * Check we didn't race with perf_event_set_output() which can
5940 * swizzle the rb from under us while we were waiting to
5941 * acquire mmap_mutex.
5943 * If we find a different rb; ignore this event, a next
5944 * iteration will no longer find it on the list. We have to
5945 * still restart the iteration to make sure we're not now
5946 * iterating the wrong list.
5948 if (event
->rb
== rb
)
5949 ring_buffer_attach(event
, NULL
);
5951 mutex_unlock(&event
->mmap_mutex
);
5955 * Restart the iteration; either we're on the wrong list or
5956 * destroyed its integrity by doing a deletion.
5963 * It could be there's still a few 0-ref events on the list; they'll
5964 * get cleaned up by free_event() -- they'll also still have their
5965 * ref on the rb and will free it whenever they are done with it.
5967 * Aside from that, this buffer is 'fully' detached and unmapped,
5968 * undo the VM accounting.
5971 atomic_long_sub((size
>> PAGE_SHIFT
) + 1 - mmap_locked
,
5972 &mmap_user
->locked_vm
);
5973 atomic64_sub(mmap_locked
, &vma
->vm_mm
->pinned_vm
);
5974 free_uid(mmap_user
);
5977 ring_buffer_put(rb
); /* could be last */
5980 static const struct vm_operations_struct perf_mmap_vmops
= {
5981 .open
= perf_mmap_open
,
5982 .close
= perf_mmap_close
, /* non mergeable */
5983 .fault
= perf_mmap_fault
,
5984 .page_mkwrite
= perf_mmap_fault
,
5987 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
5989 struct perf_event
*event
= file
->private_data
;
5990 unsigned long user_locked
, user_lock_limit
;
5991 struct user_struct
*user
= current_user();
5992 struct perf_buffer
*rb
= NULL
;
5993 unsigned long locked
, lock_limit
;
5994 unsigned long vma_size
;
5995 unsigned long nr_pages
;
5996 long user_extra
= 0, extra
= 0;
5997 int ret
= 0, flags
= 0;
6000 * Don't allow mmap() of inherited per-task counters. This would
6001 * create a performance issue due to all children writing to the
6004 if (event
->cpu
== -1 && event
->attr
.inherit
)
6007 if (!(vma
->vm_flags
& VM_SHARED
))
6010 ret
= security_perf_event_read(event
);
6014 vma_size
= vma
->vm_end
- vma
->vm_start
;
6016 if (vma
->vm_pgoff
== 0) {
6017 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
6020 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
6021 * mapped, all subsequent mappings should have the same size
6022 * and offset. Must be above the normal perf buffer.
6024 u64 aux_offset
, aux_size
;
6029 nr_pages
= vma_size
/ PAGE_SIZE
;
6031 mutex_lock(&event
->mmap_mutex
);
6038 aux_offset
= READ_ONCE(rb
->user_page
->aux_offset
);
6039 aux_size
= READ_ONCE(rb
->user_page
->aux_size
);
6041 if (aux_offset
< perf_data_size(rb
) + PAGE_SIZE
)
6044 if (aux_offset
!= vma
->vm_pgoff
<< PAGE_SHIFT
)
6047 /* already mapped with a different offset */
6048 if (rb_has_aux(rb
) && rb
->aux_pgoff
!= vma
->vm_pgoff
)
6051 if (aux_size
!= vma_size
|| aux_size
!= nr_pages
* PAGE_SIZE
)
6054 /* already mapped with a different size */
6055 if (rb_has_aux(rb
) && rb
->aux_nr_pages
!= nr_pages
)
6058 if (!is_power_of_2(nr_pages
))
6061 if (!atomic_inc_not_zero(&rb
->mmap_count
))
6064 if (rb_has_aux(rb
)) {
6065 atomic_inc(&rb
->aux_mmap_count
);
6070 atomic_set(&rb
->aux_mmap_count
, 1);
6071 user_extra
= nr_pages
;
6077 * If we have rb pages ensure they're a power-of-two number, so we
6078 * can do bitmasks instead of modulo.
6080 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
6083 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
6086 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
6088 mutex_lock(&event
->mmap_mutex
);
6090 if (event
->rb
->nr_pages
!= nr_pages
) {
6095 if (!atomic_inc_not_zero(&event
->rb
->mmap_count
)) {
6097 * Raced against perf_mmap_close() through
6098 * perf_event_set_output(). Try again, hope for better
6101 mutex_unlock(&event
->mmap_mutex
);
6108 user_extra
= nr_pages
+ 1;
6111 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
6114 * Increase the limit linearly with more CPUs:
6116 user_lock_limit
*= num_online_cpus();
6118 user_locked
= atomic_long_read(&user
->locked_vm
);
6121 * sysctl_perf_event_mlock may have changed, so that
6122 * user->locked_vm > user_lock_limit
6124 if (user_locked
> user_lock_limit
)
6125 user_locked
= user_lock_limit
;
6126 user_locked
+= user_extra
;
6128 if (user_locked
> user_lock_limit
) {
6130 * charge locked_vm until it hits user_lock_limit;
6131 * charge the rest from pinned_vm
6133 extra
= user_locked
- user_lock_limit
;
6134 user_extra
-= extra
;
6137 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
6138 lock_limit
>>= PAGE_SHIFT
;
6139 locked
= atomic64_read(&vma
->vm_mm
->pinned_vm
) + extra
;
6141 if ((locked
> lock_limit
) && perf_is_paranoid() &&
6142 !capable(CAP_IPC_LOCK
)) {
6147 WARN_ON(!rb
&& event
->rb
);
6149 if (vma
->vm_flags
& VM_WRITE
)
6150 flags
|= RING_BUFFER_WRITABLE
;
6153 rb
= rb_alloc(nr_pages
,
6154 event
->attr
.watermark
? event
->attr
.wakeup_watermark
: 0,
6162 atomic_set(&rb
->mmap_count
, 1);
6163 rb
->mmap_user
= get_current_user();
6164 rb
->mmap_locked
= extra
;
6166 ring_buffer_attach(event
, rb
);
6168 perf_event_init_userpage(event
);
6169 perf_event_update_userpage(event
);
6171 ret
= rb_alloc_aux(rb
, event
, vma
->vm_pgoff
, nr_pages
,
6172 event
->attr
.aux_watermark
, flags
);
6174 rb
->aux_mmap_locked
= extra
;
6179 atomic_long_add(user_extra
, &user
->locked_vm
);
6180 atomic64_add(extra
, &vma
->vm_mm
->pinned_vm
);
6182 atomic_inc(&event
->mmap_count
);
6184 atomic_dec(&rb
->mmap_count
);
6187 mutex_unlock(&event
->mmap_mutex
);
6190 * Since pinned accounting is per vm we cannot allow fork() to copy our
6193 vma
->vm_flags
|= VM_DONTCOPY
| VM_DONTEXPAND
| VM_DONTDUMP
;
6194 vma
->vm_ops
= &perf_mmap_vmops
;
6196 if (event
->pmu
->event_mapped
)
6197 event
->pmu
->event_mapped(event
, vma
->vm_mm
);
6202 static int perf_fasync(int fd
, struct file
*filp
, int on
)
6204 struct inode
*inode
= file_inode(filp
);
6205 struct perf_event
*event
= filp
->private_data
;
6209 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
6210 inode_unlock(inode
);
6218 static const struct file_operations perf_fops
= {
6219 .llseek
= no_llseek
,
6220 .release
= perf_release
,
6223 .unlocked_ioctl
= perf_ioctl
,
6224 .compat_ioctl
= perf_compat_ioctl
,
6226 .fasync
= perf_fasync
,
6232 * If there's data, ensure we set the poll() state and publish everything
6233 * to user-space before waking everybody up.
6236 static inline struct fasync_struct
**perf_event_fasync(struct perf_event
*event
)
6238 /* only the parent has fasync state */
6240 event
= event
->parent
;
6241 return &event
->fasync
;
6244 void perf_event_wakeup(struct perf_event
*event
)
6246 ring_buffer_wakeup(event
);
6248 if (event
->pending_kill
) {
6249 kill_fasync(perf_event_fasync(event
), SIGIO
, event
->pending_kill
);
6250 event
->pending_kill
= 0;
6254 static void perf_pending_event_disable(struct perf_event
*event
)
6256 int cpu
= READ_ONCE(event
->pending_disable
);
6261 if (cpu
== smp_processor_id()) {
6262 WRITE_ONCE(event
->pending_disable
, -1);
6263 perf_event_disable_local(event
);
6270 * perf_event_disable_inatomic()
6271 * @pending_disable = CPU-A;
6275 * @pending_disable = -1;
6278 * perf_event_disable_inatomic()
6279 * @pending_disable = CPU-B;
6280 * irq_work_queue(); // FAILS
6283 * perf_pending_event()
6285 * But the event runs on CPU-B and wants disabling there.
6287 irq_work_queue_on(&event
->pending
, cpu
);
6290 static void perf_pending_event(struct irq_work
*entry
)
6292 struct perf_event
*event
= container_of(entry
, struct perf_event
, pending
);
6295 rctx
= perf_swevent_get_recursion_context();
6297 * If we 'fail' here, that's OK, it means recursion is already disabled
6298 * and we won't recurse 'further'.
6301 perf_pending_event_disable(event
);
6303 if (event
->pending_wakeup
) {
6304 event
->pending_wakeup
= 0;
6305 perf_event_wakeup(event
);
6309 perf_swevent_put_recursion_context(rctx
);
6313 * We assume there is only KVM supporting the callbacks.
6314 * Later on, we might change it to a list if there is
6315 * another virtualization implementation supporting the callbacks.
6317 struct perf_guest_info_callbacks
*perf_guest_cbs
;
6319 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
6321 perf_guest_cbs
= cbs
;
6324 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
6326 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
6328 perf_guest_cbs
= NULL
;
6331 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
6334 perf_output_sample_regs(struct perf_output_handle
*handle
,
6335 struct pt_regs
*regs
, u64 mask
)
6338 DECLARE_BITMAP(_mask
, 64);
6340 bitmap_from_u64(_mask
, mask
);
6341 for_each_set_bit(bit
, _mask
, sizeof(mask
) * BITS_PER_BYTE
) {
6344 val
= perf_reg_value(regs
, bit
);
6345 perf_output_put(handle
, val
);
6349 static void perf_sample_regs_user(struct perf_regs
*regs_user
,
6350 struct pt_regs
*regs
,
6351 struct pt_regs
*regs_user_copy
)
6353 if (user_mode(regs
)) {
6354 regs_user
->abi
= perf_reg_abi(current
);
6355 regs_user
->regs
= regs
;
6356 } else if (!(current
->flags
& PF_KTHREAD
)) {
6357 perf_get_regs_user(regs_user
, regs
, regs_user_copy
);
6359 regs_user
->abi
= PERF_SAMPLE_REGS_ABI_NONE
;
6360 regs_user
->regs
= NULL
;
6364 static void perf_sample_regs_intr(struct perf_regs
*regs_intr
,
6365 struct pt_regs
*regs
)
6367 regs_intr
->regs
= regs
;
6368 regs_intr
->abi
= perf_reg_abi(current
);
6373 * Get remaining task size from user stack pointer.
6375 * It'd be better to take stack vma map and limit this more
6376 * precisely, but there's no way to get it safely under interrupt,
6377 * so using TASK_SIZE as limit.
6379 static u64
perf_ustack_task_size(struct pt_regs
*regs
)
6381 unsigned long addr
= perf_user_stack_pointer(regs
);
6383 if (!addr
|| addr
>= TASK_SIZE
)
6386 return TASK_SIZE
- addr
;
6390 perf_sample_ustack_size(u16 stack_size
, u16 header_size
,
6391 struct pt_regs
*regs
)
6395 /* No regs, no stack pointer, no dump. */
6400 * Check if we fit in with the requested stack size into the:
6402 * If we don't, we limit the size to the TASK_SIZE.
6404 * - remaining sample size
6405 * If we don't, we customize the stack size to
6406 * fit in to the remaining sample size.
6409 task_size
= min((u64
) USHRT_MAX
, perf_ustack_task_size(regs
));
6410 stack_size
= min(stack_size
, (u16
) task_size
);
6412 /* Current header size plus static size and dynamic size. */
6413 header_size
+= 2 * sizeof(u64
);
6415 /* Do we fit in with the current stack dump size? */
6416 if ((u16
) (header_size
+ stack_size
) < header_size
) {
6418 * If we overflow the maximum size for the sample,
6419 * we customize the stack dump size to fit in.
6421 stack_size
= USHRT_MAX
- header_size
- sizeof(u64
);
6422 stack_size
= round_up(stack_size
, sizeof(u64
));
6429 perf_output_sample_ustack(struct perf_output_handle
*handle
, u64 dump_size
,
6430 struct pt_regs
*regs
)
6432 /* Case of a kernel thread, nothing to dump */
6435 perf_output_put(handle
, size
);
6445 * - the size requested by user or the best one we can fit
6446 * in to the sample max size
6448 * - user stack dump data
6450 * - the actual dumped size
6454 perf_output_put(handle
, dump_size
);
6457 sp
= perf_user_stack_pointer(regs
);
6458 fs
= force_uaccess_begin();
6459 rem
= __output_copy_user(handle
, (void *) sp
, dump_size
);
6460 force_uaccess_end(fs
);
6461 dyn_size
= dump_size
- rem
;
6463 perf_output_skip(handle
, rem
);
6466 perf_output_put(handle
, dyn_size
);
6470 static unsigned long perf_prepare_sample_aux(struct perf_event
*event
,
6471 struct perf_sample_data
*data
,
6474 struct perf_event
*sampler
= event
->aux_event
;
6475 struct perf_buffer
*rb
;
6482 if (WARN_ON_ONCE(READ_ONCE(sampler
->state
) != PERF_EVENT_STATE_ACTIVE
))
6485 if (WARN_ON_ONCE(READ_ONCE(sampler
->oncpu
) != smp_processor_id()))
6488 rb
= ring_buffer_get(sampler
->parent
? sampler
->parent
: sampler
);
6493 * If this is an NMI hit inside sampling code, don't take
6494 * the sample. See also perf_aux_sample_output().
6496 if (READ_ONCE(rb
->aux_in_sampling
)) {
6499 size
= min_t(size_t, size
, perf_aux_size(rb
));
6500 data
->aux_size
= ALIGN(size
, sizeof(u64
));
6502 ring_buffer_put(rb
);
6505 return data
->aux_size
;
6508 long perf_pmu_snapshot_aux(struct perf_buffer
*rb
,
6509 struct perf_event
*event
,
6510 struct perf_output_handle
*handle
,
6513 unsigned long flags
;
6517 * Normal ->start()/->stop() callbacks run in IRQ mode in scheduler
6518 * paths. If we start calling them in NMI context, they may race with
6519 * the IRQ ones, that is, for example, re-starting an event that's just
6520 * been stopped, which is why we're using a separate callback that
6521 * doesn't change the event state.
6523 * IRQs need to be disabled to prevent IPIs from racing with us.
6525 local_irq_save(flags
);
6527 * Guard against NMI hits inside the critical section;
6528 * see also perf_prepare_sample_aux().
6530 WRITE_ONCE(rb
->aux_in_sampling
, 1);
6533 ret
= event
->pmu
->snapshot_aux(event
, handle
, size
);
6536 WRITE_ONCE(rb
->aux_in_sampling
, 0);
6537 local_irq_restore(flags
);
6542 static void perf_aux_sample_output(struct perf_event
*event
,
6543 struct perf_output_handle
*handle
,
6544 struct perf_sample_data
*data
)
6546 struct perf_event
*sampler
= event
->aux_event
;
6547 struct perf_buffer
*rb
;
6551 if (WARN_ON_ONCE(!sampler
|| !data
->aux_size
))
6554 rb
= ring_buffer_get(sampler
->parent
? sampler
->parent
: sampler
);
6558 size
= perf_pmu_snapshot_aux(rb
, sampler
, handle
, data
->aux_size
);
6561 * An error here means that perf_output_copy() failed (returned a
6562 * non-zero surplus that it didn't copy), which in its current
6563 * enlightened implementation is not possible. If that changes, we'd
6566 if (WARN_ON_ONCE(size
< 0))
6570 * The pad comes from ALIGN()ing data->aux_size up to u64 in
6571 * perf_prepare_sample_aux(), so should not be more than that.
6573 pad
= data
->aux_size
- size
;
6574 if (WARN_ON_ONCE(pad
>= sizeof(u64
)))
6579 perf_output_copy(handle
, &zero
, pad
);
6583 ring_buffer_put(rb
);
6586 static void __perf_event_header__init_id(struct perf_event_header
*header
,
6587 struct perf_sample_data
*data
,
6588 struct perf_event
*event
)
6590 u64 sample_type
= event
->attr
.sample_type
;
6592 data
->type
= sample_type
;
6593 header
->size
+= event
->id_header_size
;
6595 if (sample_type
& PERF_SAMPLE_TID
) {
6596 /* namespace issues */
6597 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
6598 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
6601 if (sample_type
& PERF_SAMPLE_TIME
)
6602 data
->time
= perf_event_clock(event
);
6604 if (sample_type
& (PERF_SAMPLE_ID
| PERF_SAMPLE_IDENTIFIER
))
6605 data
->id
= primary_event_id(event
);
6607 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
6608 data
->stream_id
= event
->id
;
6610 if (sample_type
& PERF_SAMPLE_CPU
) {
6611 data
->cpu_entry
.cpu
= raw_smp_processor_id();
6612 data
->cpu_entry
.reserved
= 0;
6616 void perf_event_header__init_id(struct perf_event_header
*header
,
6617 struct perf_sample_data
*data
,
6618 struct perf_event
*event
)
6620 if (event
->attr
.sample_id_all
)
6621 __perf_event_header__init_id(header
, data
, event
);
6624 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
6625 struct perf_sample_data
*data
)
6627 u64 sample_type
= data
->type
;
6629 if (sample_type
& PERF_SAMPLE_TID
)
6630 perf_output_put(handle
, data
->tid_entry
);
6632 if (sample_type
& PERF_SAMPLE_TIME
)
6633 perf_output_put(handle
, data
->time
);
6635 if (sample_type
& PERF_SAMPLE_ID
)
6636 perf_output_put(handle
, data
->id
);
6638 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
6639 perf_output_put(handle
, data
->stream_id
);
6641 if (sample_type
& PERF_SAMPLE_CPU
)
6642 perf_output_put(handle
, data
->cpu_entry
);
6644 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
6645 perf_output_put(handle
, data
->id
);
6648 void perf_event__output_id_sample(struct perf_event
*event
,
6649 struct perf_output_handle
*handle
,
6650 struct perf_sample_data
*sample
)
6652 if (event
->attr
.sample_id_all
)
6653 __perf_event__output_id_sample(handle
, sample
);
6656 static void perf_output_read_one(struct perf_output_handle
*handle
,
6657 struct perf_event
*event
,
6658 u64 enabled
, u64 running
)
6660 u64 read_format
= event
->attr
.read_format
;
6664 values
[n
++] = perf_event_count(event
);
6665 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
6666 values
[n
++] = enabled
+
6667 atomic64_read(&event
->child_total_time_enabled
);
6669 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
6670 values
[n
++] = running
+
6671 atomic64_read(&event
->child_total_time_running
);
6673 if (read_format
& PERF_FORMAT_ID
)
6674 values
[n
++] = primary_event_id(event
);
6676 __output_copy(handle
, values
, n
* sizeof(u64
));
6679 static void perf_output_read_group(struct perf_output_handle
*handle
,
6680 struct perf_event
*event
,
6681 u64 enabled
, u64 running
)
6683 struct perf_event
*leader
= event
->group_leader
, *sub
;
6684 u64 read_format
= event
->attr
.read_format
;
6688 values
[n
++] = 1 + leader
->nr_siblings
;
6690 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
6691 values
[n
++] = enabled
;
6693 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
6694 values
[n
++] = running
;
6696 if ((leader
!= event
) &&
6697 (leader
->state
== PERF_EVENT_STATE_ACTIVE
))
6698 leader
->pmu
->read(leader
);
6700 values
[n
++] = perf_event_count(leader
);
6701 if (read_format
& PERF_FORMAT_ID
)
6702 values
[n
++] = primary_event_id(leader
);
6704 __output_copy(handle
, values
, n
* sizeof(u64
));
6706 for_each_sibling_event(sub
, leader
) {
6709 if ((sub
!= event
) &&
6710 (sub
->state
== PERF_EVENT_STATE_ACTIVE
))
6711 sub
->pmu
->read(sub
);
6713 values
[n
++] = perf_event_count(sub
);
6714 if (read_format
& PERF_FORMAT_ID
)
6715 values
[n
++] = primary_event_id(sub
);
6717 __output_copy(handle
, values
, n
* sizeof(u64
));
6721 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
6722 PERF_FORMAT_TOTAL_TIME_RUNNING)
6725 * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
6727 * The problem is that its both hard and excessively expensive to iterate the
6728 * child list, not to mention that its impossible to IPI the children running
6729 * on another CPU, from interrupt/NMI context.
6731 static void perf_output_read(struct perf_output_handle
*handle
,
6732 struct perf_event
*event
)
6734 u64 enabled
= 0, running
= 0, now
;
6735 u64 read_format
= event
->attr
.read_format
;
6738 * compute total_time_enabled, total_time_running
6739 * based on snapshot values taken when the event
6740 * was last scheduled in.
6742 * we cannot simply called update_context_time()
6743 * because of locking issue as we are called in
6746 if (read_format
& PERF_FORMAT_TOTAL_TIMES
)
6747 calc_timer_values(event
, &now
, &enabled
, &running
);
6749 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
6750 perf_output_read_group(handle
, event
, enabled
, running
);
6752 perf_output_read_one(handle
, event
, enabled
, running
);
6755 static inline bool perf_sample_save_hw_index(struct perf_event
*event
)
6757 return event
->attr
.branch_sample_type
& PERF_SAMPLE_BRANCH_HW_INDEX
;
6760 void perf_output_sample(struct perf_output_handle
*handle
,
6761 struct perf_event_header
*header
,
6762 struct perf_sample_data
*data
,
6763 struct perf_event
*event
)
6765 u64 sample_type
= data
->type
;
6767 perf_output_put(handle
, *header
);
6769 if (sample_type
& PERF_SAMPLE_IDENTIFIER
)
6770 perf_output_put(handle
, data
->id
);
6772 if (sample_type
& PERF_SAMPLE_IP
)
6773 perf_output_put(handle
, data
->ip
);
6775 if (sample_type
& PERF_SAMPLE_TID
)
6776 perf_output_put(handle
, data
->tid_entry
);
6778 if (sample_type
& PERF_SAMPLE_TIME
)
6779 perf_output_put(handle
, data
->time
);
6781 if (sample_type
& PERF_SAMPLE_ADDR
)
6782 perf_output_put(handle
, data
->addr
);
6784 if (sample_type
& PERF_SAMPLE_ID
)
6785 perf_output_put(handle
, data
->id
);
6787 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
6788 perf_output_put(handle
, data
->stream_id
);
6790 if (sample_type
& PERF_SAMPLE_CPU
)
6791 perf_output_put(handle
, data
->cpu_entry
);
6793 if (sample_type
& PERF_SAMPLE_PERIOD
)
6794 perf_output_put(handle
, data
->period
);
6796 if (sample_type
& PERF_SAMPLE_READ
)
6797 perf_output_read(handle
, event
);
6799 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
6802 size
+= data
->callchain
->nr
;
6803 size
*= sizeof(u64
);
6804 __output_copy(handle
, data
->callchain
, size
);
6807 if (sample_type
& PERF_SAMPLE_RAW
) {
6808 struct perf_raw_record
*raw
= data
->raw
;
6811 struct perf_raw_frag
*frag
= &raw
->frag
;
6813 perf_output_put(handle
, raw
->size
);
6816 __output_custom(handle
, frag
->copy
,
6817 frag
->data
, frag
->size
);
6819 __output_copy(handle
, frag
->data
,
6822 if (perf_raw_frag_last(frag
))
6827 __output_skip(handle
, NULL
, frag
->pad
);
6833 .size
= sizeof(u32
),
6836 perf_output_put(handle
, raw
);
6840 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
6841 if (data
->br_stack
) {
6844 size
= data
->br_stack
->nr
6845 * sizeof(struct perf_branch_entry
);
6847 perf_output_put(handle
, data
->br_stack
->nr
);
6848 if (perf_sample_save_hw_index(event
))
6849 perf_output_put(handle
, data
->br_stack
->hw_idx
);
6850 perf_output_copy(handle
, data
->br_stack
->entries
, size
);
6853 * we always store at least the value of nr
6856 perf_output_put(handle
, nr
);
6860 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
6861 u64 abi
= data
->regs_user
.abi
;
6864 * If there are no regs to dump, notice it through
6865 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6867 perf_output_put(handle
, abi
);
6870 u64 mask
= event
->attr
.sample_regs_user
;
6871 perf_output_sample_regs(handle
,
6872 data
->regs_user
.regs
,
6877 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
6878 perf_output_sample_ustack(handle
,
6879 data
->stack_user_size
,
6880 data
->regs_user
.regs
);
6883 if (sample_type
& PERF_SAMPLE_WEIGHT
)
6884 perf_output_put(handle
, data
->weight
);
6886 if (sample_type
& PERF_SAMPLE_DATA_SRC
)
6887 perf_output_put(handle
, data
->data_src
.val
);
6889 if (sample_type
& PERF_SAMPLE_TRANSACTION
)
6890 perf_output_put(handle
, data
->txn
);
6892 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
6893 u64 abi
= data
->regs_intr
.abi
;
6895 * If there are no regs to dump, notice it through
6896 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6898 perf_output_put(handle
, abi
);
6901 u64 mask
= event
->attr
.sample_regs_intr
;
6903 perf_output_sample_regs(handle
,
6904 data
->regs_intr
.regs
,
6909 if (sample_type
& PERF_SAMPLE_PHYS_ADDR
)
6910 perf_output_put(handle
, data
->phys_addr
);
6912 if (sample_type
& PERF_SAMPLE_CGROUP
)
6913 perf_output_put(handle
, data
->cgroup
);
6915 if (sample_type
& PERF_SAMPLE_AUX
) {
6916 perf_output_put(handle
, data
->aux_size
);
6919 perf_aux_sample_output(event
, handle
, data
);
6922 if (!event
->attr
.watermark
) {
6923 int wakeup_events
= event
->attr
.wakeup_events
;
6925 if (wakeup_events
) {
6926 struct perf_buffer
*rb
= handle
->rb
;
6927 int events
= local_inc_return(&rb
->events
);
6929 if (events
>= wakeup_events
) {
6930 local_sub(wakeup_events
, &rb
->events
);
6931 local_inc(&rb
->wakeup
);
6937 static u64
perf_virt_to_phys(u64 virt
)
6940 struct page
*p
= NULL
;
6945 if (virt
>= TASK_SIZE
) {
6946 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6947 if (virt_addr_valid((void *)(uintptr_t)virt
) &&
6948 !(virt
>= VMALLOC_START
&& virt
< VMALLOC_END
))
6949 phys_addr
= (u64
)virt_to_phys((void *)(uintptr_t)virt
);
6952 * Walking the pages tables for user address.
6953 * Interrupts are disabled, so it prevents any tear down
6954 * of the page tables.
6955 * Try IRQ-safe get_user_page_fast_only first.
6956 * If failed, leave phys_addr as 0.
6958 if (current
->mm
!= NULL
) {
6959 pagefault_disable();
6960 if (get_user_page_fast_only(virt
, 0, &p
))
6961 phys_addr
= page_to_phys(p
) + virt
% PAGE_SIZE
;
6972 static struct perf_callchain_entry __empty_callchain
= { .nr
= 0, };
6974 struct perf_callchain_entry
*
6975 perf_callchain(struct perf_event
*event
, struct pt_regs
*regs
)
6977 bool kernel
= !event
->attr
.exclude_callchain_kernel
;
6978 bool user
= !event
->attr
.exclude_callchain_user
;
6979 /* Disallow cross-task user callchains. */
6980 bool crosstask
= event
->ctx
->task
&& event
->ctx
->task
!= current
;
6981 const u32 max_stack
= event
->attr
.sample_max_stack
;
6982 struct perf_callchain_entry
*callchain
;
6984 if (!kernel
&& !user
)
6985 return &__empty_callchain
;
6987 callchain
= get_perf_callchain(regs
, 0, kernel
, user
,
6988 max_stack
, crosstask
, true);
6989 return callchain
?: &__empty_callchain
;
6992 void perf_prepare_sample(struct perf_event_header
*header
,
6993 struct perf_sample_data
*data
,
6994 struct perf_event
*event
,
6995 struct pt_regs
*regs
)
6997 u64 sample_type
= event
->attr
.sample_type
;
6999 header
->type
= PERF_RECORD_SAMPLE
;
7000 header
->size
= sizeof(*header
) + event
->header_size
;
7003 header
->misc
|= perf_misc_flags(regs
);
7005 __perf_event_header__init_id(header
, data
, event
);
7007 if (sample_type
& PERF_SAMPLE_IP
)
7008 data
->ip
= perf_instruction_pointer(regs
);
7010 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
7013 if (!(sample_type
& __PERF_SAMPLE_CALLCHAIN_EARLY
))
7014 data
->callchain
= perf_callchain(event
, regs
);
7016 size
+= data
->callchain
->nr
;
7018 header
->size
+= size
* sizeof(u64
);
7021 if (sample_type
& PERF_SAMPLE_RAW
) {
7022 struct perf_raw_record
*raw
= data
->raw
;
7026 struct perf_raw_frag
*frag
= &raw
->frag
;
7031 if (perf_raw_frag_last(frag
))
7036 size
= round_up(sum
+ sizeof(u32
), sizeof(u64
));
7037 raw
->size
= size
- sizeof(u32
);
7038 frag
->pad
= raw
->size
- sum
;
7043 header
->size
+= size
;
7046 if (sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
7047 int size
= sizeof(u64
); /* nr */
7048 if (data
->br_stack
) {
7049 if (perf_sample_save_hw_index(event
))
7050 size
+= sizeof(u64
);
7052 size
+= data
->br_stack
->nr
7053 * sizeof(struct perf_branch_entry
);
7055 header
->size
+= size
;
7058 if (sample_type
& (PERF_SAMPLE_REGS_USER
| PERF_SAMPLE_STACK_USER
))
7059 perf_sample_regs_user(&data
->regs_user
, regs
,
7060 &data
->regs_user_copy
);
7062 if (sample_type
& PERF_SAMPLE_REGS_USER
) {
7063 /* regs dump ABI info */
7064 int size
= sizeof(u64
);
7066 if (data
->regs_user
.regs
) {
7067 u64 mask
= event
->attr
.sample_regs_user
;
7068 size
+= hweight64(mask
) * sizeof(u64
);
7071 header
->size
+= size
;
7074 if (sample_type
& PERF_SAMPLE_STACK_USER
) {
7076 * Either we need PERF_SAMPLE_STACK_USER bit to be always
7077 * processed as the last one or have additional check added
7078 * in case new sample type is added, because we could eat
7079 * up the rest of the sample size.
7081 u16 stack_size
= event
->attr
.sample_stack_user
;
7082 u16 size
= sizeof(u64
);
7084 stack_size
= perf_sample_ustack_size(stack_size
, header
->size
,
7085 data
->regs_user
.regs
);
7088 * If there is something to dump, add space for the dump
7089 * itself and for the field that tells the dynamic size,
7090 * which is how many have been actually dumped.
7093 size
+= sizeof(u64
) + stack_size
;
7095 data
->stack_user_size
= stack_size
;
7096 header
->size
+= size
;
7099 if (sample_type
& PERF_SAMPLE_REGS_INTR
) {
7100 /* regs dump ABI info */
7101 int size
= sizeof(u64
);
7103 perf_sample_regs_intr(&data
->regs_intr
, regs
);
7105 if (data
->regs_intr
.regs
) {
7106 u64 mask
= event
->attr
.sample_regs_intr
;
7108 size
+= hweight64(mask
) * sizeof(u64
);
7111 header
->size
+= size
;
7114 if (sample_type
& PERF_SAMPLE_PHYS_ADDR
)
7115 data
->phys_addr
= perf_virt_to_phys(data
->addr
);
7117 #ifdef CONFIG_CGROUP_PERF
7118 if (sample_type
& PERF_SAMPLE_CGROUP
) {
7119 struct cgroup
*cgrp
;
7121 /* protected by RCU */
7122 cgrp
= task_css_check(current
, perf_event_cgrp_id
, 1)->cgroup
;
7123 data
->cgroup
= cgroup_id(cgrp
);
7127 if (sample_type
& PERF_SAMPLE_AUX
) {
7130 header
->size
+= sizeof(u64
); /* size */
7133 * Given the 16bit nature of header::size, an AUX sample can
7134 * easily overflow it, what with all the preceding sample bits.
7135 * Make sure this doesn't happen by using up to U16_MAX bytes
7136 * per sample in total (rounded down to 8 byte boundary).
7138 size
= min_t(size_t, U16_MAX
- header
->size
,
7139 event
->attr
.aux_sample_size
);
7140 size
= rounddown(size
, 8);
7141 size
= perf_prepare_sample_aux(event
, data
, size
);
7143 WARN_ON_ONCE(size
+ header
->size
> U16_MAX
);
7144 header
->size
+= size
;
7147 * If you're adding more sample types here, you likely need to do
7148 * something about the overflowing header::size, like repurpose the
7149 * lowest 3 bits of size, which should be always zero at the moment.
7150 * This raises a more important question, do we really need 512k sized
7151 * samples and why, so good argumentation is in order for whatever you
7154 WARN_ON_ONCE(header
->size
& 7);
7157 static __always_inline
int
7158 __perf_event_output(struct perf_event
*event
,
7159 struct perf_sample_data
*data
,
7160 struct pt_regs
*regs
,
7161 int (*output_begin
)(struct perf_output_handle
*,
7162 struct perf_event
*,
7165 struct perf_output_handle handle
;
7166 struct perf_event_header header
;
7169 /* protect the callchain buffers */
7172 perf_prepare_sample(&header
, data
, event
, regs
);
7174 err
= output_begin(&handle
, event
, header
.size
);
7178 perf_output_sample(&handle
, &header
, data
, event
);
7180 perf_output_end(&handle
);
7188 perf_event_output_forward(struct perf_event
*event
,
7189 struct perf_sample_data
*data
,
7190 struct pt_regs
*regs
)
7192 __perf_event_output(event
, data
, regs
, perf_output_begin_forward
);
7196 perf_event_output_backward(struct perf_event
*event
,
7197 struct perf_sample_data
*data
,
7198 struct pt_regs
*regs
)
7200 __perf_event_output(event
, data
, regs
, perf_output_begin_backward
);
7204 perf_event_output(struct perf_event
*event
,
7205 struct perf_sample_data
*data
,
7206 struct pt_regs
*regs
)
7208 return __perf_event_output(event
, data
, regs
, perf_output_begin
);
7215 struct perf_read_event
{
7216 struct perf_event_header header
;
7223 perf_event_read_event(struct perf_event
*event
,
7224 struct task_struct
*task
)
7226 struct perf_output_handle handle
;
7227 struct perf_sample_data sample
;
7228 struct perf_read_event read_event
= {
7230 .type
= PERF_RECORD_READ
,
7232 .size
= sizeof(read_event
) + event
->read_size
,
7234 .pid
= perf_event_pid(event
, task
),
7235 .tid
= perf_event_tid(event
, task
),
7239 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
7240 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
);
7244 perf_output_put(&handle
, read_event
);
7245 perf_output_read(&handle
, event
);
7246 perf_event__output_id_sample(event
, &handle
, &sample
);
7248 perf_output_end(&handle
);
7251 typedef void (perf_iterate_f
)(struct perf_event
*event
, void *data
);
7254 perf_iterate_ctx(struct perf_event_context
*ctx
,
7255 perf_iterate_f output
,
7256 void *data
, bool all
)
7258 struct perf_event
*event
;
7260 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
7262 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
7264 if (!event_filter_match(event
))
7268 output(event
, data
);
7272 static void perf_iterate_sb_cpu(perf_iterate_f output
, void *data
)
7274 struct pmu_event_list
*pel
= this_cpu_ptr(&pmu_sb_events
);
7275 struct perf_event
*event
;
7277 list_for_each_entry_rcu(event
, &pel
->list
, sb_list
) {
7279 * Skip events that are not fully formed yet; ensure that
7280 * if we observe event->ctx, both event and ctx will be
7281 * complete enough. See perf_install_in_context().
7283 if (!smp_load_acquire(&event
->ctx
))
7286 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
7288 if (!event_filter_match(event
))
7290 output(event
, data
);
7295 * Iterate all events that need to receive side-band events.
7297 * For new callers; ensure that account_pmu_sb_event() includes
7298 * your event, otherwise it might not get delivered.
7301 perf_iterate_sb(perf_iterate_f output
, void *data
,
7302 struct perf_event_context
*task_ctx
)
7304 struct perf_event_context
*ctx
;
7311 * If we have task_ctx != NULL we only notify the task context itself.
7312 * The task_ctx is set only for EXIT events before releasing task
7316 perf_iterate_ctx(task_ctx
, output
, data
, false);
7320 perf_iterate_sb_cpu(output
, data
);
7322 for_each_task_context_nr(ctxn
) {
7323 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
7325 perf_iterate_ctx(ctx
, output
, data
, false);
7333 * Clear all file-based filters at exec, they'll have to be
7334 * re-instated when/if these objects are mmapped again.
7336 static void perf_event_addr_filters_exec(struct perf_event
*event
, void *data
)
7338 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
7339 struct perf_addr_filter
*filter
;
7340 unsigned int restart
= 0, count
= 0;
7341 unsigned long flags
;
7343 if (!has_addr_filter(event
))
7346 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
7347 list_for_each_entry(filter
, &ifh
->list
, entry
) {
7348 if (filter
->path
.dentry
) {
7349 event
->addr_filter_ranges
[count
].start
= 0;
7350 event
->addr_filter_ranges
[count
].size
= 0;
7358 event
->addr_filters_gen
++;
7359 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
7362 perf_event_stop(event
, 1);
7365 void perf_event_exec(void)
7367 struct perf_event_context
*ctx
;
7371 for_each_task_context_nr(ctxn
) {
7372 ctx
= current
->perf_event_ctxp
[ctxn
];
7376 perf_event_enable_on_exec(ctxn
);
7378 perf_iterate_ctx(ctx
, perf_event_addr_filters_exec
, NULL
,
7384 struct remote_output
{
7385 struct perf_buffer
*rb
;
7389 static void __perf_event_output_stop(struct perf_event
*event
, void *data
)
7391 struct perf_event
*parent
= event
->parent
;
7392 struct remote_output
*ro
= data
;
7393 struct perf_buffer
*rb
= ro
->rb
;
7394 struct stop_event_data sd
= {
7398 if (!has_aux(event
))
7405 * In case of inheritance, it will be the parent that links to the
7406 * ring-buffer, but it will be the child that's actually using it.
7408 * We are using event::rb to determine if the event should be stopped,
7409 * however this may race with ring_buffer_attach() (through set_output),
7410 * which will make us skip the event that actually needs to be stopped.
7411 * So ring_buffer_attach() has to stop an aux event before re-assigning
7414 if (rcu_dereference(parent
->rb
) == rb
)
7415 ro
->err
= __perf_event_stop(&sd
);
7418 static int __perf_pmu_output_stop(void *info
)
7420 struct perf_event
*event
= info
;
7421 struct pmu
*pmu
= event
->ctx
->pmu
;
7422 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
7423 struct remote_output ro
= {
7428 perf_iterate_ctx(&cpuctx
->ctx
, __perf_event_output_stop
, &ro
, false);
7429 if (cpuctx
->task_ctx
)
7430 perf_iterate_ctx(cpuctx
->task_ctx
, __perf_event_output_stop
,
7437 static void perf_pmu_output_stop(struct perf_event
*event
)
7439 struct perf_event
*iter
;
7444 list_for_each_entry_rcu(iter
, &event
->rb
->event_list
, rb_entry
) {
7446 * For per-CPU events, we need to make sure that neither they
7447 * nor their children are running; for cpu==-1 events it's
7448 * sufficient to stop the event itself if it's active, since
7449 * it can't have children.
7453 cpu
= READ_ONCE(iter
->oncpu
);
7458 err
= cpu_function_call(cpu
, __perf_pmu_output_stop
, event
);
7459 if (err
== -EAGAIN
) {
7468 * task tracking -- fork/exit
7470 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
7473 struct perf_task_event
{
7474 struct task_struct
*task
;
7475 struct perf_event_context
*task_ctx
;
7478 struct perf_event_header header
;
7488 static int perf_event_task_match(struct perf_event
*event
)
7490 return event
->attr
.comm
|| event
->attr
.mmap
||
7491 event
->attr
.mmap2
|| event
->attr
.mmap_data
||
7495 static void perf_event_task_output(struct perf_event
*event
,
7498 struct perf_task_event
*task_event
= data
;
7499 struct perf_output_handle handle
;
7500 struct perf_sample_data sample
;
7501 struct task_struct
*task
= task_event
->task
;
7502 int ret
, size
= task_event
->event_id
.header
.size
;
7504 if (!perf_event_task_match(event
))
7507 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
7509 ret
= perf_output_begin(&handle
, event
,
7510 task_event
->event_id
.header
.size
);
7514 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
7515 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
7517 if (task_event
->event_id
.header
.type
== PERF_RECORD_EXIT
) {
7518 task_event
->event_id
.ppid
= perf_event_pid(event
,
7520 task_event
->event_id
.ptid
= perf_event_pid(event
,
7522 } else { /* PERF_RECORD_FORK */
7523 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
7524 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
7527 task_event
->event_id
.time
= perf_event_clock(event
);
7529 perf_output_put(&handle
, task_event
->event_id
);
7531 perf_event__output_id_sample(event
, &handle
, &sample
);
7533 perf_output_end(&handle
);
7535 task_event
->event_id
.header
.size
= size
;
7538 static void perf_event_task(struct task_struct
*task
,
7539 struct perf_event_context
*task_ctx
,
7542 struct perf_task_event task_event
;
7544 if (!atomic_read(&nr_comm_events
) &&
7545 !atomic_read(&nr_mmap_events
) &&
7546 !atomic_read(&nr_task_events
))
7549 task_event
= (struct perf_task_event
){
7551 .task_ctx
= task_ctx
,
7554 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
7556 .size
= sizeof(task_event
.event_id
),
7566 perf_iterate_sb(perf_event_task_output
,
7571 void perf_event_fork(struct task_struct
*task
)
7573 perf_event_task(task
, NULL
, 1);
7574 perf_event_namespaces(task
);
7581 struct perf_comm_event
{
7582 struct task_struct
*task
;
7587 struct perf_event_header header
;
7594 static int perf_event_comm_match(struct perf_event
*event
)
7596 return event
->attr
.comm
;
7599 static void perf_event_comm_output(struct perf_event
*event
,
7602 struct perf_comm_event
*comm_event
= data
;
7603 struct perf_output_handle handle
;
7604 struct perf_sample_data sample
;
7605 int size
= comm_event
->event_id
.header
.size
;
7608 if (!perf_event_comm_match(event
))
7611 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
7612 ret
= perf_output_begin(&handle
, event
,
7613 comm_event
->event_id
.header
.size
);
7618 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
7619 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
7621 perf_output_put(&handle
, comm_event
->event_id
);
7622 __output_copy(&handle
, comm_event
->comm
,
7623 comm_event
->comm_size
);
7625 perf_event__output_id_sample(event
, &handle
, &sample
);
7627 perf_output_end(&handle
);
7629 comm_event
->event_id
.header
.size
= size
;
7632 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
7634 char comm
[TASK_COMM_LEN
];
7637 memset(comm
, 0, sizeof(comm
));
7638 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
7639 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
7641 comm_event
->comm
= comm
;
7642 comm_event
->comm_size
= size
;
7644 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
7646 perf_iterate_sb(perf_event_comm_output
,
7651 void perf_event_comm(struct task_struct
*task
, bool exec
)
7653 struct perf_comm_event comm_event
;
7655 if (!atomic_read(&nr_comm_events
))
7658 comm_event
= (struct perf_comm_event
){
7664 .type
= PERF_RECORD_COMM
,
7665 .misc
= exec
? PERF_RECORD_MISC_COMM_EXEC
: 0,
7673 perf_event_comm_event(&comm_event
);
7677 * namespaces tracking
7680 struct perf_namespaces_event
{
7681 struct task_struct
*task
;
7684 struct perf_event_header header
;
7689 struct perf_ns_link_info link_info
[NR_NAMESPACES
];
7693 static int perf_event_namespaces_match(struct perf_event
*event
)
7695 return event
->attr
.namespaces
;
7698 static void perf_event_namespaces_output(struct perf_event
*event
,
7701 struct perf_namespaces_event
*namespaces_event
= data
;
7702 struct perf_output_handle handle
;
7703 struct perf_sample_data sample
;
7704 u16 header_size
= namespaces_event
->event_id
.header
.size
;
7707 if (!perf_event_namespaces_match(event
))
7710 perf_event_header__init_id(&namespaces_event
->event_id
.header
,
7712 ret
= perf_output_begin(&handle
, event
,
7713 namespaces_event
->event_id
.header
.size
);
7717 namespaces_event
->event_id
.pid
= perf_event_pid(event
,
7718 namespaces_event
->task
);
7719 namespaces_event
->event_id
.tid
= perf_event_tid(event
,
7720 namespaces_event
->task
);
7722 perf_output_put(&handle
, namespaces_event
->event_id
);
7724 perf_event__output_id_sample(event
, &handle
, &sample
);
7726 perf_output_end(&handle
);
7728 namespaces_event
->event_id
.header
.size
= header_size
;
7731 static void perf_fill_ns_link_info(struct perf_ns_link_info
*ns_link_info
,
7732 struct task_struct
*task
,
7733 const struct proc_ns_operations
*ns_ops
)
7735 struct path ns_path
;
7736 struct inode
*ns_inode
;
7739 error
= ns_get_path(&ns_path
, task
, ns_ops
);
7741 ns_inode
= ns_path
.dentry
->d_inode
;
7742 ns_link_info
->dev
= new_encode_dev(ns_inode
->i_sb
->s_dev
);
7743 ns_link_info
->ino
= ns_inode
->i_ino
;
7748 void perf_event_namespaces(struct task_struct
*task
)
7750 struct perf_namespaces_event namespaces_event
;
7751 struct perf_ns_link_info
*ns_link_info
;
7753 if (!atomic_read(&nr_namespaces_events
))
7756 namespaces_event
= (struct perf_namespaces_event
){
7760 .type
= PERF_RECORD_NAMESPACES
,
7762 .size
= sizeof(namespaces_event
.event_id
),
7766 .nr_namespaces
= NR_NAMESPACES
,
7767 /* .link_info[NR_NAMESPACES] */
7771 ns_link_info
= namespaces_event
.event_id
.link_info
;
7773 perf_fill_ns_link_info(&ns_link_info
[MNT_NS_INDEX
],
7774 task
, &mntns_operations
);
7776 #ifdef CONFIG_USER_NS
7777 perf_fill_ns_link_info(&ns_link_info
[USER_NS_INDEX
],
7778 task
, &userns_operations
);
7780 #ifdef CONFIG_NET_NS
7781 perf_fill_ns_link_info(&ns_link_info
[NET_NS_INDEX
],
7782 task
, &netns_operations
);
7784 #ifdef CONFIG_UTS_NS
7785 perf_fill_ns_link_info(&ns_link_info
[UTS_NS_INDEX
],
7786 task
, &utsns_operations
);
7788 #ifdef CONFIG_IPC_NS
7789 perf_fill_ns_link_info(&ns_link_info
[IPC_NS_INDEX
],
7790 task
, &ipcns_operations
);
7792 #ifdef CONFIG_PID_NS
7793 perf_fill_ns_link_info(&ns_link_info
[PID_NS_INDEX
],
7794 task
, &pidns_operations
);
7796 #ifdef CONFIG_CGROUPS
7797 perf_fill_ns_link_info(&ns_link_info
[CGROUP_NS_INDEX
],
7798 task
, &cgroupns_operations
);
7801 perf_iterate_sb(perf_event_namespaces_output
,
7809 #ifdef CONFIG_CGROUP_PERF
7811 struct perf_cgroup_event
{
7815 struct perf_event_header header
;
7821 static int perf_event_cgroup_match(struct perf_event
*event
)
7823 return event
->attr
.cgroup
;
7826 static void perf_event_cgroup_output(struct perf_event
*event
, void *data
)
7828 struct perf_cgroup_event
*cgroup_event
= data
;
7829 struct perf_output_handle handle
;
7830 struct perf_sample_data sample
;
7831 u16 header_size
= cgroup_event
->event_id
.header
.size
;
7834 if (!perf_event_cgroup_match(event
))
7837 perf_event_header__init_id(&cgroup_event
->event_id
.header
,
7839 ret
= perf_output_begin(&handle
, event
,
7840 cgroup_event
->event_id
.header
.size
);
7844 perf_output_put(&handle
, cgroup_event
->event_id
);
7845 __output_copy(&handle
, cgroup_event
->path
, cgroup_event
->path_size
);
7847 perf_event__output_id_sample(event
, &handle
, &sample
);
7849 perf_output_end(&handle
);
7851 cgroup_event
->event_id
.header
.size
= header_size
;
7854 static void perf_event_cgroup(struct cgroup
*cgrp
)
7856 struct perf_cgroup_event cgroup_event
;
7857 char path_enomem
[16] = "//enomem";
7861 if (!atomic_read(&nr_cgroup_events
))
7864 cgroup_event
= (struct perf_cgroup_event
){
7867 .type
= PERF_RECORD_CGROUP
,
7869 .size
= sizeof(cgroup_event
.event_id
),
7871 .id
= cgroup_id(cgrp
),
7875 pathname
= kmalloc(PATH_MAX
, GFP_KERNEL
);
7876 if (pathname
== NULL
) {
7877 cgroup_event
.path
= path_enomem
;
7879 /* just to be sure to have enough space for alignment */
7880 cgroup_path(cgrp
, pathname
, PATH_MAX
- sizeof(u64
));
7881 cgroup_event
.path
= pathname
;
7885 * Since our buffer works in 8 byte units we need to align our string
7886 * size to a multiple of 8. However, we must guarantee the tail end is
7887 * zero'd out to avoid leaking random bits to userspace.
7889 size
= strlen(cgroup_event
.path
) + 1;
7890 while (!IS_ALIGNED(size
, sizeof(u64
)))
7891 cgroup_event
.path
[size
++] = '\0';
7893 cgroup_event
.event_id
.header
.size
+= size
;
7894 cgroup_event
.path_size
= size
;
7896 perf_iterate_sb(perf_event_cgroup_output
,
7909 struct perf_mmap_event
{
7910 struct vm_area_struct
*vma
;
7912 const char *file_name
;
7920 struct perf_event_header header
;
7930 static int perf_event_mmap_match(struct perf_event
*event
,
7933 struct perf_mmap_event
*mmap_event
= data
;
7934 struct vm_area_struct
*vma
= mmap_event
->vma
;
7935 int executable
= vma
->vm_flags
& VM_EXEC
;
7937 return (!executable
&& event
->attr
.mmap_data
) ||
7938 (executable
&& (event
->attr
.mmap
|| event
->attr
.mmap2
));
7941 static void perf_event_mmap_output(struct perf_event
*event
,
7944 struct perf_mmap_event
*mmap_event
= data
;
7945 struct perf_output_handle handle
;
7946 struct perf_sample_data sample
;
7947 int size
= mmap_event
->event_id
.header
.size
;
7948 u32 type
= mmap_event
->event_id
.header
.type
;
7951 if (!perf_event_mmap_match(event
, data
))
7954 if (event
->attr
.mmap2
) {
7955 mmap_event
->event_id
.header
.type
= PERF_RECORD_MMAP2
;
7956 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->maj
);
7957 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->min
);
7958 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino
);
7959 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->ino_generation
);
7960 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->prot
);
7961 mmap_event
->event_id
.header
.size
+= sizeof(mmap_event
->flags
);
7964 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
7965 ret
= perf_output_begin(&handle
, event
,
7966 mmap_event
->event_id
.header
.size
);
7970 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
7971 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
7973 perf_output_put(&handle
, mmap_event
->event_id
);
7975 if (event
->attr
.mmap2
) {
7976 perf_output_put(&handle
, mmap_event
->maj
);
7977 perf_output_put(&handle
, mmap_event
->min
);
7978 perf_output_put(&handle
, mmap_event
->ino
);
7979 perf_output_put(&handle
, mmap_event
->ino_generation
);
7980 perf_output_put(&handle
, mmap_event
->prot
);
7981 perf_output_put(&handle
, mmap_event
->flags
);
7984 __output_copy(&handle
, mmap_event
->file_name
,
7985 mmap_event
->file_size
);
7987 perf_event__output_id_sample(event
, &handle
, &sample
);
7989 perf_output_end(&handle
);
7991 mmap_event
->event_id
.header
.size
= size
;
7992 mmap_event
->event_id
.header
.type
= type
;
7995 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
7997 struct vm_area_struct
*vma
= mmap_event
->vma
;
7998 struct file
*file
= vma
->vm_file
;
7999 int maj
= 0, min
= 0;
8000 u64 ino
= 0, gen
= 0;
8001 u32 prot
= 0, flags
= 0;
8007 if (vma
->vm_flags
& VM_READ
)
8009 if (vma
->vm_flags
& VM_WRITE
)
8011 if (vma
->vm_flags
& VM_EXEC
)
8014 if (vma
->vm_flags
& VM_MAYSHARE
)
8017 flags
= MAP_PRIVATE
;
8019 if (vma
->vm_flags
& VM_DENYWRITE
)
8020 flags
|= MAP_DENYWRITE
;
8021 if (vma
->vm_flags
& VM_MAYEXEC
)
8022 flags
|= MAP_EXECUTABLE
;
8023 if (vma
->vm_flags
& VM_LOCKED
)
8024 flags
|= MAP_LOCKED
;
8025 if (is_vm_hugetlb_page(vma
))
8026 flags
|= MAP_HUGETLB
;
8029 struct inode
*inode
;
8032 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
8038 * d_path() works from the end of the rb backwards, so we
8039 * need to add enough zero bytes after the string to handle
8040 * the 64bit alignment we do later.
8042 name
= file_path(file
, buf
, PATH_MAX
- sizeof(u64
));
8047 inode
= file_inode(vma
->vm_file
);
8048 dev
= inode
->i_sb
->s_dev
;
8050 gen
= inode
->i_generation
;
8056 if (vma
->vm_ops
&& vma
->vm_ops
->name
) {
8057 name
= (char *) vma
->vm_ops
->name(vma
);
8062 name
= (char *)arch_vma_name(vma
);
8066 if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
8067 vma
->vm_end
>= vma
->vm_mm
->brk
) {
8071 if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
8072 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
8082 strlcpy(tmp
, name
, sizeof(tmp
));
8086 * Since our buffer works in 8 byte units we need to align our string
8087 * size to a multiple of 8. However, we must guarantee the tail end is
8088 * zero'd out to avoid leaking random bits to userspace.
8090 size
= strlen(name
)+1;
8091 while (!IS_ALIGNED(size
, sizeof(u64
)))
8092 name
[size
++] = '\0';
8094 mmap_event
->file_name
= name
;
8095 mmap_event
->file_size
= size
;
8096 mmap_event
->maj
= maj
;
8097 mmap_event
->min
= min
;
8098 mmap_event
->ino
= ino
;
8099 mmap_event
->ino_generation
= gen
;
8100 mmap_event
->prot
= prot
;
8101 mmap_event
->flags
= flags
;
8103 if (!(vma
->vm_flags
& VM_EXEC
))
8104 mmap_event
->event_id
.header
.misc
|= PERF_RECORD_MISC_MMAP_DATA
;
8106 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
8108 perf_iterate_sb(perf_event_mmap_output
,
8116 * Check whether inode and address range match filter criteria.
8118 static bool perf_addr_filter_match(struct perf_addr_filter
*filter
,
8119 struct file
*file
, unsigned long offset
,
8122 /* d_inode(NULL) won't be equal to any mapped user-space file */
8123 if (!filter
->path
.dentry
)
8126 if (d_inode(filter
->path
.dentry
) != file_inode(file
))
8129 if (filter
->offset
> offset
+ size
)
8132 if (filter
->offset
+ filter
->size
< offset
)
8138 static bool perf_addr_filter_vma_adjust(struct perf_addr_filter
*filter
,
8139 struct vm_area_struct
*vma
,
8140 struct perf_addr_filter_range
*fr
)
8142 unsigned long vma_size
= vma
->vm_end
- vma
->vm_start
;
8143 unsigned long off
= vma
->vm_pgoff
<< PAGE_SHIFT
;
8144 struct file
*file
= vma
->vm_file
;
8146 if (!perf_addr_filter_match(filter
, file
, off
, vma_size
))
8149 if (filter
->offset
< off
) {
8150 fr
->start
= vma
->vm_start
;
8151 fr
->size
= min(vma_size
, filter
->size
- (off
- filter
->offset
));
8153 fr
->start
= vma
->vm_start
+ filter
->offset
- off
;
8154 fr
->size
= min(vma
->vm_end
- fr
->start
, filter
->size
);
8160 static void __perf_addr_filters_adjust(struct perf_event
*event
, void *data
)
8162 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
8163 struct vm_area_struct
*vma
= data
;
8164 struct perf_addr_filter
*filter
;
8165 unsigned int restart
= 0, count
= 0;
8166 unsigned long flags
;
8168 if (!has_addr_filter(event
))
8174 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
8175 list_for_each_entry(filter
, &ifh
->list
, entry
) {
8176 if (perf_addr_filter_vma_adjust(filter
, vma
,
8177 &event
->addr_filter_ranges
[count
]))
8184 event
->addr_filters_gen
++;
8185 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
8188 perf_event_stop(event
, 1);
8192 * Adjust all task's events' filters to the new vma
8194 static void perf_addr_filters_adjust(struct vm_area_struct
*vma
)
8196 struct perf_event_context
*ctx
;
8200 * Data tracing isn't supported yet and as such there is no need
8201 * to keep track of anything that isn't related to executable code:
8203 if (!(vma
->vm_flags
& VM_EXEC
))
8207 for_each_task_context_nr(ctxn
) {
8208 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
8212 perf_iterate_ctx(ctx
, __perf_addr_filters_adjust
, vma
, true);
8217 void perf_event_mmap(struct vm_area_struct
*vma
)
8219 struct perf_mmap_event mmap_event
;
8221 if (!atomic_read(&nr_mmap_events
))
8224 mmap_event
= (struct perf_mmap_event
){
8230 .type
= PERF_RECORD_MMAP
,
8231 .misc
= PERF_RECORD_MISC_USER
,
8236 .start
= vma
->vm_start
,
8237 .len
= vma
->vm_end
- vma
->vm_start
,
8238 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
8240 /* .maj (attr_mmap2 only) */
8241 /* .min (attr_mmap2 only) */
8242 /* .ino (attr_mmap2 only) */
8243 /* .ino_generation (attr_mmap2 only) */
8244 /* .prot (attr_mmap2 only) */
8245 /* .flags (attr_mmap2 only) */
8248 perf_addr_filters_adjust(vma
);
8249 perf_event_mmap_event(&mmap_event
);
8252 void perf_event_aux_event(struct perf_event
*event
, unsigned long head
,
8253 unsigned long size
, u64 flags
)
8255 struct perf_output_handle handle
;
8256 struct perf_sample_data sample
;
8257 struct perf_aux_event
{
8258 struct perf_event_header header
;
8264 .type
= PERF_RECORD_AUX
,
8266 .size
= sizeof(rec
),
8274 perf_event_header__init_id(&rec
.header
, &sample
, event
);
8275 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
8280 perf_output_put(&handle
, rec
);
8281 perf_event__output_id_sample(event
, &handle
, &sample
);
8283 perf_output_end(&handle
);
8287 * Lost/dropped samples logging
8289 void perf_log_lost_samples(struct perf_event
*event
, u64 lost
)
8291 struct perf_output_handle handle
;
8292 struct perf_sample_data sample
;
8296 struct perf_event_header header
;
8298 } lost_samples_event
= {
8300 .type
= PERF_RECORD_LOST_SAMPLES
,
8302 .size
= sizeof(lost_samples_event
),
8307 perf_event_header__init_id(&lost_samples_event
.header
, &sample
, event
);
8309 ret
= perf_output_begin(&handle
, event
,
8310 lost_samples_event
.header
.size
);
8314 perf_output_put(&handle
, lost_samples_event
);
8315 perf_event__output_id_sample(event
, &handle
, &sample
);
8316 perf_output_end(&handle
);
8320 * context_switch tracking
8323 struct perf_switch_event
{
8324 struct task_struct
*task
;
8325 struct task_struct
*next_prev
;
8328 struct perf_event_header header
;
8334 static int perf_event_switch_match(struct perf_event
*event
)
8336 return event
->attr
.context_switch
;
8339 static void perf_event_switch_output(struct perf_event
*event
, void *data
)
8341 struct perf_switch_event
*se
= data
;
8342 struct perf_output_handle handle
;
8343 struct perf_sample_data sample
;
8346 if (!perf_event_switch_match(event
))
8349 /* Only CPU-wide events are allowed to see next/prev pid/tid */
8350 if (event
->ctx
->task
) {
8351 se
->event_id
.header
.type
= PERF_RECORD_SWITCH
;
8352 se
->event_id
.header
.size
= sizeof(se
->event_id
.header
);
8354 se
->event_id
.header
.type
= PERF_RECORD_SWITCH_CPU_WIDE
;
8355 se
->event_id
.header
.size
= sizeof(se
->event_id
);
8356 se
->event_id
.next_prev_pid
=
8357 perf_event_pid(event
, se
->next_prev
);
8358 se
->event_id
.next_prev_tid
=
8359 perf_event_tid(event
, se
->next_prev
);
8362 perf_event_header__init_id(&se
->event_id
.header
, &sample
, event
);
8364 ret
= perf_output_begin(&handle
, event
, se
->event_id
.header
.size
);
8368 if (event
->ctx
->task
)
8369 perf_output_put(&handle
, se
->event_id
.header
);
8371 perf_output_put(&handle
, se
->event_id
);
8373 perf_event__output_id_sample(event
, &handle
, &sample
);
8375 perf_output_end(&handle
);
8378 static void perf_event_switch(struct task_struct
*task
,
8379 struct task_struct
*next_prev
, bool sched_in
)
8381 struct perf_switch_event switch_event
;
8383 /* N.B. caller checks nr_switch_events != 0 */
8385 switch_event
= (struct perf_switch_event
){
8387 .next_prev
= next_prev
,
8391 .misc
= sched_in
? 0 : PERF_RECORD_MISC_SWITCH_OUT
,
8394 /* .next_prev_pid */
8395 /* .next_prev_tid */
8399 if (!sched_in
&& task
->state
== TASK_RUNNING
)
8400 switch_event
.event_id
.header
.misc
|=
8401 PERF_RECORD_MISC_SWITCH_OUT_PREEMPT
;
8403 perf_iterate_sb(perf_event_switch_output
,
8409 * IRQ throttle logging
8412 static void perf_log_throttle(struct perf_event
*event
, int enable
)
8414 struct perf_output_handle handle
;
8415 struct perf_sample_data sample
;
8419 struct perf_event_header header
;
8423 } throttle_event
= {
8425 .type
= PERF_RECORD_THROTTLE
,
8427 .size
= sizeof(throttle_event
),
8429 .time
= perf_event_clock(event
),
8430 .id
= primary_event_id(event
),
8431 .stream_id
= event
->id
,
8435 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
8437 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
8439 ret
= perf_output_begin(&handle
, event
,
8440 throttle_event
.header
.size
);
8444 perf_output_put(&handle
, throttle_event
);
8445 perf_event__output_id_sample(event
, &handle
, &sample
);
8446 perf_output_end(&handle
);
8450 * ksymbol register/unregister tracking
8453 struct perf_ksymbol_event
{
8457 struct perf_event_header header
;
8465 static int perf_event_ksymbol_match(struct perf_event
*event
)
8467 return event
->attr
.ksymbol
;
8470 static void perf_event_ksymbol_output(struct perf_event
*event
, void *data
)
8472 struct perf_ksymbol_event
*ksymbol_event
= data
;
8473 struct perf_output_handle handle
;
8474 struct perf_sample_data sample
;
8477 if (!perf_event_ksymbol_match(event
))
8480 perf_event_header__init_id(&ksymbol_event
->event_id
.header
,
8482 ret
= perf_output_begin(&handle
, event
,
8483 ksymbol_event
->event_id
.header
.size
);
8487 perf_output_put(&handle
, ksymbol_event
->event_id
);
8488 __output_copy(&handle
, ksymbol_event
->name
, ksymbol_event
->name_len
);
8489 perf_event__output_id_sample(event
, &handle
, &sample
);
8491 perf_output_end(&handle
);
8494 void perf_event_ksymbol(u16 ksym_type
, u64 addr
, u32 len
, bool unregister
,
8497 struct perf_ksymbol_event ksymbol_event
;
8498 char name
[KSYM_NAME_LEN
];
8502 if (!atomic_read(&nr_ksymbol_events
))
8505 if (ksym_type
>= PERF_RECORD_KSYMBOL_TYPE_MAX
||
8506 ksym_type
== PERF_RECORD_KSYMBOL_TYPE_UNKNOWN
)
8509 strlcpy(name
, sym
, KSYM_NAME_LEN
);
8510 name_len
= strlen(name
) + 1;
8511 while (!IS_ALIGNED(name_len
, sizeof(u64
)))
8512 name
[name_len
++] = '\0';
8513 BUILD_BUG_ON(KSYM_NAME_LEN
% sizeof(u64
));
8516 flags
|= PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER
;
8518 ksymbol_event
= (struct perf_ksymbol_event
){
8520 .name_len
= name_len
,
8523 .type
= PERF_RECORD_KSYMBOL
,
8524 .size
= sizeof(ksymbol_event
.event_id
) +
8529 .ksym_type
= ksym_type
,
8534 perf_iterate_sb(perf_event_ksymbol_output
, &ksymbol_event
, NULL
);
8537 WARN_ONCE(1, "%s: Invalid KSYMBOL type 0x%x\n", __func__
, ksym_type
);
8541 * bpf program load/unload tracking
8544 struct perf_bpf_event
{
8545 struct bpf_prog
*prog
;
8547 struct perf_event_header header
;
8551 u8 tag
[BPF_TAG_SIZE
];
8555 static int perf_event_bpf_match(struct perf_event
*event
)
8557 return event
->attr
.bpf_event
;
8560 static void perf_event_bpf_output(struct perf_event
*event
, void *data
)
8562 struct perf_bpf_event
*bpf_event
= data
;
8563 struct perf_output_handle handle
;
8564 struct perf_sample_data sample
;
8567 if (!perf_event_bpf_match(event
))
8570 perf_event_header__init_id(&bpf_event
->event_id
.header
,
8572 ret
= perf_output_begin(&handle
, event
,
8573 bpf_event
->event_id
.header
.size
);
8577 perf_output_put(&handle
, bpf_event
->event_id
);
8578 perf_event__output_id_sample(event
, &handle
, &sample
);
8580 perf_output_end(&handle
);
8583 static void perf_event_bpf_emit_ksymbols(struct bpf_prog
*prog
,
8584 enum perf_bpf_event_type type
)
8586 bool unregister
= type
== PERF_BPF_EVENT_PROG_UNLOAD
;
8589 if (prog
->aux
->func_cnt
== 0) {
8590 perf_event_ksymbol(PERF_RECORD_KSYMBOL_TYPE_BPF
,
8591 (u64
)(unsigned long)prog
->bpf_func
,
8592 prog
->jited_len
, unregister
,
8593 prog
->aux
->ksym
.name
);
8595 for (i
= 0; i
< prog
->aux
->func_cnt
; i
++) {
8596 struct bpf_prog
*subprog
= prog
->aux
->func
[i
];
8599 PERF_RECORD_KSYMBOL_TYPE_BPF
,
8600 (u64
)(unsigned long)subprog
->bpf_func
,
8601 subprog
->jited_len
, unregister
,
8602 prog
->aux
->ksym
.name
);
8607 void perf_event_bpf_event(struct bpf_prog
*prog
,
8608 enum perf_bpf_event_type type
,
8611 struct perf_bpf_event bpf_event
;
8613 if (type
<= PERF_BPF_EVENT_UNKNOWN
||
8614 type
>= PERF_BPF_EVENT_MAX
)
8618 case PERF_BPF_EVENT_PROG_LOAD
:
8619 case PERF_BPF_EVENT_PROG_UNLOAD
:
8620 if (atomic_read(&nr_ksymbol_events
))
8621 perf_event_bpf_emit_ksymbols(prog
, type
);
8627 if (!atomic_read(&nr_bpf_events
))
8630 bpf_event
= (struct perf_bpf_event
){
8634 .type
= PERF_RECORD_BPF_EVENT
,
8635 .size
= sizeof(bpf_event
.event_id
),
8639 .id
= prog
->aux
->id
,
8643 BUILD_BUG_ON(BPF_TAG_SIZE
% sizeof(u64
));
8645 memcpy(bpf_event
.event_id
.tag
, prog
->tag
, BPF_TAG_SIZE
);
8646 perf_iterate_sb(perf_event_bpf_output
, &bpf_event
, NULL
);
8649 struct perf_text_poke_event
{
8650 const void *old_bytes
;
8651 const void *new_bytes
;
8657 struct perf_event_header header
;
8663 static int perf_event_text_poke_match(struct perf_event
*event
)
8665 return event
->attr
.text_poke
;
8668 static void perf_event_text_poke_output(struct perf_event
*event
, void *data
)
8670 struct perf_text_poke_event
*text_poke_event
= data
;
8671 struct perf_output_handle handle
;
8672 struct perf_sample_data sample
;
8676 if (!perf_event_text_poke_match(event
))
8679 perf_event_header__init_id(&text_poke_event
->event_id
.header
, &sample
, event
);
8681 ret
= perf_output_begin(&handle
, event
, text_poke_event
->event_id
.header
.size
);
8685 perf_output_put(&handle
, text_poke_event
->event_id
);
8686 perf_output_put(&handle
, text_poke_event
->old_len
);
8687 perf_output_put(&handle
, text_poke_event
->new_len
);
8689 __output_copy(&handle
, text_poke_event
->old_bytes
, text_poke_event
->old_len
);
8690 __output_copy(&handle
, text_poke_event
->new_bytes
, text_poke_event
->new_len
);
8692 if (text_poke_event
->pad
)
8693 __output_copy(&handle
, &padding
, text_poke_event
->pad
);
8695 perf_event__output_id_sample(event
, &handle
, &sample
);
8697 perf_output_end(&handle
);
8700 void perf_event_text_poke(const void *addr
, const void *old_bytes
,
8701 size_t old_len
, const void *new_bytes
, size_t new_len
)
8703 struct perf_text_poke_event text_poke_event
;
8706 if (!atomic_read(&nr_text_poke_events
))
8709 tot
= sizeof(text_poke_event
.old_len
) + old_len
;
8710 tot
+= sizeof(text_poke_event
.new_len
) + new_len
;
8711 pad
= ALIGN(tot
, sizeof(u64
)) - tot
;
8713 text_poke_event
= (struct perf_text_poke_event
){
8714 .old_bytes
= old_bytes
,
8715 .new_bytes
= new_bytes
,
8721 .type
= PERF_RECORD_TEXT_POKE
,
8722 .misc
= PERF_RECORD_MISC_KERNEL
,
8723 .size
= sizeof(text_poke_event
.event_id
) + tot
+ pad
,
8725 .addr
= (unsigned long)addr
,
8729 perf_iterate_sb(perf_event_text_poke_output
, &text_poke_event
, NULL
);
8732 void perf_event_itrace_started(struct perf_event
*event
)
8734 event
->attach_state
|= PERF_ATTACH_ITRACE
;
8737 static void perf_log_itrace_start(struct perf_event
*event
)
8739 struct perf_output_handle handle
;
8740 struct perf_sample_data sample
;
8741 struct perf_aux_event
{
8742 struct perf_event_header header
;
8749 event
= event
->parent
;
8751 if (!(event
->pmu
->capabilities
& PERF_PMU_CAP_ITRACE
) ||
8752 event
->attach_state
& PERF_ATTACH_ITRACE
)
8755 rec
.header
.type
= PERF_RECORD_ITRACE_START
;
8756 rec
.header
.misc
= 0;
8757 rec
.header
.size
= sizeof(rec
);
8758 rec
.pid
= perf_event_pid(event
, current
);
8759 rec
.tid
= perf_event_tid(event
, current
);
8761 perf_event_header__init_id(&rec
.header
, &sample
, event
);
8762 ret
= perf_output_begin(&handle
, event
, rec
.header
.size
);
8767 perf_output_put(&handle
, rec
);
8768 perf_event__output_id_sample(event
, &handle
, &sample
);
8770 perf_output_end(&handle
);
8774 __perf_event_account_interrupt(struct perf_event
*event
, int throttle
)
8776 struct hw_perf_event
*hwc
= &event
->hw
;
8780 seq
= __this_cpu_read(perf_throttled_seq
);
8781 if (seq
!= hwc
->interrupts_seq
) {
8782 hwc
->interrupts_seq
= seq
;
8783 hwc
->interrupts
= 1;
8786 if (unlikely(throttle
8787 && hwc
->interrupts
>= max_samples_per_tick
)) {
8788 __this_cpu_inc(perf_throttled_count
);
8789 tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS
);
8790 hwc
->interrupts
= MAX_INTERRUPTS
;
8791 perf_log_throttle(event
, 0);
8796 if (event
->attr
.freq
) {
8797 u64 now
= perf_clock();
8798 s64 delta
= now
- hwc
->freq_time_stamp
;
8800 hwc
->freq_time_stamp
= now
;
8802 if (delta
> 0 && delta
< 2*TICK_NSEC
)
8803 perf_adjust_period(event
, delta
, hwc
->last_period
, true);
8809 int perf_event_account_interrupt(struct perf_event
*event
)
8811 return __perf_event_account_interrupt(event
, 1);
8815 * Generic event overflow handling, sampling.
8818 static int __perf_event_overflow(struct perf_event
*event
,
8819 int throttle
, struct perf_sample_data
*data
,
8820 struct pt_regs
*regs
)
8822 int events
= atomic_read(&event
->event_limit
);
8826 * Non-sampling counters might still use the PMI to fold short
8827 * hardware counters, ignore those.
8829 if (unlikely(!is_sampling_event(event
)))
8832 ret
= __perf_event_account_interrupt(event
, throttle
);
8835 * XXX event_limit might not quite work as expected on inherited
8839 event
->pending_kill
= POLL_IN
;
8840 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
8842 event
->pending_kill
= POLL_HUP
;
8844 perf_event_disable_inatomic(event
);
8847 READ_ONCE(event
->overflow_handler
)(event
, data
, regs
);
8849 if (*perf_event_fasync(event
) && event
->pending_kill
) {
8850 event
->pending_wakeup
= 1;
8851 irq_work_queue(&event
->pending
);
8857 int perf_event_overflow(struct perf_event
*event
,
8858 struct perf_sample_data
*data
,
8859 struct pt_regs
*regs
)
8861 return __perf_event_overflow(event
, 1, data
, regs
);
8865 * Generic software event infrastructure
8868 struct swevent_htable
{
8869 struct swevent_hlist
*swevent_hlist
;
8870 struct mutex hlist_mutex
;
8873 /* Recursion avoidance in each contexts */
8874 int recursion
[PERF_NR_CONTEXTS
];
8877 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
8880 * We directly increment event->count and keep a second value in
8881 * event->hw.period_left to count intervals. This period event
8882 * is kept in the range [-sample_period, 0] so that we can use the
8886 u64
perf_swevent_set_period(struct perf_event
*event
)
8888 struct hw_perf_event
*hwc
= &event
->hw
;
8889 u64 period
= hwc
->last_period
;
8893 hwc
->last_period
= hwc
->sample_period
;
8896 old
= val
= local64_read(&hwc
->period_left
);
8900 nr
= div64_u64(period
+ val
, period
);
8901 offset
= nr
* period
;
8903 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
8909 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
8910 struct perf_sample_data
*data
,
8911 struct pt_regs
*regs
)
8913 struct hw_perf_event
*hwc
= &event
->hw
;
8917 overflow
= perf_swevent_set_period(event
);
8919 if (hwc
->interrupts
== MAX_INTERRUPTS
)
8922 for (; overflow
; overflow
--) {
8923 if (__perf_event_overflow(event
, throttle
,
8926 * We inhibit the overflow from happening when
8927 * hwc->interrupts == MAX_INTERRUPTS.
8935 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
8936 struct perf_sample_data
*data
,
8937 struct pt_regs
*regs
)
8939 struct hw_perf_event
*hwc
= &event
->hw
;
8941 local64_add(nr
, &event
->count
);
8946 if (!is_sampling_event(event
))
8949 if ((event
->attr
.sample_type
& PERF_SAMPLE_PERIOD
) && !event
->attr
.freq
) {
8951 return perf_swevent_overflow(event
, 1, data
, regs
);
8953 data
->period
= event
->hw
.last_period
;
8955 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
8956 return perf_swevent_overflow(event
, 1, data
, regs
);
8958 if (local64_add_negative(nr
, &hwc
->period_left
))
8961 perf_swevent_overflow(event
, 0, data
, regs
);
8964 static int perf_exclude_event(struct perf_event
*event
,
8965 struct pt_regs
*regs
)
8967 if (event
->hw
.state
& PERF_HES_STOPPED
)
8971 if (event
->attr
.exclude_user
&& user_mode(regs
))
8974 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
8981 static int perf_swevent_match(struct perf_event
*event
,
8982 enum perf_type_id type
,
8984 struct perf_sample_data
*data
,
8985 struct pt_regs
*regs
)
8987 if (event
->attr
.type
!= type
)
8990 if (event
->attr
.config
!= event_id
)
8993 if (perf_exclude_event(event
, regs
))
8999 static inline u64
swevent_hash(u64 type
, u32 event_id
)
9001 u64 val
= event_id
| (type
<< 32);
9003 return hash_64(val
, SWEVENT_HLIST_BITS
);
9006 static inline struct hlist_head
*
9007 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
9009 u64 hash
= swevent_hash(type
, event_id
);
9011 return &hlist
->heads
[hash
];
9014 /* For the read side: events when they trigger */
9015 static inline struct hlist_head
*
9016 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
9018 struct swevent_hlist
*hlist
;
9020 hlist
= rcu_dereference(swhash
->swevent_hlist
);
9024 return __find_swevent_head(hlist
, type
, event_id
);
9027 /* For the event head insertion and removal in the hlist */
9028 static inline struct hlist_head
*
9029 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
9031 struct swevent_hlist
*hlist
;
9032 u32 event_id
= event
->attr
.config
;
9033 u64 type
= event
->attr
.type
;
9036 * Event scheduling is always serialized against hlist allocation
9037 * and release. Which makes the protected version suitable here.
9038 * The context lock guarantees that.
9040 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
9041 lockdep_is_held(&event
->ctx
->lock
));
9045 return __find_swevent_head(hlist
, type
, event_id
);
9048 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
9050 struct perf_sample_data
*data
,
9051 struct pt_regs
*regs
)
9053 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
9054 struct perf_event
*event
;
9055 struct hlist_head
*head
;
9058 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
9062 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
9063 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
9064 perf_swevent_event(event
, nr
, data
, regs
);
9070 DEFINE_PER_CPU(struct pt_regs
, __perf_regs
[4]);
9072 int perf_swevent_get_recursion_context(void)
9074 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
9076 return get_recursion_context(swhash
->recursion
);
9078 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
9080 void perf_swevent_put_recursion_context(int rctx
)
9082 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
9084 put_recursion_context(swhash
->recursion
, rctx
);
9087 void ___perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
9089 struct perf_sample_data data
;
9091 if (WARN_ON_ONCE(!regs
))
9094 perf_sample_data_init(&data
, addr
, 0);
9095 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, &data
, regs
);
9098 void __perf_sw_event(u32 event_id
, u64 nr
, struct pt_regs
*regs
, u64 addr
)
9102 preempt_disable_notrace();
9103 rctx
= perf_swevent_get_recursion_context();
9104 if (unlikely(rctx
< 0))
9107 ___perf_sw_event(event_id
, nr
, regs
, addr
);
9109 perf_swevent_put_recursion_context(rctx
);
9111 preempt_enable_notrace();
9114 static void perf_swevent_read(struct perf_event
*event
)
9118 static int perf_swevent_add(struct perf_event
*event
, int flags
)
9120 struct swevent_htable
*swhash
= this_cpu_ptr(&swevent_htable
);
9121 struct hw_perf_event
*hwc
= &event
->hw
;
9122 struct hlist_head
*head
;
9124 if (is_sampling_event(event
)) {
9125 hwc
->last_period
= hwc
->sample_period
;
9126 perf_swevent_set_period(event
);
9129 hwc
->state
= !(flags
& PERF_EF_START
);
9131 head
= find_swevent_head(swhash
, event
);
9132 if (WARN_ON_ONCE(!head
))
9135 hlist_add_head_rcu(&event
->hlist_entry
, head
);
9136 perf_event_update_userpage(event
);
9141 static void perf_swevent_del(struct perf_event
*event
, int flags
)
9143 hlist_del_rcu(&event
->hlist_entry
);
9146 static void perf_swevent_start(struct perf_event
*event
, int flags
)
9148 event
->hw
.state
= 0;
9151 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
9153 event
->hw
.state
= PERF_HES_STOPPED
;
9156 /* Deref the hlist from the update side */
9157 static inline struct swevent_hlist
*
9158 swevent_hlist_deref(struct swevent_htable
*swhash
)
9160 return rcu_dereference_protected(swhash
->swevent_hlist
,
9161 lockdep_is_held(&swhash
->hlist_mutex
));
9164 static void swevent_hlist_release(struct swevent_htable
*swhash
)
9166 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
9171 RCU_INIT_POINTER(swhash
->swevent_hlist
, NULL
);
9172 kfree_rcu(hlist
, rcu_head
);
9175 static void swevent_hlist_put_cpu(int cpu
)
9177 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
9179 mutex_lock(&swhash
->hlist_mutex
);
9181 if (!--swhash
->hlist_refcount
)
9182 swevent_hlist_release(swhash
);
9184 mutex_unlock(&swhash
->hlist_mutex
);
9187 static void swevent_hlist_put(void)
9191 for_each_possible_cpu(cpu
)
9192 swevent_hlist_put_cpu(cpu
);
9195 static int swevent_hlist_get_cpu(int cpu
)
9197 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
9200 mutex_lock(&swhash
->hlist_mutex
);
9201 if (!swevent_hlist_deref(swhash
) &&
9202 cpumask_test_cpu(cpu
, perf_online_mask
)) {
9203 struct swevent_hlist
*hlist
;
9205 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
9210 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
9212 swhash
->hlist_refcount
++;
9214 mutex_unlock(&swhash
->hlist_mutex
);
9219 static int swevent_hlist_get(void)
9221 int err
, cpu
, failed_cpu
;
9223 mutex_lock(&pmus_lock
);
9224 for_each_possible_cpu(cpu
) {
9225 err
= swevent_hlist_get_cpu(cpu
);
9231 mutex_unlock(&pmus_lock
);
9234 for_each_possible_cpu(cpu
) {
9235 if (cpu
== failed_cpu
)
9237 swevent_hlist_put_cpu(cpu
);
9239 mutex_unlock(&pmus_lock
);
9243 struct static_key perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
9245 static void sw_perf_event_destroy(struct perf_event
*event
)
9247 u64 event_id
= event
->attr
.config
;
9249 WARN_ON(event
->parent
);
9251 static_key_slow_dec(&perf_swevent_enabled
[event_id
]);
9252 swevent_hlist_put();
9255 static int perf_swevent_init(struct perf_event
*event
)
9257 u64 event_id
= event
->attr
.config
;
9259 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
9263 * no branch sampling for software events
9265 if (has_branch_stack(event
))
9269 case PERF_COUNT_SW_CPU_CLOCK
:
9270 case PERF_COUNT_SW_TASK_CLOCK
:
9277 if (event_id
>= PERF_COUNT_SW_MAX
)
9280 if (!event
->parent
) {
9283 err
= swevent_hlist_get();
9287 static_key_slow_inc(&perf_swevent_enabled
[event_id
]);
9288 event
->destroy
= sw_perf_event_destroy
;
9294 static struct pmu perf_swevent
= {
9295 .task_ctx_nr
= perf_sw_context
,
9297 .capabilities
= PERF_PMU_CAP_NO_NMI
,
9299 .event_init
= perf_swevent_init
,
9300 .add
= perf_swevent_add
,
9301 .del
= perf_swevent_del
,
9302 .start
= perf_swevent_start
,
9303 .stop
= perf_swevent_stop
,
9304 .read
= perf_swevent_read
,
9307 #ifdef CONFIG_EVENT_TRACING
9309 static int perf_tp_filter_match(struct perf_event
*event
,
9310 struct perf_sample_data
*data
)
9312 void *record
= data
->raw
->frag
.data
;
9314 /* only top level events have filters set */
9316 event
= event
->parent
;
9318 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
9323 static int perf_tp_event_match(struct perf_event
*event
,
9324 struct perf_sample_data
*data
,
9325 struct pt_regs
*regs
)
9327 if (event
->hw
.state
& PERF_HES_STOPPED
)
9330 * If exclude_kernel, only trace user-space tracepoints (uprobes)
9332 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
9335 if (!perf_tp_filter_match(event
, data
))
9341 void perf_trace_run_bpf_submit(void *raw_data
, int size
, int rctx
,
9342 struct trace_event_call
*call
, u64 count
,
9343 struct pt_regs
*regs
, struct hlist_head
*head
,
9344 struct task_struct
*task
)
9346 if (bpf_prog_array_valid(call
)) {
9347 *(struct pt_regs
**)raw_data
= regs
;
9348 if (!trace_call_bpf(call
, raw_data
) || hlist_empty(head
)) {
9349 perf_swevent_put_recursion_context(rctx
);
9353 perf_tp_event(call
->event
.type
, count
, raw_data
, size
, regs
, head
,
9356 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit
);
9358 void perf_tp_event(u16 event_type
, u64 count
, void *record
, int entry_size
,
9359 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
,
9360 struct task_struct
*task
)
9362 struct perf_sample_data data
;
9363 struct perf_event
*event
;
9365 struct perf_raw_record raw
= {
9372 perf_sample_data_init(&data
, 0, 0);
9375 perf_trace_buf_update(record
, event_type
);
9377 hlist_for_each_entry_rcu(event
, head
, hlist_entry
) {
9378 if (perf_tp_event_match(event
, &data
, regs
))
9379 perf_swevent_event(event
, count
, &data
, regs
);
9383 * If we got specified a target task, also iterate its context and
9384 * deliver this event there too.
9386 if (task
&& task
!= current
) {
9387 struct perf_event_context
*ctx
;
9388 struct trace_entry
*entry
= record
;
9391 ctx
= rcu_dereference(task
->perf_event_ctxp
[perf_sw_context
]);
9395 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
9396 if (event
->cpu
!= smp_processor_id())
9398 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
9400 if (event
->attr
.config
!= entry
->type
)
9402 if (perf_tp_event_match(event
, &data
, regs
))
9403 perf_swevent_event(event
, count
, &data
, regs
);
9409 perf_swevent_put_recursion_context(rctx
);
9411 EXPORT_SYMBOL_GPL(perf_tp_event
);
9413 static void tp_perf_event_destroy(struct perf_event
*event
)
9415 perf_trace_destroy(event
);
9418 static int perf_tp_event_init(struct perf_event
*event
)
9422 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
9426 * no branch sampling for tracepoint events
9428 if (has_branch_stack(event
))
9431 err
= perf_trace_init(event
);
9435 event
->destroy
= tp_perf_event_destroy
;
9440 static struct pmu perf_tracepoint
= {
9441 .task_ctx_nr
= perf_sw_context
,
9443 .event_init
= perf_tp_event_init
,
9444 .add
= perf_trace_add
,
9445 .del
= perf_trace_del
,
9446 .start
= perf_swevent_start
,
9447 .stop
= perf_swevent_stop
,
9448 .read
= perf_swevent_read
,
9451 #if defined(CONFIG_KPROBE_EVENTS) || defined(CONFIG_UPROBE_EVENTS)
9453 * Flags in config, used by dynamic PMU kprobe and uprobe
9454 * The flags should match following PMU_FORMAT_ATTR().
9456 * PERF_PROBE_CONFIG_IS_RETPROBE if set, create kretprobe/uretprobe
9457 * if not set, create kprobe/uprobe
9459 * The following values specify a reference counter (or semaphore in the
9460 * terminology of tools like dtrace, systemtap, etc.) Userspace Statically
9461 * Defined Tracepoints (USDT). Currently, we use 40 bit for the offset.
9463 * PERF_UPROBE_REF_CTR_OFFSET_BITS # of bits in config as th offset
9464 * PERF_UPROBE_REF_CTR_OFFSET_SHIFT # of bits to shift left
9466 enum perf_probe_config
{
9467 PERF_PROBE_CONFIG_IS_RETPROBE
= 1U << 0, /* [k,u]retprobe */
9468 PERF_UPROBE_REF_CTR_OFFSET_BITS
= 32,
9469 PERF_UPROBE_REF_CTR_OFFSET_SHIFT
= 64 - PERF_UPROBE_REF_CTR_OFFSET_BITS
,
9472 PMU_FORMAT_ATTR(retprobe
, "config:0");
9475 #ifdef CONFIG_KPROBE_EVENTS
9476 static struct attribute
*kprobe_attrs
[] = {
9477 &format_attr_retprobe
.attr
,
9481 static struct attribute_group kprobe_format_group
= {
9483 .attrs
= kprobe_attrs
,
9486 static const struct attribute_group
*kprobe_attr_groups
[] = {
9487 &kprobe_format_group
,
9491 static int perf_kprobe_event_init(struct perf_event
*event
);
9492 static struct pmu perf_kprobe
= {
9493 .task_ctx_nr
= perf_sw_context
,
9494 .event_init
= perf_kprobe_event_init
,
9495 .add
= perf_trace_add
,
9496 .del
= perf_trace_del
,
9497 .start
= perf_swevent_start
,
9498 .stop
= perf_swevent_stop
,
9499 .read
= perf_swevent_read
,
9500 .attr_groups
= kprobe_attr_groups
,
9503 static int perf_kprobe_event_init(struct perf_event
*event
)
9508 if (event
->attr
.type
!= perf_kprobe
.type
)
9511 if (!perfmon_capable())
9515 * no branch sampling for probe events
9517 if (has_branch_stack(event
))
9520 is_retprobe
= event
->attr
.config
& PERF_PROBE_CONFIG_IS_RETPROBE
;
9521 err
= perf_kprobe_init(event
, is_retprobe
);
9525 event
->destroy
= perf_kprobe_destroy
;
9529 #endif /* CONFIG_KPROBE_EVENTS */
9531 #ifdef CONFIG_UPROBE_EVENTS
9532 PMU_FORMAT_ATTR(ref_ctr_offset
, "config:32-63");
9534 static struct attribute
*uprobe_attrs
[] = {
9535 &format_attr_retprobe
.attr
,
9536 &format_attr_ref_ctr_offset
.attr
,
9540 static struct attribute_group uprobe_format_group
= {
9542 .attrs
= uprobe_attrs
,
9545 static const struct attribute_group
*uprobe_attr_groups
[] = {
9546 &uprobe_format_group
,
9550 static int perf_uprobe_event_init(struct perf_event
*event
);
9551 static struct pmu perf_uprobe
= {
9552 .task_ctx_nr
= perf_sw_context
,
9553 .event_init
= perf_uprobe_event_init
,
9554 .add
= perf_trace_add
,
9555 .del
= perf_trace_del
,
9556 .start
= perf_swevent_start
,
9557 .stop
= perf_swevent_stop
,
9558 .read
= perf_swevent_read
,
9559 .attr_groups
= uprobe_attr_groups
,
9562 static int perf_uprobe_event_init(struct perf_event
*event
)
9565 unsigned long ref_ctr_offset
;
9568 if (event
->attr
.type
!= perf_uprobe
.type
)
9571 if (!perfmon_capable())
9575 * no branch sampling for probe events
9577 if (has_branch_stack(event
))
9580 is_retprobe
= event
->attr
.config
& PERF_PROBE_CONFIG_IS_RETPROBE
;
9581 ref_ctr_offset
= event
->attr
.config
>> PERF_UPROBE_REF_CTR_OFFSET_SHIFT
;
9582 err
= perf_uprobe_init(event
, ref_ctr_offset
, is_retprobe
);
9586 event
->destroy
= perf_uprobe_destroy
;
9590 #endif /* CONFIG_UPROBE_EVENTS */
9592 static inline void perf_tp_register(void)
9594 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
9595 #ifdef CONFIG_KPROBE_EVENTS
9596 perf_pmu_register(&perf_kprobe
, "kprobe", -1);
9598 #ifdef CONFIG_UPROBE_EVENTS
9599 perf_pmu_register(&perf_uprobe
, "uprobe", -1);
9603 static void perf_event_free_filter(struct perf_event
*event
)
9605 ftrace_profile_free_filter(event
);
9608 #ifdef CONFIG_BPF_SYSCALL
9609 static void bpf_overflow_handler(struct perf_event
*event
,
9610 struct perf_sample_data
*data
,
9611 struct pt_regs
*regs
)
9613 struct bpf_perf_event_data_kern ctx
= {
9619 ctx
.regs
= perf_arch_bpf_user_pt_regs(regs
);
9620 if (unlikely(__this_cpu_inc_return(bpf_prog_active
) != 1))
9623 ret
= BPF_PROG_RUN(event
->prog
, &ctx
);
9626 __this_cpu_dec(bpf_prog_active
);
9630 event
->orig_overflow_handler(event
, data
, regs
);
9633 static int perf_event_set_bpf_handler(struct perf_event
*event
, u32 prog_fd
)
9635 struct bpf_prog
*prog
;
9637 if (event
->overflow_handler_context
)
9638 /* hw breakpoint or kernel counter */
9644 prog
= bpf_prog_get_type(prog_fd
, BPF_PROG_TYPE_PERF_EVENT
);
9646 return PTR_ERR(prog
);
9648 if (event
->attr
.precise_ip
&&
9649 prog
->call_get_stack
&&
9650 (!(event
->attr
.sample_type
& __PERF_SAMPLE_CALLCHAIN_EARLY
) ||
9651 event
->attr
.exclude_callchain_kernel
||
9652 event
->attr
.exclude_callchain_user
)) {
9654 * On perf_event with precise_ip, calling bpf_get_stack()
9655 * may trigger unwinder warnings and occasional crashes.
9656 * bpf_get_[stack|stackid] works around this issue by using
9657 * callchain attached to perf_sample_data. If the
9658 * perf_event does not full (kernel and user) callchain
9659 * attached to perf_sample_data, do not allow attaching BPF
9660 * program that calls bpf_get_[stack|stackid].
9667 event
->orig_overflow_handler
= READ_ONCE(event
->overflow_handler
);
9668 WRITE_ONCE(event
->overflow_handler
, bpf_overflow_handler
);
9672 static void perf_event_free_bpf_handler(struct perf_event
*event
)
9674 struct bpf_prog
*prog
= event
->prog
;
9679 WRITE_ONCE(event
->overflow_handler
, event
->orig_overflow_handler
);
9684 static int perf_event_set_bpf_handler(struct perf_event
*event
, u32 prog_fd
)
9688 static void perf_event_free_bpf_handler(struct perf_event
*event
)
9694 * returns true if the event is a tracepoint, or a kprobe/upprobe created
9695 * with perf_event_open()
9697 static inline bool perf_event_is_tracing(struct perf_event
*event
)
9699 if (event
->pmu
== &perf_tracepoint
)
9701 #ifdef CONFIG_KPROBE_EVENTS
9702 if (event
->pmu
== &perf_kprobe
)
9705 #ifdef CONFIG_UPROBE_EVENTS
9706 if (event
->pmu
== &perf_uprobe
)
9712 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
9714 bool is_kprobe
, is_tracepoint
, is_syscall_tp
;
9715 struct bpf_prog
*prog
;
9718 if (!perf_event_is_tracing(event
))
9719 return perf_event_set_bpf_handler(event
, prog_fd
);
9721 is_kprobe
= event
->tp_event
->flags
& TRACE_EVENT_FL_UKPROBE
;
9722 is_tracepoint
= event
->tp_event
->flags
& TRACE_EVENT_FL_TRACEPOINT
;
9723 is_syscall_tp
= is_syscall_trace_event(event
->tp_event
);
9724 if (!is_kprobe
&& !is_tracepoint
&& !is_syscall_tp
)
9725 /* bpf programs can only be attached to u/kprobe or tracepoint */
9728 prog
= bpf_prog_get(prog_fd
);
9730 return PTR_ERR(prog
);
9732 if ((is_kprobe
&& prog
->type
!= BPF_PROG_TYPE_KPROBE
) ||
9733 (is_tracepoint
&& prog
->type
!= BPF_PROG_TYPE_TRACEPOINT
) ||
9734 (is_syscall_tp
&& prog
->type
!= BPF_PROG_TYPE_TRACEPOINT
)) {
9735 /* valid fd, but invalid bpf program type */
9740 /* Kprobe override only works for kprobes, not uprobes. */
9741 if (prog
->kprobe_override
&&
9742 !(event
->tp_event
->flags
& TRACE_EVENT_FL_KPROBE
)) {
9747 if (is_tracepoint
|| is_syscall_tp
) {
9748 int off
= trace_event_get_offsets(event
->tp_event
);
9750 if (prog
->aux
->max_ctx_offset
> off
) {
9756 ret
= perf_event_attach_bpf_prog(event
, prog
);
9762 static void perf_event_free_bpf_prog(struct perf_event
*event
)
9764 if (!perf_event_is_tracing(event
)) {
9765 perf_event_free_bpf_handler(event
);
9768 perf_event_detach_bpf_prog(event
);
9773 static inline void perf_tp_register(void)
9777 static void perf_event_free_filter(struct perf_event
*event
)
9781 static int perf_event_set_bpf_prog(struct perf_event
*event
, u32 prog_fd
)
9786 static void perf_event_free_bpf_prog(struct perf_event
*event
)
9789 #endif /* CONFIG_EVENT_TRACING */
9791 #ifdef CONFIG_HAVE_HW_BREAKPOINT
9792 void perf_bp_event(struct perf_event
*bp
, void *data
)
9794 struct perf_sample_data sample
;
9795 struct pt_regs
*regs
= data
;
9797 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
, 0);
9799 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
9800 perf_swevent_event(bp
, 1, &sample
, regs
);
9805 * Allocate a new address filter
9807 static struct perf_addr_filter
*
9808 perf_addr_filter_new(struct perf_event
*event
, struct list_head
*filters
)
9810 int node
= cpu_to_node(event
->cpu
== -1 ? 0 : event
->cpu
);
9811 struct perf_addr_filter
*filter
;
9813 filter
= kzalloc_node(sizeof(*filter
), GFP_KERNEL
, node
);
9817 INIT_LIST_HEAD(&filter
->entry
);
9818 list_add_tail(&filter
->entry
, filters
);
9823 static void free_filters_list(struct list_head
*filters
)
9825 struct perf_addr_filter
*filter
, *iter
;
9827 list_for_each_entry_safe(filter
, iter
, filters
, entry
) {
9828 path_put(&filter
->path
);
9829 list_del(&filter
->entry
);
9835 * Free existing address filters and optionally install new ones
9837 static void perf_addr_filters_splice(struct perf_event
*event
,
9838 struct list_head
*head
)
9840 unsigned long flags
;
9843 if (!has_addr_filter(event
))
9846 /* don't bother with children, they don't have their own filters */
9850 raw_spin_lock_irqsave(&event
->addr_filters
.lock
, flags
);
9852 list_splice_init(&event
->addr_filters
.list
, &list
);
9854 list_splice(head
, &event
->addr_filters
.list
);
9856 raw_spin_unlock_irqrestore(&event
->addr_filters
.lock
, flags
);
9858 free_filters_list(&list
);
9862 * Scan through mm's vmas and see if one of them matches the
9863 * @filter; if so, adjust filter's address range.
9864 * Called with mm::mmap_lock down for reading.
9866 static void perf_addr_filter_apply(struct perf_addr_filter
*filter
,
9867 struct mm_struct
*mm
,
9868 struct perf_addr_filter_range
*fr
)
9870 struct vm_area_struct
*vma
;
9872 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
9876 if (perf_addr_filter_vma_adjust(filter
, vma
, fr
))
9882 * Update event's address range filters based on the
9883 * task's existing mappings, if any.
9885 static void perf_event_addr_filters_apply(struct perf_event
*event
)
9887 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
9888 struct task_struct
*task
= READ_ONCE(event
->ctx
->task
);
9889 struct perf_addr_filter
*filter
;
9890 struct mm_struct
*mm
= NULL
;
9891 unsigned int count
= 0;
9892 unsigned long flags
;
9895 * We may observe TASK_TOMBSTONE, which means that the event tear-down
9896 * will stop on the parent's child_mutex that our caller is also holding
9898 if (task
== TASK_TOMBSTONE
)
9901 if (ifh
->nr_file_filters
) {
9902 mm
= get_task_mm(event
->ctx
->task
);
9909 raw_spin_lock_irqsave(&ifh
->lock
, flags
);
9910 list_for_each_entry(filter
, &ifh
->list
, entry
) {
9911 if (filter
->path
.dentry
) {
9913 * Adjust base offset if the filter is associated to a
9914 * binary that needs to be mapped:
9916 event
->addr_filter_ranges
[count
].start
= 0;
9917 event
->addr_filter_ranges
[count
].size
= 0;
9919 perf_addr_filter_apply(filter
, mm
, &event
->addr_filter_ranges
[count
]);
9921 event
->addr_filter_ranges
[count
].start
= filter
->offset
;
9922 event
->addr_filter_ranges
[count
].size
= filter
->size
;
9928 event
->addr_filters_gen
++;
9929 raw_spin_unlock_irqrestore(&ifh
->lock
, flags
);
9931 if (ifh
->nr_file_filters
) {
9932 mmap_read_unlock(mm
);
9938 perf_event_stop(event
, 1);
9942 * Address range filtering: limiting the data to certain
9943 * instruction address ranges. Filters are ioctl()ed to us from
9944 * userspace as ascii strings.
9946 * Filter string format:
9949 * where ACTION is one of the
9950 * * "filter": limit the trace to this region
9951 * * "start": start tracing from this address
9952 * * "stop": stop tracing at this address/region;
9954 * * for kernel addresses: <start address>[/<size>]
9955 * * for object files: <start address>[/<size>]@</path/to/object/file>
9957 * if <size> is not specified or is zero, the range is treated as a single
9958 * address; not valid for ACTION=="filter".
9972 IF_STATE_ACTION
= 0,
9977 static const match_table_t if_tokens
= {
9978 { IF_ACT_FILTER
, "filter" },
9979 { IF_ACT_START
, "start" },
9980 { IF_ACT_STOP
, "stop" },
9981 { IF_SRC_FILE
, "%u/%u@%s" },
9982 { IF_SRC_KERNEL
, "%u/%u" },
9983 { IF_SRC_FILEADDR
, "%u@%s" },
9984 { IF_SRC_KERNELADDR
, "%u" },
9985 { IF_ACT_NONE
, NULL
},
9989 * Address filter string parser
9992 perf_event_parse_addr_filter(struct perf_event
*event
, char *fstr
,
9993 struct list_head
*filters
)
9995 struct perf_addr_filter
*filter
= NULL
;
9996 char *start
, *orig
, *filename
= NULL
;
9997 substring_t args
[MAX_OPT_ARGS
];
9998 int state
= IF_STATE_ACTION
, token
;
9999 unsigned int kernel
= 0;
10002 orig
= fstr
= kstrdup(fstr
, GFP_KERNEL
);
10006 while ((start
= strsep(&fstr
, " ,\n")) != NULL
) {
10007 static const enum perf_addr_filter_action_t actions
[] = {
10008 [IF_ACT_FILTER
] = PERF_ADDR_FILTER_ACTION_FILTER
,
10009 [IF_ACT_START
] = PERF_ADDR_FILTER_ACTION_START
,
10010 [IF_ACT_STOP
] = PERF_ADDR_FILTER_ACTION_STOP
,
10017 /* filter definition begins */
10018 if (state
== IF_STATE_ACTION
) {
10019 filter
= perf_addr_filter_new(event
, filters
);
10024 token
= match_token(start
, if_tokens
, args
);
10026 case IF_ACT_FILTER
:
10029 if (state
!= IF_STATE_ACTION
)
10032 filter
->action
= actions
[token
];
10033 state
= IF_STATE_SOURCE
;
10036 case IF_SRC_KERNELADDR
:
10037 case IF_SRC_KERNEL
:
10041 case IF_SRC_FILEADDR
:
10043 if (state
!= IF_STATE_SOURCE
)
10047 ret
= kstrtoul(args
[0].from
, 0, &filter
->offset
);
10051 if (token
== IF_SRC_KERNEL
|| token
== IF_SRC_FILE
) {
10053 ret
= kstrtoul(args
[1].from
, 0, &filter
->size
);
10058 if (token
== IF_SRC_FILE
|| token
== IF_SRC_FILEADDR
) {
10059 int fpos
= token
== IF_SRC_FILE
? 2 : 1;
10062 filename
= match_strdup(&args
[fpos
]);
10069 state
= IF_STATE_END
;
10077 * Filter definition is fully parsed, validate and install it.
10078 * Make sure that it doesn't contradict itself or the event's
10081 if (state
== IF_STATE_END
) {
10083 if (kernel
&& event
->attr
.exclude_kernel
)
10087 * ACTION "filter" must have a non-zero length region
10090 if (filter
->action
== PERF_ADDR_FILTER_ACTION_FILTER
&&
10099 * For now, we only support file-based filters
10100 * in per-task events; doing so for CPU-wide
10101 * events requires additional context switching
10102 * trickery, since same object code will be
10103 * mapped at different virtual addresses in
10104 * different processes.
10107 if (!event
->ctx
->task
)
10110 /* look up the path and grab its inode */
10111 ret
= kern_path(filename
, LOOKUP_FOLLOW
,
10117 if (!filter
->path
.dentry
||
10118 !S_ISREG(d_inode(filter
->path
.dentry
)
10122 event
->addr_filters
.nr_file_filters
++;
10125 /* ready to consume more filters */
10126 state
= IF_STATE_ACTION
;
10131 if (state
!= IF_STATE_ACTION
)
10141 free_filters_list(filters
);
10148 perf_event_set_addr_filter(struct perf_event
*event
, char *filter_str
)
10150 LIST_HEAD(filters
);
10154 * Since this is called in perf_ioctl() path, we're already holding
10157 lockdep_assert_held(&event
->ctx
->mutex
);
10159 if (WARN_ON_ONCE(event
->parent
))
10162 ret
= perf_event_parse_addr_filter(event
, filter_str
, &filters
);
10164 goto fail_clear_files
;
10166 ret
= event
->pmu
->addr_filters_validate(&filters
);
10168 goto fail_free_filters
;
10170 /* remove existing filters, if any */
10171 perf_addr_filters_splice(event
, &filters
);
10173 /* install new filters */
10174 perf_event_for_each_child(event
, perf_event_addr_filters_apply
);
10179 free_filters_list(&filters
);
10182 event
->addr_filters
.nr_file_filters
= 0;
10187 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
10192 filter_str
= strndup_user(arg
, PAGE_SIZE
);
10193 if (IS_ERR(filter_str
))
10194 return PTR_ERR(filter_str
);
10196 #ifdef CONFIG_EVENT_TRACING
10197 if (perf_event_is_tracing(event
)) {
10198 struct perf_event_context
*ctx
= event
->ctx
;
10201 * Beware, here be dragons!!
10203 * the tracepoint muck will deadlock against ctx->mutex, but
10204 * the tracepoint stuff does not actually need it. So
10205 * temporarily drop ctx->mutex. As per perf_event_ctx_lock() we
10206 * already have a reference on ctx.
10208 * This can result in event getting moved to a different ctx,
10209 * but that does not affect the tracepoint state.
10211 mutex_unlock(&ctx
->mutex
);
10212 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
10213 mutex_lock(&ctx
->mutex
);
10216 if (has_addr_filter(event
))
10217 ret
= perf_event_set_addr_filter(event
, filter_str
);
10224 * hrtimer based swevent callback
10227 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
10229 enum hrtimer_restart ret
= HRTIMER_RESTART
;
10230 struct perf_sample_data data
;
10231 struct pt_regs
*regs
;
10232 struct perf_event
*event
;
10235 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
10237 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
10238 return HRTIMER_NORESTART
;
10240 event
->pmu
->read(event
);
10242 perf_sample_data_init(&data
, 0, event
->hw
.last_period
);
10243 regs
= get_irq_regs();
10245 if (regs
&& !perf_exclude_event(event
, regs
)) {
10246 if (!(event
->attr
.exclude_idle
&& is_idle_task(current
)))
10247 if (__perf_event_overflow(event
, 1, &data
, regs
))
10248 ret
= HRTIMER_NORESTART
;
10251 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
10252 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
10257 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
10259 struct hw_perf_event
*hwc
= &event
->hw
;
10262 if (!is_sampling_event(event
))
10265 period
= local64_read(&hwc
->period_left
);
10270 local64_set(&hwc
->period_left
, 0);
10272 period
= max_t(u64
, 10000, hwc
->sample_period
);
10274 hrtimer_start(&hwc
->hrtimer
, ns_to_ktime(period
),
10275 HRTIMER_MODE_REL_PINNED_HARD
);
10278 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
10280 struct hw_perf_event
*hwc
= &event
->hw
;
10282 if (is_sampling_event(event
)) {
10283 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
10284 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
10286 hrtimer_cancel(&hwc
->hrtimer
);
10290 static void perf_swevent_init_hrtimer(struct perf_event
*event
)
10292 struct hw_perf_event
*hwc
= &event
->hw
;
10294 if (!is_sampling_event(event
))
10297 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_HARD
);
10298 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
10301 * Since hrtimers have a fixed rate, we can do a static freq->period
10302 * mapping and avoid the whole period adjust feedback stuff.
10304 if (event
->attr
.freq
) {
10305 long freq
= event
->attr
.sample_freq
;
10307 event
->attr
.sample_period
= NSEC_PER_SEC
/ freq
;
10308 hwc
->sample_period
= event
->attr
.sample_period
;
10309 local64_set(&hwc
->period_left
, hwc
->sample_period
);
10310 hwc
->last_period
= hwc
->sample_period
;
10311 event
->attr
.freq
= 0;
10316 * Software event: cpu wall time clock
10319 static void cpu_clock_event_update(struct perf_event
*event
)
10324 now
= local_clock();
10325 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
10326 local64_add(now
- prev
, &event
->count
);
10329 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
10331 local64_set(&event
->hw
.prev_count
, local_clock());
10332 perf_swevent_start_hrtimer(event
);
10335 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
10337 perf_swevent_cancel_hrtimer(event
);
10338 cpu_clock_event_update(event
);
10341 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
10343 if (flags
& PERF_EF_START
)
10344 cpu_clock_event_start(event
, flags
);
10345 perf_event_update_userpage(event
);
10350 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
10352 cpu_clock_event_stop(event
, flags
);
10355 static void cpu_clock_event_read(struct perf_event
*event
)
10357 cpu_clock_event_update(event
);
10360 static int cpu_clock_event_init(struct perf_event
*event
)
10362 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
10365 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
10369 * no branch sampling for software events
10371 if (has_branch_stack(event
))
10372 return -EOPNOTSUPP
;
10374 perf_swevent_init_hrtimer(event
);
10379 static struct pmu perf_cpu_clock
= {
10380 .task_ctx_nr
= perf_sw_context
,
10382 .capabilities
= PERF_PMU_CAP_NO_NMI
,
10384 .event_init
= cpu_clock_event_init
,
10385 .add
= cpu_clock_event_add
,
10386 .del
= cpu_clock_event_del
,
10387 .start
= cpu_clock_event_start
,
10388 .stop
= cpu_clock_event_stop
,
10389 .read
= cpu_clock_event_read
,
10393 * Software event: task time clock
10396 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
10401 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
10402 delta
= now
- prev
;
10403 local64_add(delta
, &event
->count
);
10406 static void task_clock_event_start(struct perf_event
*event
, int flags
)
10408 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
10409 perf_swevent_start_hrtimer(event
);
10412 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
10414 perf_swevent_cancel_hrtimer(event
);
10415 task_clock_event_update(event
, event
->ctx
->time
);
10418 static int task_clock_event_add(struct perf_event
*event
, int flags
)
10420 if (flags
& PERF_EF_START
)
10421 task_clock_event_start(event
, flags
);
10422 perf_event_update_userpage(event
);
10427 static void task_clock_event_del(struct perf_event
*event
, int flags
)
10429 task_clock_event_stop(event
, PERF_EF_UPDATE
);
10432 static void task_clock_event_read(struct perf_event
*event
)
10434 u64 now
= perf_clock();
10435 u64 delta
= now
- event
->ctx
->timestamp
;
10436 u64 time
= event
->ctx
->time
+ delta
;
10438 task_clock_event_update(event
, time
);
10441 static int task_clock_event_init(struct perf_event
*event
)
10443 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
10446 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
10450 * no branch sampling for software events
10452 if (has_branch_stack(event
))
10453 return -EOPNOTSUPP
;
10455 perf_swevent_init_hrtimer(event
);
10460 static struct pmu perf_task_clock
= {
10461 .task_ctx_nr
= perf_sw_context
,
10463 .capabilities
= PERF_PMU_CAP_NO_NMI
,
10465 .event_init
= task_clock_event_init
,
10466 .add
= task_clock_event_add
,
10467 .del
= task_clock_event_del
,
10468 .start
= task_clock_event_start
,
10469 .stop
= task_clock_event_stop
,
10470 .read
= task_clock_event_read
,
10473 static void perf_pmu_nop_void(struct pmu
*pmu
)
10477 static void perf_pmu_nop_txn(struct pmu
*pmu
, unsigned int flags
)
10481 static int perf_pmu_nop_int(struct pmu
*pmu
)
10486 static int perf_event_nop_int(struct perf_event
*event
, u64 value
)
10491 static DEFINE_PER_CPU(unsigned int, nop_txn_flags
);
10493 static void perf_pmu_start_txn(struct pmu
*pmu
, unsigned int flags
)
10495 __this_cpu_write(nop_txn_flags
, flags
);
10497 if (flags
& ~PERF_PMU_TXN_ADD
)
10500 perf_pmu_disable(pmu
);
10503 static int perf_pmu_commit_txn(struct pmu
*pmu
)
10505 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
10507 __this_cpu_write(nop_txn_flags
, 0);
10509 if (flags
& ~PERF_PMU_TXN_ADD
)
10512 perf_pmu_enable(pmu
);
10516 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
10518 unsigned int flags
= __this_cpu_read(nop_txn_flags
);
10520 __this_cpu_write(nop_txn_flags
, 0);
10522 if (flags
& ~PERF_PMU_TXN_ADD
)
10525 perf_pmu_enable(pmu
);
10528 static int perf_event_idx_default(struct perf_event
*event
)
10534 * Ensures all contexts with the same task_ctx_nr have the same
10535 * pmu_cpu_context too.
10537 static struct perf_cpu_context __percpu
*find_pmu_context(int ctxn
)
10544 list_for_each_entry(pmu
, &pmus
, entry
) {
10545 if (pmu
->task_ctx_nr
== ctxn
)
10546 return pmu
->pmu_cpu_context
;
10552 static void free_pmu_context(struct pmu
*pmu
)
10555 * Static contexts such as perf_sw_context have a global lifetime
10556 * and may be shared between different PMUs. Avoid freeing them
10557 * when a single PMU is going away.
10559 if (pmu
->task_ctx_nr
> perf_invalid_context
)
10562 free_percpu(pmu
->pmu_cpu_context
);
10566 * Let userspace know that this PMU supports address range filtering:
10568 static ssize_t
nr_addr_filters_show(struct device
*dev
,
10569 struct device_attribute
*attr
,
10572 struct pmu
*pmu
= dev_get_drvdata(dev
);
10574 return snprintf(page
, PAGE_SIZE
- 1, "%d\n", pmu
->nr_addr_filters
);
10576 DEVICE_ATTR_RO(nr_addr_filters
);
10578 static struct idr pmu_idr
;
10581 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
10583 struct pmu
*pmu
= dev_get_drvdata(dev
);
10585 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
10587 static DEVICE_ATTR_RO(type
);
10590 perf_event_mux_interval_ms_show(struct device
*dev
,
10591 struct device_attribute
*attr
,
10594 struct pmu
*pmu
= dev_get_drvdata(dev
);
10596 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->hrtimer_interval_ms
);
10599 static DEFINE_MUTEX(mux_interval_mutex
);
10602 perf_event_mux_interval_ms_store(struct device
*dev
,
10603 struct device_attribute
*attr
,
10604 const char *buf
, size_t count
)
10606 struct pmu
*pmu
= dev_get_drvdata(dev
);
10607 int timer
, cpu
, ret
;
10609 ret
= kstrtoint(buf
, 0, &timer
);
10616 /* same value, noting to do */
10617 if (timer
== pmu
->hrtimer_interval_ms
)
10620 mutex_lock(&mux_interval_mutex
);
10621 pmu
->hrtimer_interval_ms
= timer
;
10623 /* update all cpuctx for this PMU */
10625 for_each_online_cpu(cpu
) {
10626 struct perf_cpu_context
*cpuctx
;
10627 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
10628 cpuctx
->hrtimer_interval
= ns_to_ktime(NSEC_PER_MSEC
* timer
);
10630 cpu_function_call(cpu
,
10631 (remote_function_f
)perf_mux_hrtimer_restart
, cpuctx
);
10633 cpus_read_unlock();
10634 mutex_unlock(&mux_interval_mutex
);
10638 static DEVICE_ATTR_RW(perf_event_mux_interval_ms
);
10640 static struct attribute
*pmu_dev_attrs
[] = {
10641 &dev_attr_type
.attr
,
10642 &dev_attr_perf_event_mux_interval_ms
.attr
,
10645 ATTRIBUTE_GROUPS(pmu_dev
);
10647 static int pmu_bus_running
;
10648 static struct bus_type pmu_bus
= {
10649 .name
= "event_source",
10650 .dev_groups
= pmu_dev_groups
,
10653 static void pmu_dev_release(struct device
*dev
)
10658 static int pmu_dev_alloc(struct pmu
*pmu
)
10662 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
10666 pmu
->dev
->groups
= pmu
->attr_groups
;
10667 device_initialize(pmu
->dev
);
10668 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
10672 dev_set_drvdata(pmu
->dev
, pmu
);
10673 pmu
->dev
->bus
= &pmu_bus
;
10674 pmu
->dev
->release
= pmu_dev_release
;
10675 ret
= device_add(pmu
->dev
);
10679 /* For PMUs with address filters, throw in an extra attribute: */
10680 if (pmu
->nr_addr_filters
)
10681 ret
= device_create_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
10686 if (pmu
->attr_update
)
10687 ret
= sysfs_update_groups(&pmu
->dev
->kobj
, pmu
->attr_update
);
10696 device_del(pmu
->dev
);
10699 put_device(pmu
->dev
);
10703 static struct lock_class_key cpuctx_mutex
;
10704 static struct lock_class_key cpuctx_lock
;
10706 int perf_pmu_register(struct pmu
*pmu
, const char *name
, int type
)
10708 int cpu
, ret
, max
= PERF_TYPE_MAX
;
10710 mutex_lock(&pmus_lock
);
10712 pmu
->pmu_disable_count
= alloc_percpu(int);
10713 if (!pmu
->pmu_disable_count
)
10721 if (type
!= PERF_TYPE_SOFTWARE
) {
10725 ret
= idr_alloc(&pmu_idr
, pmu
, max
, 0, GFP_KERNEL
);
10729 WARN_ON(type
>= 0 && ret
!= type
);
10735 if (pmu_bus_running
) {
10736 ret
= pmu_dev_alloc(pmu
);
10742 if (pmu
->task_ctx_nr
== perf_hw_context
) {
10743 static int hw_context_taken
= 0;
10746 * Other than systems with heterogeneous CPUs, it never makes
10747 * sense for two PMUs to share perf_hw_context. PMUs which are
10748 * uncore must use perf_invalid_context.
10750 if (WARN_ON_ONCE(hw_context_taken
&&
10751 !(pmu
->capabilities
& PERF_PMU_CAP_HETEROGENEOUS_CPUS
)))
10752 pmu
->task_ctx_nr
= perf_invalid_context
;
10754 hw_context_taken
= 1;
10757 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
10758 if (pmu
->pmu_cpu_context
)
10759 goto got_cpu_context
;
10762 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
10763 if (!pmu
->pmu_cpu_context
)
10766 for_each_possible_cpu(cpu
) {
10767 struct perf_cpu_context
*cpuctx
;
10769 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
10770 __perf_event_init_context(&cpuctx
->ctx
);
10771 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
10772 lockdep_set_class(&cpuctx
->ctx
.lock
, &cpuctx_lock
);
10773 cpuctx
->ctx
.pmu
= pmu
;
10774 cpuctx
->online
= cpumask_test_cpu(cpu
, perf_online_mask
);
10776 __perf_mux_hrtimer_init(cpuctx
, cpu
);
10778 cpuctx
->heap_size
= ARRAY_SIZE(cpuctx
->heap_default
);
10779 cpuctx
->heap
= cpuctx
->heap_default
;
10783 if (!pmu
->start_txn
) {
10784 if (pmu
->pmu_enable
) {
10786 * If we have pmu_enable/pmu_disable calls, install
10787 * transaction stubs that use that to try and batch
10788 * hardware accesses.
10790 pmu
->start_txn
= perf_pmu_start_txn
;
10791 pmu
->commit_txn
= perf_pmu_commit_txn
;
10792 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
10794 pmu
->start_txn
= perf_pmu_nop_txn
;
10795 pmu
->commit_txn
= perf_pmu_nop_int
;
10796 pmu
->cancel_txn
= perf_pmu_nop_void
;
10800 if (!pmu
->pmu_enable
) {
10801 pmu
->pmu_enable
= perf_pmu_nop_void
;
10802 pmu
->pmu_disable
= perf_pmu_nop_void
;
10805 if (!pmu
->check_period
)
10806 pmu
->check_period
= perf_event_nop_int
;
10808 if (!pmu
->event_idx
)
10809 pmu
->event_idx
= perf_event_idx_default
;
10812 * Ensure the TYPE_SOFTWARE PMUs are at the head of the list,
10813 * since these cannot be in the IDR. This way the linear search
10814 * is fast, provided a valid software event is provided.
10816 if (type
== PERF_TYPE_SOFTWARE
|| !name
)
10817 list_add_rcu(&pmu
->entry
, &pmus
);
10819 list_add_tail_rcu(&pmu
->entry
, &pmus
);
10821 atomic_set(&pmu
->exclusive_cnt
, 0);
10824 mutex_unlock(&pmus_lock
);
10829 device_del(pmu
->dev
);
10830 put_device(pmu
->dev
);
10833 if (pmu
->type
!= PERF_TYPE_SOFTWARE
)
10834 idr_remove(&pmu_idr
, pmu
->type
);
10837 free_percpu(pmu
->pmu_disable_count
);
10840 EXPORT_SYMBOL_GPL(perf_pmu_register
);
10842 void perf_pmu_unregister(struct pmu
*pmu
)
10844 mutex_lock(&pmus_lock
);
10845 list_del_rcu(&pmu
->entry
);
10848 * We dereference the pmu list under both SRCU and regular RCU, so
10849 * synchronize against both of those.
10851 synchronize_srcu(&pmus_srcu
);
10854 free_percpu(pmu
->pmu_disable_count
);
10855 if (pmu
->type
!= PERF_TYPE_SOFTWARE
)
10856 idr_remove(&pmu_idr
, pmu
->type
);
10857 if (pmu_bus_running
) {
10858 if (pmu
->nr_addr_filters
)
10859 device_remove_file(pmu
->dev
, &dev_attr_nr_addr_filters
);
10860 device_del(pmu
->dev
);
10861 put_device(pmu
->dev
);
10863 free_pmu_context(pmu
);
10864 mutex_unlock(&pmus_lock
);
10866 EXPORT_SYMBOL_GPL(perf_pmu_unregister
);
10868 static inline bool has_extended_regs(struct perf_event
*event
)
10870 return (event
->attr
.sample_regs_user
& PERF_REG_EXTENDED_MASK
) ||
10871 (event
->attr
.sample_regs_intr
& PERF_REG_EXTENDED_MASK
);
10874 static int perf_try_init_event(struct pmu
*pmu
, struct perf_event
*event
)
10876 struct perf_event_context
*ctx
= NULL
;
10879 if (!try_module_get(pmu
->module
))
10883 * A number of pmu->event_init() methods iterate the sibling_list to,
10884 * for example, validate if the group fits on the PMU. Therefore,
10885 * if this is a sibling event, acquire the ctx->mutex to protect
10886 * the sibling_list.
10888 if (event
->group_leader
!= event
&& pmu
->task_ctx_nr
!= perf_sw_context
) {
10890 * This ctx->mutex can nest when we're called through
10891 * inheritance. See the perf_event_ctx_lock_nested() comment.
10893 ctx
= perf_event_ctx_lock_nested(event
->group_leader
,
10894 SINGLE_DEPTH_NESTING
);
10899 ret
= pmu
->event_init(event
);
10902 perf_event_ctx_unlock(event
->group_leader
, ctx
);
10905 if (!(pmu
->capabilities
& PERF_PMU_CAP_EXTENDED_REGS
) &&
10906 has_extended_regs(event
))
10909 if (pmu
->capabilities
& PERF_PMU_CAP_NO_EXCLUDE
&&
10910 event_has_any_exclude_flag(event
))
10913 if (ret
&& event
->destroy
)
10914 event
->destroy(event
);
10918 module_put(pmu
->module
);
10923 static struct pmu
*perf_init_event(struct perf_event
*event
)
10925 int idx
, type
, ret
;
10928 idx
= srcu_read_lock(&pmus_srcu
);
10930 /* Try parent's PMU first: */
10931 if (event
->parent
&& event
->parent
->pmu
) {
10932 pmu
= event
->parent
->pmu
;
10933 ret
= perf_try_init_event(pmu
, event
);
10939 * PERF_TYPE_HARDWARE and PERF_TYPE_HW_CACHE
10940 * are often aliases for PERF_TYPE_RAW.
10942 type
= event
->attr
.type
;
10943 if (type
== PERF_TYPE_HARDWARE
|| type
== PERF_TYPE_HW_CACHE
)
10944 type
= PERF_TYPE_RAW
;
10948 pmu
= idr_find(&pmu_idr
, type
);
10951 ret
= perf_try_init_event(pmu
, event
);
10952 if (ret
== -ENOENT
&& event
->attr
.type
!= type
) {
10953 type
= event
->attr
.type
;
10958 pmu
= ERR_PTR(ret
);
10963 list_for_each_entry_rcu(pmu
, &pmus
, entry
, lockdep_is_held(&pmus_srcu
)) {
10964 ret
= perf_try_init_event(pmu
, event
);
10968 if (ret
!= -ENOENT
) {
10969 pmu
= ERR_PTR(ret
);
10973 pmu
= ERR_PTR(-ENOENT
);
10975 srcu_read_unlock(&pmus_srcu
, idx
);
10980 static void attach_sb_event(struct perf_event
*event
)
10982 struct pmu_event_list
*pel
= per_cpu_ptr(&pmu_sb_events
, event
->cpu
);
10984 raw_spin_lock(&pel
->lock
);
10985 list_add_rcu(&event
->sb_list
, &pel
->list
);
10986 raw_spin_unlock(&pel
->lock
);
10990 * We keep a list of all !task (and therefore per-cpu) events
10991 * that need to receive side-band records.
10993 * This avoids having to scan all the various PMU per-cpu contexts
10994 * looking for them.
10996 static void account_pmu_sb_event(struct perf_event
*event
)
10998 if (is_sb_event(event
))
10999 attach_sb_event(event
);
11002 static void account_event_cpu(struct perf_event
*event
, int cpu
)
11007 if (is_cgroup_event(event
))
11008 atomic_inc(&per_cpu(perf_cgroup_events
, cpu
));
11011 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
11012 static void account_freq_event_nohz(void)
11014 #ifdef CONFIG_NO_HZ_FULL
11015 /* Lock so we don't race with concurrent unaccount */
11016 spin_lock(&nr_freq_lock
);
11017 if (atomic_inc_return(&nr_freq_events
) == 1)
11018 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS
);
11019 spin_unlock(&nr_freq_lock
);
11023 static void account_freq_event(void)
11025 if (tick_nohz_full_enabled())
11026 account_freq_event_nohz();
11028 atomic_inc(&nr_freq_events
);
11032 static void account_event(struct perf_event
*event
)
11039 if (event
->attach_state
& PERF_ATTACH_TASK
)
11041 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
11042 atomic_inc(&nr_mmap_events
);
11043 if (event
->attr
.comm
)
11044 atomic_inc(&nr_comm_events
);
11045 if (event
->attr
.namespaces
)
11046 atomic_inc(&nr_namespaces_events
);
11047 if (event
->attr
.cgroup
)
11048 atomic_inc(&nr_cgroup_events
);
11049 if (event
->attr
.task
)
11050 atomic_inc(&nr_task_events
);
11051 if (event
->attr
.freq
)
11052 account_freq_event();
11053 if (event
->attr
.context_switch
) {
11054 atomic_inc(&nr_switch_events
);
11057 if (has_branch_stack(event
))
11059 if (is_cgroup_event(event
))
11061 if (event
->attr
.ksymbol
)
11062 atomic_inc(&nr_ksymbol_events
);
11063 if (event
->attr
.bpf_event
)
11064 atomic_inc(&nr_bpf_events
);
11065 if (event
->attr
.text_poke
)
11066 atomic_inc(&nr_text_poke_events
);
11070 * We need the mutex here because static_branch_enable()
11071 * must complete *before* the perf_sched_count increment
11074 if (atomic_inc_not_zero(&perf_sched_count
))
11077 mutex_lock(&perf_sched_mutex
);
11078 if (!atomic_read(&perf_sched_count
)) {
11079 static_branch_enable(&perf_sched_events
);
11081 * Guarantee that all CPUs observe they key change and
11082 * call the perf scheduling hooks before proceeding to
11083 * install events that need them.
11088 * Now that we have waited for the sync_sched(), allow further
11089 * increments to by-pass the mutex.
11091 atomic_inc(&perf_sched_count
);
11092 mutex_unlock(&perf_sched_mutex
);
11096 account_event_cpu(event
, event
->cpu
);
11098 account_pmu_sb_event(event
);
11102 * Allocate and initialize an event structure
11104 static struct perf_event
*
11105 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
11106 struct task_struct
*task
,
11107 struct perf_event
*group_leader
,
11108 struct perf_event
*parent_event
,
11109 perf_overflow_handler_t overflow_handler
,
11110 void *context
, int cgroup_fd
)
11113 struct perf_event
*event
;
11114 struct hw_perf_event
*hwc
;
11115 long err
= -EINVAL
;
11117 if ((unsigned)cpu
>= nr_cpu_ids
) {
11118 if (!task
|| cpu
!= -1)
11119 return ERR_PTR(-EINVAL
);
11122 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
11124 return ERR_PTR(-ENOMEM
);
11127 * Single events are their own group leaders, with an
11128 * empty sibling list:
11131 group_leader
= event
;
11133 mutex_init(&event
->child_mutex
);
11134 INIT_LIST_HEAD(&event
->child_list
);
11136 INIT_LIST_HEAD(&event
->event_entry
);
11137 INIT_LIST_HEAD(&event
->sibling_list
);
11138 INIT_LIST_HEAD(&event
->active_list
);
11139 init_event_group(event
);
11140 INIT_LIST_HEAD(&event
->rb_entry
);
11141 INIT_LIST_HEAD(&event
->active_entry
);
11142 INIT_LIST_HEAD(&event
->addr_filters
.list
);
11143 INIT_HLIST_NODE(&event
->hlist_entry
);
11146 init_waitqueue_head(&event
->waitq
);
11147 event
->pending_disable
= -1;
11148 init_irq_work(&event
->pending
, perf_pending_event
);
11150 mutex_init(&event
->mmap_mutex
);
11151 raw_spin_lock_init(&event
->addr_filters
.lock
);
11153 atomic_long_set(&event
->refcount
, 1);
11155 event
->attr
= *attr
;
11156 event
->group_leader
= group_leader
;
11160 event
->parent
= parent_event
;
11162 event
->ns
= get_pid_ns(task_active_pid_ns(current
));
11163 event
->id
= atomic64_inc_return(&perf_event_id
);
11165 event
->state
= PERF_EVENT_STATE_INACTIVE
;
11168 event
->attach_state
= PERF_ATTACH_TASK
;
11170 * XXX pmu::event_init needs to know what task to account to
11171 * and we cannot use the ctx information because we need the
11172 * pmu before we get a ctx.
11174 event
->hw
.target
= get_task_struct(task
);
11177 event
->clock
= &local_clock
;
11179 event
->clock
= parent_event
->clock
;
11181 if (!overflow_handler
&& parent_event
) {
11182 overflow_handler
= parent_event
->overflow_handler
;
11183 context
= parent_event
->overflow_handler_context
;
11184 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
11185 if (overflow_handler
== bpf_overflow_handler
) {
11186 struct bpf_prog
*prog
= parent_event
->prog
;
11188 bpf_prog_inc(prog
);
11189 event
->prog
= prog
;
11190 event
->orig_overflow_handler
=
11191 parent_event
->orig_overflow_handler
;
11196 if (overflow_handler
) {
11197 event
->overflow_handler
= overflow_handler
;
11198 event
->overflow_handler_context
= context
;
11199 } else if (is_write_backward(event
)){
11200 event
->overflow_handler
= perf_event_output_backward
;
11201 event
->overflow_handler_context
= NULL
;
11203 event
->overflow_handler
= perf_event_output_forward
;
11204 event
->overflow_handler_context
= NULL
;
11207 perf_event__state_init(event
);
11212 hwc
->sample_period
= attr
->sample_period
;
11213 if (attr
->freq
&& attr
->sample_freq
)
11214 hwc
->sample_period
= 1;
11215 hwc
->last_period
= hwc
->sample_period
;
11217 local64_set(&hwc
->period_left
, hwc
->sample_period
);
11220 * We currently do not support PERF_SAMPLE_READ on inherited events.
11221 * See perf_output_read().
11223 if (attr
->inherit
&& (attr
->sample_type
& PERF_SAMPLE_READ
))
11226 if (!has_branch_stack(event
))
11227 event
->attr
.branch_sample_type
= 0;
11229 pmu
= perf_init_event(event
);
11231 err
= PTR_ERR(pmu
);
11236 * Disallow uncore-cgroup events, they don't make sense as the cgroup will
11237 * be different on other CPUs in the uncore mask.
11239 if (pmu
->task_ctx_nr
== perf_invalid_context
&& cgroup_fd
!= -1) {
11244 if (event
->attr
.aux_output
&&
11245 !(pmu
->capabilities
& PERF_PMU_CAP_AUX_OUTPUT
)) {
11250 if (cgroup_fd
!= -1) {
11251 err
= perf_cgroup_connect(cgroup_fd
, event
, attr
, group_leader
);
11256 err
= exclusive_event_init(event
);
11260 if (has_addr_filter(event
)) {
11261 event
->addr_filter_ranges
= kcalloc(pmu
->nr_addr_filters
,
11262 sizeof(struct perf_addr_filter_range
),
11264 if (!event
->addr_filter_ranges
) {
11270 * Clone the parent's vma offsets: they are valid until exec()
11271 * even if the mm is not shared with the parent.
11273 if (event
->parent
) {
11274 struct perf_addr_filters_head
*ifh
= perf_event_addr_filters(event
);
11276 raw_spin_lock_irq(&ifh
->lock
);
11277 memcpy(event
->addr_filter_ranges
,
11278 event
->parent
->addr_filter_ranges
,
11279 pmu
->nr_addr_filters
* sizeof(struct perf_addr_filter_range
));
11280 raw_spin_unlock_irq(&ifh
->lock
);
11283 /* force hw sync on the address filters */
11284 event
->addr_filters_gen
= 1;
11287 if (!event
->parent
) {
11288 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
11289 err
= get_callchain_buffers(attr
->sample_max_stack
);
11291 goto err_addr_filters
;
11295 err
= security_perf_event_alloc(event
);
11297 goto err_callchain_buffer
;
11299 /* symmetric to unaccount_event() in _free_event() */
11300 account_event(event
);
11304 err_callchain_buffer
:
11305 if (!event
->parent
) {
11306 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
11307 put_callchain_buffers();
11310 kfree(event
->addr_filter_ranges
);
11313 exclusive_event_destroy(event
);
11316 if (is_cgroup_event(event
))
11317 perf_detach_cgroup(event
);
11318 if (event
->destroy
)
11319 event
->destroy(event
);
11320 module_put(pmu
->module
);
11323 put_pid_ns(event
->ns
);
11324 if (event
->hw
.target
)
11325 put_task_struct(event
->hw
.target
);
11328 return ERR_PTR(err
);
11331 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
11332 struct perf_event_attr
*attr
)
11337 /* Zero the full structure, so that a short copy will be nice. */
11338 memset(attr
, 0, sizeof(*attr
));
11340 ret
= get_user(size
, &uattr
->size
);
11344 /* ABI compatibility quirk: */
11346 size
= PERF_ATTR_SIZE_VER0
;
11347 if (size
< PERF_ATTR_SIZE_VER0
|| size
> PAGE_SIZE
)
11350 ret
= copy_struct_from_user(attr
, sizeof(*attr
), uattr
, size
);
11359 if (attr
->__reserved_1
|| attr
->__reserved_2
|| attr
->__reserved_3
)
11362 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
11365 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
11368 if (attr
->sample_type
& PERF_SAMPLE_BRANCH_STACK
) {
11369 u64 mask
= attr
->branch_sample_type
;
11371 /* only using defined bits */
11372 if (mask
& ~(PERF_SAMPLE_BRANCH_MAX
-1))
11375 /* at least one branch bit must be set */
11376 if (!(mask
& ~PERF_SAMPLE_BRANCH_PLM_ALL
))
11379 /* propagate priv level, when not set for branch */
11380 if (!(mask
& PERF_SAMPLE_BRANCH_PLM_ALL
)) {
11382 /* exclude_kernel checked on syscall entry */
11383 if (!attr
->exclude_kernel
)
11384 mask
|= PERF_SAMPLE_BRANCH_KERNEL
;
11386 if (!attr
->exclude_user
)
11387 mask
|= PERF_SAMPLE_BRANCH_USER
;
11389 if (!attr
->exclude_hv
)
11390 mask
|= PERF_SAMPLE_BRANCH_HV
;
11392 * adjust user setting (for HW filter setup)
11394 attr
->branch_sample_type
= mask
;
11396 /* privileged levels capture (kernel, hv): check permissions */
11397 if (mask
& PERF_SAMPLE_BRANCH_PERM_PLM
) {
11398 ret
= perf_allow_kernel(attr
);
11404 if (attr
->sample_type
& PERF_SAMPLE_REGS_USER
) {
11405 ret
= perf_reg_validate(attr
->sample_regs_user
);
11410 if (attr
->sample_type
& PERF_SAMPLE_STACK_USER
) {
11411 if (!arch_perf_have_user_stack_dump())
11415 * We have __u32 type for the size, but so far
11416 * we can only use __u16 as maximum due to the
11417 * __u16 sample size limit.
11419 if (attr
->sample_stack_user
>= USHRT_MAX
)
11421 else if (!IS_ALIGNED(attr
->sample_stack_user
, sizeof(u64
)))
11425 if (!attr
->sample_max_stack
)
11426 attr
->sample_max_stack
= sysctl_perf_event_max_stack
;
11428 if (attr
->sample_type
& PERF_SAMPLE_REGS_INTR
)
11429 ret
= perf_reg_validate(attr
->sample_regs_intr
);
11431 #ifndef CONFIG_CGROUP_PERF
11432 if (attr
->sample_type
& PERF_SAMPLE_CGROUP
)
11440 put_user(sizeof(*attr
), &uattr
->size
);
11446 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
11448 struct perf_buffer
*rb
= NULL
;
11454 /* don't allow circular references */
11455 if (event
== output_event
)
11459 * Don't allow cross-cpu buffers
11461 if (output_event
->cpu
!= event
->cpu
)
11465 * If its not a per-cpu rb, it must be the same task.
11467 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
11471 * Mixing clocks in the same buffer is trouble you don't need.
11473 if (output_event
->clock
!= event
->clock
)
11477 * Either writing ring buffer from beginning or from end.
11478 * Mixing is not allowed.
11480 if (is_write_backward(output_event
) != is_write_backward(event
))
11484 * If both events generate aux data, they must be on the same PMU
11486 if (has_aux(event
) && has_aux(output_event
) &&
11487 event
->pmu
!= output_event
->pmu
)
11491 mutex_lock(&event
->mmap_mutex
);
11492 /* Can't redirect output if we've got an active mmap() */
11493 if (atomic_read(&event
->mmap_count
))
11496 if (output_event
) {
11497 /* get the rb we want to redirect to */
11498 rb
= ring_buffer_get(output_event
);
11503 ring_buffer_attach(event
, rb
);
11507 mutex_unlock(&event
->mmap_mutex
);
11513 static void mutex_lock_double(struct mutex
*a
, struct mutex
*b
)
11519 mutex_lock_nested(b
, SINGLE_DEPTH_NESTING
);
11522 static int perf_event_set_clock(struct perf_event
*event
, clockid_t clk_id
)
11524 bool nmi_safe
= false;
11527 case CLOCK_MONOTONIC
:
11528 event
->clock
= &ktime_get_mono_fast_ns
;
11532 case CLOCK_MONOTONIC_RAW
:
11533 event
->clock
= &ktime_get_raw_fast_ns
;
11537 case CLOCK_REALTIME
:
11538 event
->clock
= &ktime_get_real_ns
;
11541 case CLOCK_BOOTTIME
:
11542 event
->clock
= &ktime_get_boottime_ns
;
11546 event
->clock
= &ktime_get_clocktai_ns
;
11553 if (!nmi_safe
&& !(event
->pmu
->capabilities
& PERF_PMU_CAP_NO_NMI
))
11560 * Variation on perf_event_ctx_lock_nested(), except we take two context
11563 static struct perf_event_context
*
11564 __perf_event_ctx_lock_double(struct perf_event
*group_leader
,
11565 struct perf_event_context
*ctx
)
11567 struct perf_event_context
*gctx
;
11571 gctx
= READ_ONCE(group_leader
->ctx
);
11572 if (!refcount_inc_not_zero(&gctx
->refcount
)) {
11578 mutex_lock_double(&gctx
->mutex
, &ctx
->mutex
);
11580 if (group_leader
->ctx
!= gctx
) {
11581 mutex_unlock(&ctx
->mutex
);
11582 mutex_unlock(&gctx
->mutex
);
11591 * sys_perf_event_open - open a performance event, associate it to a task/cpu
11593 * @attr_uptr: event_id type attributes for monitoring/sampling
11596 * @group_fd: group leader event fd
11598 SYSCALL_DEFINE5(perf_event_open
,
11599 struct perf_event_attr __user
*, attr_uptr
,
11600 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
11602 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
11603 struct perf_event
*event
, *sibling
;
11604 struct perf_event_attr attr
;
11605 struct perf_event_context
*ctx
, *gctx
;
11606 struct file
*event_file
= NULL
;
11607 struct fd group
= {NULL
, 0};
11608 struct task_struct
*task
= NULL
;
11611 int move_group
= 0;
11613 int f_flags
= O_RDWR
;
11614 int cgroup_fd
= -1;
11616 /* for future expandability... */
11617 if (flags
& ~PERF_FLAG_ALL
)
11620 /* Do we allow access to perf_event_open(2) ? */
11621 err
= security_perf_event_open(&attr
, PERF_SECURITY_OPEN
);
11625 err
= perf_copy_attr(attr_uptr
, &attr
);
11629 if (!attr
.exclude_kernel
) {
11630 err
= perf_allow_kernel(&attr
);
11635 if (attr
.namespaces
) {
11636 if (!perfmon_capable())
11641 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
11644 if (attr
.sample_period
& (1ULL << 63))
11648 /* Only privileged users can get physical addresses */
11649 if ((attr
.sample_type
& PERF_SAMPLE_PHYS_ADDR
)) {
11650 err
= perf_allow_kernel(&attr
);
11655 err
= security_locked_down(LOCKDOWN_PERF
);
11656 if (err
&& (attr
.sample_type
& PERF_SAMPLE_REGS_INTR
))
11657 /* REGS_INTR can leak data, lockdown must prevent this */
11663 * In cgroup mode, the pid argument is used to pass the fd
11664 * opened to the cgroup directory in cgroupfs. The cpu argument
11665 * designates the cpu on which to monitor threads from that
11668 if ((flags
& PERF_FLAG_PID_CGROUP
) && (pid
== -1 || cpu
== -1))
11671 if (flags
& PERF_FLAG_FD_CLOEXEC
)
11672 f_flags
|= O_CLOEXEC
;
11674 event_fd
= get_unused_fd_flags(f_flags
);
11678 if (group_fd
!= -1) {
11679 err
= perf_fget_light(group_fd
, &group
);
11682 group_leader
= group
.file
->private_data
;
11683 if (flags
& PERF_FLAG_FD_OUTPUT
)
11684 output_event
= group_leader
;
11685 if (flags
& PERF_FLAG_FD_NO_GROUP
)
11686 group_leader
= NULL
;
11689 if (pid
!= -1 && !(flags
& PERF_FLAG_PID_CGROUP
)) {
11690 task
= find_lively_task_by_vpid(pid
);
11691 if (IS_ERR(task
)) {
11692 err
= PTR_ERR(task
);
11697 if (task
&& group_leader
&&
11698 group_leader
->attr
.inherit
!= attr
.inherit
) {
11704 err
= mutex_lock_interruptible(&task
->signal
->exec_update_mutex
);
11709 * Preserve ptrace permission check for backwards compatibility.
11711 * We must hold exec_update_mutex across this and any potential
11712 * perf_install_in_context() call for this new event to
11713 * serialize against exec() altering our credentials (and the
11714 * perf_event_exit_task() that could imply).
11717 if (!perfmon_capable() && !ptrace_may_access(task
, PTRACE_MODE_READ_REALCREDS
))
11721 if (flags
& PERF_FLAG_PID_CGROUP
)
11724 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
,
11725 NULL
, NULL
, cgroup_fd
);
11726 if (IS_ERR(event
)) {
11727 err
= PTR_ERR(event
);
11731 if (is_sampling_event(event
)) {
11732 if (event
->pmu
->capabilities
& PERF_PMU_CAP_NO_INTERRUPT
) {
11739 * Special case software events and allow them to be part of
11740 * any hardware group.
11744 if (attr
.use_clockid
) {
11745 err
= perf_event_set_clock(event
, attr
.clockid
);
11750 if (pmu
->task_ctx_nr
== perf_sw_context
)
11751 event
->event_caps
|= PERF_EV_CAP_SOFTWARE
;
11753 if (group_leader
) {
11754 if (is_software_event(event
) &&
11755 !in_software_context(group_leader
)) {
11757 * If the event is a sw event, but the group_leader
11758 * is on hw context.
11760 * Allow the addition of software events to hw
11761 * groups, this is safe because software events
11762 * never fail to schedule.
11764 pmu
= group_leader
->ctx
->pmu
;
11765 } else if (!is_software_event(event
) &&
11766 is_software_event(group_leader
) &&
11767 (group_leader
->group_caps
& PERF_EV_CAP_SOFTWARE
)) {
11769 * In case the group is a pure software group, and we
11770 * try to add a hardware event, move the whole group to
11771 * the hardware context.
11778 * Get the target context (task or percpu):
11780 ctx
= find_get_context(pmu
, task
, event
);
11782 err
= PTR_ERR(ctx
);
11787 * Look up the group leader (we will attach this event to it):
11789 if (group_leader
) {
11793 * Do not allow a recursive hierarchy (this new sibling
11794 * becoming part of another group-sibling):
11796 if (group_leader
->group_leader
!= group_leader
)
11799 /* All events in a group should have the same clock */
11800 if (group_leader
->clock
!= event
->clock
)
11804 * Make sure we're both events for the same CPU;
11805 * grouping events for different CPUs is broken; since
11806 * you can never concurrently schedule them anyhow.
11808 if (group_leader
->cpu
!= event
->cpu
)
11812 * Make sure we're both on the same task, or both
11815 if (group_leader
->ctx
->task
!= ctx
->task
)
11819 * Do not allow to attach to a group in a different task
11820 * or CPU context. If we're moving SW events, we'll fix
11821 * this up later, so allow that.
11823 if (!move_group
&& group_leader
->ctx
!= ctx
)
11827 * Only a group leader can be exclusive or pinned
11829 if (attr
.exclusive
|| attr
.pinned
)
11833 if (output_event
) {
11834 err
= perf_event_set_output(event
, output_event
);
11839 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
,
11841 if (IS_ERR(event_file
)) {
11842 err
= PTR_ERR(event_file
);
11848 gctx
= __perf_event_ctx_lock_double(group_leader
, ctx
);
11850 if (gctx
->task
== TASK_TOMBSTONE
) {
11856 * Check if we raced against another sys_perf_event_open() call
11857 * moving the software group underneath us.
11859 if (!(group_leader
->group_caps
& PERF_EV_CAP_SOFTWARE
)) {
11861 * If someone moved the group out from under us, check
11862 * if this new event wound up on the same ctx, if so
11863 * its the regular !move_group case, otherwise fail.
11869 perf_event_ctx_unlock(group_leader
, gctx
);
11875 * Failure to create exclusive events returns -EBUSY.
11878 if (!exclusive_event_installable(group_leader
, ctx
))
11881 for_each_sibling_event(sibling
, group_leader
) {
11882 if (!exclusive_event_installable(sibling
, ctx
))
11886 mutex_lock(&ctx
->mutex
);
11889 if (ctx
->task
== TASK_TOMBSTONE
) {
11894 if (!perf_event_validate_size(event
)) {
11901 * Check if the @cpu we're creating an event for is online.
11903 * We use the perf_cpu_context::ctx::mutex to serialize against
11904 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
11906 struct perf_cpu_context
*cpuctx
=
11907 container_of(ctx
, struct perf_cpu_context
, ctx
);
11909 if (!cpuctx
->online
) {
11915 if (perf_need_aux_event(event
) && !perf_get_aux_event(event
, group_leader
)) {
11921 * Must be under the same ctx::mutex as perf_install_in_context(),
11922 * because we need to serialize with concurrent event creation.
11924 if (!exclusive_event_installable(event
, ctx
)) {
11929 WARN_ON_ONCE(ctx
->parent_ctx
);
11932 * This is the point on no return; we cannot fail hereafter. This is
11933 * where we start modifying current state.
11938 * See perf_event_ctx_lock() for comments on the details
11939 * of swizzling perf_event::ctx.
11941 perf_remove_from_context(group_leader
, 0);
11944 for_each_sibling_event(sibling
, group_leader
) {
11945 perf_remove_from_context(sibling
, 0);
11950 * Wait for everybody to stop referencing the events through
11951 * the old lists, before installing it on new lists.
11956 * Install the group siblings before the group leader.
11958 * Because a group leader will try and install the entire group
11959 * (through the sibling list, which is still in-tact), we can
11960 * end up with siblings installed in the wrong context.
11962 * By installing siblings first we NO-OP because they're not
11963 * reachable through the group lists.
11965 for_each_sibling_event(sibling
, group_leader
) {
11966 perf_event__state_init(sibling
);
11967 perf_install_in_context(ctx
, sibling
, sibling
->cpu
);
11972 * Removing from the context ends up with disabled
11973 * event. What we want here is event in the initial
11974 * startup state, ready to be add into new context.
11976 perf_event__state_init(group_leader
);
11977 perf_install_in_context(ctx
, group_leader
, group_leader
->cpu
);
11982 * Precalculate sample_data sizes; do while holding ctx::mutex such
11983 * that we're serialized against further additions and before
11984 * perf_install_in_context() which is the point the event is active and
11985 * can use these values.
11987 perf_event__header_size(event
);
11988 perf_event__id_header_size(event
);
11990 event
->owner
= current
;
11992 perf_install_in_context(ctx
, event
, event
->cpu
);
11993 perf_unpin_context(ctx
);
11996 perf_event_ctx_unlock(group_leader
, gctx
);
11997 mutex_unlock(&ctx
->mutex
);
12000 mutex_unlock(&task
->signal
->exec_update_mutex
);
12001 put_task_struct(task
);
12004 mutex_lock(¤t
->perf_event_mutex
);
12005 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
12006 mutex_unlock(¤t
->perf_event_mutex
);
12009 * Drop the reference on the group_event after placing the
12010 * new event on the sibling_list. This ensures destruction
12011 * of the group leader will find the pointer to itself in
12012 * perf_group_detach().
12015 fd_install(event_fd
, event_file
);
12020 perf_event_ctx_unlock(group_leader
, gctx
);
12021 mutex_unlock(&ctx
->mutex
);
12025 perf_unpin_context(ctx
);
12029 * If event_file is set, the fput() above will have called ->release()
12030 * and that will take care of freeing the event.
12036 mutex_unlock(&task
->signal
->exec_update_mutex
);
12039 put_task_struct(task
);
12043 put_unused_fd(event_fd
);
12048 * perf_event_create_kernel_counter
12050 * @attr: attributes of the counter to create
12051 * @cpu: cpu in which the counter is bound
12052 * @task: task to profile (NULL for percpu)
12054 struct perf_event
*
12055 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
12056 struct task_struct
*task
,
12057 perf_overflow_handler_t overflow_handler
,
12060 struct perf_event_context
*ctx
;
12061 struct perf_event
*event
;
12065 * Grouping is not supported for kernel events, neither is 'AUX',
12066 * make sure the caller's intentions are adjusted.
12068 if (attr
->aux_output
)
12069 return ERR_PTR(-EINVAL
);
12071 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
,
12072 overflow_handler
, context
, -1);
12073 if (IS_ERR(event
)) {
12074 err
= PTR_ERR(event
);
12078 /* Mark owner so we could distinguish it from user events. */
12079 event
->owner
= TASK_TOMBSTONE
;
12082 * Get the target context (task or percpu):
12084 ctx
= find_get_context(event
->pmu
, task
, event
);
12086 err
= PTR_ERR(ctx
);
12090 WARN_ON_ONCE(ctx
->parent_ctx
);
12091 mutex_lock(&ctx
->mutex
);
12092 if (ctx
->task
== TASK_TOMBSTONE
) {
12099 * Check if the @cpu we're creating an event for is online.
12101 * We use the perf_cpu_context::ctx::mutex to serialize against
12102 * the hotplug notifiers. See perf_event_{init,exit}_cpu().
12104 struct perf_cpu_context
*cpuctx
=
12105 container_of(ctx
, struct perf_cpu_context
, ctx
);
12106 if (!cpuctx
->online
) {
12112 if (!exclusive_event_installable(event
, ctx
)) {
12117 perf_install_in_context(ctx
, event
, event
->cpu
);
12118 perf_unpin_context(ctx
);
12119 mutex_unlock(&ctx
->mutex
);
12124 mutex_unlock(&ctx
->mutex
);
12125 perf_unpin_context(ctx
);
12130 return ERR_PTR(err
);
12132 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
12134 void perf_pmu_migrate_context(struct pmu
*pmu
, int src_cpu
, int dst_cpu
)
12136 struct perf_event_context
*src_ctx
;
12137 struct perf_event_context
*dst_ctx
;
12138 struct perf_event
*event
, *tmp
;
12141 src_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, src_cpu
)->ctx
;
12142 dst_ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, dst_cpu
)->ctx
;
12145 * See perf_event_ctx_lock() for comments on the details
12146 * of swizzling perf_event::ctx.
12148 mutex_lock_double(&src_ctx
->mutex
, &dst_ctx
->mutex
);
12149 list_for_each_entry_safe(event
, tmp
, &src_ctx
->event_list
,
12151 perf_remove_from_context(event
, 0);
12152 unaccount_event_cpu(event
, src_cpu
);
12154 list_add(&event
->migrate_entry
, &events
);
12158 * Wait for the events to quiesce before re-instating them.
12163 * Re-instate events in 2 passes.
12165 * Skip over group leaders and only install siblings on this first
12166 * pass, siblings will not get enabled without a leader, however a
12167 * leader will enable its siblings, even if those are still on the old
12170 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
12171 if (event
->group_leader
== event
)
12174 list_del(&event
->migrate_entry
);
12175 if (event
->state
>= PERF_EVENT_STATE_OFF
)
12176 event
->state
= PERF_EVENT_STATE_INACTIVE
;
12177 account_event_cpu(event
, dst_cpu
);
12178 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
12183 * Once all the siblings are setup properly, install the group leaders
12186 list_for_each_entry_safe(event
, tmp
, &events
, migrate_entry
) {
12187 list_del(&event
->migrate_entry
);
12188 if (event
->state
>= PERF_EVENT_STATE_OFF
)
12189 event
->state
= PERF_EVENT_STATE_INACTIVE
;
12190 account_event_cpu(event
, dst_cpu
);
12191 perf_install_in_context(dst_ctx
, event
, dst_cpu
);
12194 mutex_unlock(&dst_ctx
->mutex
);
12195 mutex_unlock(&src_ctx
->mutex
);
12197 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context
);
12199 static void sync_child_event(struct perf_event
*child_event
,
12200 struct task_struct
*child
)
12202 struct perf_event
*parent_event
= child_event
->parent
;
12205 if (child_event
->attr
.inherit_stat
)
12206 perf_event_read_event(child_event
, child
);
12208 child_val
= perf_event_count(child_event
);
12211 * Add back the child's count to the parent's count:
12213 atomic64_add(child_val
, &parent_event
->child_count
);
12214 atomic64_add(child_event
->total_time_enabled
,
12215 &parent_event
->child_total_time_enabled
);
12216 atomic64_add(child_event
->total_time_running
,
12217 &parent_event
->child_total_time_running
);
12221 perf_event_exit_event(struct perf_event
*child_event
,
12222 struct perf_event_context
*child_ctx
,
12223 struct task_struct
*child
)
12225 struct perf_event
*parent_event
= child_event
->parent
;
12228 * Do not destroy the 'original' grouping; because of the context
12229 * switch optimization the original events could've ended up in a
12230 * random child task.
12232 * If we were to destroy the original group, all group related
12233 * operations would cease to function properly after this random
12236 * Do destroy all inherited groups, we don't care about those
12237 * and being thorough is better.
12239 raw_spin_lock_irq(&child_ctx
->lock
);
12240 WARN_ON_ONCE(child_ctx
->is_active
);
12243 perf_group_detach(child_event
);
12244 list_del_event(child_event
, child_ctx
);
12245 perf_event_set_state(child_event
, PERF_EVENT_STATE_EXIT
); /* is_event_hup() */
12246 raw_spin_unlock_irq(&child_ctx
->lock
);
12249 * Parent events are governed by their filedesc, retain them.
12251 if (!parent_event
) {
12252 perf_event_wakeup(child_event
);
12256 * Child events can be cleaned up.
12259 sync_child_event(child_event
, child
);
12262 * Remove this event from the parent's list
12264 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
12265 mutex_lock(&parent_event
->child_mutex
);
12266 list_del_init(&child_event
->child_list
);
12267 mutex_unlock(&parent_event
->child_mutex
);
12270 * Kick perf_poll() for is_event_hup().
12272 perf_event_wakeup(parent_event
);
12273 free_event(child_event
);
12274 put_event(parent_event
);
12277 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
12279 struct perf_event_context
*child_ctx
, *clone_ctx
= NULL
;
12280 struct perf_event
*child_event
, *next
;
12282 WARN_ON_ONCE(child
!= current
);
12284 child_ctx
= perf_pin_task_context(child
, ctxn
);
12289 * In order to reduce the amount of tricky in ctx tear-down, we hold
12290 * ctx::mutex over the entire thing. This serializes against almost
12291 * everything that wants to access the ctx.
12293 * The exception is sys_perf_event_open() /
12294 * perf_event_create_kernel_count() which does find_get_context()
12295 * without ctx::mutex (it cannot because of the move_group double mutex
12296 * lock thing). See the comments in perf_install_in_context().
12298 mutex_lock(&child_ctx
->mutex
);
12301 * In a single ctx::lock section, de-schedule the events and detach the
12302 * context from the task such that we cannot ever get it scheduled back
12305 raw_spin_lock_irq(&child_ctx
->lock
);
12306 task_ctx_sched_out(__get_cpu_context(child_ctx
), child_ctx
, EVENT_ALL
);
12309 * Now that the context is inactive, destroy the task <-> ctx relation
12310 * and mark the context dead.
12312 RCU_INIT_POINTER(child
->perf_event_ctxp
[ctxn
], NULL
);
12313 put_ctx(child_ctx
); /* cannot be last */
12314 WRITE_ONCE(child_ctx
->task
, TASK_TOMBSTONE
);
12315 put_task_struct(current
); /* cannot be last */
12317 clone_ctx
= unclone_ctx(child_ctx
);
12318 raw_spin_unlock_irq(&child_ctx
->lock
);
12321 put_ctx(clone_ctx
);
12324 * Report the task dead after unscheduling the events so that we
12325 * won't get any samples after PERF_RECORD_EXIT. We can however still
12326 * get a few PERF_RECORD_READ events.
12328 perf_event_task(child
, child_ctx
, 0);
12330 list_for_each_entry_safe(child_event
, next
, &child_ctx
->event_list
, event_entry
)
12331 perf_event_exit_event(child_event
, child_ctx
, child
);
12333 mutex_unlock(&child_ctx
->mutex
);
12335 put_ctx(child_ctx
);
12339 * When a child task exits, feed back event values to parent events.
12341 * Can be called with exec_update_mutex held when called from
12342 * setup_new_exec().
12344 void perf_event_exit_task(struct task_struct
*child
)
12346 struct perf_event
*event
, *tmp
;
12349 mutex_lock(&child
->perf_event_mutex
);
12350 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
12352 list_del_init(&event
->owner_entry
);
12355 * Ensure the list deletion is visible before we clear
12356 * the owner, closes a race against perf_release() where
12357 * we need to serialize on the owner->perf_event_mutex.
12359 smp_store_release(&event
->owner
, NULL
);
12361 mutex_unlock(&child
->perf_event_mutex
);
12363 for_each_task_context_nr(ctxn
)
12364 perf_event_exit_task_context(child
, ctxn
);
12367 * The perf_event_exit_task_context calls perf_event_task
12368 * with child's task_ctx, which generates EXIT events for
12369 * child contexts and sets child->perf_event_ctxp[] to NULL.
12370 * At this point we need to send EXIT events to cpu contexts.
12372 perf_event_task(child
, NULL
, 0);
12375 static void perf_free_event(struct perf_event
*event
,
12376 struct perf_event_context
*ctx
)
12378 struct perf_event
*parent
= event
->parent
;
12380 if (WARN_ON_ONCE(!parent
))
12383 mutex_lock(&parent
->child_mutex
);
12384 list_del_init(&event
->child_list
);
12385 mutex_unlock(&parent
->child_mutex
);
12389 raw_spin_lock_irq(&ctx
->lock
);
12390 perf_group_detach(event
);
12391 list_del_event(event
, ctx
);
12392 raw_spin_unlock_irq(&ctx
->lock
);
12397 * Free a context as created by inheritance by perf_event_init_task() below,
12398 * used by fork() in case of fail.
12400 * Even though the task has never lived, the context and events have been
12401 * exposed through the child_list, so we must take care tearing it all down.
12403 void perf_event_free_task(struct task_struct
*task
)
12405 struct perf_event_context
*ctx
;
12406 struct perf_event
*event
, *tmp
;
12409 for_each_task_context_nr(ctxn
) {
12410 ctx
= task
->perf_event_ctxp
[ctxn
];
12414 mutex_lock(&ctx
->mutex
);
12415 raw_spin_lock_irq(&ctx
->lock
);
12417 * Destroy the task <-> ctx relation and mark the context dead.
12419 * This is important because even though the task hasn't been
12420 * exposed yet the context has been (through child_list).
12422 RCU_INIT_POINTER(task
->perf_event_ctxp
[ctxn
], NULL
);
12423 WRITE_ONCE(ctx
->task
, TASK_TOMBSTONE
);
12424 put_task_struct(task
); /* cannot be last */
12425 raw_spin_unlock_irq(&ctx
->lock
);
12427 list_for_each_entry_safe(event
, tmp
, &ctx
->event_list
, event_entry
)
12428 perf_free_event(event
, ctx
);
12430 mutex_unlock(&ctx
->mutex
);
12433 * perf_event_release_kernel() could've stolen some of our
12434 * child events and still have them on its free_list. In that
12435 * case we must wait for these events to have been freed (in
12436 * particular all their references to this task must've been
12439 * Without this copy_process() will unconditionally free this
12440 * task (irrespective of its reference count) and
12441 * _free_event()'s put_task_struct(event->hw.target) will be a
12444 * Wait for all events to drop their context reference.
12446 wait_var_event(&ctx
->refcount
, refcount_read(&ctx
->refcount
) == 1);
12447 put_ctx(ctx
); /* must be last */
12451 void perf_event_delayed_put(struct task_struct
*task
)
12455 for_each_task_context_nr(ctxn
)
12456 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
12459 struct file
*perf_event_get(unsigned int fd
)
12461 struct file
*file
= fget(fd
);
12463 return ERR_PTR(-EBADF
);
12465 if (file
->f_op
!= &perf_fops
) {
12467 return ERR_PTR(-EBADF
);
12473 const struct perf_event
*perf_get_event(struct file
*file
)
12475 if (file
->f_op
!= &perf_fops
)
12476 return ERR_PTR(-EINVAL
);
12478 return file
->private_data
;
12481 const struct perf_event_attr
*perf_event_attrs(struct perf_event
*event
)
12484 return ERR_PTR(-EINVAL
);
12486 return &event
->attr
;
12490 * Inherit an event from parent task to child task.
12493 * - valid pointer on success
12494 * - NULL for orphaned events
12495 * - IS_ERR() on error
12497 static struct perf_event
*
12498 inherit_event(struct perf_event
*parent_event
,
12499 struct task_struct
*parent
,
12500 struct perf_event_context
*parent_ctx
,
12501 struct task_struct
*child
,
12502 struct perf_event
*group_leader
,
12503 struct perf_event_context
*child_ctx
)
12505 enum perf_event_state parent_state
= parent_event
->state
;
12506 struct perf_event
*child_event
;
12507 unsigned long flags
;
12510 * Instead of creating recursive hierarchies of events,
12511 * we link inherited events back to the original parent,
12512 * which has a filp for sure, which we use as the reference
12515 if (parent_event
->parent
)
12516 parent_event
= parent_event
->parent
;
12518 child_event
= perf_event_alloc(&parent_event
->attr
,
12521 group_leader
, parent_event
,
12523 if (IS_ERR(child_event
))
12524 return child_event
;
12527 if ((child_event
->attach_state
& PERF_ATTACH_TASK_DATA
) &&
12528 !child_ctx
->task_ctx_data
) {
12529 struct pmu
*pmu
= child_event
->pmu
;
12531 child_ctx
->task_ctx_data
= alloc_task_ctx_data(pmu
);
12532 if (!child_ctx
->task_ctx_data
) {
12533 free_event(child_event
);
12534 return ERR_PTR(-ENOMEM
);
12539 * is_orphaned_event() and list_add_tail(&parent_event->child_list)
12540 * must be under the same lock in order to serialize against
12541 * perf_event_release_kernel(), such that either we must observe
12542 * is_orphaned_event() or they will observe us on the child_list.
12544 mutex_lock(&parent_event
->child_mutex
);
12545 if (is_orphaned_event(parent_event
) ||
12546 !atomic_long_inc_not_zero(&parent_event
->refcount
)) {
12547 mutex_unlock(&parent_event
->child_mutex
);
12548 /* task_ctx_data is freed with child_ctx */
12549 free_event(child_event
);
12553 get_ctx(child_ctx
);
12556 * Make the child state follow the state of the parent event,
12557 * not its attr.disabled bit. We hold the parent's mutex,
12558 * so we won't race with perf_event_{en, dis}able_family.
12560 if (parent_state
>= PERF_EVENT_STATE_INACTIVE
)
12561 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
12563 child_event
->state
= PERF_EVENT_STATE_OFF
;
12565 if (parent_event
->attr
.freq
) {
12566 u64 sample_period
= parent_event
->hw
.sample_period
;
12567 struct hw_perf_event
*hwc
= &child_event
->hw
;
12569 hwc
->sample_period
= sample_period
;
12570 hwc
->last_period
= sample_period
;
12572 local64_set(&hwc
->period_left
, sample_period
);
12575 child_event
->ctx
= child_ctx
;
12576 child_event
->overflow_handler
= parent_event
->overflow_handler
;
12577 child_event
->overflow_handler_context
12578 = parent_event
->overflow_handler_context
;
12581 * Precalculate sample_data sizes
12583 perf_event__header_size(child_event
);
12584 perf_event__id_header_size(child_event
);
12587 * Link it up in the child's context:
12589 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
12590 add_event_to_ctx(child_event
, child_ctx
);
12591 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
12594 * Link this into the parent event's child list
12596 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
12597 mutex_unlock(&parent_event
->child_mutex
);
12599 return child_event
;
12603 * Inherits an event group.
12605 * This will quietly suppress orphaned events; !inherit_event() is not an error.
12606 * This matches with perf_event_release_kernel() removing all child events.
12612 static int inherit_group(struct perf_event
*parent_event
,
12613 struct task_struct
*parent
,
12614 struct perf_event_context
*parent_ctx
,
12615 struct task_struct
*child
,
12616 struct perf_event_context
*child_ctx
)
12618 struct perf_event
*leader
;
12619 struct perf_event
*sub
;
12620 struct perf_event
*child_ctr
;
12622 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
12623 child
, NULL
, child_ctx
);
12624 if (IS_ERR(leader
))
12625 return PTR_ERR(leader
);
12627 * @leader can be NULL here because of is_orphaned_event(). In this
12628 * case inherit_event() will create individual events, similar to what
12629 * perf_group_detach() would do anyway.
12631 for_each_sibling_event(sub
, parent_event
) {
12632 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
12633 child
, leader
, child_ctx
);
12634 if (IS_ERR(child_ctr
))
12635 return PTR_ERR(child_ctr
);
12637 if (sub
->aux_event
== parent_event
&& child_ctr
&&
12638 !perf_get_aux_event(child_ctr
, leader
))
12645 * Creates the child task context and tries to inherit the event-group.
12647 * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
12648 * inherited_all set when we 'fail' to inherit an orphaned event; this is
12649 * consistent with perf_event_release_kernel() removing all child events.
12656 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
12657 struct perf_event_context
*parent_ctx
,
12658 struct task_struct
*child
, int ctxn
,
12659 int *inherited_all
)
12662 struct perf_event_context
*child_ctx
;
12664 if (!event
->attr
.inherit
) {
12665 *inherited_all
= 0;
12669 child_ctx
= child
->perf_event_ctxp
[ctxn
];
12672 * This is executed from the parent task context, so
12673 * inherit events that have been marked for cloning.
12674 * First allocate and initialize a context for the
12677 child_ctx
= alloc_perf_context(parent_ctx
->pmu
, child
);
12681 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
12684 ret
= inherit_group(event
, parent
, parent_ctx
,
12688 *inherited_all
= 0;
12694 * Initialize the perf_event context in task_struct
12696 static int perf_event_init_context(struct task_struct
*child
, int ctxn
)
12698 struct perf_event_context
*child_ctx
, *parent_ctx
;
12699 struct perf_event_context
*cloned_ctx
;
12700 struct perf_event
*event
;
12701 struct task_struct
*parent
= current
;
12702 int inherited_all
= 1;
12703 unsigned long flags
;
12706 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
12710 * If the parent's context is a clone, pin it so it won't get
12711 * swapped under us.
12713 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
12718 * No need to check if parent_ctx != NULL here; since we saw
12719 * it non-NULL earlier, the only reason for it to become NULL
12720 * is if we exit, and since we're currently in the middle of
12721 * a fork we can't be exiting at the same time.
12725 * Lock the parent list. No need to lock the child - not PID
12726 * hashed yet and not running, so nobody can access it.
12728 mutex_lock(&parent_ctx
->mutex
);
12731 * We dont have to disable NMIs - we are only looking at
12732 * the list, not manipulating it:
12734 perf_event_groups_for_each(event
, &parent_ctx
->pinned_groups
) {
12735 ret
= inherit_task_group(event
, parent
, parent_ctx
,
12736 child
, ctxn
, &inherited_all
);
12742 * We can't hold ctx->lock when iterating the ->flexible_group list due
12743 * to allocations, but we need to prevent rotation because
12744 * rotate_ctx() will change the list from interrupt context.
12746 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
12747 parent_ctx
->rotate_disable
= 1;
12748 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
12750 perf_event_groups_for_each(event
, &parent_ctx
->flexible_groups
) {
12751 ret
= inherit_task_group(event
, parent
, parent_ctx
,
12752 child
, ctxn
, &inherited_all
);
12757 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
12758 parent_ctx
->rotate_disable
= 0;
12760 child_ctx
= child
->perf_event_ctxp
[ctxn
];
12762 if (child_ctx
&& inherited_all
) {
12764 * Mark the child context as a clone of the parent
12765 * context, or of whatever the parent is a clone of.
12767 * Note that if the parent is a clone, the holding of
12768 * parent_ctx->lock avoids it from being uncloned.
12770 cloned_ctx
= parent_ctx
->parent_ctx
;
12772 child_ctx
->parent_ctx
= cloned_ctx
;
12773 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
12775 child_ctx
->parent_ctx
= parent_ctx
;
12776 child_ctx
->parent_gen
= parent_ctx
->generation
;
12778 get_ctx(child_ctx
->parent_ctx
);
12781 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
12783 mutex_unlock(&parent_ctx
->mutex
);
12785 perf_unpin_context(parent_ctx
);
12786 put_ctx(parent_ctx
);
12792 * Initialize the perf_event context in task_struct
12794 int perf_event_init_task(struct task_struct
*child
)
12798 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
12799 mutex_init(&child
->perf_event_mutex
);
12800 INIT_LIST_HEAD(&child
->perf_event_list
);
12802 for_each_task_context_nr(ctxn
) {
12803 ret
= perf_event_init_context(child
, ctxn
);
12805 perf_event_free_task(child
);
12813 static void __init
perf_event_init_all_cpus(void)
12815 struct swevent_htable
*swhash
;
12818 zalloc_cpumask_var(&perf_online_mask
, GFP_KERNEL
);
12820 for_each_possible_cpu(cpu
) {
12821 swhash
= &per_cpu(swevent_htable
, cpu
);
12822 mutex_init(&swhash
->hlist_mutex
);
12823 INIT_LIST_HEAD(&per_cpu(active_ctx_list
, cpu
));
12825 INIT_LIST_HEAD(&per_cpu(pmu_sb_events
.list
, cpu
));
12826 raw_spin_lock_init(&per_cpu(pmu_sb_events
.lock
, cpu
));
12828 #ifdef CONFIG_CGROUP_PERF
12829 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list
, cpu
));
12831 INIT_LIST_HEAD(&per_cpu(sched_cb_list
, cpu
));
12835 static void perf_swevent_init_cpu(unsigned int cpu
)
12837 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
12839 mutex_lock(&swhash
->hlist_mutex
);
12840 if (swhash
->hlist_refcount
> 0 && !swevent_hlist_deref(swhash
)) {
12841 struct swevent_hlist
*hlist
;
12843 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
12845 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
12847 mutex_unlock(&swhash
->hlist_mutex
);
12850 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
12851 static void __perf_event_exit_context(void *__info
)
12853 struct perf_event_context
*ctx
= __info
;
12854 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
12855 struct perf_event
*event
;
12857 raw_spin_lock(&ctx
->lock
);
12858 ctx_sched_out(ctx
, cpuctx
, EVENT_TIME
);
12859 list_for_each_entry(event
, &ctx
->event_list
, event_entry
)
12860 __perf_remove_from_context(event
, cpuctx
, ctx
, (void *)DETACH_GROUP
);
12861 raw_spin_unlock(&ctx
->lock
);
12864 static void perf_event_exit_cpu_context(int cpu
)
12866 struct perf_cpu_context
*cpuctx
;
12867 struct perf_event_context
*ctx
;
12870 mutex_lock(&pmus_lock
);
12871 list_for_each_entry(pmu
, &pmus
, entry
) {
12872 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
12873 ctx
= &cpuctx
->ctx
;
12875 mutex_lock(&ctx
->mutex
);
12876 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
12877 cpuctx
->online
= 0;
12878 mutex_unlock(&ctx
->mutex
);
12880 cpumask_clear_cpu(cpu
, perf_online_mask
);
12881 mutex_unlock(&pmus_lock
);
12885 static void perf_event_exit_cpu_context(int cpu
) { }
12889 int perf_event_init_cpu(unsigned int cpu
)
12891 struct perf_cpu_context
*cpuctx
;
12892 struct perf_event_context
*ctx
;
12895 perf_swevent_init_cpu(cpu
);
12897 mutex_lock(&pmus_lock
);
12898 cpumask_set_cpu(cpu
, perf_online_mask
);
12899 list_for_each_entry(pmu
, &pmus
, entry
) {
12900 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
12901 ctx
= &cpuctx
->ctx
;
12903 mutex_lock(&ctx
->mutex
);
12904 cpuctx
->online
= 1;
12905 mutex_unlock(&ctx
->mutex
);
12907 mutex_unlock(&pmus_lock
);
12912 int perf_event_exit_cpu(unsigned int cpu
)
12914 perf_event_exit_cpu_context(cpu
);
12919 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
12923 for_each_online_cpu(cpu
)
12924 perf_event_exit_cpu(cpu
);
12930 * Run the perf reboot notifier at the very last possible moment so that
12931 * the generic watchdog code runs as long as possible.
12933 static struct notifier_block perf_reboot_notifier
= {
12934 .notifier_call
= perf_reboot
,
12935 .priority
= INT_MIN
,
12938 void __init
perf_event_init(void)
12942 idr_init(&pmu_idr
);
12944 perf_event_init_all_cpus();
12945 init_srcu_struct(&pmus_srcu
);
12946 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
12947 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
12948 perf_pmu_register(&perf_task_clock
, NULL
, -1);
12949 perf_tp_register();
12950 perf_event_init_cpu(smp_processor_id());
12951 register_reboot_notifier(&perf_reboot_notifier
);
12953 ret
= init_hw_breakpoint();
12954 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
12957 * Build time assertion that we keep the data_head at the intended
12958 * location. IOW, validation we got the __reserved[] size right.
12960 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page
, data_head
))
12964 ssize_t
perf_event_sysfs_show(struct device
*dev
, struct device_attribute
*attr
,
12967 struct perf_pmu_events_attr
*pmu_attr
=
12968 container_of(attr
, struct perf_pmu_events_attr
, attr
);
12970 if (pmu_attr
->event_str
)
12971 return sprintf(page
, "%s\n", pmu_attr
->event_str
);
12975 EXPORT_SYMBOL_GPL(perf_event_sysfs_show
);
12977 static int __init
perf_event_sysfs_init(void)
12982 mutex_lock(&pmus_lock
);
12984 ret
= bus_register(&pmu_bus
);
12988 list_for_each_entry(pmu
, &pmus
, entry
) {
12989 if (!pmu
->name
|| pmu
->type
< 0)
12992 ret
= pmu_dev_alloc(pmu
);
12993 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
12995 pmu_bus_running
= 1;
12999 mutex_unlock(&pmus_lock
);
13003 device_initcall(perf_event_sysfs_init
);
13005 #ifdef CONFIG_CGROUP_PERF
13006 static struct cgroup_subsys_state
*
13007 perf_cgroup_css_alloc(struct cgroup_subsys_state
*parent_css
)
13009 struct perf_cgroup
*jc
;
13011 jc
= kzalloc(sizeof(*jc
), GFP_KERNEL
);
13013 return ERR_PTR(-ENOMEM
);
13015 jc
->info
= alloc_percpu(struct perf_cgroup_info
);
13018 return ERR_PTR(-ENOMEM
);
13024 static void perf_cgroup_css_free(struct cgroup_subsys_state
*css
)
13026 struct perf_cgroup
*jc
= container_of(css
, struct perf_cgroup
, css
);
13028 free_percpu(jc
->info
);
13032 static int perf_cgroup_css_online(struct cgroup_subsys_state
*css
)
13034 perf_event_cgroup(css
->cgroup
);
13038 static int __perf_cgroup_move(void *info
)
13040 struct task_struct
*task
= info
;
13042 perf_cgroup_switch(task
, PERF_CGROUP_SWOUT
| PERF_CGROUP_SWIN
);
13047 static void perf_cgroup_attach(struct cgroup_taskset
*tset
)
13049 struct task_struct
*task
;
13050 struct cgroup_subsys_state
*css
;
13052 cgroup_taskset_for_each(task
, css
, tset
)
13053 task_function_call(task
, __perf_cgroup_move
, task
);
13056 struct cgroup_subsys perf_event_cgrp_subsys
= {
13057 .css_alloc
= perf_cgroup_css_alloc
,
13058 .css_free
= perf_cgroup_css_free
,
13059 .css_online
= perf_cgroup_css_online
,
13060 .attach
= perf_cgroup_attach
,
13062 * Implicitly enable on dfl hierarchy so that perf events can
13063 * always be filtered by cgroup2 path as long as perf_event
13064 * controller is not mounted on a legacy hierarchy.
13066 .implicit_on_dfl
= true,
13069 #endif /* CONFIG_CGROUP_PERF */