Linux 5.4.71
[linux/fpc-iii.git] / Documentation / scheduler / sched-energy.rst
blob9580c57a52bc3316508f5cf9e68ea84f0945f46a
1 =======================
2 Energy Aware Scheduling
3 =======================
5 1. Introduction
6 ---------------
8 Energy Aware Scheduling (or EAS) gives the scheduler the ability to predict
9 the impact of its decisions on the energy consumed by CPUs. EAS relies on an
10 Energy Model (EM) of the CPUs to select an energy efficient CPU for each task,
11 with a minimal impact on throughput. This document aims at providing an
12 introduction on how EAS works, what are the main design decisions behind it, and
13 details what is needed to get it to run.
15 Before going any further, please note that at the time of writing::
17    /!\ EAS does not support platforms with symmetric CPU topologies /!\
19 EAS operates only on heterogeneous CPU topologies (such as Arm big.LITTLE)
20 because this is where the potential for saving energy through scheduling is
21 the highest.
23 The actual EM used by EAS is _not_ maintained by the scheduler, but by a
24 dedicated framework. For details about this framework and what it provides,
25 please refer to its documentation (see Documentation/power/energy-model.rst).
28 2. Background and Terminology
29 -----------------------------
31 To make it clear from the start:
32  - energy = [joule] (resource like a battery on powered devices)
33  - power = energy/time = [joule/second] = [watt]
35 The goal of EAS is to minimize energy, while still getting the job done. That
36 is, we want to maximize::
38         performance [inst/s]
39         --------------------
40             power [W]
42 which is equivalent to minimizing::
44         energy [J]
45         -----------
46         instruction
48 while still getting 'good' performance. It is essentially an alternative
49 optimization objective to the current performance-only objective for the
50 scheduler. This alternative considers two objectives: energy-efficiency and
51 performance.
53 The idea behind introducing an EM is to allow the scheduler to evaluate the
54 implications of its decisions rather than blindly applying energy-saving
55 techniques that may have positive effects only on some platforms. At the same
56 time, the EM must be as simple as possible to minimize the scheduler latency
57 impact.
59 In short, EAS changes the way CFS tasks are assigned to CPUs. When it is time
60 for the scheduler to decide where a task should run (during wake-up), the EM
61 is used to break the tie between several good CPU candidates and pick the one
62 that is predicted to yield the best energy consumption without harming the
63 system's throughput. The predictions made by EAS rely on specific elements of
64 knowledge about the platform's topology, which include the 'capacity' of CPUs,
65 and their respective energy costs.
68 3. Topology information
69 -----------------------
71 EAS (as well as the rest of the scheduler) uses the notion of 'capacity' to
72 differentiate CPUs with different computing throughput. The 'capacity' of a CPU
73 represents the amount of work it can absorb when running at its highest
74 frequency compared to the most capable CPU of the system. Capacity values are
75 normalized in a 1024 range, and are comparable with the utilization signals of
76 tasks and CPUs computed by the Per-Entity Load Tracking (PELT) mechanism. Thanks
77 to capacity and utilization values, EAS is able to estimate how big/busy a
78 task/CPU is, and to take this into consideration when evaluating performance vs
79 energy trade-offs. The capacity of CPUs is provided via arch-specific code
80 through the arch_scale_cpu_capacity() callback.
82 The rest of platform knowledge used by EAS is directly read from the Energy
83 Model (EM) framework. The EM of a platform is composed of a power cost table
84 per 'performance domain' in the system (see Documentation/power/energy-model.rst
85 for futher details about performance domains).
87 The scheduler manages references to the EM objects in the topology code when the
88 scheduling domains are built, or re-built. For each root domain (rd), the
89 scheduler maintains a singly linked list of all performance domains intersecting
90 the current rd->span. Each node in the list contains a pointer to a struct
91 em_perf_domain as provided by the EM framework.
93 The lists are attached to the root domains in order to cope with exclusive
94 cpuset configurations. Since the boundaries of exclusive cpusets do not
95 necessarily match those of performance domains, the lists of different root
96 domains can contain duplicate elements.
98 Example 1.
99     Let us consider a platform with 12 CPUs, split in 3 performance domains
100     (pd0, pd4 and pd8), organized as follows::
102                   CPUs:   0 1 2 3 4 5 6 7 8 9 10 11
103                   PDs:   |--pd0--|--pd4--|---pd8---|
104                   RDs:   |----rd1----|-----rd2-----|
106     Now, consider that userspace decided to split the system with two
107     exclusive cpusets, hence creating two independent root domains, each
108     containing 6 CPUs. The two root domains are denoted rd1 and rd2 in the
109     above figure. Since pd4 intersects with both rd1 and rd2, it will be
110     present in the linked list '->pd' attached to each of them:
112        * rd1->pd: pd0 -> pd4
113        * rd2->pd: pd4 -> pd8
115     Please note that the scheduler will create two duplicate list nodes for
116     pd4 (one for each list). However, both just hold a pointer to the same
117     shared data structure of the EM framework.
119 Since the access to these lists can happen concurrently with hotplug and other
120 things, they are protected by RCU, like the rest of topology structures
121 manipulated by the scheduler.
123 EAS also maintains a static key (sched_energy_present) which is enabled when at
124 least one root domain meets all conditions for EAS to start. Those conditions
125 are summarized in Section 6.
128 4. Energy-Aware task placement
129 ------------------------------
131 EAS overrides the CFS task wake-up balancing code. It uses the EM of the
132 platform and the PELT signals to choose an energy-efficient target CPU during
133 wake-up balance. When EAS is enabled, select_task_rq_fair() calls
134 find_energy_efficient_cpu() to do the placement decision. This function looks
135 for the CPU with the highest spare capacity (CPU capacity - CPU utilization) in
136 each performance domain since it is the one which will allow us to keep the
137 frequency the lowest. Then, the function checks if placing the task there could
138 save energy compared to leaving it on prev_cpu, i.e. the CPU where the task ran
139 in its previous activation.
141 find_energy_efficient_cpu() uses compute_energy() to estimate what will be the
142 energy consumed by the system if the waking task was migrated. compute_energy()
143 looks at the current utilization landscape of the CPUs and adjusts it to
144 'simulate' the task migration. The EM framework provides the em_pd_energy() API
145 which computes the expected energy consumption of each performance domain for
146 the given utilization landscape.
148 An example of energy-optimized task placement decision is detailed below.
150 Example 2.
151     Let us consider a (fake) platform with 2 independent performance domains
152     composed of two CPUs each. CPU0 and CPU1 are little CPUs; CPU2 and CPU3
153     are big.
155     The scheduler must decide where to place a task P whose util_avg = 200
156     and prev_cpu = 0.
158     The current utilization landscape of the CPUs is depicted on the graph
159     below. CPUs 0-3 have a util_avg of 400, 100, 600 and 500 respectively
160     Each performance domain has three Operating Performance Points (OPPs).
161     The CPU capacity and power cost associated with each OPP is listed in
162     the Energy Model table. The util_avg of P is shown on the figures
163     below as 'PP'::
165      CPU util.
166       1024                 - - - - - - -              Energy Model
167                                                +-----------+-------------+
168                                                |  Little   |     Big     |
169        768                 =============       +-----+-----+------+------+
170                                                | Cap | Pwr | Cap  | Pwr  |
171                                                +-----+-----+------+------+
172        512  ===========    - ##- - - - -       | 170 | 50  | 512  | 400  |
173                              ##     ##         | 341 | 150 | 768  | 800  |
174        341  -PP - - - -      ##     ##         | 512 | 300 | 1024 | 1700 |
175              PP              ##     ##         +-----+-----+------+------+
176        170  -## - - - -      ##     ##
177              ##     ##       ##     ##
178            ------------    -------------
179             CPU0   CPU1     CPU2   CPU3
181       Current OPP: =====       Other OPP: - - -     util_avg (100 each): ##
184     find_energy_efficient_cpu() will first look for the CPUs with the
185     maximum spare capacity in the two performance domains. In this example,
186     CPU1 and CPU3. Then it will estimate the energy of the system if P was
187     placed on either of them, and check if that would save some energy
188     compared to leaving P on CPU0. EAS assumes that OPPs follow utilization
189     (which is coherent with the behaviour of the schedutil CPUFreq
190     governor, see Section 6. for more details on this topic).
192     **Case 1. P is migrated to CPU1**::
194       1024                 - - - - - - -
196                                             Energy calculation:
197        768                 =============     * CPU0: 200 / 341 * 150 = 88
198                                              * CPU1: 300 / 341 * 150 = 131
199                                              * CPU2: 600 / 768 * 800 = 625
200        512  - - - - - -    - ##- - - - -     * CPU3: 500 / 768 * 800 = 520
201                              ##     ##          => total_energy = 1364
202        341  ===========      ##     ##
203                     PP       ##     ##
204        170  -## - - PP-      ##     ##
205              ##     ##       ##     ##
206            ------------    -------------
207             CPU0   CPU1     CPU2   CPU3
210     **Case 2. P is migrated to CPU3**::
212       1024                 - - - - - - -
214                                             Energy calculation:
215        768                 =============     * CPU0: 200 / 341 * 150 = 88
216                                              * CPU1: 100 / 341 * 150 = 43
217                                     PP       * CPU2: 600 / 768 * 800 = 625
218        512  - - - - - -    - ##- - -PP -     * CPU3: 700 / 768 * 800 = 729
219                              ##     ##          => total_energy = 1485
220        341  ===========      ##     ##
221                              ##     ##
222        170  -## - - - -      ##     ##
223              ##     ##       ##     ##
224            ------------    -------------
225             CPU0   CPU1     CPU2   CPU3
228     **Case 3. P stays on prev_cpu / CPU 0**::
230       1024                 - - - - - - -
232                                             Energy calculation:
233        768                 =============     * CPU0: 400 / 512 * 300 = 234
234                                              * CPU1: 100 / 512 * 300 = 58
235                                              * CPU2: 600 / 768 * 800 = 625
236        512  ===========    - ##- - - - -     * CPU3: 500 / 768 * 800 = 520
237                              ##     ##          => total_energy = 1437
238        341  -PP - - - -      ##     ##
239              PP              ##     ##
240        170  -## - - - -      ##     ##
241              ##     ##       ##     ##
242            ------------    -------------
243             CPU0   CPU1     CPU2   CPU3
246     From these calculations, the Case 1 has the lowest total energy. So CPU 1
247     is be the best candidate from an energy-efficiency standpoint.
249 Big CPUs are generally more power hungry than the little ones and are thus used
250 mainly when a task doesn't fit the littles. However, little CPUs aren't always
251 necessarily more energy-efficient than big CPUs. For some systems, the high OPPs
252 of the little CPUs can be less energy-efficient than the lowest OPPs of the
253 bigs, for example. So, if the little CPUs happen to have enough utilization at
254 a specific point in time, a small task waking up at that moment could be better
255 of executing on the big side in order to save energy, even though it would fit
256 on the little side.
258 And even in the case where all OPPs of the big CPUs are less energy-efficient
259 than those of the little, using the big CPUs for a small task might still, under
260 specific conditions, save energy. Indeed, placing a task on a little CPU can
261 result in raising the OPP of the entire performance domain, and that will
262 increase the cost of the tasks already running there. If the waking task is
263 placed on a big CPU, its own execution cost might be higher than if it was
264 running on a little, but it won't impact the other tasks of the little CPUs
265 which will keep running at a lower OPP. So, when considering the total energy
266 consumed by CPUs, the extra cost of running that one task on a big core can be
267 smaller than the cost of raising the OPP on the little CPUs for all the other
268 tasks.
270 The examples above would be nearly impossible to get right in a generic way, and
271 for all platforms, without knowing the cost of running at different OPPs on all
272 CPUs of the system. Thanks to its EM-based design, EAS should cope with them
273 correctly without too many troubles. However, in order to ensure a minimal
274 impact on throughput for high-utilization scenarios, EAS also implements another
275 mechanism called 'over-utilization'.
278 5. Over-utilization
279 -------------------
281 From a general standpoint, the use-cases where EAS can help the most are those
282 involving a light/medium CPU utilization. Whenever long CPU-bound tasks are
283 being run, they will require all of the available CPU capacity, and there isn't
284 much that can be done by the scheduler to save energy without severly harming
285 throughput. In order to avoid hurting performance with EAS, CPUs are flagged as
286 'over-utilized' as soon as they are used at more than 80% of their compute
287 capacity. As long as no CPUs are over-utilized in a root domain, load balancing
288 is disabled and EAS overridess the wake-up balancing code. EAS is likely to load
289 the most energy efficient CPUs of the system more than the others if that can be
290 done without harming throughput. So, the load-balancer is disabled to prevent
291 it from breaking the energy-efficient task placement found by EAS. It is safe to
292 do so when the system isn't overutilized since being below the 80% tipping point
293 implies that:
295     a. there is some idle time on all CPUs, so the utilization signals used by
296        EAS are likely to accurately represent the 'size' of the various tasks
297        in the system;
298     b. all tasks should already be provided with enough CPU capacity,
299        regardless of their nice values;
300     c. since there is spare capacity all tasks must be blocking/sleeping
301        regularly and balancing at wake-up is sufficient.
303 As soon as one CPU goes above the 80% tipping point, at least one of the three
304 assumptions above becomes incorrect. In this scenario, the 'overutilized' flag
305 is raised for the entire root domain, EAS is disabled, and the load-balancer is
306 re-enabled. By doing so, the scheduler falls back onto load-based algorithms for
307 wake-up and load balance under CPU-bound conditions. This provides a better
308 respect of the nice values of tasks.
310 Since the notion of overutilization largely relies on detecting whether or not
311 there is some idle time in the system, the CPU capacity 'stolen' by higher
312 (than CFS) scheduling classes (as well as IRQ) must be taken into account. As
313 such, the detection of overutilization accounts for the capacity used not only
314 by CFS tasks, but also by the other scheduling classes and IRQ.
317 6. Dependencies and requirements for EAS
318 ----------------------------------------
320 Energy Aware Scheduling depends on the CPUs of the system having specific
321 hardware properties and on other features of the kernel being enabled. This
322 section lists these dependencies and provides hints as to how they can be met.
325 6.1 - Asymmetric CPU topology
326 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
329 As mentioned in the introduction, EAS is only supported on platforms with
330 asymmetric CPU topologies for now. This requirement is checked at run-time by
331 looking for the presence of the SD_ASYM_CPUCAPACITY flag when the scheduling
332 domains are built.
334 The flag is set/cleared automatically by the scheduler topology code whenever
335 there are CPUs with different capacities in a root domain. The capacities of
336 CPUs are provided by arch-specific code through the arch_scale_cpu_capacity()
337 callback. As an example, arm and arm64 share an implementation of this callback
338 which uses a combination of CPUFreq data and device-tree bindings to compute the
339 capacity of CPUs (see drivers/base/arch_topology.c for more details).
341 So, in order to use EAS on your platform your architecture must implement the
342 arch_scale_cpu_capacity() callback, and some of the CPUs must have a lower
343 capacity than others.
345 Please note that EAS is not fundamentally incompatible with SMP, but no
346 significant savings on SMP platforms have been observed yet. This restriction
347 could be amended in the future if proven otherwise.
350 6.2 - Energy Model presence
351 ^^^^^^^^^^^^^^^^^^^^^^^^^^^
353 EAS uses the EM of a platform to estimate the impact of scheduling decisions on
354 energy. So, your platform must provide power cost tables to the EM framework in
355 order to make EAS start. To do so, please refer to documentation of the
356 independent EM framework in Documentation/power/energy-model.rst.
358 Please also note that the scheduling domains need to be re-built after the
359 EM has been registered in order to start EAS.
362 6.3 - Energy Model complexity
363 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
365 The task wake-up path is very latency-sensitive. When the EM of a platform is
366 too complex (too many CPUs, too many performance domains, too many performance
367 states, ...), the cost of using it in the wake-up path can become prohibitive.
368 The energy-aware wake-up algorithm has a complexity of:
370         C = Nd * (Nc + Ns)
372 with: Nd the number of performance domains; Nc the number of CPUs; and Ns the
373 total number of OPPs (ex: for two perf. domains with 4 OPPs each, Ns = 8).
375 A complexity check is performed at the root domain level, when scheduling
376 domains are built. EAS will not start on a root domain if its C happens to be
377 higher than the completely arbitrary EM_MAX_COMPLEXITY threshold (2048 at the
378 time of writing).
380 If you really want to use EAS but the complexity of your platform's Energy
381 Model is too high to be used with a single root domain, you're left with only
382 two possible options:
384     1. split your system into separate, smaller, root domains using exclusive
385        cpusets and enable EAS locally on each of them. This option has the
386        benefit to work out of the box but the drawback of preventing load
387        balance between root domains, which can result in an unbalanced system
388        overall;
389     2. submit patches to reduce the complexity of the EAS wake-up algorithm,
390        hence enabling it to cope with larger EMs in reasonable time.
393 6.4 - Schedutil governor
394 ^^^^^^^^^^^^^^^^^^^^^^^^
396 EAS tries to predict at which OPP will the CPUs be running in the close future
397 in order to estimate their energy consumption. To do so, it is assumed that OPPs
398 of CPUs follow their utilization.
400 Although it is very difficult to provide hard guarantees regarding the accuracy
401 of this assumption in practice (because the hardware might not do what it is
402 told to do, for example), schedutil as opposed to other CPUFreq governors at
403 least _requests_ frequencies calculated using the utilization signals.
404 Consequently, the only sane governor to use together with EAS is schedutil,
405 because it is the only one providing some degree of consistency between
406 frequency requests and energy predictions.
408 Using EAS with any other governor than schedutil is not supported.
411 6.5 Scale-invariant utilization signals
412 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
414 In order to make accurate prediction across CPUs and for all performance
415 states, EAS needs frequency-invariant and CPU-invariant PELT signals. These can
416 be obtained using the architecture-defined arch_scale{cpu,freq}_capacity()
417 callbacks.
419 Using EAS on a platform that doesn't implement these two callbacks is not
420 supported.
423 6.6 Multithreading (SMT)
424 ^^^^^^^^^^^^^^^^^^^^^^^^
426 EAS in its current form is SMT unaware and is not able to leverage
427 multithreaded hardware to save energy. EAS considers threads as independent
428 CPUs, which can actually be counter-productive for both performance and energy.
430 EAS on SMT is not supported.