kvm: nVMX: Fix kernel panics induced by illegal INVEPT/INVVPID types
[linux/fpc-iii.git] / fs / coredump.c
blob281b768000e664e4d4ef9092d4bb567d003623a0
1 #include <linux/slab.h>
2 #include <linux/file.h>
3 #include <linux/fdtable.h>
4 #include <linux/mm.h>
5 #include <linux/stat.h>
6 #include <linux/fcntl.h>
7 #include <linux/swap.h>
8 #include <linux/string.h>
9 #include <linux/init.h>
10 #include <linux/pagemap.h>
11 #include <linux/perf_event.h>
12 #include <linux/highmem.h>
13 #include <linux/spinlock.h>
14 #include <linux/key.h>
15 #include <linux/personality.h>
16 #include <linux/binfmts.h>
17 #include <linux/coredump.h>
18 #include <linux/utsname.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/module.h>
21 #include <linux/namei.h>
22 #include <linux/mount.h>
23 #include <linux/security.h>
24 #include <linux/syscalls.h>
25 #include <linux/tsacct_kern.h>
26 #include <linux/cn_proc.h>
27 #include <linux/audit.h>
28 #include <linux/tracehook.h>
29 #include <linux/kmod.h>
30 #include <linux/fsnotify.h>
31 #include <linux/fs_struct.h>
32 #include <linux/pipe_fs_i.h>
33 #include <linux/oom.h>
34 #include <linux/compat.h>
35 #include <linux/sched.h>
36 #include <linux/fs.h>
37 #include <linux/path.h>
38 #include <linux/timekeeping.h>
40 #include <asm/uaccess.h>
41 #include <asm/mmu_context.h>
42 #include <asm/tlb.h>
43 #include <asm/exec.h>
45 #include <trace/events/task.h>
46 #include "internal.h"
48 #include <trace/events/sched.h>
50 int core_uses_pid;
51 unsigned int core_pipe_limit;
52 char core_pattern[CORENAME_MAX_SIZE] = "core";
53 static int core_name_size = CORENAME_MAX_SIZE;
55 struct core_name {
56 char *corename;
57 int used, size;
60 /* The maximal length of core_pattern is also specified in sysctl.c */
62 static int expand_corename(struct core_name *cn, int size)
64 char *corename = krealloc(cn->corename, size, GFP_KERNEL);
66 if (!corename)
67 return -ENOMEM;
69 if (size > core_name_size) /* racy but harmless */
70 core_name_size = size;
72 cn->size = ksize(corename);
73 cn->corename = corename;
74 return 0;
77 static __printf(2, 0) int cn_vprintf(struct core_name *cn, const char *fmt,
78 va_list arg)
80 int free, need;
81 va_list arg_copy;
83 again:
84 free = cn->size - cn->used;
86 va_copy(arg_copy, arg);
87 need = vsnprintf(cn->corename + cn->used, free, fmt, arg_copy);
88 va_end(arg_copy);
90 if (need < free) {
91 cn->used += need;
92 return 0;
95 if (!expand_corename(cn, cn->size + need - free + 1))
96 goto again;
98 return -ENOMEM;
101 static __printf(2, 3) int cn_printf(struct core_name *cn, const char *fmt, ...)
103 va_list arg;
104 int ret;
106 va_start(arg, fmt);
107 ret = cn_vprintf(cn, fmt, arg);
108 va_end(arg);
110 return ret;
113 static __printf(2, 3)
114 int cn_esc_printf(struct core_name *cn, const char *fmt, ...)
116 int cur = cn->used;
117 va_list arg;
118 int ret;
120 va_start(arg, fmt);
121 ret = cn_vprintf(cn, fmt, arg);
122 va_end(arg);
124 if (ret == 0) {
126 * Ensure that this coredump name component can't cause the
127 * resulting corefile path to consist of a ".." or ".".
129 if ((cn->used - cur == 1 && cn->corename[cur] == '.') ||
130 (cn->used - cur == 2 && cn->corename[cur] == '.'
131 && cn->corename[cur+1] == '.'))
132 cn->corename[cur] = '!';
135 * Empty names are fishy and could be used to create a "//" in a
136 * corefile name, causing the coredump to happen one directory
137 * level too high. Enforce that all components of the core
138 * pattern are at least one character long.
140 if (cn->used == cur)
141 ret = cn_printf(cn, "!");
144 for (; cur < cn->used; ++cur) {
145 if (cn->corename[cur] == '/')
146 cn->corename[cur] = '!';
148 return ret;
151 static int cn_print_exe_file(struct core_name *cn)
153 struct file *exe_file;
154 char *pathbuf, *path;
155 int ret;
157 exe_file = get_mm_exe_file(current->mm);
158 if (!exe_file)
159 return cn_esc_printf(cn, "%s (path unknown)", current->comm);
161 pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
162 if (!pathbuf) {
163 ret = -ENOMEM;
164 goto put_exe_file;
167 path = file_path(exe_file, pathbuf, PATH_MAX);
168 if (IS_ERR(path)) {
169 ret = PTR_ERR(path);
170 goto free_buf;
173 ret = cn_esc_printf(cn, "%s", path);
175 free_buf:
176 kfree(pathbuf);
177 put_exe_file:
178 fput(exe_file);
179 return ret;
182 /* format_corename will inspect the pattern parameter, and output a
183 * name into corename, which must have space for at least
184 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
186 static int format_corename(struct core_name *cn, struct coredump_params *cprm)
188 const struct cred *cred = current_cred();
189 const char *pat_ptr = core_pattern;
190 int ispipe = (*pat_ptr == '|');
191 int pid_in_pattern = 0;
192 int err = 0;
194 cn->used = 0;
195 cn->corename = NULL;
196 if (expand_corename(cn, core_name_size))
197 return -ENOMEM;
198 cn->corename[0] = '\0';
200 if (ispipe)
201 ++pat_ptr;
203 /* Repeat as long as we have more pattern to process and more output
204 space */
205 while (*pat_ptr) {
206 if (*pat_ptr != '%') {
207 err = cn_printf(cn, "%c", *pat_ptr++);
208 } else {
209 switch (*++pat_ptr) {
210 /* single % at the end, drop that */
211 case 0:
212 goto out;
213 /* Double percent, output one percent */
214 case '%':
215 err = cn_printf(cn, "%c", '%');
216 break;
217 /* pid */
218 case 'p':
219 pid_in_pattern = 1;
220 err = cn_printf(cn, "%d",
221 task_tgid_vnr(current));
222 break;
223 /* global pid */
224 case 'P':
225 err = cn_printf(cn, "%d",
226 task_tgid_nr(current));
227 break;
228 case 'i':
229 err = cn_printf(cn, "%d",
230 task_pid_vnr(current));
231 break;
232 case 'I':
233 err = cn_printf(cn, "%d",
234 task_pid_nr(current));
235 break;
236 /* uid */
237 case 'u':
238 err = cn_printf(cn, "%u",
239 from_kuid(&init_user_ns,
240 cred->uid));
241 break;
242 /* gid */
243 case 'g':
244 err = cn_printf(cn, "%u",
245 from_kgid(&init_user_ns,
246 cred->gid));
247 break;
248 case 'd':
249 err = cn_printf(cn, "%d",
250 __get_dumpable(cprm->mm_flags));
251 break;
252 /* signal that caused the coredump */
253 case 's':
254 err = cn_printf(cn, "%d",
255 cprm->siginfo->si_signo);
256 break;
257 /* UNIX time of coredump */
258 case 't': {
259 time64_t time;
261 time = ktime_get_real_seconds();
262 err = cn_printf(cn, "%lld", time);
263 break;
265 /* hostname */
266 case 'h':
267 down_read(&uts_sem);
268 err = cn_esc_printf(cn, "%s",
269 utsname()->nodename);
270 up_read(&uts_sem);
271 break;
272 /* executable */
273 case 'e':
274 err = cn_esc_printf(cn, "%s", current->comm);
275 break;
276 case 'E':
277 err = cn_print_exe_file(cn);
278 break;
279 /* core limit size */
280 case 'c':
281 err = cn_printf(cn, "%lu",
282 rlimit(RLIMIT_CORE));
283 break;
284 default:
285 break;
287 ++pat_ptr;
290 if (err)
291 return err;
294 out:
295 /* Backward compatibility with core_uses_pid:
297 * If core_pattern does not include a %p (as is the default)
298 * and core_uses_pid is set, then .%pid will be appended to
299 * the filename. Do not do this for piped commands. */
300 if (!ispipe && !pid_in_pattern && core_uses_pid) {
301 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
302 if (err)
303 return err;
305 return ispipe;
308 static int zap_process(struct task_struct *start, int exit_code, int flags)
310 struct task_struct *t;
311 int nr = 0;
313 /* ignore all signals except SIGKILL, see prepare_signal() */
314 start->signal->flags = SIGNAL_GROUP_COREDUMP | flags;
315 start->signal->group_exit_code = exit_code;
316 start->signal->group_stop_count = 0;
318 for_each_thread(start, t) {
319 task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
320 if (t != current && t->mm) {
321 sigaddset(&t->pending.signal, SIGKILL);
322 signal_wake_up(t, 1);
323 nr++;
327 return nr;
330 static int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
331 struct core_state *core_state, int exit_code)
333 struct task_struct *g, *p;
334 unsigned long flags;
335 int nr = -EAGAIN;
337 spin_lock_irq(&tsk->sighand->siglock);
338 if (!signal_group_exit(tsk->signal)) {
339 mm->core_state = core_state;
340 tsk->signal->group_exit_task = tsk;
341 nr = zap_process(tsk, exit_code, 0);
342 clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
344 spin_unlock_irq(&tsk->sighand->siglock);
345 if (unlikely(nr < 0))
346 return nr;
348 tsk->flags |= PF_DUMPCORE;
349 if (atomic_read(&mm->mm_users) == nr + 1)
350 goto done;
352 * We should find and kill all tasks which use this mm, and we should
353 * count them correctly into ->nr_threads. We don't take tasklist
354 * lock, but this is safe wrt:
356 * fork:
357 * None of sub-threads can fork after zap_process(leader). All
358 * processes which were created before this point should be
359 * visible to zap_threads() because copy_process() adds the new
360 * process to the tail of init_task.tasks list, and lock/unlock
361 * of ->siglock provides a memory barrier.
363 * do_exit:
364 * The caller holds mm->mmap_sem. This means that the task which
365 * uses this mm can't pass exit_mm(), so it can't exit or clear
366 * its ->mm.
368 * de_thread:
369 * It does list_replace_rcu(&leader->tasks, &current->tasks),
370 * we must see either old or new leader, this does not matter.
371 * However, it can change p->sighand, so lock_task_sighand(p)
372 * must be used. Since p->mm != NULL and we hold ->mmap_sem
373 * it can't fail.
375 * Note also that "g" can be the old leader with ->mm == NULL
376 * and already unhashed and thus removed from ->thread_group.
377 * This is OK, __unhash_process()->list_del_rcu() does not
378 * clear the ->next pointer, we will find the new leader via
379 * next_thread().
381 rcu_read_lock();
382 for_each_process(g) {
383 if (g == tsk->group_leader)
384 continue;
385 if (g->flags & PF_KTHREAD)
386 continue;
388 for_each_thread(g, p) {
389 if (unlikely(!p->mm))
390 continue;
391 if (unlikely(p->mm == mm)) {
392 lock_task_sighand(p, &flags);
393 nr += zap_process(p, exit_code,
394 SIGNAL_GROUP_EXIT);
395 unlock_task_sighand(p, &flags);
397 break;
400 rcu_read_unlock();
401 done:
402 atomic_set(&core_state->nr_threads, nr);
403 return nr;
406 static int coredump_wait(int exit_code, struct core_state *core_state)
408 struct task_struct *tsk = current;
409 struct mm_struct *mm = tsk->mm;
410 int core_waiters = -EBUSY;
412 init_completion(&core_state->startup);
413 core_state->dumper.task = tsk;
414 core_state->dumper.next = NULL;
416 if (down_write_killable(&mm->mmap_sem))
417 return -EINTR;
419 if (!mm->core_state)
420 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
421 up_write(&mm->mmap_sem);
423 if (core_waiters > 0) {
424 struct core_thread *ptr;
426 wait_for_completion(&core_state->startup);
428 * Wait for all the threads to become inactive, so that
429 * all the thread context (extended register state, like
430 * fpu etc) gets copied to the memory.
432 ptr = core_state->dumper.next;
433 while (ptr != NULL) {
434 wait_task_inactive(ptr->task, 0);
435 ptr = ptr->next;
439 return core_waiters;
442 static void coredump_finish(struct mm_struct *mm, bool core_dumped)
444 struct core_thread *curr, *next;
445 struct task_struct *task;
447 spin_lock_irq(&current->sighand->siglock);
448 if (core_dumped && !__fatal_signal_pending(current))
449 current->signal->group_exit_code |= 0x80;
450 current->signal->group_exit_task = NULL;
451 current->signal->flags = SIGNAL_GROUP_EXIT;
452 spin_unlock_irq(&current->sighand->siglock);
454 next = mm->core_state->dumper.next;
455 while ((curr = next) != NULL) {
456 next = curr->next;
457 task = curr->task;
459 * see exit_mm(), curr->task must not see
460 * ->task == NULL before we read ->next.
462 smp_mb();
463 curr->task = NULL;
464 wake_up_process(task);
467 mm->core_state = NULL;
470 static bool dump_interrupted(void)
473 * SIGKILL or freezing() interrupt the coredumping. Perhaps we
474 * can do try_to_freeze() and check __fatal_signal_pending(),
475 * but then we need to teach dump_write() to restart and clear
476 * TIF_SIGPENDING.
478 return signal_pending(current);
481 static void wait_for_dump_helpers(struct file *file)
483 struct pipe_inode_info *pipe = file->private_data;
485 pipe_lock(pipe);
486 pipe->readers++;
487 pipe->writers--;
488 wake_up_interruptible_sync(&pipe->wait);
489 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
490 pipe_unlock(pipe);
493 * We actually want wait_event_freezable() but then we need
494 * to clear TIF_SIGPENDING and improve dump_interrupted().
496 wait_event_interruptible(pipe->wait, pipe->readers == 1);
498 pipe_lock(pipe);
499 pipe->readers--;
500 pipe->writers++;
501 pipe_unlock(pipe);
505 * umh_pipe_setup
506 * helper function to customize the process used
507 * to collect the core in userspace. Specifically
508 * it sets up a pipe and installs it as fd 0 (stdin)
509 * for the process. Returns 0 on success, or
510 * PTR_ERR on failure.
511 * Note that it also sets the core limit to 1. This
512 * is a special value that we use to trap recursive
513 * core dumps
515 static int umh_pipe_setup(struct subprocess_info *info, struct cred *new)
517 struct file *files[2];
518 struct coredump_params *cp = (struct coredump_params *)info->data;
519 int err = create_pipe_files(files, 0);
520 if (err)
521 return err;
523 cp->file = files[1];
525 err = replace_fd(0, files[0], 0);
526 fput(files[0]);
527 /* and disallow core files too */
528 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
530 return err;
533 void do_coredump(const siginfo_t *siginfo)
535 struct core_state core_state;
536 struct core_name cn;
537 struct mm_struct *mm = current->mm;
538 struct linux_binfmt * binfmt;
539 const struct cred *old_cred;
540 struct cred *cred;
541 int retval = 0;
542 int ispipe;
543 struct files_struct *displaced;
544 /* require nonrelative corefile path and be extra careful */
545 bool need_suid_safe = false;
546 bool core_dumped = false;
547 static atomic_t core_dump_count = ATOMIC_INIT(0);
548 struct coredump_params cprm = {
549 .siginfo = siginfo,
550 .regs = signal_pt_regs(),
551 .limit = rlimit(RLIMIT_CORE),
553 * We must use the same mm->flags while dumping core to avoid
554 * inconsistency of bit flags, since this flag is not protected
555 * by any locks.
557 .mm_flags = mm->flags,
560 audit_core_dumps(siginfo->si_signo);
562 binfmt = mm->binfmt;
563 if (!binfmt || !binfmt->core_dump)
564 goto fail;
565 if (!__get_dumpable(cprm.mm_flags))
566 goto fail;
568 cred = prepare_creds();
569 if (!cred)
570 goto fail;
572 * We cannot trust fsuid as being the "true" uid of the process
573 * nor do we know its entire history. We only know it was tainted
574 * so we dump it as root in mode 2, and only into a controlled
575 * environment (pipe handler or fully qualified path).
577 if (__get_dumpable(cprm.mm_flags) == SUID_DUMP_ROOT) {
578 /* Setuid core dump mode */
579 cred->fsuid = GLOBAL_ROOT_UID; /* Dump root private */
580 need_suid_safe = true;
583 retval = coredump_wait(siginfo->si_signo, &core_state);
584 if (retval < 0)
585 goto fail_creds;
587 old_cred = override_creds(cred);
589 ispipe = format_corename(&cn, &cprm);
591 if (ispipe) {
592 int dump_count;
593 char **helper_argv;
594 struct subprocess_info *sub_info;
596 if (ispipe < 0) {
597 printk(KERN_WARNING "format_corename failed\n");
598 printk(KERN_WARNING "Aborting core\n");
599 goto fail_unlock;
602 if (cprm.limit == 1) {
603 /* See umh_pipe_setup() which sets RLIMIT_CORE = 1.
605 * Normally core limits are irrelevant to pipes, since
606 * we're not writing to the file system, but we use
607 * cprm.limit of 1 here as a special value, this is a
608 * consistent way to catch recursive crashes.
609 * We can still crash if the core_pattern binary sets
610 * RLIM_CORE = !1, but it runs as root, and can do
611 * lots of stupid things.
613 * Note that we use task_tgid_vnr here to grab the pid
614 * of the process group leader. That way we get the
615 * right pid if a thread in a multi-threaded
616 * core_pattern process dies.
618 printk(KERN_WARNING
619 "Process %d(%s) has RLIMIT_CORE set to 1\n",
620 task_tgid_vnr(current), current->comm);
621 printk(KERN_WARNING "Aborting core\n");
622 goto fail_unlock;
624 cprm.limit = RLIM_INFINITY;
626 dump_count = atomic_inc_return(&core_dump_count);
627 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
628 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
629 task_tgid_vnr(current), current->comm);
630 printk(KERN_WARNING "Skipping core dump\n");
631 goto fail_dropcount;
634 helper_argv = argv_split(GFP_KERNEL, cn.corename, NULL);
635 if (!helper_argv) {
636 printk(KERN_WARNING "%s failed to allocate memory\n",
637 __func__);
638 goto fail_dropcount;
641 retval = -ENOMEM;
642 sub_info = call_usermodehelper_setup(helper_argv[0],
643 helper_argv, NULL, GFP_KERNEL,
644 umh_pipe_setup, NULL, &cprm);
645 if (sub_info)
646 retval = call_usermodehelper_exec(sub_info,
647 UMH_WAIT_EXEC);
649 argv_free(helper_argv);
650 if (retval) {
651 printk(KERN_INFO "Core dump to |%s pipe failed\n",
652 cn.corename);
653 goto close_fail;
655 } else {
656 struct inode *inode;
657 int open_flags = O_CREAT | O_RDWR | O_NOFOLLOW |
658 O_LARGEFILE | O_EXCL;
660 if (cprm.limit < binfmt->min_coredump)
661 goto fail_unlock;
663 if (need_suid_safe && cn.corename[0] != '/') {
664 printk(KERN_WARNING "Pid %d(%s) can only dump core "\
665 "to fully qualified path!\n",
666 task_tgid_vnr(current), current->comm);
667 printk(KERN_WARNING "Skipping core dump\n");
668 goto fail_unlock;
672 * Unlink the file if it exists unless this is a SUID
673 * binary - in that case, we're running around with root
674 * privs and don't want to unlink another user's coredump.
676 if (!need_suid_safe) {
677 mm_segment_t old_fs;
679 old_fs = get_fs();
680 set_fs(KERNEL_DS);
682 * If it doesn't exist, that's fine. If there's some
683 * other problem, we'll catch it at the filp_open().
685 (void) sys_unlink((const char __user *)cn.corename);
686 set_fs(old_fs);
690 * There is a race between unlinking and creating the
691 * file, but if that causes an EEXIST here, that's
692 * fine - another process raced with us while creating
693 * the corefile, and the other process won. To userspace,
694 * what matters is that at least one of the two processes
695 * writes its coredump successfully, not which one.
697 if (need_suid_safe) {
699 * Using user namespaces, normal user tasks can change
700 * their current->fs->root to point to arbitrary
701 * directories. Since the intention of the "only dump
702 * with a fully qualified path" rule is to control where
703 * coredumps may be placed using root privileges,
704 * current->fs->root must not be used. Instead, use the
705 * root directory of init_task.
707 struct path root;
709 task_lock(&init_task);
710 get_fs_root(init_task.fs, &root);
711 task_unlock(&init_task);
712 cprm.file = file_open_root(root.dentry, root.mnt,
713 cn.corename, open_flags, 0600);
714 path_put(&root);
715 } else {
716 cprm.file = filp_open(cn.corename, open_flags, 0600);
718 if (IS_ERR(cprm.file))
719 goto fail_unlock;
721 inode = file_inode(cprm.file);
722 if (inode->i_nlink > 1)
723 goto close_fail;
724 if (d_unhashed(cprm.file->f_path.dentry))
725 goto close_fail;
727 * AK: actually i see no reason to not allow this for named
728 * pipes etc, but keep the previous behaviour for now.
730 if (!S_ISREG(inode->i_mode))
731 goto close_fail;
733 * Don't dump core if the filesystem changed owner or mode
734 * of the file during file creation. This is an issue when
735 * a process dumps core while its cwd is e.g. on a vfat
736 * filesystem.
738 if (!uid_eq(inode->i_uid, current_fsuid()))
739 goto close_fail;
740 if ((inode->i_mode & 0677) != 0600)
741 goto close_fail;
742 if (!(cprm.file->f_mode & FMODE_CAN_WRITE))
743 goto close_fail;
744 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
745 goto close_fail;
748 /* get us an unshared descriptor table; almost always a no-op */
749 retval = unshare_files(&displaced);
750 if (retval)
751 goto close_fail;
752 if (displaced)
753 put_files_struct(displaced);
754 if (!dump_interrupted()) {
755 file_start_write(cprm.file);
756 core_dumped = binfmt->core_dump(&cprm);
757 file_end_write(cprm.file);
759 if (ispipe && core_pipe_limit)
760 wait_for_dump_helpers(cprm.file);
761 close_fail:
762 if (cprm.file)
763 filp_close(cprm.file, NULL);
764 fail_dropcount:
765 if (ispipe)
766 atomic_dec(&core_dump_count);
767 fail_unlock:
768 kfree(cn.corename);
769 coredump_finish(mm, core_dumped);
770 revert_creds(old_cred);
771 fail_creds:
772 put_cred(cred);
773 fail:
774 return;
778 * Core dumping helper functions. These are the only things you should
779 * do on a core-file: use only these functions to write out all the
780 * necessary info.
782 int dump_emit(struct coredump_params *cprm, const void *addr, int nr)
784 struct file *file = cprm->file;
785 loff_t pos = file->f_pos;
786 ssize_t n;
787 if (cprm->written + nr > cprm->limit)
788 return 0;
789 while (nr) {
790 if (dump_interrupted())
791 return 0;
792 n = __kernel_write(file, addr, nr, &pos);
793 if (n <= 0)
794 return 0;
795 file->f_pos = pos;
796 cprm->written += n;
797 cprm->pos += n;
798 nr -= n;
800 return 1;
802 EXPORT_SYMBOL(dump_emit);
804 int dump_skip(struct coredump_params *cprm, size_t nr)
806 static char zeroes[PAGE_SIZE];
807 struct file *file = cprm->file;
808 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
809 if (dump_interrupted() ||
810 file->f_op->llseek(file, nr, SEEK_CUR) < 0)
811 return 0;
812 cprm->pos += nr;
813 return 1;
814 } else {
815 while (nr > PAGE_SIZE) {
816 if (!dump_emit(cprm, zeroes, PAGE_SIZE))
817 return 0;
818 nr -= PAGE_SIZE;
820 return dump_emit(cprm, zeroes, nr);
823 EXPORT_SYMBOL(dump_skip);
825 int dump_align(struct coredump_params *cprm, int align)
827 unsigned mod = cprm->pos & (align - 1);
828 if (align & (align - 1))
829 return 0;
830 return mod ? dump_skip(cprm, align - mod) : 1;
832 EXPORT_SYMBOL(dump_align);