mtd: rawnand: Fix a memory leak bug
[linux/fpc-iii.git] / fs / jffs2 / nodemgmt.c
bloba7bbe879cfc3ddfd5320669d046fc2e7c46e2e0c
1 /*
2 * JFFS2 -- Journalling Flash File System, Version 2.
4 * Copyright © 2001-2007 Red Hat, Inc.
6 * Created by David Woodhouse <dwmw2@infradead.org>
8 * For licensing information, see the file 'LICENCE' in this directory.
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 #include <linux/kernel.h>
15 #include <linux/mtd/mtd.h>
16 #include <linux/compiler.h>
17 #include <linux/sched/signal.h>
18 #include "nodelist.h"
19 #include "debug.h"
22 * Check whether the user is allowed to write.
24 static int jffs2_rp_can_write(struct jffs2_sb_info *c)
26 uint32_t avail;
27 struct jffs2_mount_opts *opts = &c->mount_opts;
29 avail = c->dirty_size + c->free_size + c->unchecked_size +
30 c->erasing_size - c->resv_blocks_write * c->sector_size
31 - c->nospc_dirty_size;
33 if (avail < 2 * opts->rp_size)
34 jffs2_dbg(1, "rpsize %u, dirty_size %u, free_size %u, "
35 "erasing_size %u, unchecked_size %u, "
36 "nr_erasing_blocks %u, avail %u, resrv %u\n",
37 opts->rp_size, c->dirty_size, c->free_size,
38 c->erasing_size, c->unchecked_size,
39 c->nr_erasing_blocks, avail, c->nospc_dirty_size);
41 if (avail > opts->rp_size)
42 return 1;
44 /* Always allow root */
45 if (capable(CAP_SYS_RESOURCE))
46 return 1;
48 jffs2_dbg(1, "forbid writing\n");
49 return 0;
52 /**
53 * jffs2_reserve_space - request physical space to write nodes to flash
54 * @c: superblock info
55 * @minsize: Minimum acceptable size of allocation
56 * @len: Returned value of allocation length
57 * @prio: Allocation type - ALLOC_{NORMAL,DELETION}
59 * Requests a block of physical space on the flash. Returns zero for success
60 * and puts 'len' into the appropriate place, or returns -ENOSPC or other
61 * error if appropriate. Doesn't return len since that's
63 * If it returns zero, jffs2_reserve_space() also downs the per-filesystem
64 * allocation semaphore, to prevent more than one allocation from being
65 * active at any time. The semaphore is later released by jffs2_commit_allocation()
67 * jffs2_reserve_space() may trigger garbage collection in order to make room
68 * for the requested allocation.
71 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
72 uint32_t *len, uint32_t sumsize);
74 int jffs2_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
75 uint32_t *len, int prio, uint32_t sumsize)
77 int ret = -EAGAIN;
78 int blocksneeded = c->resv_blocks_write;
79 /* align it */
80 minsize = PAD(minsize);
82 jffs2_dbg(1, "%s(): Requested 0x%x bytes\n", __func__, minsize);
83 mutex_lock(&c->alloc_sem);
85 jffs2_dbg(1, "%s(): alloc sem got\n", __func__);
87 spin_lock(&c->erase_completion_lock);
90 * Check if the free space is greater then size of the reserved pool.
91 * If not, only allow root to proceed with writing.
93 if (prio != ALLOC_DELETION && !jffs2_rp_can_write(c)) {
94 ret = -ENOSPC;
95 goto out;
98 /* this needs a little more thought (true <tglx> :)) */
99 while(ret == -EAGAIN) {
100 while(c->nr_free_blocks + c->nr_erasing_blocks < blocksneeded) {
101 uint32_t dirty, avail;
103 /* calculate real dirty size
104 * dirty_size contains blocks on erase_pending_list
105 * those blocks are counted in c->nr_erasing_blocks.
106 * If one block is actually erased, it is not longer counted as dirty_space
107 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
108 * with c->nr_erasing_blocks * c->sector_size again.
109 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
110 * This helps us to force gc and pick eventually a clean block to spread the load.
111 * We add unchecked_size here, as we hopefully will find some space to use.
112 * This will affect the sum only once, as gc first finishes checking
113 * of nodes.
115 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size + c->unchecked_size;
116 if (dirty < c->nospc_dirty_size) {
117 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
118 jffs2_dbg(1, "%s(): Low on dirty space to GC, but it's a deletion. Allowing...\n",
119 __func__);
120 break;
122 jffs2_dbg(1, "dirty size 0x%08x + unchecked_size 0x%08x < nospc_dirty_size 0x%08x, returning -ENOSPC\n",
123 dirty, c->unchecked_size,
124 c->sector_size);
126 spin_unlock(&c->erase_completion_lock);
127 mutex_unlock(&c->alloc_sem);
128 return -ENOSPC;
131 /* Calc possibly available space. Possibly available means that we
132 * don't know, if unchecked size contains obsoleted nodes, which could give us some
133 * more usable space. This will affect the sum only once, as gc first finishes checking
134 * of nodes.
135 + Return -ENOSPC, if the maximum possibly available space is less or equal than
136 * blocksneeded * sector_size.
137 * This blocks endless gc looping on a filesystem, which is nearly full, even if
138 * the check above passes.
140 avail = c->free_size + c->dirty_size + c->erasing_size + c->unchecked_size;
141 if ( (avail / c->sector_size) <= blocksneeded) {
142 if (prio == ALLOC_DELETION && c->nr_free_blocks + c->nr_erasing_blocks >= c->resv_blocks_deletion) {
143 jffs2_dbg(1, "%s(): Low on possibly available space, but it's a deletion. Allowing...\n",
144 __func__);
145 break;
148 jffs2_dbg(1, "max. available size 0x%08x < blocksneeded * sector_size 0x%08x, returning -ENOSPC\n",
149 avail, blocksneeded * c->sector_size);
150 spin_unlock(&c->erase_completion_lock);
151 mutex_unlock(&c->alloc_sem);
152 return -ENOSPC;
155 mutex_unlock(&c->alloc_sem);
157 jffs2_dbg(1, "Triggering GC pass. nr_free_blocks %d, nr_erasing_blocks %d, free_size 0x%08x, dirty_size 0x%08x, wasted_size 0x%08x, used_size 0x%08x, erasing_size 0x%08x, bad_size 0x%08x (total 0x%08x of 0x%08x)\n",
158 c->nr_free_blocks, c->nr_erasing_blocks,
159 c->free_size, c->dirty_size, c->wasted_size,
160 c->used_size, c->erasing_size, c->bad_size,
161 c->free_size + c->dirty_size +
162 c->wasted_size + c->used_size +
163 c->erasing_size + c->bad_size,
164 c->flash_size);
165 spin_unlock(&c->erase_completion_lock);
167 ret = jffs2_garbage_collect_pass(c);
169 if (ret == -EAGAIN) {
170 spin_lock(&c->erase_completion_lock);
171 if (c->nr_erasing_blocks &&
172 list_empty(&c->erase_pending_list) &&
173 list_empty(&c->erase_complete_list)) {
174 DECLARE_WAITQUEUE(wait, current);
175 set_current_state(TASK_UNINTERRUPTIBLE);
176 add_wait_queue(&c->erase_wait, &wait);
177 jffs2_dbg(1, "%s waiting for erase to complete\n",
178 __func__);
179 spin_unlock(&c->erase_completion_lock);
181 schedule();
182 remove_wait_queue(&c->erase_wait, &wait);
183 } else
184 spin_unlock(&c->erase_completion_lock);
185 } else if (ret)
186 return ret;
188 cond_resched();
190 if (signal_pending(current))
191 return -EINTR;
193 mutex_lock(&c->alloc_sem);
194 spin_lock(&c->erase_completion_lock);
197 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
198 if (ret) {
199 jffs2_dbg(1, "%s(): ret is %d\n", __func__, ret);
203 out:
204 spin_unlock(&c->erase_completion_lock);
205 if (!ret)
206 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
207 if (ret)
208 mutex_unlock(&c->alloc_sem);
209 return ret;
212 int jffs2_reserve_space_gc(struct jffs2_sb_info *c, uint32_t minsize,
213 uint32_t *len, uint32_t sumsize)
215 int ret;
216 minsize = PAD(minsize);
218 jffs2_dbg(1, "%s(): Requested 0x%x bytes\n", __func__, minsize);
220 while (true) {
221 spin_lock(&c->erase_completion_lock);
222 ret = jffs2_do_reserve_space(c, minsize, len, sumsize);
223 if (ret) {
224 jffs2_dbg(1, "%s(): looping, ret is %d\n",
225 __func__, ret);
227 spin_unlock(&c->erase_completion_lock);
229 if (ret == -EAGAIN)
230 cond_resched();
231 else
232 break;
234 if (!ret)
235 ret = jffs2_prealloc_raw_node_refs(c, c->nextblock, 1);
237 return ret;
241 /* Classify nextblock (clean, dirty of verydirty) and force to select an other one */
243 static void jffs2_close_nextblock(struct jffs2_sb_info *c, struct jffs2_eraseblock *jeb)
246 if (c->nextblock == NULL) {
247 jffs2_dbg(1, "%s(): Erase block at 0x%08x has already been placed in a list\n",
248 __func__, jeb->offset);
249 return;
251 /* Check, if we have a dirty block now, or if it was dirty already */
252 if (ISDIRTY (jeb->wasted_size + jeb->dirty_size)) {
253 c->dirty_size += jeb->wasted_size;
254 c->wasted_size -= jeb->wasted_size;
255 jeb->dirty_size += jeb->wasted_size;
256 jeb->wasted_size = 0;
257 if (VERYDIRTY(c, jeb->dirty_size)) {
258 jffs2_dbg(1, "Adding full erase block at 0x%08x to very_dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
259 jeb->offset, jeb->free_size, jeb->dirty_size,
260 jeb->used_size);
261 list_add_tail(&jeb->list, &c->very_dirty_list);
262 } else {
263 jffs2_dbg(1, "Adding full erase block at 0x%08x to dirty_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
264 jeb->offset, jeb->free_size, jeb->dirty_size,
265 jeb->used_size);
266 list_add_tail(&jeb->list, &c->dirty_list);
268 } else {
269 jffs2_dbg(1, "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
270 jeb->offset, jeb->free_size, jeb->dirty_size,
271 jeb->used_size);
272 list_add_tail(&jeb->list, &c->clean_list);
274 c->nextblock = NULL;
278 /* Select a new jeb for nextblock */
280 static int jffs2_find_nextblock(struct jffs2_sb_info *c)
282 struct list_head *next;
284 /* Take the next block off the 'free' list */
286 if (list_empty(&c->free_list)) {
288 if (!c->nr_erasing_blocks &&
289 !list_empty(&c->erasable_list)) {
290 struct jffs2_eraseblock *ejeb;
292 ejeb = list_entry(c->erasable_list.next, struct jffs2_eraseblock, list);
293 list_move_tail(&ejeb->list, &c->erase_pending_list);
294 c->nr_erasing_blocks++;
295 jffs2_garbage_collect_trigger(c);
296 jffs2_dbg(1, "%s(): Triggering erase of erasable block at 0x%08x\n",
297 __func__, ejeb->offset);
300 if (!c->nr_erasing_blocks &&
301 !list_empty(&c->erasable_pending_wbuf_list)) {
302 jffs2_dbg(1, "%s(): Flushing write buffer\n",
303 __func__);
304 /* c->nextblock is NULL, no update to c->nextblock allowed */
305 spin_unlock(&c->erase_completion_lock);
306 jffs2_flush_wbuf_pad(c);
307 spin_lock(&c->erase_completion_lock);
308 /* Have another go. It'll be on the erasable_list now */
309 return -EAGAIN;
312 if (!c->nr_erasing_blocks) {
313 /* Ouch. We're in GC, or we wouldn't have got here.
314 And there's no space left. At all. */
315 pr_crit("Argh. No free space left for GC. nr_erasing_blocks is %d. nr_free_blocks is %d. (erasableempty: %s, erasingempty: %s, erasependingempty: %s)\n",
316 c->nr_erasing_blocks, c->nr_free_blocks,
317 list_empty(&c->erasable_list) ? "yes" : "no",
318 list_empty(&c->erasing_list) ? "yes" : "no",
319 list_empty(&c->erase_pending_list) ? "yes" : "no");
320 return -ENOSPC;
323 spin_unlock(&c->erase_completion_lock);
324 /* Don't wait for it; just erase one right now */
325 jffs2_erase_pending_blocks(c, 1);
326 spin_lock(&c->erase_completion_lock);
328 /* An erase may have failed, decreasing the
329 amount of free space available. So we must
330 restart from the beginning */
331 return -EAGAIN;
334 next = c->free_list.next;
335 list_del(next);
336 c->nextblock = list_entry(next, struct jffs2_eraseblock, list);
337 c->nr_free_blocks--;
339 jffs2_sum_reset_collected(c->summary); /* reset collected summary */
341 #ifdef CONFIG_JFFS2_FS_WRITEBUFFER
342 /* adjust write buffer offset, else we get a non contiguous write bug */
343 if (!(c->wbuf_ofs % c->sector_size) && !c->wbuf_len)
344 c->wbuf_ofs = 0xffffffff;
345 #endif
347 jffs2_dbg(1, "%s(): new nextblock = 0x%08x\n",
348 __func__, c->nextblock->offset);
350 return 0;
353 /* Called with alloc sem _and_ erase_completion_lock */
354 static int jffs2_do_reserve_space(struct jffs2_sb_info *c, uint32_t minsize,
355 uint32_t *len, uint32_t sumsize)
357 struct jffs2_eraseblock *jeb = c->nextblock;
358 uint32_t reserved_size; /* for summary information at the end of the jeb */
359 int ret;
361 restart:
362 reserved_size = 0;
364 if (jffs2_sum_active() && (sumsize != JFFS2_SUMMARY_NOSUM_SIZE)) {
365 /* NOSUM_SIZE means not to generate summary */
367 if (jeb) {
368 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
369 dbg_summary("minsize=%d , jeb->free=%d ,"
370 "summary->size=%d , sumsize=%d\n",
371 minsize, jeb->free_size,
372 c->summary->sum_size, sumsize);
375 /* Is there enough space for writing out the current node, or we have to
376 write out summary information now, close this jeb and select new nextblock? */
377 if (jeb && (PAD(minsize) + PAD(c->summary->sum_size + sumsize +
378 JFFS2_SUMMARY_FRAME_SIZE) > jeb->free_size)) {
380 /* Has summary been disabled for this jeb? */
381 if (jffs2_sum_is_disabled(c->summary)) {
382 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
383 goto restart;
386 /* Writing out the collected summary information */
387 dbg_summary("generating summary for 0x%08x.\n", jeb->offset);
388 ret = jffs2_sum_write_sumnode(c);
390 if (ret)
391 return ret;
393 if (jffs2_sum_is_disabled(c->summary)) {
394 /* jffs2_write_sumnode() couldn't write out the summary information
395 diabling summary for this jeb and free the collected information
397 sumsize = JFFS2_SUMMARY_NOSUM_SIZE;
398 goto restart;
401 jffs2_close_nextblock(c, jeb);
402 jeb = NULL;
403 /* keep always valid value in reserved_size */
404 reserved_size = PAD(sumsize + c->summary->sum_size + JFFS2_SUMMARY_FRAME_SIZE);
406 } else {
407 if (jeb && minsize > jeb->free_size) {
408 uint32_t waste;
410 /* Skip the end of this block and file it as having some dirty space */
411 /* If there's a pending write to it, flush now */
413 if (jffs2_wbuf_dirty(c)) {
414 spin_unlock(&c->erase_completion_lock);
415 jffs2_dbg(1, "%s(): Flushing write buffer\n",
416 __func__);
417 jffs2_flush_wbuf_pad(c);
418 spin_lock(&c->erase_completion_lock);
419 jeb = c->nextblock;
420 goto restart;
423 spin_unlock(&c->erase_completion_lock);
425 ret = jffs2_prealloc_raw_node_refs(c, jeb, 1);
427 /* Just lock it again and continue. Nothing much can change because
428 we hold c->alloc_sem anyway. In fact, it's not entirely clear why
429 we hold c->erase_completion_lock in the majority of this function...
430 but that's a question for another (more caffeine-rich) day. */
431 spin_lock(&c->erase_completion_lock);
433 if (ret)
434 return ret;
436 waste = jeb->free_size;
437 jffs2_link_node_ref(c, jeb,
438 (jeb->offset + c->sector_size - waste) | REF_OBSOLETE,
439 waste, NULL);
440 /* FIXME: that made it count as dirty. Convert to wasted */
441 jeb->dirty_size -= waste;
442 c->dirty_size -= waste;
443 jeb->wasted_size += waste;
444 c->wasted_size += waste;
446 jffs2_close_nextblock(c, jeb);
447 jeb = NULL;
451 if (!jeb) {
453 ret = jffs2_find_nextblock(c);
454 if (ret)
455 return ret;
457 jeb = c->nextblock;
459 if (jeb->free_size != c->sector_size - c->cleanmarker_size) {
460 pr_warn("Eep. Block 0x%08x taken from free_list had free_size of 0x%08x!!\n",
461 jeb->offset, jeb->free_size);
462 goto restart;
465 /* OK, jeb (==c->nextblock) is now pointing at a block which definitely has
466 enough space */
467 *len = jeb->free_size - reserved_size;
469 if (c->cleanmarker_size && jeb->used_size == c->cleanmarker_size &&
470 !jeb->first_node->next_in_ino) {
471 /* Only node in it beforehand was a CLEANMARKER node (we think).
472 So mark it obsolete now that there's going to be another node
473 in the block. This will reduce used_size to zero but We've
474 already set c->nextblock so that jffs2_mark_node_obsolete()
475 won't try to refile it to the dirty_list.
477 spin_unlock(&c->erase_completion_lock);
478 jffs2_mark_node_obsolete(c, jeb->first_node);
479 spin_lock(&c->erase_completion_lock);
482 jffs2_dbg(1, "%s(): Giving 0x%x bytes at 0x%x\n",
483 __func__,
484 *len, jeb->offset + (c->sector_size - jeb->free_size));
485 return 0;
489 * jffs2_add_physical_node_ref - add a physical node reference to the list
490 * @c: superblock info
491 * @new: new node reference to add
492 * @len: length of this physical node
494 * Should only be used to report nodes for which space has been allocated
495 * by jffs2_reserve_space.
497 * Must be called with the alloc_sem held.
500 struct jffs2_raw_node_ref *jffs2_add_physical_node_ref(struct jffs2_sb_info *c,
501 uint32_t ofs, uint32_t len,
502 struct jffs2_inode_cache *ic)
504 struct jffs2_eraseblock *jeb;
505 struct jffs2_raw_node_ref *new;
507 jeb = &c->blocks[ofs / c->sector_size];
509 jffs2_dbg(1, "%s(): Node at 0x%x(%d), size 0x%x\n",
510 __func__, ofs & ~3, ofs & 3, len);
511 #if 1
512 /* Allow non-obsolete nodes only to be added at the end of c->nextblock,
513 if c->nextblock is set. Note that wbuf.c will file obsolete nodes
514 even after refiling c->nextblock */
515 if ((c->nextblock || ((ofs & 3) != REF_OBSOLETE))
516 && (jeb != c->nextblock || (ofs & ~3) != jeb->offset + (c->sector_size - jeb->free_size))) {
517 pr_warn("argh. node added in wrong place at 0x%08x(%d)\n",
518 ofs & ~3, ofs & 3);
519 if (c->nextblock)
520 pr_warn("nextblock 0x%08x", c->nextblock->offset);
521 else
522 pr_warn("No nextblock");
523 pr_cont(", expected at %08x\n",
524 jeb->offset + (c->sector_size - jeb->free_size));
525 return ERR_PTR(-EINVAL);
527 #endif
528 spin_lock(&c->erase_completion_lock);
530 new = jffs2_link_node_ref(c, jeb, ofs, len, ic);
532 if (!jeb->free_size && !jeb->dirty_size && !ISDIRTY(jeb->wasted_size)) {
533 /* If it lives on the dirty_list, jffs2_reserve_space will put it there */
534 jffs2_dbg(1, "Adding full erase block at 0x%08x to clean_list (free 0x%08x, dirty 0x%08x, used 0x%08x\n",
535 jeb->offset, jeb->free_size, jeb->dirty_size,
536 jeb->used_size);
537 if (jffs2_wbuf_dirty(c)) {
538 /* Flush the last write in the block if it's outstanding */
539 spin_unlock(&c->erase_completion_lock);
540 jffs2_flush_wbuf_pad(c);
541 spin_lock(&c->erase_completion_lock);
544 list_add_tail(&jeb->list, &c->clean_list);
545 c->nextblock = NULL;
547 jffs2_dbg_acct_sanity_check_nolock(c,jeb);
548 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
550 spin_unlock(&c->erase_completion_lock);
552 return new;
556 void jffs2_complete_reservation(struct jffs2_sb_info *c)
558 jffs2_dbg(1, "jffs2_complete_reservation()\n");
559 spin_lock(&c->erase_completion_lock);
560 jffs2_garbage_collect_trigger(c);
561 spin_unlock(&c->erase_completion_lock);
562 mutex_unlock(&c->alloc_sem);
565 static inline int on_list(struct list_head *obj, struct list_head *head)
567 struct list_head *this;
569 list_for_each(this, head) {
570 if (this == obj) {
571 jffs2_dbg(1, "%p is on list at %p\n", obj, head);
572 return 1;
576 return 0;
579 void jffs2_mark_node_obsolete(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref)
581 struct jffs2_eraseblock *jeb;
582 int blocknr;
583 struct jffs2_unknown_node n;
584 int ret, addedsize;
585 size_t retlen;
586 uint32_t freed_len;
588 if(unlikely(!ref)) {
589 pr_notice("EEEEEK. jffs2_mark_node_obsolete called with NULL node\n");
590 return;
592 if (ref_obsolete(ref)) {
593 jffs2_dbg(1, "%s(): called with already obsolete node at 0x%08x\n",
594 __func__, ref_offset(ref));
595 return;
597 blocknr = ref->flash_offset / c->sector_size;
598 if (blocknr >= c->nr_blocks) {
599 pr_notice("raw node at 0x%08x is off the end of device!\n",
600 ref->flash_offset);
601 BUG();
603 jeb = &c->blocks[blocknr];
605 if (jffs2_can_mark_obsolete(c) && !jffs2_is_readonly(c) &&
606 !(c->flags & (JFFS2_SB_FLAG_SCANNING | JFFS2_SB_FLAG_BUILDING))) {
607 /* Hm. This may confuse static lock analysis. If any of the above
608 three conditions is false, we're going to return from this
609 function without actually obliterating any nodes or freeing
610 any jffs2_raw_node_refs. So we don't need to stop erases from
611 happening, or protect against people holding an obsolete
612 jffs2_raw_node_ref without the erase_completion_lock. */
613 mutex_lock(&c->erase_free_sem);
616 spin_lock(&c->erase_completion_lock);
618 freed_len = ref_totlen(c, jeb, ref);
620 if (ref_flags(ref) == REF_UNCHECKED) {
621 D1(if (unlikely(jeb->unchecked_size < freed_len)) {
622 pr_notice("raw unchecked node of size 0x%08x freed from erase block %d at 0x%08x, but unchecked_size was already 0x%08x\n",
623 freed_len, blocknr,
624 ref->flash_offset, jeb->used_size);
625 BUG();
627 jffs2_dbg(1, "Obsoleting previously unchecked node at 0x%08x of len %x\n",
628 ref_offset(ref), freed_len);
629 jeb->unchecked_size -= freed_len;
630 c->unchecked_size -= freed_len;
631 } else {
632 D1(if (unlikely(jeb->used_size < freed_len)) {
633 pr_notice("raw node of size 0x%08x freed from erase block %d at 0x%08x, but used_size was already 0x%08x\n",
634 freed_len, blocknr,
635 ref->flash_offset, jeb->used_size);
636 BUG();
638 jffs2_dbg(1, "Obsoleting node at 0x%08x of len %#x: ",
639 ref_offset(ref), freed_len);
640 jeb->used_size -= freed_len;
641 c->used_size -= freed_len;
644 // Take care, that wasted size is taken into concern
645 if ((jeb->dirty_size || ISDIRTY(jeb->wasted_size + freed_len)) && jeb != c->nextblock) {
646 jffs2_dbg(1, "Dirtying\n");
647 addedsize = freed_len;
648 jeb->dirty_size += freed_len;
649 c->dirty_size += freed_len;
651 /* Convert wasted space to dirty, if not a bad block */
652 if (jeb->wasted_size) {
653 if (on_list(&jeb->list, &c->bad_used_list)) {
654 jffs2_dbg(1, "Leaving block at %08x on the bad_used_list\n",
655 jeb->offset);
656 addedsize = 0; /* To fool the refiling code later */
657 } else {
658 jffs2_dbg(1, "Converting %d bytes of wasted space to dirty in block at %08x\n",
659 jeb->wasted_size, jeb->offset);
660 addedsize += jeb->wasted_size;
661 jeb->dirty_size += jeb->wasted_size;
662 c->dirty_size += jeb->wasted_size;
663 c->wasted_size -= jeb->wasted_size;
664 jeb->wasted_size = 0;
667 } else {
668 jffs2_dbg(1, "Wasting\n");
669 addedsize = 0;
670 jeb->wasted_size += freed_len;
671 c->wasted_size += freed_len;
673 ref->flash_offset = ref_offset(ref) | REF_OBSOLETE;
675 jffs2_dbg_acct_sanity_check_nolock(c, jeb);
676 jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
678 if (c->flags & JFFS2_SB_FLAG_SCANNING) {
679 /* Flash scanning is in progress. Don't muck about with the block
680 lists because they're not ready yet, and don't actually
681 obliterate nodes that look obsolete. If they weren't
682 marked obsolete on the flash at the time they _became_
683 obsolete, there was probably a reason for that. */
684 spin_unlock(&c->erase_completion_lock);
685 /* We didn't lock the erase_free_sem */
686 return;
689 if (jeb == c->nextblock) {
690 jffs2_dbg(2, "Not moving nextblock 0x%08x to dirty/erase_pending list\n",
691 jeb->offset);
692 } else if (!jeb->used_size && !jeb->unchecked_size) {
693 if (jeb == c->gcblock) {
694 jffs2_dbg(1, "gcblock at 0x%08x completely dirtied. Clearing gcblock...\n",
695 jeb->offset);
696 c->gcblock = NULL;
697 } else {
698 jffs2_dbg(1, "Eraseblock at 0x%08x completely dirtied. Removing from (dirty?) list...\n",
699 jeb->offset);
700 list_del(&jeb->list);
702 if (jffs2_wbuf_dirty(c)) {
703 jffs2_dbg(1, "...and adding to erasable_pending_wbuf_list\n");
704 list_add_tail(&jeb->list, &c->erasable_pending_wbuf_list);
705 } else {
706 if (jiffies & 127) {
707 /* Most of the time, we just erase it immediately. Otherwise we
708 spend ages scanning it on mount, etc. */
709 jffs2_dbg(1, "...and adding to erase_pending_list\n");
710 list_add_tail(&jeb->list, &c->erase_pending_list);
711 c->nr_erasing_blocks++;
712 jffs2_garbage_collect_trigger(c);
713 } else {
714 /* Sometimes, however, we leave it elsewhere so it doesn't get
715 immediately reused, and we spread the load a bit. */
716 jffs2_dbg(1, "...and adding to erasable_list\n");
717 list_add_tail(&jeb->list, &c->erasable_list);
720 jffs2_dbg(1, "Done OK\n");
721 } else if (jeb == c->gcblock) {
722 jffs2_dbg(2, "Not moving gcblock 0x%08x to dirty_list\n",
723 jeb->offset);
724 } else if (ISDIRTY(jeb->dirty_size) && !ISDIRTY(jeb->dirty_size - addedsize)) {
725 jffs2_dbg(1, "Eraseblock at 0x%08x is freshly dirtied. Removing from clean list...\n",
726 jeb->offset);
727 list_del(&jeb->list);
728 jffs2_dbg(1, "...and adding to dirty_list\n");
729 list_add_tail(&jeb->list, &c->dirty_list);
730 } else if (VERYDIRTY(c, jeb->dirty_size) &&
731 !VERYDIRTY(c, jeb->dirty_size - addedsize)) {
732 jffs2_dbg(1, "Eraseblock at 0x%08x is now very dirty. Removing from dirty list...\n",
733 jeb->offset);
734 list_del(&jeb->list);
735 jffs2_dbg(1, "...and adding to very_dirty_list\n");
736 list_add_tail(&jeb->list, &c->very_dirty_list);
737 } else {
738 jffs2_dbg(1, "Eraseblock at 0x%08x not moved anywhere. (free 0x%08x, dirty 0x%08x, used 0x%08x)\n",
739 jeb->offset, jeb->free_size, jeb->dirty_size,
740 jeb->used_size);
743 spin_unlock(&c->erase_completion_lock);
745 if (!jffs2_can_mark_obsolete(c) || jffs2_is_readonly(c) ||
746 (c->flags & JFFS2_SB_FLAG_BUILDING)) {
747 /* We didn't lock the erase_free_sem */
748 return;
751 /* The erase_free_sem is locked, and has been since before we marked the node obsolete
752 and potentially put its eraseblock onto the erase_pending_list. Thus, we know that
753 the block hasn't _already_ been erased, and that 'ref' itself hasn't been freed yet
754 by jffs2_free_jeb_node_refs() in erase.c. Which is nice. */
756 jffs2_dbg(1, "obliterating obsoleted node at 0x%08x\n",
757 ref_offset(ref));
758 ret = jffs2_flash_read(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
759 if (ret) {
760 pr_warn("Read error reading from obsoleted node at 0x%08x: %d\n",
761 ref_offset(ref), ret);
762 goto out_erase_sem;
764 if (retlen != sizeof(n)) {
765 pr_warn("Short read from obsoleted node at 0x%08x: %zd\n",
766 ref_offset(ref), retlen);
767 goto out_erase_sem;
769 if (PAD(je32_to_cpu(n.totlen)) != PAD(freed_len)) {
770 pr_warn("Node totlen on flash (0x%08x) != totlen from node ref (0x%08x)\n",
771 je32_to_cpu(n.totlen), freed_len);
772 goto out_erase_sem;
774 if (!(je16_to_cpu(n.nodetype) & JFFS2_NODE_ACCURATE)) {
775 jffs2_dbg(1, "Node at 0x%08x was already marked obsolete (nodetype 0x%04x)\n",
776 ref_offset(ref), je16_to_cpu(n.nodetype));
777 goto out_erase_sem;
779 /* XXX FIXME: This is ugly now */
780 n.nodetype = cpu_to_je16(je16_to_cpu(n.nodetype) & ~JFFS2_NODE_ACCURATE);
781 ret = jffs2_flash_write(c, ref_offset(ref), sizeof(n), &retlen, (char *)&n);
782 if (ret) {
783 pr_warn("Write error in obliterating obsoleted node at 0x%08x: %d\n",
784 ref_offset(ref), ret);
785 goto out_erase_sem;
787 if (retlen != sizeof(n)) {
788 pr_warn("Short write in obliterating obsoleted node at 0x%08x: %zd\n",
789 ref_offset(ref), retlen);
790 goto out_erase_sem;
793 /* Nodes which have been marked obsolete no longer need to be
794 associated with any inode. Remove them from the per-inode list.
796 Note we can't do this for NAND at the moment because we need
797 obsolete dirent nodes to stay on the lists, because of the
798 horridness in jffs2_garbage_collect_deletion_dirent(). Also
799 because we delete the inocache, and on NAND we need that to
800 stay around until all the nodes are actually erased, in order
801 to stop us from giving the same inode number to another newly
802 created inode. */
803 if (ref->next_in_ino) {
804 struct jffs2_inode_cache *ic;
805 struct jffs2_raw_node_ref **p;
807 spin_lock(&c->erase_completion_lock);
809 ic = jffs2_raw_ref_to_ic(ref);
810 for (p = &ic->nodes; (*p) != ref; p = &((*p)->next_in_ino))
813 *p = ref->next_in_ino;
814 ref->next_in_ino = NULL;
816 switch (ic->class) {
817 #ifdef CONFIG_JFFS2_FS_XATTR
818 case RAWNODE_CLASS_XATTR_DATUM:
819 jffs2_release_xattr_datum(c, (struct jffs2_xattr_datum *)ic);
820 break;
821 case RAWNODE_CLASS_XATTR_REF:
822 jffs2_release_xattr_ref(c, (struct jffs2_xattr_ref *)ic);
823 break;
824 #endif
825 default:
826 if (ic->nodes == (void *)ic && ic->pino_nlink == 0)
827 jffs2_del_ino_cache(c, ic);
828 break;
830 spin_unlock(&c->erase_completion_lock);
833 out_erase_sem:
834 mutex_unlock(&c->erase_free_sem);
837 int jffs2_thread_should_wake(struct jffs2_sb_info *c)
839 int ret = 0;
840 uint32_t dirty;
841 int nr_very_dirty = 0;
842 struct jffs2_eraseblock *jeb;
844 if (!list_empty(&c->erase_complete_list) ||
845 !list_empty(&c->erase_pending_list))
846 return 1;
848 if (c->unchecked_size) {
849 jffs2_dbg(1, "jffs2_thread_should_wake(): unchecked_size %d, check_ino #%d\n",
850 c->unchecked_size, c->check_ino);
851 return 1;
854 /* dirty_size contains blocks on erase_pending_list
855 * those blocks are counted in c->nr_erasing_blocks.
856 * If one block is actually erased, it is not longer counted as dirty_space
857 * but it is counted in c->nr_erasing_blocks, so we add it and subtract it
858 * with c->nr_erasing_blocks * c->sector_size again.
859 * Blocks on erasable_list are counted as dirty_size, but not in c->nr_erasing_blocks
860 * This helps us to force gc and pick eventually a clean block to spread the load.
862 dirty = c->dirty_size + c->erasing_size - c->nr_erasing_blocks * c->sector_size;
864 if (c->nr_free_blocks + c->nr_erasing_blocks < c->resv_blocks_gctrigger &&
865 (dirty > c->nospc_dirty_size))
866 ret = 1;
868 list_for_each_entry(jeb, &c->very_dirty_list, list) {
869 nr_very_dirty++;
870 if (nr_very_dirty == c->vdirty_blocks_gctrigger) {
871 ret = 1;
872 /* In debug mode, actually go through and count them all */
873 D1(continue);
874 break;
878 jffs2_dbg(1, "%s(): nr_free_blocks %d, nr_erasing_blocks %d, dirty_size 0x%x, vdirty_blocks %d: %s\n",
879 __func__, c->nr_free_blocks, c->nr_erasing_blocks,
880 c->dirty_size, nr_very_dirty, ret ? "yes" : "no");
882 return ret;