2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * 64-bit file support on 64-bit platforms by Jakub Jelinek
16 * (jj@sunsite.ms.mff.cuni.cz)
18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/quotaops.h>
26 #include <linux/string.h>
27 #include <linux/buffer_head.h>
28 #include <linux/writeback.h>
29 #include <linux/pagevec.h>
30 #include <linux/mpage.h>
31 #include <linux/namei.h>
32 #include <linux/uio.h>
33 #include <linux/bio.h>
34 #include <linux/workqueue.h>
35 #include <linux/kernel.h>
36 #include <linux/printk.h>
37 #include <linux/slab.h>
38 #include <linux/bitops.h>
40 #include "ext4_jbd2.h"
45 #include <trace/events/ext4.h>
47 #define MPAGE_DA_EXTENT_TAIL 0x01
49 static __u32
ext4_inode_csum(struct inode
*inode
, struct ext4_inode
*raw
,
50 struct ext4_inode_info
*ei
)
52 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
57 csum_lo
= le16_to_cpu(raw
->i_checksum_lo
);
58 raw
->i_checksum_lo
= 0;
59 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
60 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
)) {
61 csum_hi
= le16_to_cpu(raw
->i_checksum_hi
);
62 raw
->i_checksum_hi
= 0;
65 csum
= ext4_chksum(sbi
, ei
->i_csum_seed
, (__u8
*)raw
,
66 EXT4_INODE_SIZE(inode
->i_sb
));
68 raw
->i_checksum_lo
= cpu_to_le16(csum_lo
);
69 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
70 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
71 raw
->i_checksum_hi
= cpu_to_le16(csum_hi
);
76 static int ext4_inode_csum_verify(struct inode
*inode
, struct ext4_inode
*raw
,
77 struct ext4_inode_info
*ei
)
79 __u32 provided
, calculated
;
81 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
82 cpu_to_le32(EXT4_OS_LINUX
) ||
83 !ext4_has_metadata_csum(inode
->i_sb
))
86 provided
= le16_to_cpu(raw
->i_checksum_lo
);
87 calculated
= ext4_inode_csum(inode
, raw
, ei
);
88 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
89 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
90 provided
|= ((__u32
)le16_to_cpu(raw
->i_checksum_hi
)) << 16;
94 return provided
== calculated
;
97 static void ext4_inode_csum_set(struct inode
*inode
, struct ext4_inode
*raw
,
98 struct ext4_inode_info
*ei
)
102 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
103 cpu_to_le32(EXT4_OS_LINUX
) ||
104 !ext4_has_metadata_csum(inode
->i_sb
))
107 csum
= ext4_inode_csum(inode
, raw
, ei
);
108 raw
->i_checksum_lo
= cpu_to_le16(csum
& 0xFFFF);
109 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
110 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
111 raw
->i_checksum_hi
= cpu_to_le16(csum
>> 16);
114 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
117 trace_ext4_begin_ordered_truncate(inode
, new_size
);
119 * If jinode is zero, then we never opened the file for
120 * writing, so there's no need to call
121 * jbd2_journal_begin_ordered_truncate() since there's no
122 * outstanding writes we need to flush.
124 if (!EXT4_I(inode
)->jinode
)
126 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode
),
127 EXT4_I(inode
)->jinode
,
131 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
132 unsigned int length
);
133 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
134 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
135 static int ext4_meta_trans_blocks(struct inode
*inode
, int lblocks
,
139 * Test whether an inode is a fast symlink.
141 int ext4_inode_is_fast_symlink(struct inode
*inode
)
143 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
144 EXT4_CLUSTER_SIZE(inode
->i_sb
) >> 9 : 0;
146 if (ext4_has_inline_data(inode
))
149 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
153 * Restart the transaction associated with *handle. This does a commit,
154 * so before we call here everything must be consistently dirtied against
157 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
164 * moment, get_block can be called only for blocks inside i_size since
165 * page cache has been already dropped and writes are blocked by
166 * i_mutex. So we can safely drop the i_data_sem here.
168 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
169 jbd_debug(2, "restarting handle %p\n", handle
);
170 up_write(&EXT4_I(inode
)->i_data_sem
);
171 ret
= ext4_journal_restart(handle
, nblocks
);
172 down_write(&EXT4_I(inode
)->i_data_sem
);
173 ext4_discard_preallocations(inode
);
179 * Called at the last iput() if i_nlink is zero.
181 void ext4_evict_inode(struct inode
*inode
)
186 trace_ext4_evict_inode(inode
);
188 if (inode
->i_nlink
) {
190 * When journalling data dirty buffers are tracked only in the
191 * journal. So although mm thinks everything is clean and
192 * ready for reaping the inode might still have some pages to
193 * write in the running transaction or waiting to be
194 * checkpointed. Thus calling jbd2_journal_invalidatepage()
195 * (via truncate_inode_pages()) to discard these buffers can
196 * cause data loss. Also even if we did not discard these
197 * buffers, we would have no way to find them after the inode
198 * is reaped and thus user could see stale data if he tries to
199 * read them before the transaction is checkpointed. So be
200 * careful and force everything to disk here... We use
201 * ei->i_datasync_tid to store the newest transaction
202 * containing inode's data.
204 * Note that directories do not have this problem because they
205 * don't use page cache.
207 if (ext4_should_journal_data(inode
) &&
208 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
)) &&
209 inode
->i_ino
!= EXT4_JOURNAL_INO
) {
210 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
211 tid_t commit_tid
= EXT4_I(inode
)->i_datasync_tid
;
213 jbd2_complete_transaction(journal
, commit_tid
);
214 filemap_write_and_wait(&inode
->i_data
);
216 truncate_inode_pages_final(&inode
->i_data
);
218 WARN_ON(atomic_read(&EXT4_I(inode
)->i_ioend_count
));
222 if (is_bad_inode(inode
))
224 dquot_initialize(inode
);
226 if (ext4_should_order_data(inode
))
227 ext4_begin_ordered_truncate(inode
, 0);
228 truncate_inode_pages_final(&inode
->i_data
);
230 WARN_ON(atomic_read(&EXT4_I(inode
)->i_ioend_count
));
233 * Protect us against freezing - iput() caller didn't have to have any
234 * protection against it
236 sb_start_intwrite(inode
->i_sb
);
237 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
,
238 ext4_blocks_for_truncate(inode
)+3);
239 if (IS_ERR(handle
)) {
240 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
242 * If we're going to skip the normal cleanup, we still need to
243 * make sure that the in-core orphan linked list is properly
246 ext4_orphan_del(NULL
, inode
);
247 sb_end_intwrite(inode
->i_sb
);
252 ext4_handle_sync(handle
);
254 err
= ext4_mark_inode_dirty(handle
, inode
);
256 ext4_warning(inode
->i_sb
,
257 "couldn't mark inode dirty (err %d)", err
);
261 ext4_truncate(inode
);
264 * ext4_ext_truncate() doesn't reserve any slop when it
265 * restarts journal transactions; therefore there may not be
266 * enough credits left in the handle to remove the inode from
267 * the orphan list and set the dtime field.
269 if (!ext4_handle_has_enough_credits(handle
, 3)) {
270 err
= ext4_journal_extend(handle
, 3);
272 err
= ext4_journal_restart(handle
, 3);
274 ext4_warning(inode
->i_sb
,
275 "couldn't extend journal (err %d)", err
);
277 ext4_journal_stop(handle
);
278 ext4_orphan_del(NULL
, inode
);
279 sb_end_intwrite(inode
->i_sb
);
285 * Kill off the orphan record which ext4_truncate created.
286 * AKPM: I think this can be inside the above `if'.
287 * Note that ext4_orphan_del() has to be able to cope with the
288 * deletion of a non-existent orphan - this is because we don't
289 * know if ext4_truncate() actually created an orphan record.
290 * (Well, we could do this if we need to, but heck - it works)
292 ext4_orphan_del(handle
, inode
);
293 EXT4_I(inode
)->i_dtime
= get_seconds();
296 * One subtle ordering requirement: if anything has gone wrong
297 * (transaction abort, IO errors, whatever), then we can still
298 * do these next steps (the fs will already have been marked as
299 * having errors), but we can't free the inode if the mark_dirty
302 if (ext4_mark_inode_dirty(handle
, inode
))
303 /* If that failed, just do the required in-core inode clear. */
304 ext4_clear_inode(inode
);
306 ext4_free_inode(handle
, inode
);
307 ext4_journal_stop(handle
);
308 sb_end_intwrite(inode
->i_sb
);
311 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
315 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
317 return &EXT4_I(inode
)->i_reserved_quota
;
322 * Called with i_data_sem down, which is important since we can call
323 * ext4_discard_preallocations() from here.
325 void ext4_da_update_reserve_space(struct inode
*inode
,
326 int used
, int quota_claim
)
328 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
329 struct ext4_inode_info
*ei
= EXT4_I(inode
);
331 spin_lock(&ei
->i_block_reservation_lock
);
332 trace_ext4_da_update_reserve_space(inode
, used
, quota_claim
);
333 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
334 ext4_warning(inode
->i_sb
, "%s: ino %lu, used %d "
335 "with only %d reserved data blocks",
336 __func__
, inode
->i_ino
, used
,
337 ei
->i_reserved_data_blocks
);
339 used
= ei
->i_reserved_data_blocks
;
342 /* Update per-inode reservations */
343 ei
->i_reserved_data_blocks
-= used
;
344 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, used
);
346 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
348 /* Update quota subsystem for data blocks */
350 dquot_claim_block(inode
, EXT4_C2B(sbi
, used
));
353 * We did fallocate with an offset that is already delayed
354 * allocated. So on delayed allocated writeback we should
355 * not re-claim the quota for fallocated blocks.
357 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, used
));
361 * If we have done all the pending block allocations and if
362 * there aren't any writers on the inode, we can discard the
363 * inode's preallocations.
365 if ((ei
->i_reserved_data_blocks
== 0) &&
366 (atomic_read(&inode
->i_writecount
) == 0))
367 ext4_discard_preallocations(inode
);
370 static int __check_block_validity(struct inode
*inode
, const char *func
,
372 struct ext4_map_blocks
*map
)
374 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
376 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
377 "lblock %lu mapped to illegal pblock "
378 "(length %d)", (unsigned long) map
->m_lblk
,
385 #define check_block_validity(inode, map) \
386 __check_block_validity((inode), __func__, __LINE__, (map))
388 #ifdef ES_AGGRESSIVE_TEST
389 static void ext4_map_blocks_es_recheck(handle_t
*handle
,
391 struct ext4_map_blocks
*es_map
,
392 struct ext4_map_blocks
*map
,
399 * There is a race window that the result is not the same.
400 * e.g. xfstests #223 when dioread_nolock enables. The reason
401 * is that we lookup a block mapping in extent status tree with
402 * out taking i_data_sem. So at the time the unwritten extent
403 * could be converted.
405 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
406 down_read(&EXT4_I(inode
)->i_data_sem
);
407 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
408 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
409 EXT4_GET_BLOCKS_KEEP_SIZE
);
411 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
412 EXT4_GET_BLOCKS_KEEP_SIZE
);
414 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
415 up_read((&EXT4_I(inode
)->i_data_sem
));
418 * We don't check m_len because extent will be collpased in status
419 * tree. So the m_len might not equal.
421 if (es_map
->m_lblk
!= map
->m_lblk
||
422 es_map
->m_flags
!= map
->m_flags
||
423 es_map
->m_pblk
!= map
->m_pblk
) {
424 printk("ES cache assertion failed for inode: %lu "
425 "es_cached ex [%d/%d/%llu/%x] != "
426 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
427 inode
->i_ino
, es_map
->m_lblk
, es_map
->m_len
,
428 es_map
->m_pblk
, es_map
->m_flags
, map
->m_lblk
,
429 map
->m_len
, map
->m_pblk
, map
->m_flags
,
433 #endif /* ES_AGGRESSIVE_TEST */
436 * The ext4_map_blocks() function tries to look up the requested blocks,
437 * and returns if the blocks are already mapped.
439 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
440 * and store the allocated blocks in the result buffer head and mark it
443 * If file type is extents based, it will call ext4_ext_map_blocks(),
444 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
447 * On success, it returns the number of blocks being mapped or allocated.
448 * if create==0 and the blocks are pre-allocated and unwritten block,
449 * the result buffer head is unmapped. If the create ==1, it will make sure
450 * the buffer head is mapped.
452 * It returns 0 if plain look up failed (blocks have not been allocated), in
453 * that case, buffer head is unmapped
455 * It returns the error in case of allocation failure.
457 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
458 struct ext4_map_blocks
*map
, int flags
)
460 struct extent_status es
;
463 #ifdef ES_AGGRESSIVE_TEST
464 struct ext4_map_blocks orig_map
;
466 memcpy(&orig_map
, map
, sizeof(*map
));
470 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
471 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
472 (unsigned long) map
->m_lblk
);
475 * ext4_map_blocks returns an int, and m_len is an unsigned int
477 if (unlikely(map
->m_len
> INT_MAX
))
478 map
->m_len
= INT_MAX
;
480 /* We can handle the block number less than EXT_MAX_BLOCKS */
481 if (unlikely(map
->m_lblk
>= EXT_MAX_BLOCKS
))
484 /* Lookup extent status tree firstly */
485 if (ext4_es_lookup_extent(inode
, map
->m_lblk
, &es
)) {
486 if (ext4_es_is_written(&es
) || ext4_es_is_unwritten(&es
)) {
487 map
->m_pblk
= ext4_es_pblock(&es
) +
488 map
->m_lblk
- es
.es_lblk
;
489 map
->m_flags
|= ext4_es_is_written(&es
) ?
490 EXT4_MAP_MAPPED
: EXT4_MAP_UNWRITTEN
;
491 retval
= es
.es_len
- (map
->m_lblk
- es
.es_lblk
);
492 if (retval
> map
->m_len
)
495 } else if (ext4_es_is_delayed(&es
) || ext4_es_is_hole(&es
)) {
500 #ifdef ES_AGGRESSIVE_TEST
501 ext4_map_blocks_es_recheck(handle
, inode
, map
,
508 * Try to see if we can get the block without requesting a new
511 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
512 down_read(&EXT4_I(inode
)->i_data_sem
);
513 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
514 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
515 EXT4_GET_BLOCKS_KEEP_SIZE
);
517 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
518 EXT4_GET_BLOCKS_KEEP_SIZE
);
523 if (unlikely(retval
!= map
->m_len
)) {
524 ext4_warning(inode
->i_sb
,
525 "ES len assertion failed for inode "
526 "%lu: retval %d != map->m_len %d",
527 inode
->i_ino
, retval
, map
->m_len
);
531 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
532 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
533 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
534 !(status
& EXTENT_STATUS_WRITTEN
) &&
535 ext4_find_delalloc_range(inode
, map
->m_lblk
,
536 map
->m_lblk
+ map
->m_len
- 1))
537 status
|= EXTENT_STATUS_DELAYED
;
538 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
,
539 map
->m_len
, map
->m_pblk
, status
);
543 if (!(flags
& EXT4_GET_BLOCKS_NO_LOCK
))
544 up_read((&EXT4_I(inode
)->i_data_sem
));
547 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
548 ret
= check_block_validity(inode
, map
);
553 /* If it is only a block(s) look up */
554 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
558 * Returns if the blocks have already allocated
560 * Note that if blocks have been preallocated
561 * ext4_ext_get_block() returns the create = 0
562 * with buffer head unmapped.
564 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
566 * If we need to convert extent to unwritten
567 * we continue and do the actual work in
568 * ext4_ext_map_blocks()
570 if (!(flags
& EXT4_GET_BLOCKS_CONVERT_UNWRITTEN
))
574 * Here we clear m_flags because after allocating an new extent,
575 * it will be set again.
577 map
->m_flags
&= ~EXT4_MAP_FLAGS
;
580 * New blocks allocate and/or writing to unwritten extent
581 * will possibly result in updating i_data, so we take
582 * the write lock of i_data_sem, and call get_block()
583 * with create == 1 flag.
585 down_write(&EXT4_I(inode
)->i_data_sem
);
588 * We need to check for EXT4 here because migrate
589 * could have changed the inode type in between
591 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
592 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
594 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
596 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
598 * We allocated new blocks which will result in
599 * i_data's format changing. Force the migrate
600 * to fail by clearing migrate flags
602 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
606 * Update reserved blocks/metadata blocks after successful
607 * block allocation which had been deferred till now. We don't
608 * support fallocate for non extent files. So we can update
609 * reserve space here.
612 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
613 ext4_da_update_reserve_space(inode
, retval
, 1);
619 if (unlikely(retval
!= map
->m_len
)) {
620 ext4_warning(inode
->i_sb
,
621 "ES len assertion failed for inode "
622 "%lu: retval %d != map->m_len %d",
623 inode
->i_ino
, retval
, map
->m_len
);
628 * If the extent has been zeroed out, we don't need to update
629 * extent status tree.
631 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
) &&
632 ext4_es_lookup_extent(inode
, map
->m_lblk
, &es
)) {
633 if (ext4_es_is_written(&es
))
636 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
637 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
638 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
639 !(status
& EXTENT_STATUS_WRITTEN
) &&
640 ext4_find_delalloc_range(inode
, map
->m_lblk
,
641 map
->m_lblk
+ map
->m_len
- 1))
642 status
|= EXTENT_STATUS_DELAYED
;
643 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
644 map
->m_pblk
, status
);
650 up_write((&EXT4_I(inode
)->i_data_sem
));
651 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
652 ret
= check_block_validity(inode
, map
);
659 /* Maximum number of blocks we map for direct IO at once. */
660 #define DIO_MAX_BLOCKS 4096
662 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
663 struct buffer_head
*bh
, int flags
)
665 handle_t
*handle
= ext4_journal_current_handle();
666 struct ext4_map_blocks map
;
667 int ret
= 0, started
= 0;
670 if (ext4_has_inline_data(inode
))
674 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
676 if (flags
&& !(flags
& EXT4_GET_BLOCKS_NO_LOCK
) && !handle
) {
677 /* Direct IO write... */
678 if (map
.m_len
> DIO_MAX_BLOCKS
)
679 map
.m_len
= DIO_MAX_BLOCKS
;
680 dio_credits
= ext4_chunk_trans_blocks(inode
, map
.m_len
);
681 handle
= ext4_journal_start(inode
, EXT4_HT_MAP_BLOCKS
,
683 if (IS_ERR(handle
)) {
684 ret
= PTR_ERR(handle
);
690 ret
= ext4_map_blocks(handle
, inode
, &map
, flags
);
692 ext4_io_end_t
*io_end
= ext4_inode_aio(inode
);
694 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
695 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
696 if (IS_DAX(inode
) && buffer_unwritten(bh
)) {
698 * dgc: I suspect unwritten conversion on ext4+DAX is
699 * fundamentally broken here when there are concurrent
700 * read/write in progress on this inode.
702 WARN_ON_ONCE(io_end
);
703 bh
->b_assoc_map
= inode
->i_mapping
;
704 bh
->b_private
= (void *)(unsigned long)iblock
;
706 if (io_end
&& io_end
->flag
& EXT4_IO_END_UNWRITTEN
)
707 set_buffer_defer_completion(bh
);
708 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
712 ext4_journal_stop(handle
);
716 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
717 struct buffer_head
*bh
, int create
)
719 return _ext4_get_block(inode
, iblock
, bh
,
720 create
? EXT4_GET_BLOCKS_CREATE
: 0);
724 * `handle' can be NULL if create is zero
726 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
727 ext4_lblk_t block
, int map_flags
)
729 struct ext4_map_blocks map
;
730 struct buffer_head
*bh
;
731 int create
= map_flags
& EXT4_GET_BLOCKS_CREATE
;
734 J_ASSERT(handle
!= NULL
|| create
== 0);
738 err
= ext4_map_blocks(handle
, inode
, &map
, map_flags
);
741 return create
? ERR_PTR(-ENOSPC
) : NULL
;
745 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
747 return ERR_PTR(-ENOMEM
);
748 if (map
.m_flags
& EXT4_MAP_NEW
) {
749 J_ASSERT(create
!= 0);
750 J_ASSERT(handle
!= NULL
);
753 * Now that we do not always journal data, we should
754 * keep in mind whether this should always journal the
755 * new buffer as metadata. For now, regular file
756 * writes use ext4_get_block instead, so it's not a
760 BUFFER_TRACE(bh
, "call get_create_access");
761 err
= ext4_journal_get_create_access(handle
, bh
);
766 if (!buffer_uptodate(bh
)) {
767 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
768 set_buffer_uptodate(bh
);
771 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
772 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
776 BUFFER_TRACE(bh
, "not a new buffer");
783 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
784 ext4_lblk_t block
, int map_flags
)
786 struct buffer_head
*bh
;
788 bh
= ext4_getblk(handle
, inode
, block
, map_flags
);
791 if (!bh
|| buffer_uptodate(bh
))
793 ll_rw_block(READ
| REQ_META
| REQ_PRIO
, 1, &bh
);
795 if (buffer_uptodate(bh
))
798 return ERR_PTR(-EIO
);
801 int ext4_walk_page_buffers(handle_t
*handle
,
802 struct buffer_head
*head
,
806 int (*fn
)(handle_t
*handle
,
807 struct buffer_head
*bh
))
809 struct buffer_head
*bh
;
810 unsigned block_start
, block_end
;
811 unsigned blocksize
= head
->b_size
;
813 struct buffer_head
*next
;
815 for (bh
= head
, block_start
= 0;
816 ret
== 0 && (bh
!= head
|| !block_start
);
817 block_start
= block_end
, bh
= next
) {
818 next
= bh
->b_this_page
;
819 block_end
= block_start
+ blocksize
;
820 if (block_end
<= from
|| block_start
>= to
) {
821 if (partial
&& !buffer_uptodate(bh
))
825 err
= (*fn
)(handle
, bh
);
833 * To preserve ordering, it is essential that the hole instantiation and
834 * the data write be encapsulated in a single transaction. We cannot
835 * close off a transaction and start a new one between the ext4_get_block()
836 * and the commit_write(). So doing the jbd2_journal_start at the start of
837 * prepare_write() is the right place.
839 * Also, this function can nest inside ext4_writepage(). In that case, we
840 * *know* that ext4_writepage() has generated enough buffer credits to do the
841 * whole page. So we won't block on the journal in that case, which is good,
842 * because the caller may be PF_MEMALLOC.
844 * By accident, ext4 can be reentered when a transaction is open via
845 * quota file writes. If we were to commit the transaction while thus
846 * reentered, there can be a deadlock - we would be holding a quota
847 * lock, and the commit would never complete if another thread had a
848 * transaction open and was blocking on the quota lock - a ranking
851 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
852 * will _not_ run commit under these circumstances because handle->h_ref
853 * is elevated. We'll still have enough credits for the tiny quotafile
856 int do_journal_get_write_access(handle_t
*handle
,
857 struct buffer_head
*bh
)
859 int dirty
= buffer_dirty(bh
);
862 if (!buffer_mapped(bh
) || buffer_freed(bh
))
865 * __block_write_begin() could have dirtied some buffers. Clean
866 * the dirty bit as jbd2_journal_get_write_access() could complain
867 * otherwise about fs integrity issues. Setting of the dirty bit
868 * by __block_write_begin() isn't a real problem here as we clear
869 * the bit before releasing a page lock and thus writeback cannot
870 * ever write the buffer.
873 clear_buffer_dirty(bh
);
874 BUFFER_TRACE(bh
, "get write access");
875 ret
= ext4_journal_get_write_access(handle
, bh
);
877 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
881 static int ext4_get_block_write_nolock(struct inode
*inode
, sector_t iblock
,
882 struct buffer_head
*bh_result
, int create
);
884 #ifdef CONFIG_EXT4_FS_ENCRYPTION
885 static int ext4_block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
886 get_block_t
*get_block
)
888 unsigned from
= pos
& (PAGE_CACHE_SIZE
- 1);
889 unsigned to
= from
+ len
;
890 struct inode
*inode
= page
->mapping
->host
;
891 unsigned block_start
, block_end
;
894 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
896 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
= wait
;
897 bool decrypt
= false;
899 BUG_ON(!PageLocked(page
));
900 BUG_ON(from
> PAGE_CACHE_SIZE
);
901 BUG_ON(to
> PAGE_CACHE_SIZE
);
904 if (!page_has_buffers(page
))
905 create_empty_buffers(page
, blocksize
, 0);
906 head
= page_buffers(page
);
907 bbits
= ilog2(blocksize
);
908 block
= (sector_t
)page
->index
<< (PAGE_CACHE_SHIFT
- bbits
);
910 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
911 block
++, block_start
= block_end
, bh
= bh
->b_this_page
) {
912 block_end
= block_start
+ blocksize
;
913 if (block_end
<= from
|| block_start
>= to
) {
914 if (PageUptodate(page
)) {
915 if (!buffer_uptodate(bh
))
916 set_buffer_uptodate(bh
);
921 clear_buffer_new(bh
);
922 if (!buffer_mapped(bh
)) {
923 WARN_ON(bh
->b_size
!= blocksize
);
924 err
= get_block(inode
, block
, bh
, 1);
927 if (buffer_new(bh
)) {
928 unmap_underlying_metadata(bh
->b_bdev
,
930 if (PageUptodate(page
)) {
931 clear_buffer_new(bh
);
932 set_buffer_uptodate(bh
);
933 mark_buffer_dirty(bh
);
936 if (block_end
> to
|| block_start
< from
)
937 zero_user_segments(page
, to
, block_end
,
942 if (PageUptodate(page
)) {
943 if (!buffer_uptodate(bh
))
944 set_buffer_uptodate(bh
);
947 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
948 !buffer_unwritten(bh
) &&
949 (block_start
< from
|| block_end
> to
)) {
950 ll_rw_block(READ
, 1, &bh
);
952 decrypt
= ext4_encrypted_inode(inode
) &&
953 S_ISREG(inode
->i_mode
);
957 * If we issued read requests, let them complete.
959 while (wait_bh
> wait
) {
960 wait_on_buffer(*--wait_bh
);
961 if (!buffer_uptodate(*wait_bh
))
965 page_zero_new_buffers(page
, from
, to
);
967 err
= ext4_decrypt_one(inode
, page
);
972 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
973 loff_t pos
, unsigned len
, unsigned flags
,
974 struct page
**pagep
, void **fsdata
)
976 struct inode
*inode
= mapping
->host
;
977 int ret
, needed_blocks
;
984 trace_ext4_write_begin(inode
, pos
, len
, flags
);
986 * Reserve one block more for addition to orphan list in case
987 * we allocate blocks but write fails for some reason
989 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
990 index
= pos
>> PAGE_CACHE_SHIFT
;
991 from
= pos
& (PAGE_CACHE_SIZE
- 1);
994 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
995 ret
= ext4_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1004 * grab_cache_page_write_begin() can take a long time if the
1005 * system is thrashing due to memory pressure, or if the page
1006 * is being written back. So grab it first before we start
1007 * the transaction handle. This also allows us to allocate
1008 * the page (if needed) without using GFP_NOFS.
1011 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1017 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
, needed_blocks
);
1018 if (IS_ERR(handle
)) {
1019 page_cache_release(page
);
1020 return PTR_ERR(handle
);
1024 if (page
->mapping
!= mapping
) {
1025 /* The page got truncated from under us */
1027 page_cache_release(page
);
1028 ext4_journal_stop(handle
);
1031 /* In case writeback began while the page was unlocked */
1032 wait_for_stable_page(page
);
1034 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1035 if (ext4_should_dioread_nolock(inode
))
1036 ret
= ext4_block_write_begin(page
, pos
, len
,
1037 ext4_get_block_write
);
1039 ret
= ext4_block_write_begin(page
, pos
, len
,
1042 if (ext4_should_dioread_nolock(inode
))
1043 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block_write
);
1045 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
1047 if (!ret
&& ext4_should_journal_data(inode
)) {
1048 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
),
1050 do_journal_get_write_access
);
1056 * __block_write_begin may have instantiated a few blocks
1057 * outside i_size. Trim these off again. Don't need
1058 * i_size_read because we hold i_mutex.
1060 * Add inode to orphan list in case we crash before
1063 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1064 ext4_orphan_add(handle
, inode
);
1066 ext4_journal_stop(handle
);
1067 if (pos
+ len
> inode
->i_size
) {
1068 ext4_truncate_failed_write(inode
);
1070 * If truncate failed early the inode might
1071 * still be on the orphan list; we need to
1072 * make sure the inode is removed from the
1073 * orphan list in that case.
1076 ext4_orphan_del(NULL
, inode
);
1079 if (ret
== -ENOSPC
&&
1080 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1082 page_cache_release(page
);
1089 /* For write_end() in data=journal mode */
1090 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1093 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1095 set_buffer_uptodate(bh
);
1096 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1097 clear_buffer_meta(bh
);
1098 clear_buffer_prio(bh
);
1103 * We need to pick up the new inode size which generic_commit_write gave us
1104 * `file' can be NULL - eg, when called from page_symlink().
1106 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1107 * buffers are managed internally.
1109 static int ext4_write_end(struct file
*file
,
1110 struct address_space
*mapping
,
1111 loff_t pos
, unsigned len
, unsigned copied
,
1112 struct page
*page
, void *fsdata
)
1114 handle_t
*handle
= ext4_journal_current_handle();
1115 struct inode
*inode
= mapping
->host
;
1116 loff_t old_size
= inode
->i_size
;
1118 int i_size_changed
= 0;
1120 trace_ext4_write_end(inode
, pos
, len
, copied
);
1121 if (ext4_test_inode_state(inode
, EXT4_STATE_ORDERED_MODE
)) {
1122 ret
= ext4_jbd2_file_inode(handle
, inode
);
1125 page_cache_release(page
);
1130 if (ext4_has_inline_data(inode
)) {
1131 ret
= ext4_write_inline_data_end(inode
, pos
, len
,
1137 copied
= block_write_end(file
, mapping
, pos
,
1138 len
, copied
, page
, fsdata
);
1140 * it's important to update i_size while still holding page lock:
1141 * page writeout could otherwise come in and zero beyond i_size.
1143 i_size_changed
= ext4_update_inode_size(inode
, pos
+ copied
);
1145 page_cache_release(page
);
1148 pagecache_isize_extended(inode
, old_size
, pos
);
1150 * Don't mark the inode dirty under page lock. First, it unnecessarily
1151 * makes the holding time of page lock longer. Second, it forces lock
1152 * ordering of page lock and transaction start for journaling
1156 ext4_mark_inode_dirty(handle
, inode
);
1158 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1159 /* if we have allocated more blocks and copied
1160 * less. We will have blocks allocated outside
1161 * inode->i_size. So truncate them
1163 ext4_orphan_add(handle
, inode
);
1165 ret2
= ext4_journal_stop(handle
);
1169 if (pos
+ len
> inode
->i_size
) {
1170 ext4_truncate_failed_write(inode
);
1172 * If truncate failed early the inode might still be
1173 * on the orphan list; we need to make sure the inode
1174 * is removed from the orphan list in that case.
1177 ext4_orphan_del(NULL
, inode
);
1180 return ret
? ret
: copied
;
1183 static int ext4_journalled_write_end(struct file
*file
,
1184 struct address_space
*mapping
,
1185 loff_t pos
, unsigned len
, unsigned copied
,
1186 struct page
*page
, void *fsdata
)
1188 handle_t
*handle
= ext4_journal_current_handle();
1189 struct inode
*inode
= mapping
->host
;
1190 loff_t old_size
= inode
->i_size
;
1194 int size_changed
= 0;
1196 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1197 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1200 BUG_ON(!ext4_handle_valid(handle
));
1202 if (ext4_has_inline_data(inode
))
1203 copied
= ext4_write_inline_data_end(inode
, pos
, len
,
1207 if (!PageUptodate(page
))
1209 page_zero_new_buffers(page
, from
+copied
, to
);
1212 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
), from
,
1213 to
, &partial
, write_end_fn
);
1215 SetPageUptodate(page
);
1217 size_changed
= ext4_update_inode_size(inode
, pos
+ copied
);
1218 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1219 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1221 page_cache_release(page
);
1224 pagecache_isize_extended(inode
, old_size
, pos
);
1227 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1232 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1233 /* if we have allocated more blocks and copied
1234 * less. We will have blocks allocated outside
1235 * inode->i_size. So truncate them
1237 ext4_orphan_add(handle
, inode
);
1239 ret2
= ext4_journal_stop(handle
);
1242 if (pos
+ len
> inode
->i_size
) {
1243 ext4_truncate_failed_write(inode
);
1245 * If truncate failed early the inode might still be
1246 * on the orphan list; we need to make sure the inode
1247 * is removed from the orphan list in that case.
1250 ext4_orphan_del(NULL
, inode
);
1253 return ret
? ret
: copied
;
1257 * Reserve space for a single cluster
1259 static int ext4_da_reserve_space(struct inode
*inode
)
1261 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1262 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1266 * We will charge metadata quota at writeout time; this saves
1267 * us from metadata over-estimation, though we may go over by
1268 * a small amount in the end. Here we just reserve for data.
1270 ret
= dquot_reserve_block(inode
, EXT4_C2B(sbi
, 1));
1274 spin_lock(&ei
->i_block_reservation_lock
);
1275 if (ext4_claim_free_clusters(sbi
, 1, 0)) {
1276 spin_unlock(&ei
->i_block_reservation_lock
);
1277 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, 1));
1280 ei
->i_reserved_data_blocks
++;
1281 trace_ext4_da_reserve_space(inode
);
1282 spin_unlock(&ei
->i_block_reservation_lock
);
1284 return 0; /* success */
1287 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1289 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1290 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1293 return; /* Nothing to release, exit */
1295 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1297 trace_ext4_da_release_space(inode
, to_free
);
1298 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1300 * if there aren't enough reserved blocks, then the
1301 * counter is messed up somewhere. Since this
1302 * function is called from invalidate page, it's
1303 * harmless to return without any action.
1305 ext4_warning(inode
->i_sb
, "ext4_da_release_space: "
1306 "ino %lu, to_free %d with only %d reserved "
1307 "data blocks", inode
->i_ino
, to_free
,
1308 ei
->i_reserved_data_blocks
);
1310 to_free
= ei
->i_reserved_data_blocks
;
1312 ei
->i_reserved_data_blocks
-= to_free
;
1314 /* update fs dirty data blocks counter */
1315 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, to_free
);
1317 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1319 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, to_free
));
1322 static void ext4_da_page_release_reservation(struct page
*page
,
1323 unsigned int offset
,
1324 unsigned int length
)
1326 int to_release
= 0, contiguous_blks
= 0;
1327 struct buffer_head
*head
, *bh
;
1328 unsigned int curr_off
= 0;
1329 struct inode
*inode
= page
->mapping
->host
;
1330 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1331 unsigned int stop
= offset
+ length
;
1335 BUG_ON(stop
> PAGE_CACHE_SIZE
|| stop
< length
);
1337 head
= page_buffers(page
);
1340 unsigned int next_off
= curr_off
+ bh
->b_size
;
1342 if (next_off
> stop
)
1345 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1348 clear_buffer_delay(bh
);
1349 } else if (contiguous_blks
) {
1350 lblk
= page
->index
<<
1351 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1352 lblk
+= (curr_off
>> inode
->i_blkbits
) -
1354 ext4_es_remove_extent(inode
, lblk
, contiguous_blks
);
1355 contiguous_blks
= 0;
1357 curr_off
= next_off
;
1358 } while ((bh
= bh
->b_this_page
) != head
);
1360 if (contiguous_blks
) {
1361 lblk
= page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1362 lblk
+= (curr_off
>> inode
->i_blkbits
) - contiguous_blks
;
1363 ext4_es_remove_extent(inode
, lblk
, contiguous_blks
);
1366 /* If we have released all the blocks belonging to a cluster, then we
1367 * need to release the reserved space for that cluster. */
1368 num_clusters
= EXT4_NUM_B2C(sbi
, to_release
);
1369 while (num_clusters
> 0) {
1370 lblk
= (page
->index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
)) +
1371 ((num_clusters
- 1) << sbi
->s_cluster_bits
);
1372 if (sbi
->s_cluster_ratio
== 1 ||
1373 !ext4_find_delalloc_cluster(inode
, lblk
))
1374 ext4_da_release_space(inode
, 1);
1381 * Delayed allocation stuff
1384 struct mpage_da_data
{
1385 struct inode
*inode
;
1386 struct writeback_control
*wbc
;
1388 pgoff_t first_page
; /* The first page to write */
1389 pgoff_t next_page
; /* Current page to examine */
1390 pgoff_t last_page
; /* Last page to examine */
1392 * Extent to map - this can be after first_page because that can be
1393 * fully mapped. We somewhat abuse m_flags to store whether the extent
1394 * is delalloc or unwritten.
1396 struct ext4_map_blocks map
;
1397 struct ext4_io_submit io_submit
; /* IO submission data */
1400 static void mpage_release_unused_pages(struct mpage_da_data
*mpd
,
1405 struct pagevec pvec
;
1406 struct inode
*inode
= mpd
->inode
;
1407 struct address_space
*mapping
= inode
->i_mapping
;
1409 /* This is necessary when next_page == 0. */
1410 if (mpd
->first_page
>= mpd
->next_page
)
1413 index
= mpd
->first_page
;
1414 end
= mpd
->next_page
- 1;
1416 ext4_lblk_t start
, last
;
1417 start
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1418 last
= end
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
1419 ext4_es_remove_extent(inode
, start
, last
- start
+ 1);
1422 pagevec_init(&pvec
, 0);
1423 while (index
<= end
) {
1424 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
1427 for (i
= 0; i
< nr_pages
; i
++) {
1428 struct page
*page
= pvec
.pages
[i
];
1429 if (page
->index
> end
)
1431 BUG_ON(!PageLocked(page
));
1432 BUG_ON(PageWriteback(page
));
1434 block_invalidatepage(page
, 0, PAGE_CACHE_SIZE
);
1435 ClearPageUptodate(page
);
1439 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
1440 pagevec_release(&pvec
);
1444 static void ext4_print_free_blocks(struct inode
*inode
)
1446 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1447 struct super_block
*sb
= inode
->i_sb
;
1448 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1450 ext4_msg(sb
, KERN_CRIT
, "Total free blocks count %lld",
1451 EXT4_C2B(EXT4_SB(inode
->i_sb
),
1452 ext4_count_free_clusters(sb
)));
1453 ext4_msg(sb
, KERN_CRIT
, "Free/Dirty block details");
1454 ext4_msg(sb
, KERN_CRIT
, "free_blocks=%lld",
1455 (long long) EXT4_C2B(EXT4_SB(sb
),
1456 percpu_counter_sum(&sbi
->s_freeclusters_counter
)));
1457 ext4_msg(sb
, KERN_CRIT
, "dirty_blocks=%lld",
1458 (long long) EXT4_C2B(EXT4_SB(sb
),
1459 percpu_counter_sum(&sbi
->s_dirtyclusters_counter
)));
1460 ext4_msg(sb
, KERN_CRIT
, "Block reservation details");
1461 ext4_msg(sb
, KERN_CRIT
, "i_reserved_data_blocks=%u",
1462 ei
->i_reserved_data_blocks
);
1466 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
1468 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
1472 * This function is grabs code from the very beginning of
1473 * ext4_map_blocks, but assumes that the caller is from delayed write
1474 * time. This function looks up the requested blocks and sets the
1475 * buffer delay bit under the protection of i_data_sem.
1477 static int ext4_da_map_blocks(struct inode
*inode
, sector_t iblock
,
1478 struct ext4_map_blocks
*map
,
1479 struct buffer_head
*bh
)
1481 struct extent_status es
;
1483 sector_t invalid_block
= ~((sector_t
) 0xffff);
1484 #ifdef ES_AGGRESSIVE_TEST
1485 struct ext4_map_blocks orig_map
;
1487 memcpy(&orig_map
, map
, sizeof(*map
));
1490 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
1494 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1495 "logical block %lu\n", inode
->i_ino
, map
->m_len
,
1496 (unsigned long) map
->m_lblk
);
1498 /* Lookup extent status tree firstly */
1499 if (ext4_es_lookup_extent(inode
, iblock
, &es
)) {
1500 if (ext4_es_is_hole(&es
)) {
1502 down_read(&EXT4_I(inode
)->i_data_sem
);
1507 * Delayed extent could be allocated by fallocate.
1508 * So we need to check it.
1510 if (ext4_es_is_delayed(&es
) && !ext4_es_is_unwritten(&es
)) {
1511 map_bh(bh
, inode
->i_sb
, invalid_block
);
1513 set_buffer_delay(bh
);
1517 map
->m_pblk
= ext4_es_pblock(&es
) + iblock
- es
.es_lblk
;
1518 retval
= es
.es_len
- (iblock
- es
.es_lblk
);
1519 if (retval
> map
->m_len
)
1520 retval
= map
->m_len
;
1521 map
->m_len
= retval
;
1522 if (ext4_es_is_written(&es
))
1523 map
->m_flags
|= EXT4_MAP_MAPPED
;
1524 else if (ext4_es_is_unwritten(&es
))
1525 map
->m_flags
|= EXT4_MAP_UNWRITTEN
;
1529 #ifdef ES_AGGRESSIVE_TEST
1530 ext4_map_blocks_es_recheck(NULL
, inode
, map
, &orig_map
, 0);
1536 * Try to see if we can get the block without requesting a new
1537 * file system block.
1539 down_read(&EXT4_I(inode
)->i_data_sem
);
1540 if (ext4_has_inline_data(inode
))
1542 else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
1543 retval
= ext4_ext_map_blocks(NULL
, inode
, map
, 0);
1545 retval
= ext4_ind_map_blocks(NULL
, inode
, map
, 0);
1551 * XXX: __block_prepare_write() unmaps passed block,
1555 * If the block was allocated from previously allocated cluster,
1556 * then we don't need to reserve it again. However we still need
1557 * to reserve metadata for every block we're going to write.
1559 if (EXT4_SB(inode
->i_sb
)->s_cluster_ratio
== 1 ||
1560 !ext4_find_delalloc_cluster(inode
, map
->m_lblk
)) {
1561 ret
= ext4_da_reserve_space(inode
);
1563 /* not enough space to reserve */
1569 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
1570 ~0, EXTENT_STATUS_DELAYED
);
1576 map_bh(bh
, inode
->i_sb
, invalid_block
);
1578 set_buffer_delay(bh
);
1579 } else if (retval
> 0) {
1581 unsigned int status
;
1583 if (unlikely(retval
!= map
->m_len
)) {
1584 ext4_warning(inode
->i_sb
,
1585 "ES len assertion failed for inode "
1586 "%lu: retval %d != map->m_len %d",
1587 inode
->i_ino
, retval
, map
->m_len
);
1591 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
1592 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
1593 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
1594 map
->m_pblk
, status
);
1600 up_read((&EXT4_I(inode
)->i_data_sem
));
1606 * This is a special get_block_t callback which is used by
1607 * ext4_da_write_begin(). It will either return mapped block or
1608 * reserve space for a single block.
1610 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1611 * We also have b_blocknr = -1 and b_bdev initialized properly
1613 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1614 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1615 * initialized properly.
1617 int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
1618 struct buffer_head
*bh
, int create
)
1620 struct ext4_map_blocks map
;
1623 BUG_ON(create
== 0);
1624 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
1626 map
.m_lblk
= iblock
;
1630 * first, we need to know whether the block is allocated already
1631 * preallocated blocks are unmapped but should treated
1632 * the same as allocated blocks.
1634 ret
= ext4_da_map_blocks(inode
, iblock
, &map
, bh
);
1638 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1639 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | map
.m_flags
;
1641 if (buffer_unwritten(bh
)) {
1642 /* A delayed write to unwritten bh should be marked
1643 * new and mapped. Mapped ensures that we don't do
1644 * get_block multiple times when we write to the same
1645 * offset and new ensures that we do proper zero out
1646 * for partial write.
1649 set_buffer_mapped(bh
);
1654 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1660 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1666 static int __ext4_journalled_writepage(struct page
*page
,
1669 struct address_space
*mapping
= page
->mapping
;
1670 struct inode
*inode
= mapping
->host
;
1671 struct buffer_head
*page_bufs
= NULL
;
1672 handle_t
*handle
= NULL
;
1673 int ret
= 0, err
= 0;
1674 int inline_data
= ext4_has_inline_data(inode
);
1675 struct buffer_head
*inode_bh
= NULL
;
1677 ClearPageChecked(page
);
1680 BUG_ON(page
->index
!= 0);
1681 BUG_ON(len
> ext4_get_max_inline_size(inode
));
1682 inode_bh
= ext4_journalled_write_inline_data(inode
, len
, page
);
1683 if (inode_bh
== NULL
)
1686 page_bufs
= page_buffers(page
);
1691 ext4_walk_page_buffers(handle
, page_bufs
, 0, len
,
1695 * We need to release the page lock before we start the
1696 * journal, so grab a reference so the page won't disappear
1697 * out from under us.
1702 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
1703 ext4_writepage_trans_blocks(inode
));
1704 if (IS_ERR(handle
)) {
1705 ret
= PTR_ERR(handle
);
1707 goto out_no_pagelock
;
1709 BUG_ON(!ext4_handle_valid(handle
));
1713 if (page
->mapping
!= mapping
) {
1714 /* The page got truncated from under us */
1715 ext4_journal_stop(handle
);
1721 BUFFER_TRACE(inode_bh
, "get write access");
1722 ret
= ext4_journal_get_write_access(handle
, inode_bh
);
1724 err
= ext4_handle_dirty_metadata(handle
, inode
, inode_bh
);
1727 ret
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1728 do_journal_get_write_access
);
1730 err
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1735 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1736 err
= ext4_journal_stop(handle
);
1740 if (!ext4_has_inline_data(inode
))
1741 ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
,
1743 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1752 * Note that we don't need to start a transaction unless we're journaling data
1753 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1754 * need to file the inode to the transaction's list in ordered mode because if
1755 * we are writing back data added by write(), the inode is already there and if
1756 * we are writing back data modified via mmap(), no one guarantees in which
1757 * transaction the data will hit the disk. In case we are journaling data, we
1758 * cannot start transaction directly because transaction start ranks above page
1759 * lock so we have to do some magic.
1761 * This function can get called via...
1762 * - ext4_writepages after taking page lock (have journal handle)
1763 * - journal_submit_inode_data_buffers (no journal handle)
1764 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1765 * - grab_page_cache when doing write_begin (have journal handle)
1767 * We don't do any block allocation in this function. If we have page with
1768 * multiple blocks we need to write those buffer_heads that are mapped. This
1769 * is important for mmaped based write. So if we do with blocksize 1K
1770 * truncate(f, 1024);
1771 * a = mmap(f, 0, 4096);
1773 * truncate(f, 4096);
1774 * we have in the page first buffer_head mapped via page_mkwrite call back
1775 * but other buffer_heads would be unmapped but dirty (dirty done via the
1776 * do_wp_page). So writepage should write the first block. If we modify
1777 * the mmap area beyond 1024 we will again get a page_fault and the
1778 * page_mkwrite callback will do the block allocation and mark the
1779 * buffer_heads mapped.
1781 * We redirty the page if we have any buffer_heads that is either delay or
1782 * unwritten in the page.
1784 * We can get recursively called as show below.
1786 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1789 * But since we don't do any block allocation we should not deadlock.
1790 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1792 static int ext4_writepage(struct page
*page
,
1793 struct writeback_control
*wbc
)
1798 struct buffer_head
*page_bufs
= NULL
;
1799 struct inode
*inode
= page
->mapping
->host
;
1800 struct ext4_io_submit io_submit
;
1801 bool keep_towrite
= false;
1803 trace_ext4_writepage(page
);
1804 size
= i_size_read(inode
);
1805 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
1806 len
= size
& ~PAGE_CACHE_MASK
;
1808 len
= PAGE_CACHE_SIZE
;
1810 page_bufs
= page_buffers(page
);
1812 * We cannot do block allocation or other extent handling in this
1813 * function. If there are buffers needing that, we have to redirty
1814 * the page. But we may reach here when we do a journal commit via
1815 * journal_submit_inode_data_buffers() and in that case we must write
1816 * allocated buffers to achieve data=ordered mode guarantees.
1818 if (ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
1819 ext4_bh_delay_or_unwritten
)) {
1820 redirty_page_for_writepage(wbc
, page
);
1821 if (current
->flags
& PF_MEMALLOC
) {
1823 * For memory cleaning there's no point in writing only
1824 * some buffers. So just bail out. Warn if we came here
1825 * from direct reclaim.
1827 WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
))
1832 keep_towrite
= true;
1835 if (PageChecked(page
) && ext4_should_journal_data(inode
))
1837 * It's mmapped pagecache. Add buffers and journal it. There
1838 * doesn't seem much point in redirtying the page here.
1840 return __ext4_journalled_writepage(page
, len
);
1842 ext4_io_submit_init(&io_submit
, wbc
);
1843 io_submit
.io_end
= ext4_init_io_end(inode
, GFP_NOFS
);
1844 if (!io_submit
.io_end
) {
1845 redirty_page_for_writepage(wbc
, page
);
1849 ret
= ext4_bio_write_page(&io_submit
, page
, len
, wbc
, keep_towrite
);
1850 ext4_io_submit(&io_submit
);
1851 /* Drop io_end reference we got from init */
1852 ext4_put_io_end_defer(io_submit
.io_end
);
1856 static int mpage_submit_page(struct mpage_da_data
*mpd
, struct page
*page
)
1859 loff_t size
= i_size_read(mpd
->inode
);
1862 BUG_ON(page
->index
!= mpd
->first_page
);
1863 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
1864 len
= size
& ~PAGE_CACHE_MASK
;
1866 len
= PAGE_CACHE_SIZE
;
1867 clear_page_dirty_for_io(page
);
1868 err
= ext4_bio_write_page(&mpd
->io_submit
, page
, len
, mpd
->wbc
, false);
1870 mpd
->wbc
->nr_to_write
--;
1876 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1879 * mballoc gives us at most this number of blocks...
1880 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1881 * The rest of mballoc seems to handle chunks up to full group size.
1883 #define MAX_WRITEPAGES_EXTENT_LEN 2048
1886 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1888 * @mpd - extent of blocks
1889 * @lblk - logical number of the block in the file
1890 * @bh - buffer head we want to add to the extent
1892 * The function is used to collect contig. blocks in the same state. If the
1893 * buffer doesn't require mapping for writeback and we haven't started the
1894 * extent of buffers to map yet, the function returns 'true' immediately - the
1895 * caller can write the buffer right away. Otherwise the function returns true
1896 * if the block has been added to the extent, false if the block couldn't be
1899 static bool mpage_add_bh_to_extent(struct mpage_da_data
*mpd
, ext4_lblk_t lblk
,
1900 struct buffer_head
*bh
)
1902 struct ext4_map_blocks
*map
= &mpd
->map
;
1904 /* Buffer that doesn't need mapping for writeback? */
1905 if (!buffer_dirty(bh
) || !buffer_mapped(bh
) ||
1906 (!buffer_delay(bh
) && !buffer_unwritten(bh
))) {
1907 /* So far no extent to map => we write the buffer right away */
1908 if (map
->m_len
== 0)
1913 /* First block in the extent? */
1914 if (map
->m_len
== 0) {
1917 map
->m_flags
= bh
->b_state
& BH_FLAGS
;
1921 /* Don't go larger than mballoc is willing to allocate */
1922 if (map
->m_len
>= MAX_WRITEPAGES_EXTENT_LEN
)
1925 /* Can we merge the block to our big extent? */
1926 if (lblk
== map
->m_lblk
+ map
->m_len
&&
1927 (bh
->b_state
& BH_FLAGS
) == map
->m_flags
) {
1935 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1937 * @mpd - extent of blocks for mapping
1938 * @head - the first buffer in the page
1939 * @bh - buffer we should start processing from
1940 * @lblk - logical number of the block in the file corresponding to @bh
1942 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1943 * the page for IO if all buffers in this page were mapped and there's no
1944 * accumulated extent of buffers to map or add buffers in the page to the
1945 * extent of buffers to map. The function returns 1 if the caller can continue
1946 * by processing the next page, 0 if it should stop adding buffers to the
1947 * extent to map because we cannot extend it anymore. It can also return value
1948 * < 0 in case of error during IO submission.
1950 static int mpage_process_page_bufs(struct mpage_da_data
*mpd
,
1951 struct buffer_head
*head
,
1952 struct buffer_head
*bh
,
1955 struct inode
*inode
= mpd
->inode
;
1957 ext4_lblk_t blocks
= (i_size_read(inode
) + (1 << inode
->i_blkbits
) - 1)
1958 >> inode
->i_blkbits
;
1961 BUG_ON(buffer_locked(bh
));
1963 if (lblk
>= blocks
|| !mpage_add_bh_to_extent(mpd
, lblk
, bh
)) {
1964 /* Found extent to map? */
1967 /* Everything mapped so far and we hit EOF */
1970 } while (lblk
++, (bh
= bh
->b_this_page
) != head
);
1971 /* So far everything mapped? Submit the page for IO. */
1972 if (mpd
->map
.m_len
== 0) {
1973 err
= mpage_submit_page(mpd
, head
->b_page
);
1977 return lblk
< blocks
;
1981 * mpage_map_buffers - update buffers corresponding to changed extent and
1982 * submit fully mapped pages for IO
1984 * @mpd - description of extent to map, on return next extent to map
1986 * Scan buffers corresponding to changed extent (we expect corresponding pages
1987 * to be already locked) and update buffer state according to new extent state.
1988 * We map delalloc buffers to their physical location, clear unwritten bits,
1989 * and mark buffers as uninit when we perform writes to unwritten extents
1990 * and do extent conversion after IO is finished. If the last page is not fully
1991 * mapped, we update @map to the next extent in the last page that needs
1992 * mapping. Otherwise we submit the page for IO.
1994 static int mpage_map_and_submit_buffers(struct mpage_da_data
*mpd
)
1996 struct pagevec pvec
;
1998 struct inode
*inode
= mpd
->inode
;
1999 struct buffer_head
*head
, *bh
;
2000 int bpp_bits
= PAGE_CACHE_SHIFT
- inode
->i_blkbits
;
2006 start
= mpd
->map
.m_lblk
>> bpp_bits
;
2007 end
= (mpd
->map
.m_lblk
+ mpd
->map
.m_len
- 1) >> bpp_bits
;
2008 lblk
= start
<< bpp_bits
;
2009 pblock
= mpd
->map
.m_pblk
;
2011 pagevec_init(&pvec
, 0);
2012 while (start
<= end
) {
2013 nr_pages
= pagevec_lookup(&pvec
, inode
->i_mapping
, start
,
2017 for (i
= 0; i
< nr_pages
; i
++) {
2018 struct page
*page
= pvec
.pages
[i
];
2020 if (page
->index
> end
)
2022 /* Up to 'end' pages must be contiguous */
2023 BUG_ON(page
->index
!= start
);
2024 bh
= head
= page_buffers(page
);
2026 if (lblk
< mpd
->map
.m_lblk
)
2028 if (lblk
>= mpd
->map
.m_lblk
+ mpd
->map
.m_len
) {
2030 * Buffer after end of mapped extent.
2031 * Find next buffer in the page to map.
2034 mpd
->map
.m_flags
= 0;
2036 * FIXME: If dioread_nolock supports
2037 * blocksize < pagesize, we need to make
2038 * sure we add size mapped so far to
2039 * io_end->size as the following call
2040 * can submit the page for IO.
2042 err
= mpage_process_page_bufs(mpd
, head
,
2044 pagevec_release(&pvec
);
2049 if (buffer_delay(bh
)) {
2050 clear_buffer_delay(bh
);
2051 bh
->b_blocknr
= pblock
++;
2053 clear_buffer_unwritten(bh
);
2054 } while (lblk
++, (bh
= bh
->b_this_page
) != head
);
2057 * FIXME: This is going to break if dioread_nolock
2058 * supports blocksize < pagesize as we will try to
2059 * convert potentially unmapped parts of inode.
2061 mpd
->io_submit
.io_end
->size
+= PAGE_CACHE_SIZE
;
2062 /* Page fully mapped - let IO run! */
2063 err
= mpage_submit_page(mpd
, page
);
2065 pagevec_release(&pvec
);
2070 pagevec_release(&pvec
);
2072 /* Extent fully mapped and matches with page boundary. We are done. */
2074 mpd
->map
.m_flags
= 0;
2078 static int mpage_map_one_extent(handle_t
*handle
, struct mpage_da_data
*mpd
)
2080 struct inode
*inode
= mpd
->inode
;
2081 struct ext4_map_blocks
*map
= &mpd
->map
;
2082 int get_blocks_flags
;
2083 int err
, dioread_nolock
;
2085 trace_ext4_da_write_pages_extent(inode
, map
);
2087 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2088 * to convert an unwritten extent to be initialized (in the case
2089 * where we have written into one or more preallocated blocks). It is
2090 * possible that we're going to need more metadata blocks than
2091 * previously reserved. However we must not fail because we're in
2092 * writeback and there is nothing we can do about it so it might result
2093 * in data loss. So use reserved blocks to allocate metadata if
2096 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2097 * the blocks in question are delalloc blocks. This indicates
2098 * that the blocks and quotas has already been checked when
2099 * the data was copied into the page cache.
2101 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
|
2102 EXT4_GET_BLOCKS_METADATA_NOFAIL
;
2103 dioread_nolock
= ext4_should_dioread_nolock(inode
);
2105 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
2106 if (map
->m_flags
& (1 << BH_Delay
))
2107 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
2109 err
= ext4_map_blocks(handle
, inode
, map
, get_blocks_flags
);
2112 if (dioread_nolock
&& (map
->m_flags
& EXT4_MAP_UNWRITTEN
)) {
2113 if (!mpd
->io_submit
.io_end
->handle
&&
2114 ext4_handle_valid(handle
)) {
2115 mpd
->io_submit
.io_end
->handle
= handle
->h_rsv_handle
;
2116 handle
->h_rsv_handle
= NULL
;
2118 ext4_set_io_unwritten_flag(inode
, mpd
->io_submit
.io_end
);
2121 BUG_ON(map
->m_len
== 0);
2122 if (map
->m_flags
& EXT4_MAP_NEW
) {
2123 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
2126 for (i
= 0; i
< map
->m_len
; i
++)
2127 unmap_underlying_metadata(bdev
, map
->m_pblk
+ i
);
2133 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2134 * mpd->len and submit pages underlying it for IO
2136 * @handle - handle for journal operations
2137 * @mpd - extent to map
2138 * @give_up_on_write - we set this to true iff there is a fatal error and there
2139 * is no hope of writing the data. The caller should discard
2140 * dirty pages to avoid infinite loops.
2142 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2143 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2144 * them to initialized or split the described range from larger unwritten
2145 * extent. Note that we need not map all the described range since allocation
2146 * can return less blocks or the range is covered by more unwritten extents. We
2147 * cannot map more because we are limited by reserved transaction credits. On
2148 * the other hand we always make sure that the last touched page is fully
2149 * mapped so that it can be written out (and thus forward progress is
2150 * guaranteed). After mapping we submit all mapped pages for IO.
2152 static int mpage_map_and_submit_extent(handle_t
*handle
,
2153 struct mpage_da_data
*mpd
,
2154 bool *give_up_on_write
)
2156 struct inode
*inode
= mpd
->inode
;
2157 struct ext4_map_blocks
*map
= &mpd
->map
;
2162 mpd
->io_submit
.io_end
->offset
=
2163 ((loff_t
)map
->m_lblk
) << inode
->i_blkbits
;
2165 err
= mpage_map_one_extent(handle
, mpd
);
2167 struct super_block
*sb
= inode
->i_sb
;
2169 if (EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)
2170 goto invalidate_dirty_pages
;
2172 * Let the uper layers retry transient errors.
2173 * In the case of ENOSPC, if ext4_count_free_blocks()
2174 * is non-zero, a commit should free up blocks.
2176 if ((err
== -ENOMEM
) ||
2177 (err
== -ENOSPC
&& ext4_count_free_clusters(sb
))) {
2179 goto update_disksize
;
2182 ext4_msg(sb
, KERN_CRIT
,
2183 "Delayed block allocation failed for "
2184 "inode %lu at logical offset %llu with"
2185 " max blocks %u with error %d",
2187 (unsigned long long)map
->m_lblk
,
2188 (unsigned)map
->m_len
, -err
);
2189 ext4_msg(sb
, KERN_CRIT
,
2190 "This should not happen!! Data will "
2193 ext4_print_free_blocks(inode
);
2194 invalidate_dirty_pages
:
2195 *give_up_on_write
= true;
2200 * Update buffer state, submit mapped pages, and get us new
2203 err
= mpage_map_and_submit_buffers(mpd
);
2205 goto update_disksize
;
2206 } while (map
->m_len
);
2210 * Update on-disk size after IO is submitted. Races with
2211 * truncate are avoided by checking i_size under i_data_sem.
2213 disksize
= ((loff_t
)mpd
->first_page
) << PAGE_CACHE_SHIFT
;
2214 if (disksize
> EXT4_I(inode
)->i_disksize
) {
2218 down_write(&EXT4_I(inode
)->i_data_sem
);
2219 i_size
= i_size_read(inode
);
2220 if (disksize
> i_size
)
2222 if (disksize
> EXT4_I(inode
)->i_disksize
)
2223 EXT4_I(inode
)->i_disksize
= disksize
;
2224 err2
= ext4_mark_inode_dirty(handle
, inode
);
2225 up_write(&EXT4_I(inode
)->i_data_sem
);
2227 ext4_error(inode
->i_sb
,
2228 "Failed to mark inode %lu dirty",
2237 * Calculate the total number of credits to reserve for one writepages
2238 * iteration. This is called from ext4_writepages(). We map an extent of
2239 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2240 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2241 * bpp - 1 blocks in bpp different extents.
2243 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2245 int bpp
= ext4_journal_blocks_per_page(inode
);
2247 return ext4_meta_trans_blocks(inode
,
2248 MAX_WRITEPAGES_EXTENT_LEN
+ bpp
- 1, bpp
);
2252 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2253 * and underlying extent to map
2255 * @mpd - where to look for pages
2257 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2258 * IO immediately. When we find a page which isn't mapped we start accumulating
2259 * extent of buffers underlying these pages that needs mapping (formed by
2260 * either delayed or unwritten buffers). We also lock the pages containing
2261 * these buffers. The extent found is returned in @mpd structure (starting at
2262 * mpd->lblk with length mpd->len blocks).
2264 * Note that this function can attach bios to one io_end structure which are
2265 * neither logically nor physically contiguous. Although it may seem as an
2266 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2267 * case as we need to track IO to all buffers underlying a page in one io_end.
2269 static int mpage_prepare_extent_to_map(struct mpage_da_data
*mpd
)
2271 struct address_space
*mapping
= mpd
->inode
->i_mapping
;
2272 struct pagevec pvec
;
2273 unsigned int nr_pages
;
2274 long left
= mpd
->wbc
->nr_to_write
;
2275 pgoff_t index
= mpd
->first_page
;
2276 pgoff_t end
= mpd
->last_page
;
2279 int blkbits
= mpd
->inode
->i_blkbits
;
2281 struct buffer_head
*head
;
2283 if (mpd
->wbc
->sync_mode
== WB_SYNC_ALL
|| mpd
->wbc
->tagged_writepages
)
2284 tag
= PAGECACHE_TAG_TOWRITE
;
2286 tag
= PAGECACHE_TAG_DIRTY
;
2288 pagevec_init(&pvec
, 0);
2290 mpd
->next_page
= index
;
2291 while (index
<= end
) {
2292 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
2293 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
2297 for (i
= 0; i
< nr_pages
; i
++) {
2298 struct page
*page
= pvec
.pages
[i
];
2301 * At this point, the page may be truncated or
2302 * invalidated (changing page->mapping to NULL), or
2303 * even swizzled back from swapper_space to tmpfs file
2304 * mapping. However, page->index will not change
2305 * because we have a reference on the page.
2307 if (page
->index
> end
)
2311 * Accumulated enough dirty pages? This doesn't apply
2312 * to WB_SYNC_ALL mode. For integrity sync we have to
2313 * keep going because someone may be concurrently
2314 * dirtying pages, and we might have synced a lot of
2315 * newly appeared dirty pages, but have not synced all
2316 * of the old dirty pages.
2318 if (mpd
->wbc
->sync_mode
== WB_SYNC_NONE
&& left
<= 0)
2321 /* If we can't merge this page, we are done. */
2322 if (mpd
->map
.m_len
> 0 && mpd
->next_page
!= page
->index
)
2327 * If the page is no longer dirty, or its mapping no
2328 * longer corresponds to inode we are writing (which
2329 * means it has been truncated or invalidated), or the
2330 * page is already under writeback and we are not doing
2331 * a data integrity writeback, skip the page
2333 if (!PageDirty(page
) ||
2334 (PageWriteback(page
) &&
2335 (mpd
->wbc
->sync_mode
== WB_SYNC_NONE
)) ||
2336 unlikely(page
->mapping
!= mapping
)) {
2341 wait_on_page_writeback(page
);
2342 BUG_ON(PageWriteback(page
));
2344 if (mpd
->map
.m_len
== 0)
2345 mpd
->first_page
= page
->index
;
2346 mpd
->next_page
= page
->index
+ 1;
2347 /* Add all dirty buffers to mpd */
2348 lblk
= ((ext4_lblk_t
)page
->index
) <<
2349 (PAGE_CACHE_SHIFT
- blkbits
);
2350 head
= page_buffers(page
);
2351 err
= mpage_process_page_bufs(mpd
, head
, head
, lblk
);
2357 pagevec_release(&pvec
);
2362 pagevec_release(&pvec
);
2366 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
2369 struct address_space
*mapping
= data
;
2370 int ret
= ext4_writepage(page
, wbc
);
2371 mapping_set_error(mapping
, ret
);
2375 static int ext4_writepages(struct address_space
*mapping
,
2376 struct writeback_control
*wbc
)
2378 pgoff_t writeback_index
= 0;
2379 long nr_to_write
= wbc
->nr_to_write
;
2380 int range_whole
= 0;
2382 handle_t
*handle
= NULL
;
2383 struct mpage_da_data mpd
;
2384 struct inode
*inode
= mapping
->host
;
2385 int needed_blocks
, rsv_blocks
= 0, ret
= 0;
2386 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2388 struct blk_plug plug
;
2389 bool give_up_on_write
= false;
2391 trace_ext4_writepages(inode
, wbc
);
2394 * No pages to write? This is mainly a kludge to avoid starting
2395 * a transaction for special inodes like journal inode on last iput()
2396 * because that could violate lock ordering on umount
2398 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2399 goto out_writepages
;
2401 if (ext4_should_journal_data(inode
)) {
2402 struct blk_plug plug
;
2404 blk_start_plug(&plug
);
2405 ret
= write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
2406 blk_finish_plug(&plug
);
2407 goto out_writepages
;
2411 * If the filesystem has aborted, it is read-only, so return
2412 * right away instead of dumping stack traces later on that
2413 * will obscure the real source of the problem. We test
2414 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2415 * the latter could be true if the filesystem is mounted
2416 * read-only, and in that case, ext4_writepages should
2417 * *never* be called, so if that ever happens, we would want
2420 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
)) {
2422 goto out_writepages
;
2425 if (ext4_should_dioread_nolock(inode
)) {
2427 * We may need to convert up to one extent per block in
2428 * the page and we may dirty the inode.
2430 rsv_blocks
= 1 + (PAGE_CACHE_SIZE
>> inode
->i_blkbits
);
2434 * If we have inline data and arrive here, it means that
2435 * we will soon create the block for the 1st page, so
2436 * we'd better clear the inline data here.
2438 if (ext4_has_inline_data(inode
)) {
2439 /* Just inode will be modified... */
2440 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
2441 if (IS_ERR(handle
)) {
2442 ret
= PTR_ERR(handle
);
2443 goto out_writepages
;
2445 BUG_ON(ext4_test_inode_state(inode
,
2446 EXT4_STATE_MAY_INLINE_DATA
));
2447 ext4_destroy_inline_data(handle
, inode
);
2448 ext4_journal_stop(handle
);
2451 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2454 if (wbc
->range_cyclic
) {
2455 writeback_index
= mapping
->writeback_index
;
2456 if (writeback_index
)
2458 mpd
.first_page
= writeback_index
;
2461 mpd
.first_page
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2462 mpd
.last_page
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
2467 ext4_io_submit_init(&mpd
.io_submit
, wbc
);
2469 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2470 tag_pages_for_writeback(mapping
, mpd
.first_page
, mpd
.last_page
);
2472 blk_start_plug(&plug
);
2473 while (!done
&& mpd
.first_page
<= mpd
.last_page
) {
2474 /* For each extent of pages we use new io_end */
2475 mpd
.io_submit
.io_end
= ext4_init_io_end(inode
, GFP_KERNEL
);
2476 if (!mpd
.io_submit
.io_end
) {
2482 * We have two constraints: We find one extent to map and we
2483 * must always write out whole page (makes a difference when
2484 * blocksize < pagesize) so that we don't block on IO when we
2485 * try to write out the rest of the page. Journalled mode is
2486 * not supported by delalloc.
2488 BUG_ON(ext4_should_journal_data(inode
));
2489 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2491 /* start a new transaction */
2492 handle
= ext4_journal_start_with_reserve(inode
,
2493 EXT4_HT_WRITE_PAGE
, needed_blocks
, rsv_blocks
);
2494 if (IS_ERR(handle
)) {
2495 ret
= PTR_ERR(handle
);
2496 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2497 "%ld pages, ino %lu; err %d", __func__
,
2498 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2499 /* Release allocated io_end */
2500 ext4_put_io_end(mpd
.io_submit
.io_end
);
2504 trace_ext4_da_write_pages(inode
, mpd
.first_page
, mpd
.wbc
);
2505 ret
= mpage_prepare_extent_to_map(&mpd
);
2508 ret
= mpage_map_and_submit_extent(handle
, &mpd
,
2512 * We scanned the whole range (or exhausted
2513 * nr_to_write), submitted what was mapped and
2514 * didn't find anything needing mapping. We are
2520 ext4_journal_stop(handle
);
2521 /* Submit prepared bio */
2522 ext4_io_submit(&mpd
.io_submit
);
2523 /* Unlock pages we didn't use */
2524 mpage_release_unused_pages(&mpd
, give_up_on_write
);
2525 /* Drop our io_end reference we got from init */
2526 ext4_put_io_end(mpd
.io_submit
.io_end
);
2528 if (ret
== -ENOSPC
&& sbi
->s_journal
) {
2530 * Commit the transaction which would
2531 * free blocks released in the transaction
2534 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2538 /* Fatal error - ENOMEM, EIO... */
2542 blk_finish_plug(&plug
);
2543 if (!ret
&& !cycled
&& wbc
->nr_to_write
> 0) {
2545 mpd
.last_page
= writeback_index
- 1;
2551 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2553 * Set the writeback_index so that range_cyclic
2554 * mode will write it back later
2556 mapping
->writeback_index
= mpd
.first_page
;
2559 trace_ext4_writepages_result(inode
, wbc
, ret
,
2560 nr_to_write
- wbc
->nr_to_write
);
2564 static int ext4_nonda_switch(struct super_block
*sb
)
2566 s64 free_clusters
, dirty_clusters
;
2567 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2570 * switch to non delalloc mode if we are running low
2571 * on free block. The free block accounting via percpu
2572 * counters can get slightly wrong with percpu_counter_batch getting
2573 * accumulated on each CPU without updating global counters
2574 * Delalloc need an accurate free block accounting. So switch
2575 * to non delalloc when we are near to error range.
2578 percpu_counter_read_positive(&sbi
->s_freeclusters_counter
);
2580 percpu_counter_read_positive(&sbi
->s_dirtyclusters_counter
);
2582 * Start pushing delalloc when 1/2 of free blocks are dirty.
2584 if (dirty_clusters
&& (free_clusters
< 2 * dirty_clusters
))
2585 try_to_writeback_inodes_sb(sb
, WB_REASON_FS_FREE_SPACE
);
2587 if (2 * free_clusters
< 3 * dirty_clusters
||
2588 free_clusters
< (dirty_clusters
+ EXT4_FREECLUSTERS_WATERMARK
)) {
2590 * free block count is less than 150% of dirty blocks
2591 * or free blocks is less than watermark
2598 /* We always reserve for an inode update; the superblock could be there too */
2599 static int ext4_da_write_credits(struct inode
*inode
, loff_t pos
, unsigned len
)
2601 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode
->i_sb
,
2602 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
)))
2605 if (pos
+ len
<= 0x7fffffffULL
)
2608 /* We might need to update the superblock to set LARGE_FILE */
2612 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2613 loff_t pos
, unsigned len
, unsigned flags
,
2614 struct page
**pagep
, void **fsdata
)
2616 int ret
, retries
= 0;
2619 struct inode
*inode
= mapping
->host
;
2622 index
= pos
>> PAGE_CACHE_SHIFT
;
2624 if (ext4_nonda_switch(inode
->i_sb
)) {
2625 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2626 return ext4_write_begin(file
, mapping
, pos
,
2627 len
, flags
, pagep
, fsdata
);
2629 *fsdata
= (void *)0;
2630 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2632 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
2633 ret
= ext4_da_write_inline_data_begin(mapping
, inode
,
2643 * grab_cache_page_write_begin() can take a long time if the
2644 * system is thrashing due to memory pressure, or if the page
2645 * is being written back. So grab it first before we start
2646 * the transaction handle. This also allows us to allocate
2647 * the page (if needed) without using GFP_NOFS.
2650 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2656 * With delayed allocation, we don't log the i_disksize update
2657 * if there is delayed block allocation. But we still need
2658 * to journalling the i_disksize update if writes to the end
2659 * of file which has an already mapped buffer.
2662 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
2663 ext4_da_write_credits(inode
, pos
, len
));
2664 if (IS_ERR(handle
)) {
2665 page_cache_release(page
);
2666 return PTR_ERR(handle
);
2670 if (page
->mapping
!= mapping
) {
2671 /* The page got truncated from under us */
2673 page_cache_release(page
);
2674 ext4_journal_stop(handle
);
2677 /* In case writeback began while the page was unlocked */
2678 wait_for_stable_page(page
);
2680 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2681 ret
= ext4_block_write_begin(page
, pos
, len
,
2682 ext4_da_get_block_prep
);
2684 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
2688 ext4_journal_stop(handle
);
2690 * block_write_begin may have instantiated a few blocks
2691 * outside i_size. Trim these off again. Don't need
2692 * i_size_read because we hold i_mutex.
2694 if (pos
+ len
> inode
->i_size
)
2695 ext4_truncate_failed_write(inode
);
2697 if (ret
== -ENOSPC
&&
2698 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
2701 page_cache_release(page
);
2710 * Check if we should update i_disksize
2711 * when write to the end of file but not require block allocation
2713 static int ext4_da_should_update_i_disksize(struct page
*page
,
2714 unsigned long offset
)
2716 struct buffer_head
*bh
;
2717 struct inode
*inode
= page
->mapping
->host
;
2721 bh
= page_buffers(page
);
2722 idx
= offset
>> inode
->i_blkbits
;
2724 for (i
= 0; i
< idx
; i
++)
2725 bh
= bh
->b_this_page
;
2727 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
2732 static int ext4_da_write_end(struct file
*file
,
2733 struct address_space
*mapping
,
2734 loff_t pos
, unsigned len
, unsigned copied
,
2735 struct page
*page
, void *fsdata
)
2737 struct inode
*inode
= mapping
->host
;
2739 handle_t
*handle
= ext4_journal_current_handle();
2741 unsigned long start
, end
;
2742 int write_mode
= (int)(unsigned long)fsdata
;
2744 if (write_mode
== FALL_BACK_TO_NONDELALLOC
)
2745 return ext4_write_end(file
, mapping
, pos
,
2746 len
, copied
, page
, fsdata
);
2748 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
2749 start
= pos
& (PAGE_CACHE_SIZE
- 1);
2750 end
= start
+ copied
- 1;
2753 * generic_write_end() will run mark_inode_dirty() if i_size
2754 * changes. So let's piggyback the i_disksize mark_inode_dirty
2757 new_i_size
= pos
+ copied
;
2758 if (copied
&& new_i_size
> EXT4_I(inode
)->i_disksize
) {
2759 if (ext4_has_inline_data(inode
) ||
2760 ext4_da_should_update_i_disksize(page
, end
)) {
2761 ext4_update_i_disksize(inode
, new_i_size
);
2762 /* We need to mark inode dirty even if
2763 * new_i_size is less that inode->i_size
2764 * bu greater than i_disksize.(hint delalloc)
2766 ext4_mark_inode_dirty(handle
, inode
);
2770 if (write_mode
!= CONVERT_INLINE_DATA
&&
2771 ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
) &&
2772 ext4_has_inline_data(inode
))
2773 ret2
= ext4_da_write_inline_data_end(inode
, pos
, len
, copied
,
2776 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
2782 ret2
= ext4_journal_stop(handle
);
2786 return ret
? ret
: copied
;
2789 static void ext4_da_invalidatepage(struct page
*page
, unsigned int offset
,
2790 unsigned int length
)
2793 * Drop reserved blocks
2795 BUG_ON(!PageLocked(page
));
2796 if (!page_has_buffers(page
))
2799 ext4_da_page_release_reservation(page
, offset
, length
);
2802 ext4_invalidatepage(page
, offset
, length
);
2808 * Force all delayed allocation blocks to be allocated for a given inode.
2810 int ext4_alloc_da_blocks(struct inode
*inode
)
2812 trace_ext4_alloc_da_blocks(inode
);
2814 if (!EXT4_I(inode
)->i_reserved_data_blocks
)
2818 * We do something simple for now. The filemap_flush() will
2819 * also start triggering a write of the data blocks, which is
2820 * not strictly speaking necessary (and for users of
2821 * laptop_mode, not even desirable). However, to do otherwise
2822 * would require replicating code paths in:
2824 * ext4_writepages() ->
2825 * write_cache_pages() ---> (via passed in callback function)
2826 * __mpage_da_writepage() -->
2827 * mpage_add_bh_to_extent()
2828 * mpage_da_map_blocks()
2830 * The problem is that write_cache_pages(), located in
2831 * mm/page-writeback.c, marks pages clean in preparation for
2832 * doing I/O, which is not desirable if we're not planning on
2835 * We could call write_cache_pages(), and then redirty all of
2836 * the pages by calling redirty_page_for_writepage() but that
2837 * would be ugly in the extreme. So instead we would need to
2838 * replicate parts of the code in the above functions,
2839 * simplifying them because we wouldn't actually intend to
2840 * write out the pages, but rather only collect contiguous
2841 * logical block extents, call the multi-block allocator, and
2842 * then update the buffer heads with the block allocations.
2844 * For now, though, we'll cheat by calling filemap_flush(),
2845 * which will map the blocks, and start the I/O, but not
2846 * actually wait for the I/O to complete.
2848 return filemap_flush(inode
->i_mapping
);
2852 * bmap() is special. It gets used by applications such as lilo and by
2853 * the swapper to find the on-disk block of a specific piece of data.
2855 * Naturally, this is dangerous if the block concerned is still in the
2856 * journal. If somebody makes a swapfile on an ext4 data-journaling
2857 * filesystem and enables swap, then they may get a nasty shock when the
2858 * data getting swapped to that swapfile suddenly gets overwritten by
2859 * the original zero's written out previously to the journal and
2860 * awaiting writeback in the kernel's buffer cache.
2862 * So, if we see any bmap calls here on a modified, data-journaled file,
2863 * take extra steps to flush any blocks which might be in the cache.
2865 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
2867 struct inode
*inode
= mapping
->host
;
2872 * We can get here for an inline file via the FIBMAP ioctl
2874 if (ext4_has_inline_data(inode
))
2877 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
2878 test_opt(inode
->i_sb
, DELALLOC
)) {
2880 * With delalloc we want to sync the file
2881 * so that we can make sure we allocate
2884 filemap_write_and_wait(mapping
);
2887 if (EXT4_JOURNAL(inode
) &&
2888 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
2890 * This is a REALLY heavyweight approach, but the use of
2891 * bmap on dirty files is expected to be extremely rare:
2892 * only if we run lilo or swapon on a freshly made file
2893 * do we expect this to happen.
2895 * (bmap requires CAP_SYS_RAWIO so this does not
2896 * represent an unprivileged user DOS attack --- we'd be
2897 * in trouble if mortal users could trigger this path at
2900 * NB. EXT4_STATE_JDATA is not set on files other than
2901 * regular files. If somebody wants to bmap a directory
2902 * or symlink and gets confused because the buffer
2903 * hasn't yet been flushed to disk, they deserve
2904 * everything they get.
2907 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
2908 journal
= EXT4_JOURNAL(inode
);
2909 jbd2_journal_lock_updates(journal
);
2910 err
= jbd2_journal_flush(journal
);
2911 jbd2_journal_unlock_updates(journal
);
2917 return generic_block_bmap(mapping
, block
, ext4_get_block
);
2920 static int ext4_readpage(struct file
*file
, struct page
*page
)
2923 struct inode
*inode
= page
->mapping
->host
;
2925 trace_ext4_readpage(page
);
2927 if (ext4_has_inline_data(inode
))
2928 ret
= ext4_readpage_inline(inode
, page
);
2931 return ext4_mpage_readpages(page
->mapping
, NULL
, page
, 1);
2937 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
2938 struct list_head
*pages
, unsigned nr_pages
)
2940 struct inode
*inode
= mapping
->host
;
2942 /* If the file has inline data, no need to do readpages. */
2943 if (ext4_has_inline_data(inode
))
2946 return ext4_mpage_readpages(mapping
, pages
, NULL
, nr_pages
);
2949 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
2950 unsigned int length
)
2952 trace_ext4_invalidatepage(page
, offset
, length
);
2954 /* No journalling happens on data buffers when this function is used */
2955 WARN_ON(page_has_buffers(page
) && buffer_jbd(page_buffers(page
)));
2957 block_invalidatepage(page
, offset
, length
);
2960 static int __ext4_journalled_invalidatepage(struct page
*page
,
2961 unsigned int offset
,
2962 unsigned int length
)
2964 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2966 trace_ext4_journalled_invalidatepage(page
, offset
, length
);
2969 * If it's a full truncate we just forget about the pending dirtying
2971 if (offset
== 0 && length
== PAGE_CACHE_SIZE
)
2972 ClearPageChecked(page
);
2974 return jbd2_journal_invalidatepage(journal
, page
, offset
, length
);
2977 /* Wrapper for aops... */
2978 static void ext4_journalled_invalidatepage(struct page
*page
,
2979 unsigned int offset
,
2980 unsigned int length
)
2982 WARN_ON(__ext4_journalled_invalidatepage(page
, offset
, length
) < 0);
2985 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
2987 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
2989 trace_ext4_releasepage(page
);
2991 /* Page has dirty journalled data -> cannot release */
2992 if (PageChecked(page
))
2995 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
2997 return try_to_free_buffers(page
);
3001 * ext4_get_block used when preparing for a DIO write or buffer write.
3002 * We allocate an uinitialized extent if blocks haven't been allocated.
3003 * The extent will be converted to initialized after the IO is complete.
3005 int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
3006 struct buffer_head
*bh_result
, int create
)
3008 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3009 inode
->i_ino
, create
);
3010 return _ext4_get_block(inode
, iblock
, bh_result
,
3011 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
3014 static int ext4_get_block_write_nolock(struct inode
*inode
, sector_t iblock
,
3015 struct buffer_head
*bh_result
, int create
)
3017 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3018 inode
->i_ino
, create
);
3019 return _ext4_get_block(inode
, iblock
, bh_result
,
3020 EXT4_GET_BLOCKS_NO_LOCK
);
3023 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
3024 ssize_t size
, void *private)
3026 ext4_io_end_t
*io_end
= iocb
->private;
3028 /* if not async direct IO just return */
3032 ext_debug("ext4_end_io_dio(): io_end 0x%p "
3033 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3034 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
3037 iocb
->private = NULL
;
3038 io_end
->offset
= offset
;
3039 io_end
->size
= size
;
3040 ext4_put_io_end(io_end
);
3044 * For ext4 extent files, ext4 will do direct-io write to holes,
3045 * preallocated extents, and those write extend the file, no need to
3046 * fall back to buffered IO.
3048 * For holes, we fallocate those blocks, mark them as unwritten
3049 * If those blocks were preallocated, we mark sure they are split, but
3050 * still keep the range to write as unwritten.
3052 * The unwritten extents will be converted to written when DIO is completed.
3053 * For async direct IO, since the IO may still pending when return, we
3054 * set up an end_io call back function, which will do the conversion
3055 * when async direct IO completed.
3057 * If the O_DIRECT write will extend the file then add this inode to the
3058 * orphan list. So recovery will truncate it back to the original size
3059 * if the machine crashes during the write.
3062 static ssize_t
ext4_ext_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
,
3065 struct file
*file
= iocb
->ki_filp
;
3066 struct inode
*inode
= file
->f_mapping
->host
;
3068 size_t count
= iov_iter_count(iter
);
3070 get_block_t
*get_block_func
= NULL
;
3072 loff_t final_size
= offset
+ count
;
3073 ext4_io_end_t
*io_end
= NULL
;
3075 /* Use the old path for reads and writes beyond i_size. */
3076 if (iov_iter_rw(iter
) != WRITE
|| final_size
> inode
->i_size
)
3077 return ext4_ind_direct_IO(iocb
, iter
, offset
);
3079 BUG_ON(iocb
->private == NULL
);
3082 * Make all waiters for direct IO properly wait also for extent
3083 * conversion. This also disallows race between truncate() and
3084 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3086 if (iov_iter_rw(iter
) == WRITE
)
3087 inode_dio_begin(inode
);
3089 /* If we do a overwrite dio, i_mutex locking can be released */
3090 overwrite
= *((int *)iocb
->private);
3093 down_read(&EXT4_I(inode
)->i_data_sem
);
3094 mutex_unlock(&inode
->i_mutex
);
3098 * We could direct write to holes and fallocate.
3100 * Allocated blocks to fill the hole are marked as
3101 * unwritten to prevent parallel buffered read to expose
3102 * the stale data before DIO complete the data IO.
3104 * As to previously fallocated extents, ext4 get_block will
3105 * just simply mark the buffer mapped but still keep the
3106 * extents unwritten.
3108 * For non AIO case, we will convert those unwritten extents
3109 * to written after return back from blockdev_direct_IO.
3111 * For async DIO, the conversion needs to be deferred when the
3112 * IO is completed. The ext4 end_io callback function will be
3113 * called to take care of the conversion work. Here for async
3114 * case, we allocate an io_end structure to hook to the iocb.
3116 iocb
->private = NULL
;
3117 ext4_inode_aio_set(inode
, NULL
);
3118 if (!is_sync_kiocb(iocb
)) {
3119 io_end
= ext4_init_io_end(inode
, GFP_NOFS
);
3125 * Grab reference for DIO. Will be dropped in ext4_end_io_dio()
3127 iocb
->private = ext4_get_io_end(io_end
);
3129 * we save the io structure for current async direct
3130 * IO, so that later ext4_map_blocks() could flag the
3131 * io structure whether there is a unwritten extents
3132 * needs to be converted when IO is completed.
3134 ext4_inode_aio_set(inode
, io_end
);
3138 get_block_func
= ext4_get_block_write_nolock
;
3140 get_block_func
= ext4_get_block_write
;
3141 dio_flags
= DIO_LOCKING
;
3143 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3144 BUG_ON(ext4_encrypted_inode(inode
) && S_ISREG(inode
->i_mode
));
3147 ret
= dax_do_io(iocb
, inode
, iter
, offset
, get_block_func
,
3148 ext4_end_io_dio
, dio_flags
);
3150 ret
= __blockdev_direct_IO(iocb
, inode
,
3151 inode
->i_sb
->s_bdev
, iter
, offset
,
3153 ext4_end_io_dio
, NULL
, dio_flags
);
3156 * Put our reference to io_end. This can free the io_end structure e.g.
3157 * in sync IO case or in case of error. It can even perform extent
3158 * conversion if all bios we submitted finished before we got here.
3159 * Note that in that case iocb->private can be already set to NULL
3163 ext4_inode_aio_set(inode
, NULL
);
3164 ext4_put_io_end(io_end
);
3166 * When no IO was submitted ext4_end_io_dio() was not
3167 * called so we have to put iocb's reference.
3169 if (ret
<= 0 && ret
!= -EIOCBQUEUED
&& iocb
->private) {
3170 WARN_ON(iocb
->private != io_end
);
3171 WARN_ON(io_end
->flag
& EXT4_IO_END_UNWRITTEN
);
3172 ext4_put_io_end(io_end
);
3173 iocb
->private = NULL
;
3176 if (ret
> 0 && !overwrite
&& ext4_test_inode_state(inode
,
3177 EXT4_STATE_DIO_UNWRITTEN
)) {
3180 * for non AIO case, since the IO is already
3181 * completed, we could do the conversion right here
3183 err
= ext4_convert_unwritten_extents(NULL
, inode
,
3187 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3191 if (iov_iter_rw(iter
) == WRITE
)
3192 inode_dio_end(inode
);
3193 /* take i_mutex locking again if we do a ovewrite dio */
3195 up_read(&EXT4_I(inode
)->i_data_sem
);
3196 mutex_lock(&inode
->i_mutex
);
3202 static ssize_t
ext4_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
,
3205 struct file
*file
= iocb
->ki_filp
;
3206 struct inode
*inode
= file
->f_mapping
->host
;
3207 size_t count
= iov_iter_count(iter
);
3210 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3211 if (ext4_encrypted_inode(inode
) && S_ISREG(inode
->i_mode
))
3216 * If we are doing data journalling we don't support O_DIRECT
3218 if (ext4_should_journal_data(inode
))
3221 /* Let buffer I/O handle the inline data case. */
3222 if (ext4_has_inline_data(inode
))
3225 trace_ext4_direct_IO_enter(inode
, offset
, count
, iov_iter_rw(iter
));
3226 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3227 ret
= ext4_ext_direct_IO(iocb
, iter
, offset
);
3229 ret
= ext4_ind_direct_IO(iocb
, iter
, offset
);
3230 trace_ext4_direct_IO_exit(inode
, offset
, count
, iov_iter_rw(iter
), ret
);
3235 * Pages can be marked dirty completely asynchronously from ext4's journalling
3236 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3237 * much here because ->set_page_dirty is called under VFS locks. The page is
3238 * not necessarily locked.
3240 * We cannot just dirty the page and leave attached buffers clean, because the
3241 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3242 * or jbddirty because all the journalling code will explode.
3244 * So what we do is to mark the page "pending dirty" and next time writepage
3245 * is called, propagate that into the buffers appropriately.
3247 static int ext4_journalled_set_page_dirty(struct page
*page
)
3249 SetPageChecked(page
);
3250 return __set_page_dirty_nobuffers(page
);
3253 static const struct address_space_operations ext4_aops
= {
3254 .readpage
= ext4_readpage
,
3255 .readpages
= ext4_readpages
,
3256 .writepage
= ext4_writepage
,
3257 .writepages
= ext4_writepages
,
3258 .write_begin
= ext4_write_begin
,
3259 .write_end
= ext4_write_end
,
3261 .invalidatepage
= ext4_invalidatepage
,
3262 .releasepage
= ext4_releasepage
,
3263 .direct_IO
= ext4_direct_IO
,
3264 .migratepage
= buffer_migrate_page
,
3265 .is_partially_uptodate
= block_is_partially_uptodate
,
3266 .error_remove_page
= generic_error_remove_page
,
3269 static const struct address_space_operations ext4_journalled_aops
= {
3270 .readpage
= ext4_readpage
,
3271 .readpages
= ext4_readpages
,
3272 .writepage
= ext4_writepage
,
3273 .writepages
= ext4_writepages
,
3274 .write_begin
= ext4_write_begin
,
3275 .write_end
= ext4_journalled_write_end
,
3276 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3278 .invalidatepage
= ext4_journalled_invalidatepage
,
3279 .releasepage
= ext4_releasepage
,
3280 .direct_IO
= ext4_direct_IO
,
3281 .is_partially_uptodate
= block_is_partially_uptodate
,
3282 .error_remove_page
= generic_error_remove_page
,
3285 static const struct address_space_operations ext4_da_aops
= {
3286 .readpage
= ext4_readpage
,
3287 .readpages
= ext4_readpages
,
3288 .writepage
= ext4_writepage
,
3289 .writepages
= ext4_writepages
,
3290 .write_begin
= ext4_da_write_begin
,
3291 .write_end
= ext4_da_write_end
,
3293 .invalidatepage
= ext4_da_invalidatepage
,
3294 .releasepage
= ext4_releasepage
,
3295 .direct_IO
= ext4_direct_IO
,
3296 .migratepage
= buffer_migrate_page
,
3297 .is_partially_uptodate
= block_is_partially_uptodate
,
3298 .error_remove_page
= generic_error_remove_page
,
3301 void ext4_set_aops(struct inode
*inode
)
3303 switch (ext4_inode_journal_mode(inode
)) {
3304 case EXT4_INODE_ORDERED_DATA_MODE
:
3305 ext4_set_inode_state(inode
, EXT4_STATE_ORDERED_MODE
);
3307 case EXT4_INODE_WRITEBACK_DATA_MODE
:
3308 ext4_clear_inode_state(inode
, EXT4_STATE_ORDERED_MODE
);
3310 case EXT4_INODE_JOURNAL_DATA_MODE
:
3311 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3316 if (test_opt(inode
->i_sb
, DELALLOC
))
3317 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3319 inode
->i_mapping
->a_ops
= &ext4_aops
;
3322 static int __ext4_block_zero_page_range(handle_t
*handle
,
3323 struct address_space
*mapping
, loff_t from
, loff_t length
)
3325 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
3326 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3327 unsigned blocksize
, pos
;
3329 struct inode
*inode
= mapping
->host
;
3330 struct buffer_head
*bh
;
3334 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
3335 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
3339 blocksize
= inode
->i_sb
->s_blocksize
;
3341 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3343 if (!page_has_buffers(page
))
3344 create_empty_buffers(page
, blocksize
, 0);
3346 /* Find the buffer that contains "offset" */
3347 bh
= page_buffers(page
);
3349 while (offset
>= pos
) {
3350 bh
= bh
->b_this_page
;
3354 if (buffer_freed(bh
)) {
3355 BUFFER_TRACE(bh
, "freed: skip");
3358 if (!buffer_mapped(bh
)) {
3359 BUFFER_TRACE(bh
, "unmapped");
3360 ext4_get_block(inode
, iblock
, bh
, 0);
3361 /* unmapped? It's a hole - nothing to do */
3362 if (!buffer_mapped(bh
)) {
3363 BUFFER_TRACE(bh
, "still unmapped");
3368 /* Ok, it's mapped. Make sure it's up-to-date */
3369 if (PageUptodate(page
))
3370 set_buffer_uptodate(bh
);
3372 if (!buffer_uptodate(bh
)) {
3374 ll_rw_block(READ
, 1, &bh
);
3376 /* Uhhuh. Read error. Complain and punt. */
3377 if (!buffer_uptodate(bh
))
3379 if (S_ISREG(inode
->i_mode
) &&
3380 ext4_encrypted_inode(inode
)) {
3381 /* We expect the key to be set. */
3382 BUG_ON(!ext4_has_encryption_key(inode
));
3383 BUG_ON(blocksize
!= PAGE_CACHE_SIZE
);
3384 WARN_ON_ONCE(ext4_decrypt_one(inode
, page
));
3387 if (ext4_should_journal_data(inode
)) {
3388 BUFFER_TRACE(bh
, "get write access");
3389 err
= ext4_journal_get_write_access(handle
, bh
);
3393 zero_user(page
, offset
, length
);
3394 BUFFER_TRACE(bh
, "zeroed end of block");
3396 if (ext4_should_journal_data(inode
)) {
3397 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3400 mark_buffer_dirty(bh
);
3401 if (ext4_test_inode_state(inode
, EXT4_STATE_ORDERED_MODE
))
3402 err
= ext4_jbd2_file_inode(handle
, inode
);
3407 page_cache_release(page
);
3412 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3413 * starting from file offset 'from'. The range to be zero'd must
3414 * be contained with in one block. If the specified range exceeds
3415 * the end of the block it will be shortened to end of the block
3416 * that cooresponds to 'from'
3418 static int ext4_block_zero_page_range(handle_t
*handle
,
3419 struct address_space
*mapping
, loff_t from
, loff_t length
)
3421 struct inode
*inode
= mapping
->host
;
3422 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3423 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
3424 unsigned max
= blocksize
- (offset
& (blocksize
- 1));
3427 * correct length if it does not fall between
3428 * 'from' and the end of the block
3430 if (length
> max
|| length
< 0)
3434 return dax_zero_page_range(inode
, from
, length
, ext4_get_block
);
3435 return __ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3439 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3440 * up to the end of the block which corresponds to `from'.
3441 * This required during truncate. We need to physically zero the tail end
3442 * of that block so it doesn't yield old data if the file is later grown.
3444 static int ext4_block_truncate_page(handle_t
*handle
,
3445 struct address_space
*mapping
, loff_t from
)
3447 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
3450 struct inode
*inode
= mapping
->host
;
3452 blocksize
= inode
->i_sb
->s_blocksize
;
3453 length
= blocksize
- (offset
& (blocksize
- 1));
3455 return ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3458 int ext4_zero_partial_blocks(handle_t
*handle
, struct inode
*inode
,
3459 loff_t lstart
, loff_t length
)
3461 struct super_block
*sb
= inode
->i_sb
;
3462 struct address_space
*mapping
= inode
->i_mapping
;
3463 unsigned partial_start
, partial_end
;
3464 ext4_fsblk_t start
, end
;
3465 loff_t byte_end
= (lstart
+ length
- 1);
3468 partial_start
= lstart
& (sb
->s_blocksize
- 1);
3469 partial_end
= byte_end
& (sb
->s_blocksize
- 1);
3471 start
= lstart
>> sb
->s_blocksize_bits
;
3472 end
= byte_end
>> sb
->s_blocksize_bits
;
3474 /* Handle partial zero within the single block */
3476 (partial_start
|| (partial_end
!= sb
->s_blocksize
- 1))) {
3477 err
= ext4_block_zero_page_range(handle
, mapping
,
3481 /* Handle partial zero out on the start of the range */
3482 if (partial_start
) {
3483 err
= ext4_block_zero_page_range(handle
, mapping
,
3484 lstart
, sb
->s_blocksize
);
3488 /* Handle partial zero out on the end of the range */
3489 if (partial_end
!= sb
->s_blocksize
- 1)
3490 err
= ext4_block_zero_page_range(handle
, mapping
,
3491 byte_end
- partial_end
,
3496 int ext4_can_truncate(struct inode
*inode
)
3498 if (S_ISREG(inode
->i_mode
))
3500 if (S_ISDIR(inode
->i_mode
))
3502 if (S_ISLNK(inode
->i_mode
))
3503 return !ext4_inode_is_fast_symlink(inode
);
3508 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3509 * associated with the given offset and length
3511 * @inode: File inode
3512 * @offset: The offset where the hole will begin
3513 * @len: The length of the hole
3515 * Returns: 0 on success or negative on failure
3518 int ext4_punch_hole(struct inode
*inode
, loff_t offset
, loff_t length
)
3520 struct super_block
*sb
= inode
->i_sb
;
3521 ext4_lblk_t first_block
, stop_block
;
3522 struct address_space
*mapping
= inode
->i_mapping
;
3523 loff_t first_block_offset
, last_block_offset
;
3525 unsigned int credits
;
3528 if (!S_ISREG(inode
->i_mode
))
3531 trace_ext4_punch_hole(inode
, offset
, length
, 0);
3534 * Write out all dirty pages to avoid race conditions
3535 * Then release them.
3537 if (mapping
->nrpages
&& mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
3538 ret
= filemap_write_and_wait_range(mapping
, offset
,
3539 offset
+ length
- 1);
3544 mutex_lock(&inode
->i_mutex
);
3546 /* No need to punch hole beyond i_size */
3547 if (offset
>= inode
->i_size
)
3551 * If the hole extends beyond i_size, set the hole
3552 * to end after the page that contains i_size
3554 if (offset
+ length
> inode
->i_size
) {
3555 length
= inode
->i_size
+
3556 PAGE_CACHE_SIZE
- (inode
->i_size
& (PAGE_CACHE_SIZE
- 1)) -
3560 if (offset
& (sb
->s_blocksize
- 1) ||
3561 (offset
+ length
) & (sb
->s_blocksize
- 1)) {
3563 * Attach jinode to inode for jbd2 if we do any zeroing of
3566 ret
= ext4_inode_attach_jinode(inode
);
3572 first_block_offset
= round_up(offset
, sb
->s_blocksize
);
3573 last_block_offset
= round_down((offset
+ length
), sb
->s_blocksize
) - 1;
3575 /* Now release the pages and zero block aligned part of pages*/
3576 if (last_block_offset
> first_block_offset
)
3577 truncate_pagecache_range(inode
, first_block_offset
,
3580 /* Wait all existing dio workers, newcomers will block on i_mutex */
3581 ext4_inode_block_unlocked_dio(inode
);
3582 inode_dio_wait(inode
);
3584 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3585 credits
= ext4_writepage_trans_blocks(inode
);
3587 credits
= ext4_blocks_for_truncate(inode
);
3588 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
3589 if (IS_ERR(handle
)) {
3590 ret
= PTR_ERR(handle
);
3591 ext4_std_error(sb
, ret
);
3595 ret
= ext4_zero_partial_blocks(handle
, inode
, offset
,
3600 first_block
= (offset
+ sb
->s_blocksize
- 1) >>
3601 EXT4_BLOCK_SIZE_BITS(sb
);
3602 stop_block
= (offset
+ length
) >> EXT4_BLOCK_SIZE_BITS(sb
);
3604 /* If there are no blocks to remove, return now */
3605 if (first_block
>= stop_block
)
3608 down_write(&EXT4_I(inode
)->i_data_sem
);
3609 ext4_discard_preallocations(inode
);
3611 ret
= ext4_es_remove_extent(inode
, first_block
,
3612 stop_block
- first_block
);
3614 up_write(&EXT4_I(inode
)->i_data_sem
);
3618 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3619 ret
= ext4_ext_remove_space(inode
, first_block
,
3622 ret
= ext4_ind_remove_space(handle
, inode
, first_block
,
3625 up_write(&EXT4_I(inode
)->i_data_sem
);
3627 ext4_handle_sync(handle
);
3629 /* Now release the pages again to reduce race window */
3630 if (last_block_offset
> first_block_offset
)
3631 truncate_pagecache_range(inode
, first_block_offset
,
3634 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
3635 ext4_mark_inode_dirty(handle
, inode
);
3637 ext4_journal_stop(handle
);
3639 ext4_inode_resume_unlocked_dio(inode
);
3641 mutex_unlock(&inode
->i_mutex
);
3645 int ext4_inode_attach_jinode(struct inode
*inode
)
3647 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3648 struct jbd2_inode
*jinode
;
3650 if (ei
->jinode
|| !EXT4_SB(inode
->i_sb
)->s_journal
)
3653 jinode
= jbd2_alloc_inode(GFP_KERNEL
);
3654 spin_lock(&inode
->i_lock
);
3657 spin_unlock(&inode
->i_lock
);
3660 ei
->jinode
= jinode
;
3661 jbd2_journal_init_jbd_inode(ei
->jinode
, inode
);
3664 spin_unlock(&inode
->i_lock
);
3665 if (unlikely(jinode
!= NULL
))
3666 jbd2_free_inode(jinode
);
3673 * We block out ext4_get_block() block instantiations across the entire
3674 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3675 * simultaneously on behalf of the same inode.
3677 * As we work through the truncate and commit bits of it to the journal there
3678 * is one core, guiding principle: the file's tree must always be consistent on
3679 * disk. We must be able to restart the truncate after a crash.
3681 * The file's tree may be transiently inconsistent in memory (although it
3682 * probably isn't), but whenever we close off and commit a journal transaction,
3683 * the contents of (the filesystem + the journal) must be consistent and
3684 * restartable. It's pretty simple, really: bottom up, right to left (although
3685 * left-to-right works OK too).
3687 * Note that at recovery time, journal replay occurs *before* the restart of
3688 * truncate against the orphan inode list.
3690 * The committed inode has the new, desired i_size (which is the same as
3691 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
3692 * that this inode's truncate did not complete and it will again call
3693 * ext4_truncate() to have another go. So there will be instantiated blocks
3694 * to the right of the truncation point in a crashed ext4 filesystem. But
3695 * that's fine - as long as they are linked from the inode, the post-crash
3696 * ext4_truncate() run will find them and release them.
3698 void ext4_truncate(struct inode
*inode
)
3700 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3701 unsigned int credits
;
3703 struct address_space
*mapping
= inode
->i_mapping
;
3706 * There is a possibility that we're either freeing the inode
3707 * or it's a completely new inode. In those cases we might not
3708 * have i_mutex locked because it's not necessary.
3710 if (!(inode
->i_state
& (I_NEW
|I_FREEING
)))
3711 WARN_ON(!mutex_is_locked(&inode
->i_mutex
));
3712 trace_ext4_truncate_enter(inode
);
3714 if (!ext4_can_truncate(inode
))
3717 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
3719 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
3720 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
3722 if (ext4_has_inline_data(inode
)) {
3725 ext4_inline_data_truncate(inode
, &has_inline
);
3730 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
3731 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1)) {
3732 if (ext4_inode_attach_jinode(inode
) < 0)
3736 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3737 credits
= ext4_writepage_trans_blocks(inode
);
3739 credits
= ext4_blocks_for_truncate(inode
);
3741 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
3742 if (IS_ERR(handle
)) {
3743 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
3747 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1))
3748 ext4_block_truncate_page(handle
, mapping
, inode
->i_size
);
3751 * We add the inode to the orphan list, so that if this
3752 * truncate spans multiple transactions, and we crash, we will
3753 * resume the truncate when the filesystem recovers. It also
3754 * marks the inode dirty, to catch the new size.
3756 * Implication: the file must always be in a sane, consistent
3757 * truncatable state while each transaction commits.
3759 if (ext4_orphan_add(handle
, inode
))
3762 down_write(&EXT4_I(inode
)->i_data_sem
);
3764 ext4_discard_preallocations(inode
);
3766 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3767 ext4_ext_truncate(handle
, inode
);
3769 ext4_ind_truncate(handle
, inode
);
3771 up_write(&ei
->i_data_sem
);
3774 ext4_handle_sync(handle
);
3778 * If this was a simple ftruncate() and the file will remain alive,
3779 * then we need to clear up the orphan record which we created above.
3780 * However, if this was a real unlink then we were called by
3781 * ext4_evict_inode(), and we allow that function to clean up the
3782 * orphan info for us.
3785 ext4_orphan_del(handle
, inode
);
3787 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
3788 ext4_mark_inode_dirty(handle
, inode
);
3789 ext4_journal_stop(handle
);
3791 trace_ext4_truncate_exit(inode
);
3795 * ext4_get_inode_loc returns with an extra refcount against the inode's
3796 * underlying buffer_head on success. If 'in_mem' is true, we have all
3797 * data in memory that is needed to recreate the on-disk version of this
3800 static int __ext4_get_inode_loc(struct inode
*inode
,
3801 struct ext4_iloc
*iloc
, int in_mem
)
3803 struct ext4_group_desc
*gdp
;
3804 struct buffer_head
*bh
;
3805 struct super_block
*sb
= inode
->i_sb
;
3807 int inodes_per_block
, inode_offset
;
3810 if (!ext4_valid_inum(sb
, inode
->i_ino
))
3813 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
3814 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
3819 * Figure out the offset within the block group inode table
3821 inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
3822 inode_offset
= ((inode
->i_ino
- 1) %
3823 EXT4_INODES_PER_GROUP(sb
));
3824 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
3825 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
3827 bh
= sb_getblk(sb
, block
);
3830 if (!buffer_uptodate(bh
)) {
3834 * If the buffer has the write error flag, we have failed
3835 * to write out another inode in the same block. In this
3836 * case, we don't have to read the block because we may
3837 * read the old inode data successfully.
3839 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
3840 set_buffer_uptodate(bh
);
3842 if (buffer_uptodate(bh
)) {
3843 /* someone brought it uptodate while we waited */
3849 * If we have all information of the inode in memory and this
3850 * is the only valid inode in the block, we need not read the
3854 struct buffer_head
*bitmap_bh
;
3857 start
= inode_offset
& ~(inodes_per_block
- 1);
3859 /* Is the inode bitmap in cache? */
3860 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
3861 if (unlikely(!bitmap_bh
))
3865 * If the inode bitmap isn't in cache then the
3866 * optimisation may end up performing two reads instead
3867 * of one, so skip it.
3869 if (!buffer_uptodate(bitmap_bh
)) {
3873 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
3874 if (i
== inode_offset
)
3876 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
3880 if (i
== start
+ inodes_per_block
) {
3881 /* all other inodes are free, so skip I/O */
3882 memset(bh
->b_data
, 0, bh
->b_size
);
3883 set_buffer_uptodate(bh
);
3891 * If we need to do any I/O, try to pre-readahead extra
3892 * blocks from the inode table.
3894 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
3895 ext4_fsblk_t b
, end
, table
;
3897 __u32 ra_blks
= EXT4_SB(sb
)->s_inode_readahead_blks
;
3899 table
= ext4_inode_table(sb
, gdp
);
3900 /* s_inode_readahead_blks is always a power of 2 */
3901 b
= block
& ~((ext4_fsblk_t
) ra_blks
- 1);
3905 num
= EXT4_INODES_PER_GROUP(sb
);
3906 if (ext4_has_group_desc_csum(sb
))
3907 num
-= ext4_itable_unused_count(sb
, gdp
);
3908 table
+= num
/ inodes_per_block
;
3912 sb_breadahead(sb
, b
++);
3916 * There are other valid inodes in the buffer, this inode
3917 * has in-inode xattrs, or we don't have this inode in memory.
3918 * Read the block from disk.
3920 trace_ext4_load_inode(inode
);
3922 bh
->b_end_io
= end_buffer_read_sync
;
3923 submit_bh(READ
| REQ_META
| REQ_PRIO
, bh
);
3925 if (!buffer_uptodate(bh
)) {
3926 EXT4_ERROR_INODE_BLOCK(inode
, block
,
3927 "unable to read itable block");
3937 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
3939 /* We have all inode data except xattrs in memory here. */
3940 return __ext4_get_inode_loc(inode
, iloc
,
3941 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
3944 void ext4_set_inode_flags(struct inode
*inode
)
3946 unsigned int flags
= EXT4_I(inode
)->i_flags
;
3947 unsigned int new_fl
= 0;
3949 if (flags
& EXT4_SYNC_FL
)
3951 if (flags
& EXT4_APPEND_FL
)
3953 if (flags
& EXT4_IMMUTABLE_FL
)
3954 new_fl
|= S_IMMUTABLE
;
3955 if (flags
& EXT4_NOATIME_FL
)
3956 new_fl
|= S_NOATIME
;
3957 if (flags
& EXT4_DIRSYNC_FL
)
3958 new_fl
|= S_DIRSYNC
;
3959 if (test_opt(inode
->i_sb
, DAX
))
3961 inode_set_flags(inode
, new_fl
,
3962 S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
|S_DAX
);
3965 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
3966 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
3968 unsigned int vfs_fl
;
3969 unsigned long old_fl
, new_fl
;
3972 vfs_fl
= ei
->vfs_inode
.i_flags
;
3973 old_fl
= ei
->i_flags
;
3974 new_fl
= old_fl
& ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
3975 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|
3977 if (vfs_fl
& S_SYNC
)
3978 new_fl
|= EXT4_SYNC_FL
;
3979 if (vfs_fl
& S_APPEND
)
3980 new_fl
|= EXT4_APPEND_FL
;
3981 if (vfs_fl
& S_IMMUTABLE
)
3982 new_fl
|= EXT4_IMMUTABLE_FL
;
3983 if (vfs_fl
& S_NOATIME
)
3984 new_fl
|= EXT4_NOATIME_FL
;
3985 if (vfs_fl
& S_DIRSYNC
)
3986 new_fl
|= EXT4_DIRSYNC_FL
;
3987 } while (cmpxchg(&ei
->i_flags
, old_fl
, new_fl
) != old_fl
);
3990 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
3991 struct ext4_inode_info
*ei
)
3994 struct inode
*inode
= &(ei
->vfs_inode
);
3995 struct super_block
*sb
= inode
->i_sb
;
3997 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
3998 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
3999 /* we are using combined 48 bit field */
4000 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4001 le32_to_cpu(raw_inode
->i_blocks_lo
);
4002 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
4003 /* i_blocks represent file system block size */
4004 return i_blocks
<< (inode
->i_blkbits
- 9);
4009 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4013 static inline void ext4_iget_extra_inode(struct inode
*inode
,
4014 struct ext4_inode
*raw_inode
,
4015 struct ext4_inode_info
*ei
)
4017 __le32
*magic
= (void *)raw_inode
+
4018 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
;
4019 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4020 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
4021 ext4_find_inline_data_nolock(inode
);
4023 EXT4_I(inode
)->i_inline_off
= 0;
4026 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4028 struct ext4_iloc iloc
;
4029 struct ext4_inode
*raw_inode
;
4030 struct ext4_inode_info
*ei
;
4031 struct inode
*inode
;
4032 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4038 inode
= iget_locked(sb
, ino
);
4040 return ERR_PTR(-ENOMEM
);
4041 if (!(inode
->i_state
& I_NEW
))
4047 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4050 raw_inode
= ext4_raw_inode(&iloc
);
4052 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4053 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4054 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4055 EXT4_INODE_SIZE(inode
->i_sb
)) {
4056 EXT4_ERROR_INODE(inode
, "bad extra_isize (%u != %u)",
4057 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
,
4058 EXT4_INODE_SIZE(inode
->i_sb
));
4063 ei
->i_extra_isize
= 0;
4065 /* Precompute checksum seed for inode metadata */
4066 if (ext4_has_metadata_csum(sb
)) {
4067 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4069 __le32 inum
= cpu_to_le32(inode
->i_ino
);
4070 __le32 gen
= raw_inode
->i_generation
;
4071 csum
= ext4_chksum(sbi
, sbi
->s_csum_seed
, (__u8
*)&inum
,
4073 ei
->i_csum_seed
= ext4_chksum(sbi
, csum
, (__u8
*)&gen
,
4077 if (!ext4_inode_csum_verify(inode
, raw_inode
, ei
)) {
4078 EXT4_ERROR_INODE(inode
, "checksum invalid");
4083 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4084 i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4085 i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4086 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4087 i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4088 i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4090 i_uid_write(inode
, i_uid
);
4091 i_gid_write(inode
, i_gid
);
4092 set_nlink(inode
, le16_to_cpu(raw_inode
->i_links_count
));
4094 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
4095 ei
->i_inline_off
= 0;
4096 ei
->i_dir_start_lookup
= 0;
4097 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4098 /* We now have enough fields to check if the inode was active or not.
4099 * This is needed because nfsd might try to access dead inodes
4100 * the test is that same one that e2fsck uses
4101 * NeilBrown 1999oct15
4103 if (inode
->i_nlink
== 0) {
4104 if ((inode
->i_mode
== 0 ||
4105 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) &&
4106 ino
!= EXT4_BOOT_LOADER_INO
) {
4107 /* this inode is deleted */
4111 /* The only unlinked inodes we let through here have
4112 * valid i_mode and are being read by the orphan
4113 * recovery code: that's fine, we're about to complete
4114 * the process of deleting those.
4115 * OR it is the EXT4_BOOT_LOADER_INO which is
4116 * not initialized on a new filesystem. */
4118 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4119 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4120 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4121 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
4123 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4124 inode
->i_size
= ext4_isize(raw_inode
);
4125 ei
->i_disksize
= inode
->i_size
;
4127 ei
->i_reserved_quota
= 0;
4129 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4130 ei
->i_block_group
= iloc
.block_group
;
4131 ei
->i_last_alloc_group
= ~0;
4133 * NOTE! The in-memory inode i_data array is in little-endian order
4134 * even on big-endian machines: we do NOT byteswap the block numbers!
4136 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4137 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4138 INIT_LIST_HEAD(&ei
->i_orphan
);
4141 * Set transaction id's of transactions that have to be committed
4142 * to finish f[data]sync. We set them to currently running transaction
4143 * as we cannot be sure that the inode or some of its metadata isn't
4144 * part of the transaction - the inode could have been reclaimed and
4145 * now it is reread from disk.
4148 transaction_t
*transaction
;
4151 read_lock(&journal
->j_state_lock
);
4152 if (journal
->j_running_transaction
)
4153 transaction
= journal
->j_running_transaction
;
4155 transaction
= journal
->j_committing_transaction
;
4157 tid
= transaction
->t_tid
;
4159 tid
= journal
->j_commit_sequence
;
4160 read_unlock(&journal
->j_state_lock
);
4161 ei
->i_sync_tid
= tid
;
4162 ei
->i_datasync_tid
= tid
;
4165 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4166 if (ei
->i_extra_isize
== 0) {
4167 /* The extra space is currently unused. Use it. */
4168 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4169 EXT4_GOOD_OLD_INODE_SIZE
;
4171 ext4_iget_extra_inode(inode
, raw_inode
, ei
);
4175 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4176 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4177 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4178 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4180 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
))) {
4181 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
4182 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4183 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4185 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4190 if (ei
->i_file_acl
&&
4191 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
4192 EXT4_ERROR_INODE(inode
, "bad extended attribute block %llu",
4196 } else if (!ext4_has_inline_data(inode
)) {
4197 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
4198 if ((S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4199 (S_ISLNK(inode
->i_mode
) &&
4200 !ext4_inode_is_fast_symlink(inode
))))
4201 /* Validate extent which is part of inode */
4202 ret
= ext4_ext_check_inode(inode
);
4203 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4204 (S_ISLNK(inode
->i_mode
) &&
4205 !ext4_inode_is_fast_symlink(inode
))) {
4206 /* Validate block references which are part of inode */
4207 ret
= ext4_ind_check_inode(inode
);
4213 if (S_ISREG(inode
->i_mode
)) {
4214 inode
->i_op
= &ext4_file_inode_operations
;
4215 inode
->i_fop
= &ext4_file_operations
;
4216 ext4_set_aops(inode
);
4217 } else if (S_ISDIR(inode
->i_mode
)) {
4218 inode
->i_op
= &ext4_dir_inode_operations
;
4219 inode
->i_fop
= &ext4_dir_operations
;
4220 } else if (S_ISLNK(inode
->i_mode
)) {
4221 if (ext4_encrypted_inode(inode
)) {
4222 inode
->i_op
= &ext4_encrypted_symlink_inode_operations
;
4223 ext4_set_aops(inode
);
4224 } else if (ext4_inode_is_fast_symlink(inode
)) {
4225 inode
->i_link
= (char *)ei
->i_data
;
4226 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4227 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4228 sizeof(ei
->i_data
) - 1);
4230 inode
->i_op
= &ext4_symlink_inode_operations
;
4231 ext4_set_aops(inode
);
4233 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
4234 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
4235 inode
->i_op
= &ext4_special_inode_operations
;
4236 if (raw_inode
->i_block
[0])
4237 init_special_inode(inode
, inode
->i_mode
,
4238 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
4240 init_special_inode(inode
, inode
->i_mode
,
4241 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
4242 } else if (ino
== EXT4_BOOT_LOADER_INO
) {
4243 make_bad_inode(inode
);
4246 EXT4_ERROR_INODE(inode
, "bogus i_mode (%o)", inode
->i_mode
);
4250 ext4_set_inode_flags(inode
);
4251 unlock_new_inode(inode
);
4257 return ERR_PTR(ret
);
4260 struct inode
*ext4_iget_normal(struct super_block
*sb
, unsigned long ino
)
4262 if (ino
< EXT4_FIRST_INO(sb
) && ino
!= EXT4_ROOT_INO
)
4263 return ERR_PTR(-EIO
);
4264 return ext4_iget(sb
, ino
);
4267 static int ext4_inode_blocks_set(handle_t
*handle
,
4268 struct ext4_inode
*raw_inode
,
4269 struct ext4_inode_info
*ei
)
4271 struct inode
*inode
= &(ei
->vfs_inode
);
4272 u64 i_blocks
= inode
->i_blocks
;
4273 struct super_block
*sb
= inode
->i_sb
;
4275 if (i_blocks
<= ~0U) {
4277 * i_blocks can be represented in a 32 bit variable
4278 * as multiple of 512 bytes
4280 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4281 raw_inode
->i_blocks_high
= 0;
4282 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4285 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
4288 if (i_blocks
<= 0xffffffffffffULL
) {
4290 * i_blocks can be represented in a 48 bit variable
4291 * as multiple of 512 bytes
4293 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4294 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4295 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4297 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4298 /* i_block is stored in file system block size */
4299 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
4300 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4301 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4306 struct other_inode
{
4307 unsigned long orig_ino
;
4308 struct ext4_inode
*raw_inode
;
4311 static int other_inode_match(struct inode
* inode
, unsigned long ino
,
4314 struct other_inode
*oi
= (struct other_inode
*) data
;
4316 if ((inode
->i_ino
!= ino
) ||
4317 (inode
->i_state
& (I_FREEING
| I_WILL_FREE
| I_NEW
|
4318 I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) ||
4319 ((inode
->i_state
& I_DIRTY_TIME
) == 0))
4321 spin_lock(&inode
->i_lock
);
4322 if (((inode
->i_state
& (I_FREEING
| I_WILL_FREE
| I_NEW
|
4323 I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) == 0) &&
4324 (inode
->i_state
& I_DIRTY_TIME
)) {
4325 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4327 inode
->i_state
&= ~(I_DIRTY_TIME
| I_DIRTY_TIME_EXPIRED
);
4328 spin_unlock(&inode
->i_lock
);
4330 spin_lock(&ei
->i_raw_lock
);
4331 EXT4_INODE_SET_XTIME(i_ctime
, inode
, oi
->raw_inode
);
4332 EXT4_INODE_SET_XTIME(i_mtime
, inode
, oi
->raw_inode
);
4333 EXT4_INODE_SET_XTIME(i_atime
, inode
, oi
->raw_inode
);
4334 ext4_inode_csum_set(inode
, oi
->raw_inode
, ei
);
4335 spin_unlock(&ei
->i_raw_lock
);
4336 trace_ext4_other_inode_update_time(inode
, oi
->orig_ino
);
4339 spin_unlock(&inode
->i_lock
);
4344 * Opportunistically update the other time fields for other inodes in
4345 * the same inode table block.
4347 static void ext4_update_other_inodes_time(struct super_block
*sb
,
4348 unsigned long orig_ino
, char *buf
)
4350 struct other_inode oi
;
4352 int i
, inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
4353 int inode_size
= EXT4_INODE_SIZE(sb
);
4355 oi
.orig_ino
= orig_ino
;
4357 * Calculate the first inode in the inode table block. Inode
4358 * numbers are one-based. That is, the first inode in a block
4359 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4361 ino
= ((orig_ino
- 1) & ~(inodes_per_block
- 1)) + 1;
4362 for (i
= 0; i
< inodes_per_block
; i
++, ino
++, buf
+= inode_size
) {
4363 if (ino
== orig_ino
)
4365 oi
.raw_inode
= (struct ext4_inode
*) buf
;
4366 (void) find_inode_nowait(sb
, ino
, other_inode_match
, &oi
);
4371 * Post the struct inode info into an on-disk inode location in the
4372 * buffer-cache. This gobbles the caller's reference to the
4373 * buffer_head in the inode location struct.
4375 * The caller must have write access to iloc->bh.
4377 static int ext4_do_update_inode(handle_t
*handle
,
4378 struct inode
*inode
,
4379 struct ext4_iloc
*iloc
)
4381 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
4382 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4383 struct buffer_head
*bh
= iloc
->bh
;
4384 struct super_block
*sb
= inode
->i_sb
;
4385 int err
= 0, rc
, block
;
4386 int need_datasync
= 0, set_large_file
= 0;
4390 spin_lock(&ei
->i_raw_lock
);
4392 /* For fields not tracked in the in-memory inode,
4393 * initialise them to zero for new inodes. */
4394 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
4395 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
4397 ext4_get_inode_flags(ei
);
4398 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
4399 i_uid
= i_uid_read(inode
);
4400 i_gid
= i_gid_read(inode
);
4401 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4402 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(i_uid
));
4403 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(i_gid
));
4405 * Fix up interoperability with old kernels. Otherwise, old inodes get
4406 * re-used with the upper 16 bits of the uid/gid intact
4409 raw_inode
->i_uid_high
=
4410 cpu_to_le16(high_16_bits(i_uid
));
4411 raw_inode
->i_gid_high
=
4412 cpu_to_le16(high_16_bits(i_gid
));
4414 raw_inode
->i_uid_high
= 0;
4415 raw_inode
->i_gid_high
= 0;
4418 raw_inode
->i_uid_low
= cpu_to_le16(fs_high2lowuid(i_uid
));
4419 raw_inode
->i_gid_low
= cpu_to_le16(fs_high2lowgid(i_gid
));
4420 raw_inode
->i_uid_high
= 0;
4421 raw_inode
->i_gid_high
= 0;
4423 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
4425 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
4426 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
4427 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
4428 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
4430 err
= ext4_inode_blocks_set(handle
, raw_inode
, ei
);
4432 spin_unlock(&ei
->i_raw_lock
);
4435 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
4436 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& 0xFFFFFFFF);
4437 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
)))
4438 raw_inode
->i_file_acl_high
=
4439 cpu_to_le16(ei
->i_file_acl
>> 32);
4440 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
4441 if (ei
->i_disksize
!= ext4_isize(raw_inode
)) {
4442 ext4_isize_set(raw_inode
, ei
->i_disksize
);
4445 if (ei
->i_disksize
> 0x7fffffffULL
) {
4446 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4447 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
4448 EXT4_SB(sb
)->s_es
->s_rev_level
==
4449 cpu_to_le32(EXT4_GOOD_OLD_REV
))
4452 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
4453 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
4454 if (old_valid_dev(inode
->i_rdev
)) {
4455 raw_inode
->i_block
[0] =
4456 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
4457 raw_inode
->i_block
[1] = 0;
4459 raw_inode
->i_block
[0] = 0;
4460 raw_inode
->i_block
[1] =
4461 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
4462 raw_inode
->i_block
[2] = 0;
4464 } else if (!ext4_has_inline_data(inode
)) {
4465 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4466 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
4469 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
))) {
4470 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
4471 if (ei
->i_extra_isize
) {
4472 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4473 raw_inode
->i_version_hi
=
4474 cpu_to_le32(inode
->i_version
>> 32);
4475 raw_inode
->i_extra_isize
=
4476 cpu_to_le16(ei
->i_extra_isize
);
4479 ext4_inode_csum_set(inode
, raw_inode
, ei
);
4480 spin_unlock(&ei
->i_raw_lock
);
4481 if (inode
->i_sb
->s_flags
& MS_LAZYTIME
)
4482 ext4_update_other_inodes_time(inode
->i_sb
, inode
->i_ino
,
4485 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4486 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
4489 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
4490 if (set_large_file
) {
4491 BUFFER_TRACE(EXT4_SB(sb
)->s_sbh
, "get write access");
4492 err
= ext4_journal_get_write_access(handle
, EXT4_SB(sb
)->s_sbh
);
4495 ext4_update_dynamic_rev(sb
);
4496 EXT4_SET_RO_COMPAT_FEATURE(sb
,
4497 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
4498 ext4_handle_sync(handle
);
4499 err
= ext4_handle_dirty_super(handle
, sb
);
4501 ext4_update_inode_fsync_trans(handle
, inode
, need_datasync
);
4504 ext4_std_error(inode
->i_sb
, err
);
4509 * ext4_write_inode()
4511 * We are called from a few places:
4513 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4514 * Here, there will be no transaction running. We wait for any running
4515 * transaction to commit.
4517 * - Within flush work (sys_sync(), kupdate and such).
4518 * We wait on commit, if told to.
4520 * - Within iput_final() -> write_inode_now()
4521 * We wait on commit, if told to.
4523 * In all cases it is actually safe for us to return without doing anything,
4524 * because the inode has been copied into a raw inode buffer in
4525 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
4528 * Note that we are absolutely dependent upon all inode dirtiers doing the
4529 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4530 * which we are interested.
4532 * It would be a bug for them to not do this. The code:
4534 * mark_inode_dirty(inode)
4536 * inode->i_size = expr;
4538 * is in error because write_inode() could occur while `stuff()' is running,
4539 * and the new i_size will be lost. Plus the inode will no longer be on the
4540 * superblock's dirty inode list.
4542 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
4546 if (WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
))
4549 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
4550 if (ext4_journal_current_handle()) {
4551 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4557 * No need to force transaction in WB_SYNC_NONE mode. Also
4558 * ext4_sync_fs() will force the commit after everything is
4561 if (wbc
->sync_mode
!= WB_SYNC_ALL
|| wbc
->for_sync
)
4564 err
= ext4_force_commit(inode
->i_sb
);
4566 struct ext4_iloc iloc
;
4568 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4572 * sync(2) will flush the whole buffer cache. No need to do
4573 * it here separately for each inode.
4575 if (wbc
->sync_mode
== WB_SYNC_ALL
&& !wbc
->for_sync
)
4576 sync_dirty_buffer(iloc
.bh
);
4577 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
4578 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
4579 "IO error syncing inode");
4588 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4589 * buffers that are attached to a page stradding i_size and are undergoing
4590 * commit. In that case we have to wait for commit to finish and try again.
4592 static void ext4_wait_for_tail_page_commit(struct inode
*inode
)
4596 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
4597 tid_t commit_tid
= 0;
4600 offset
= inode
->i_size
& (PAGE_CACHE_SIZE
- 1);
4602 * All buffers in the last page remain valid? Then there's nothing to
4603 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4606 if (offset
> PAGE_CACHE_SIZE
- (1 << inode
->i_blkbits
))
4609 page
= find_lock_page(inode
->i_mapping
,
4610 inode
->i_size
>> PAGE_CACHE_SHIFT
);
4613 ret
= __ext4_journalled_invalidatepage(page
, offset
,
4614 PAGE_CACHE_SIZE
- offset
);
4616 page_cache_release(page
);
4620 read_lock(&journal
->j_state_lock
);
4621 if (journal
->j_committing_transaction
)
4622 commit_tid
= journal
->j_committing_transaction
->t_tid
;
4623 read_unlock(&journal
->j_state_lock
);
4625 jbd2_log_wait_commit(journal
, commit_tid
);
4632 * Called from notify_change.
4634 * We want to trap VFS attempts to truncate the file as soon as
4635 * possible. In particular, we want to make sure that when the VFS
4636 * shrinks i_size, we put the inode on the orphan list and modify
4637 * i_disksize immediately, so that during the subsequent flushing of
4638 * dirty pages and freeing of disk blocks, we can guarantee that any
4639 * commit will leave the blocks being flushed in an unused state on
4640 * disk. (On recovery, the inode will get truncated and the blocks will
4641 * be freed, so we have a strong guarantee that no future commit will
4642 * leave these blocks visible to the user.)
4644 * Another thing we have to assure is that if we are in ordered mode
4645 * and inode is still attached to the committing transaction, we must
4646 * we start writeout of all the dirty pages which are being truncated.
4647 * This way we are sure that all the data written in the previous
4648 * transaction are already on disk (truncate waits for pages under
4651 * Called with inode->i_mutex down.
4653 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
4655 struct inode
*inode
= d_inode(dentry
);
4658 const unsigned int ia_valid
= attr
->ia_valid
;
4660 error
= inode_change_ok(inode
, attr
);
4664 if (is_quota_modification(inode
, attr
))
4665 dquot_initialize(inode
);
4666 if ((ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
4667 (ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
4670 /* (user+group)*(old+new) structure, inode write (sb,
4671 * inode block, ? - but truncate inode update has it) */
4672 handle
= ext4_journal_start(inode
, EXT4_HT_QUOTA
,
4673 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
) +
4674 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
)) + 3);
4675 if (IS_ERR(handle
)) {
4676 error
= PTR_ERR(handle
);
4679 error
= dquot_transfer(inode
, attr
);
4681 ext4_journal_stop(handle
);
4684 /* Update corresponding info in inode so that everything is in
4685 * one transaction */
4686 if (attr
->ia_valid
& ATTR_UID
)
4687 inode
->i_uid
= attr
->ia_uid
;
4688 if (attr
->ia_valid
& ATTR_GID
)
4689 inode
->i_gid
= attr
->ia_gid
;
4690 error
= ext4_mark_inode_dirty(handle
, inode
);
4691 ext4_journal_stop(handle
);
4694 if (attr
->ia_valid
& ATTR_SIZE
) {
4696 loff_t oldsize
= inode
->i_size
;
4697 int shrink
= (attr
->ia_size
<= inode
->i_size
);
4699 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
4700 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4702 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
4705 if (!S_ISREG(inode
->i_mode
))
4708 if (IS_I_VERSION(inode
) && attr
->ia_size
!= inode
->i_size
)
4709 inode_inc_iversion(inode
);
4711 if (ext4_should_order_data(inode
) &&
4712 (attr
->ia_size
< inode
->i_size
)) {
4713 error
= ext4_begin_ordered_truncate(inode
,
4718 if (attr
->ia_size
!= inode
->i_size
) {
4719 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 3);
4720 if (IS_ERR(handle
)) {
4721 error
= PTR_ERR(handle
);
4724 if (ext4_handle_valid(handle
) && shrink
) {
4725 error
= ext4_orphan_add(handle
, inode
);
4728 down_write(&EXT4_I(inode
)->i_data_sem
);
4729 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
4730 rc
= ext4_mark_inode_dirty(handle
, inode
);
4734 * We have to update i_size under i_data_sem together
4735 * with i_disksize to avoid races with writeback code
4736 * running ext4_wb_update_i_disksize().
4739 i_size_write(inode
, attr
->ia_size
);
4740 up_write(&EXT4_I(inode
)->i_data_sem
);
4741 ext4_journal_stop(handle
);
4744 ext4_orphan_del(NULL
, inode
);
4749 pagecache_isize_extended(inode
, oldsize
, inode
->i_size
);
4752 * Blocks are going to be removed from the inode. Wait
4753 * for dio in flight. Temporarily disable
4754 * dioread_nolock to prevent livelock.
4757 if (!ext4_should_journal_data(inode
)) {
4758 ext4_inode_block_unlocked_dio(inode
);
4759 inode_dio_wait(inode
);
4760 ext4_inode_resume_unlocked_dio(inode
);
4762 ext4_wait_for_tail_page_commit(inode
);
4765 * Truncate pagecache after we've waited for commit
4766 * in data=journal mode to make pages freeable.
4768 truncate_pagecache(inode
, inode
->i_size
);
4770 ext4_truncate(inode
);
4774 setattr_copy(inode
, attr
);
4775 mark_inode_dirty(inode
);
4779 * If the call to ext4_truncate failed to get a transaction handle at
4780 * all, we need to clean up the in-core orphan list manually.
4782 if (orphan
&& inode
->i_nlink
)
4783 ext4_orphan_del(NULL
, inode
);
4785 if (!rc
&& (ia_valid
& ATTR_MODE
))
4786 rc
= posix_acl_chmod(inode
, inode
->i_mode
);
4789 ext4_std_error(inode
->i_sb
, error
);
4795 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
4798 struct inode
*inode
;
4799 unsigned long long delalloc_blocks
;
4801 inode
= d_inode(dentry
);
4802 generic_fillattr(inode
, stat
);
4805 * If there is inline data in the inode, the inode will normally not
4806 * have data blocks allocated (it may have an external xattr block).
4807 * Report at least one sector for such files, so tools like tar, rsync,
4808 * others doen't incorrectly think the file is completely sparse.
4810 if (unlikely(ext4_has_inline_data(inode
)))
4811 stat
->blocks
+= (stat
->size
+ 511) >> 9;
4814 * We can't update i_blocks if the block allocation is delayed
4815 * otherwise in the case of system crash before the real block
4816 * allocation is done, we will have i_blocks inconsistent with
4817 * on-disk file blocks.
4818 * We always keep i_blocks updated together with real
4819 * allocation. But to not confuse with user, stat
4820 * will return the blocks that include the delayed allocation
4821 * blocks for this file.
4823 delalloc_blocks
= EXT4_C2B(EXT4_SB(inode
->i_sb
),
4824 EXT4_I(inode
)->i_reserved_data_blocks
);
4825 stat
->blocks
+= delalloc_blocks
<< (inode
->i_sb
->s_blocksize_bits
- 9);
4829 static int ext4_index_trans_blocks(struct inode
*inode
, int lblocks
,
4832 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
4833 return ext4_ind_trans_blocks(inode
, lblocks
);
4834 return ext4_ext_index_trans_blocks(inode
, pextents
);
4838 * Account for index blocks, block groups bitmaps and block group
4839 * descriptor blocks if modify datablocks and index blocks
4840 * worse case, the indexs blocks spread over different block groups
4842 * If datablocks are discontiguous, they are possible to spread over
4843 * different block groups too. If they are contiguous, with flexbg,
4844 * they could still across block group boundary.
4846 * Also account for superblock, inode, quota and xattr blocks
4848 static int ext4_meta_trans_blocks(struct inode
*inode
, int lblocks
,
4851 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
4857 * How many index blocks need to touch to map @lblocks logical blocks
4858 * to @pextents physical extents?
4860 idxblocks
= ext4_index_trans_blocks(inode
, lblocks
, pextents
);
4865 * Now let's see how many group bitmaps and group descriptors need
4868 groups
= idxblocks
+ pextents
;
4870 if (groups
> ngroups
)
4872 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
4873 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
4875 /* bitmaps and block group descriptor blocks */
4876 ret
+= groups
+ gdpblocks
;
4878 /* Blocks for super block, inode, quota and xattr blocks */
4879 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
4885 * Calculate the total number of credits to reserve to fit
4886 * the modification of a single pages into a single transaction,
4887 * which may include multiple chunks of block allocations.
4889 * This could be called via ext4_write_begin()
4891 * We need to consider the worse case, when
4892 * one new block per extent.
4894 int ext4_writepage_trans_blocks(struct inode
*inode
)
4896 int bpp
= ext4_journal_blocks_per_page(inode
);
4899 ret
= ext4_meta_trans_blocks(inode
, bpp
, bpp
);
4901 /* Account for data blocks for journalled mode */
4902 if (ext4_should_journal_data(inode
))
4908 * Calculate the journal credits for a chunk of data modification.
4910 * This is called from DIO, fallocate or whoever calling
4911 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4913 * journal buffers for data blocks are not included here, as DIO
4914 * and fallocate do no need to journal data buffers.
4916 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
4918 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
4922 * The caller must have previously called ext4_reserve_inode_write().
4923 * Give this, we know that the caller already has write access to iloc->bh.
4925 int ext4_mark_iloc_dirty(handle_t
*handle
,
4926 struct inode
*inode
, struct ext4_iloc
*iloc
)
4930 if (IS_I_VERSION(inode
))
4931 inode_inc_iversion(inode
);
4933 /* the do_update_inode consumes one bh->b_count */
4936 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
4937 err
= ext4_do_update_inode(handle
, inode
, iloc
);
4943 * On success, We end up with an outstanding reference count against
4944 * iloc->bh. This _must_ be cleaned up later.
4948 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
4949 struct ext4_iloc
*iloc
)
4953 err
= ext4_get_inode_loc(inode
, iloc
);
4955 BUFFER_TRACE(iloc
->bh
, "get_write_access");
4956 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
4962 ext4_std_error(inode
->i_sb
, err
);
4967 * Expand an inode by new_extra_isize bytes.
4968 * Returns 0 on success or negative error number on failure.
4970 static int ext4_expand_extra_isize(struct inode
*inode
,
4971 unsigned int new_extra_isize
,
4972 struct ext4_iloc iloc
,
4975 struct ext4_inode
*raw_inode
;
4976 struct ext4_xattr_ibody_header
*header
;
4978 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
4981 raw_inode
= ext4_raw_inode(&iloc
);
4983 header
= IHDR(inode
, raw_inode
);
4985 /* No extended attributes present */
4986 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
4987 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4988 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
4990 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
4994 /* try to expand with EAs present */
4995 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5000 * What we do here is to mark the in-core inode as clean with respect to inode
5001 * dirtiness (it may still be data-dirty).
5002 * This means that the in-core inode may be reaped by prune_icache
5003 * without having to perform any I/O. This is a very good thing,
5004 * because *any* task may call prune_icache - even ones which
5005 * have a transaction open against a different journal.
5007 * Is this cheating? Not really. Sure, we haven't written the
5008 * inode out, but prune_icache isn't a user-visible syncing function.
5009 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5010 * we start and wait on commits.
5012 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5014 struct ext4_iloc iloc
;
5015 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5016 static unsigned int mnt_count
;
5020 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
5021 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5022 if (ext4_handle_valid(handle
) &&
5023 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5024 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
5026 * We need extra buffer credits since we may write into EA block
5027 * with this same handle. If journal_extend fails, then it will
5028 * only result in a minor loss of functionality for that inode.
5029 * If this is felt to be critical, then e2fsck should be run to
5030 * force a large enough s_min_extra_isize.
5032 if ((jbd2_journal_extend(handle
,
5033 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
5034 ret
= ext4_expand_extra_isize(inode
,
5035 sbi
->s_want_extra_isize
,
5038 ext4_set_inode_state(inode
,
5039 EXT4_STATE_NO_EXPAND
);
5041 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5042 ext4_warning(inode
->i_sb
,
5043 "Unable to expand inode %lu. Delete"
5044 " some EAs or run e2fsck.",
5047 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5053 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5058 * ext4_dirty_inode() is called from __mark_inode_dirty()
5060 * We're really interested in the case where a file is being extended.
5061 * i_size has been changed by generic_commit_write() and we thus need
5062 * to include the updated inode in the current transaction.
5064 * Also, dquot_alloc_block() will always dirty the inode when blocks
5065 * are allocated to the file.
5067 * If the inode is marked synchronous, we don't honour that here - doing
5068 * so would cause a commit on atime updates, which we don't bother doing.
5069 * We handle synchronous inodes at the highest possible level.
5071 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5072 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5073 * to copy into the on-disk inode structure are the timestamp files.
5075 void ext4_dirty_inode(struct inode
*inode
, int flags
)
5079 if (flags
== I_DIRTY_TIME
)
5081 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 2);
5085 ext4_mark_inode_dirty(handle
, inode
);
5087 ext4_journal_stop(handle
);
5094 * Bind an inode's backing buffer_head into this transaction, to prevent
5095 * it from being flushed to disk early. Unlike
5096 * ext4_reserve_inode_write, this leaves behind no bh reference and
5097 * returns no iloc structure, so the caller needs to repeat the iloc
5098 * lookup to mark the inode dirty later.
5100 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5102 struct ext4_iloc iloc
;
5106 err
= ext4_get_inode_loc(inode
, &iloc
);
5108 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5109 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5111 err
= ext4_handle_dirty_metadata(handle
,
5117 ext4_std_error(inode
->i_sb
, err
);
5122 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5129 * We have to be very careful here: changing a data block's
5130 * journaling status dynamically is dangerous. If we write a
5131 * data block to the journal, change the status and then delete
5132 * that block, we risk forgetting to revoke the old log record
5133 * from the journal and so a subsequent replay can corrupt data.
5134 * So, first we make sure that the journal is empty and that
5135 * nobody is changing anything.
5138 journal
= EXT4_JOURNAL(inode
);
5141 if (is_journal_aborted(journal
))
5143 /* We have to allocate physical blocks for delalloc blocks
5144 * before flushing journal. otherwise delalloc blocks can not
5145 * be allocated any more. even more truncate on delalloc blocks
5146 * could trigger BUG by flushing delalloc blocks in journal.
5147 * There is no delalloc block in non-journal data mode.
5149 if (val
&& test_opt(inode
->i_sb
, DELALLOC
)) {
5150 err
= ext4_alloc_da_blocks(inode
);
5155 /* Wait for all existing dio workers */
5156 ext4_inode_block_unlocked_dio(inode
);
5157 inode_dio_wait(inode
);
5159 jbd2_journal_lock_updates(journal
);
5162 * OK, there are no updates running now, and all cached data is
5163 * synced to disk. We are now in a completely consistent state
5164 * which doesn't have anything in the journal, and we know that
5165 * no filesystem updates are running, so it is safe to modify
5166 * the inode's in-core data-journaling state flag now.
5170 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5172 err
= jbd2_journal_flush(journal
);
5174 jbd2_journal_unlock_updates(journal
);
5175 ext4_inode_resume_unlocked_dio(inode
);
5178 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5180 ext4_set_aops(inode
);
5182 jbd2_journal_unlock_updates(journal
);
5183 ext4_inode_resume_unlocked_dio(inode
);
5185 /* Finally we can mark the inode as dirty. */
5187 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
5189 return PTR_ERR(handle
);
5191 err
= ext4_mark_inode_dirty(handle
, inode
);
5192 ext4_handle_sync(handle
);
5193 ext4_journal_stop(handle
);
5194 ext4_std_error(inode
->i_sb
, err
);
5199 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5201 return !buffer_mapped(bh
);
5204 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5206 struct page
*page
= vmf
->page
;
5210 struct file
*file
= vma
->vm_file
;
5211 struct inode
*inode
= file_inode(file
);
5212 struct address_space
*mapping
= inode
->i_mapping
;
5214 get_block_t
*get_block
;
5217 sb_start_pagefault(inode
->i_sb
);
5218 file_update_time(vma
->vm_file
);
5219 /* Delalloc case is easy... */
5220 if (test_opt(inode
->i_sb
, DELALLOC
) &&
5221 !ext4_should_journal_data(inode
) &&
5222 !ext4_nonda_switch(inode
->i_sb
)) {
5224 ret
= __block_page_mkwrite(vma
, vmf
,
5225 ext4_da_get_block_prep
);
5226 } while (ret
== -ENOSPC
&&
5227 ext4_should_retry_alloc(inode
->i_sb
, &retries
));
5232 size
= i_size_read(inode
);
5233 /* Page got truncated from under us? */
5234 if (page
->mapping
!= mapping
|| page_offset(page
) > size
) {
5236 ret
= VM_FAULT_NOPAGE
;
5240 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5241 len
= size
& ~PAGE_CACHE_MASK
;
5243 len
= PAGE_CACHE_SIZE
;
5245 * Return if we have all the buffers mapped. This avoids the need to do
5246 * journal_start/journal_stop which can block and take a long time
5248 if (page_has_buffers(page
)) {
5249 if (!ext4_walk_page_buffers(NULL
, page_buffers(page
),
5251 ext4_bh_unmapped
)) {
5252 /* Wait so that we don't change page under IO */
5253 wait_for_stable_page(page
);
5254 ret
= VM_FAULT_LOCKED
;
5259 /* OK, we need to fill the hole... */
5260 if (ext4_should_dioread_nolock(inode
))
5261 get_block
= ext4_get_block_write
;
5263 get_block
= ext4_get_block
;
5265 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
5266 ext4_writepage_trans_blocks(inode
));
5267 if (IS_ERR(handle
)) {
5268 ret
= VM_FAULT_SIGBUS
;
5271 ret
= __block_page_mkwrite(vma
, vmf
, get_block
);
5272 if (!ret
&& ext4_should_journal_data(inode
)) {
5273 if (ext4_walk_page_buffers(handle
, page_buffers(page
), 0,
5274 PAGE_CACHE_SIZE
, NULL
, do_journal_get_write_access
)) {
5276 ret
= VM_FAULT_SIGBUS
;
5277 ext4_journal_stop(handle
);
5280 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
5282 ext4_journal_stop(handle
);
5283 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
5286 ret
= block_page_mkwrite_return(ret
);
5288 sb_end_pagefault(inode
->i_sb
);