4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
24 #include <trace/events/f2fs.h>
26 static struct kmem_cache
*ino_entry_slab
;
27 struct kmem_cache
*inode_entry_slab
;
30 * We guarantee no failure on the returned page.
32 struct page
*grab_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
34 struct address_space
*mapping
= META_MAPPING(sbi
);
35 struct page
*page
= NULL
;
37 page
= grab_cache_page(mapping
, index
);
42 f2fs_wait_on_page_writeback(page
, META
);
43 SetPageUptodate(page
);
48 * We guarantee no failure on the returned page.
50 struct page
*get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
52 struct address_space
*mapping
= META_MAPPING(sbi
);
54 struct f2fs_io_info fio
= {
57 .rw
= READ_SYNC
| REQ_META
| REQ_PRIO
,
59 .encrypted_page
= NULL
,
62 page
= grab_cache_page(mapping
, index
);
67 if (PageUptodate(page
))
72 if (f2fs_submit_page_bio(&fio
))
76 if (unlikely(page
->mapping
!= mapping
)) {
77 f2fs_put_page(page
, 1);
84 bool is_valid_blkaddr(struct f2fs_sb_info
*sbi
, block_t blkaddr
, int type
)
90 if (unlikely(blkaddr
>= SIT_BLK_CNT(sbi
)))
94 if (unlikely(blkaddr
>= MAIN_BLKADDR(sbi
) ||
95 blkaddr
< SM_I(sbi
)->ssa_blkaddr
))
99 if (unlikely(blkaddr
>= SIT_I(sbi
)->sit_base_addr
||
100 blkaddr
< __start_cp_addr(sbi
)))
104 if (unlikely(blkaddr
>= MAX_BLKADDR(sbi
) ||
105 blkaddr
< MAIN_BLKADDR(sbi
)))
116 * Readahead CP/NAT/SIT/SSA pages
118 int ra_meta_pages(struct f2fs_sb_info
*sbi
, block_t start
, int nrpages
, int type
)
120 block_t prev_blk_addr
= 0;
122 block_t blkno
= start
;
123 struct f2fs_io_info fio
= {
126 .rw
= READ_SYNC
| REQ_META
| REQ_PRIO
,
127 .encrypted_page
= NULL
,
130 for (; nrpages
-- > 0; blkno
++) {
132 if (!is_valid_blkaddr(sbi
, blkno
, type
))
137 if (unlikely(blkno
>=
138 NAT_BLOCK_OFFSET(NM_I(sbi
)->max_nid
)))
140 /* get nat block addr */
141 fio
.blk_addr
= current_nat_addr(sbi
,
142 blkno
* NAT_ENTRY_PER_BLOCK
);
145 /* get sit block addr */
146 fio
.blk_addr
= current_sit_addr(sbi
,
147 blkno
* SIT_ENTRY_PER_BLOCK
);
148 if (blkno
!= start
&& prev_blk_addr
+ 1 != fio
.blk_addr
)
150 prev_blk_addr
= fio
.blk_addr
;
155 fio
.blk_addr
= blkno
;
161 page
= grab_cache_page(META_MAPPING(sbi
), fio
.blk_addr
);
164 if (PageUptodate(page
)) {
165 f2fs_put_page(page
, 1);
170 f2fs_submit_page_mbio(&fio
);
171 f2fs_put_page(page
, 0);
174 f2fs_submit_merged_bio(sbi
, META
, READ
);
175 return blkno
- start
;
178 void ra_meta_pages_cond(struct f2fs_sb_info
*sbi
, pgoff_t index
)
181 bool readahead
= false;
183 page
= find_get_page(META_MAPPING(sbi
), index
);
184 if (!page
|| (page
&& !PageUptodate(page
)))
186 f2fs_put_page(page
, 0);
189 ra_meta_pages(sbi
, index
, MAX_BIO_BLOCKS(sbi
), META_POR
);
192 static int f2fs_write_meta_page(struct page
*page
,
193 struct writeback_control
*wbc
)
195 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
197 trace_f2fs_writepage(page
, META
);
199 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
201 if (wbc
->for_reclaim
&& page
->index
< GET_SUM_BLOCK(sbi
, 0))
203 if (unlikely(f2fs_cp_error(sbi
)))
206 f2fs_wait_on_page_writeback(page
, META
);
207 write_meta_page(sbi
, page
);
208 dec_page_count(sbi
, F2FS_DIRTY_META
);
211 if (wbc
->for_reclaim
)
212 f2fs_submit_merged_bio(sbi
, META
, WRITE
);
216 redirty_page_for_writepage(wbc
, page
);
217 return AOP_WRITEPAGE_ACTIVATE
;
220 static int f2fs_write_meta_pages(struct address_space
*mapping
,
221 struct writeback_control
*wbc
)
223 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
226 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
228 /* collect a number of dirty meta pages and write together */
229 if (wbc
->for_kupdate
||
230 get_pages(sbi
, F2FS_DIRTY_META
) < nr_pages_to_skip(sbi
, META
))
233 /* if mounting is failed, skip writing node pages */
234 mutex_lock(&sbi
->cp_mutex
);
235 diff
= nr_pages_to_write(sbi
, META
, wbc
);
236 written
= sync_meta_pages(sbi
, META
, wbc
->nr_to_write
);
237 mutex_unlock(&sbi
->cp_mutex
);
238 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- written
- diff
);
242 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_META
);
246 long sync_meta_pages(struct f2fs_sb_info
*sbi
, enum page_type type
,
249 struct address_space
*mapping
= META_MAPPING(sbi
);
250 pgoff_t index
= 0, end
= LONG_MAX
;
253 struct writeback_control wbc
= {
257 pagevec_init(&pvec
, 0);
259 while (index
<= end
) {
261 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
263 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
264 if (unlikely(nr_pages
== 0))
267 for (i
= 0; i
< nr_pages
; i
++) {
268 struct page
*page
= pvec
.pages
[i
];
272 if (unlikely(page
->mapping
!= mapping
)) {
277 if (!PageDirty(page
)) {
278 /* someone wrote it for us */
279 goto continue_unlock
;
282 if (!clear_page_dirty_for_io(page
))
283 goto continue_unlock
;
285 if (mapping
->a_ops
->writepage(page
, &wbc
)) {
290 if (unlikely(nwritten
>= nr_to_write
))
293 pagevec_release(&pvec
);
298 f2fs_submit_merged_bio(sbi
, type
, WRITE
);
303 static int f2fs_set_meta_page_dirty(struct page
*page
)
305 trace_f2fs_set_page_dirty(page
, META
);
307 SetPageUptodate(page
);
308 if (!PageDirty(page
)) {
309 __set_page_dirty_nobuffers(page
);
310 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_META
);
311 SetPagePrivate(page
);
312 f2fs_trace_pid(page
);
318 const struct address_space_operations f2fs_meta_aops
= {
319 .writepage
= f2fs_write_meta_page
,
320 .writepages
= f2fs_write_meta_pages
,
321 .set_page_dirty
= f2fs_set_meta_page_dirty
,
322 .invalidatepage
= f2fs_invalidate_page
,
323 .releasepage
= f2fs_release_page
,
326 static void __add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
328 struct inode_management
*im
= &sbi
->im
[type
];
331 if (radix_tree_preload(GFP_NOFS
)) {
336 spin_lock(&im
->ino_lock
);
338 e
= radix_tree_lookup(&im
->ino_root
, ino
);
340 e
= kmem_cache_alloc(ino_entry_slab
, GFP_ATOMIC
);
342 spin_unlock(&im
->ino_lock
);
343 radix_tree_preload_end();
346 if (radix_tree_insert(&im
->ino_root
, ino
, e
)) {
347 spin_unlock(&im
->ino_lock
);
348 kmem_cache_free(ino_entry_slab
, e
);
349 radix_tree_preload_end();
352 memset(e
, 0, sizeof(struct ino_entry
));
355 list_add_tail(&e
->list
, &im
->ino_list
);
356 if (type
!= ORPHAN_INO
)
359 spin_unlock(&im
->ino_lock
);
360 radix_tree_preload_end();
363 static void __remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
365 struct inode_management
*im
= &sbi
->im
[type
];
368 spin_lock(&im
->ino_lock
);
369 e
= radix_tree_lookup(&im
->ino_root
, ino
);
372 radix_tree_delete(&im
->ino_root
, ino
);
374 spin_unlock(&im
->ino_lock
);
375 kmem_cache_free(ino_entry_slab
, e
);
378 spin_unlock(&im
->ino_lock
);
381 void add_dirty_inode(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
383 /* add new dirty ino entry into list */
384 __add_ino_entry(sbi
, ino
, type
);
387 void remove_dirty_inode(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
389 /* remove dirty ino entry from list */
390 __remove_ino_entry(sbi
, ino
, type
);
393 /* mode should be APPEND_INO or UPDATE_INO */
394 bool exist_written_data(struct f2fs_sb_info
*sbi
, nid_t ino
, int mode
)
396 struct inode_management
*im
= &sbi
->im
[mode
];
399 spin_lock(&im
->ino_lock
);
400 e
= radix_tree_lookup(&im
->ino_root
, ino
);
401 spin_unlock(&im
->ino_lock
);
402 return e
? true : false;
405 void release_dirty_inode(struct f2fs_sb_info
*sbi
)
407 struct ino_entry
*e
, *tmp
;
410 for (i
= APPEND_INO
; i
<= UPDATE_INO
; i
++) {
411 struct inode_management
*im
= &sbi
->im
[i
];
413 spin_lock(&im
->ino_lock
);
414 list_for_each_entry_safe(e
, tmp
, &im
->ino_list
, list
) {
416 radix_tree_delete(&im
->ino_root
, e
->ino
);
417 kmem_cache_free(ino_entry_slab
, e
);
420 spin_unlock(&im
->ino_lock
);
424 int acquire_orphan_inode(struct f2fs_sb_info
*sbi
)
426 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
429 spin_lock(&im
->ino_lock
);
430 if (unlikely(im
->ino_num
>= sbi
->max_orphans
))
434 spin_unlock(&im
->ino_lock
);
439 void release_orphan_inode(struct f2fs_sb_info
*sbi
)
441 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
443 spin_lock(&im
->ino_lock
);
444 f2fs_bug_on(sbi
, im
->ino_num
== 0);
446 spin_unlock(&im
->ino_lock
);
449 void add_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
451 /* add new orphan ino entry into list */
452 __add_ino_entry(sbi
, ino
, ORPHAN_INO
);
455 void remove_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
457 /* remove orphan entry from orphan list */
458 __remove_ino_entry(sbi
, ino
, ORPHAN_INO
);
461 static void recover_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
463 struct inode
*inode
= f2fs_iget(sbi
->sb
, ino
);
464 f2fs_bug_on(sbi
, IS_ERR(inode
));
467 /* truncate all the data during iput */
471 void recover_orphan_inodes(struct f2fs_sb_info
*sbi
)
473 block_t start_blk
, orphan_blocks
, i
, j
;
475 if (!is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_ORPHAN_PRESENT_FLAG
))
478 set_sbi_flag(sbi
, SBI_POR_DOING
);
480 start_blk
= __start_cp_addr(sbi
) + 1 + __cp_payload(sbi
);
481 orphan_blocks
= __start_sum_addr(sbi
) - 1 - __cp_payload(sbi
);
483 ra_meta_pages(sbi
, start_blk
, orphan_blocks
, META_CP
);
485 for (i
= 0; i
< orphan_blocks
; i
++) {
486 struct page
*page
= get_meta_page(sbi
, start_blk
+ i
);
487 struct f2fs_orphan_block
*orphan_blk
;
489 orphan_blk
= (struct f2fs_orphan_block
*)page_address(page
);
490 for (j
= 0; j
< le32_to_cpu(orphan_blk
->entry_count
); j
++) {
491 nid_t ino
= le32_to_cpu(orphan_blk
->ino
[j
]);
492 recover_orphan_inode(sbi
, ino
);
494 f2fs_put_page(page
, 1);
496 /* clear Orphan Flag */
497 clear_ckpt_flags(F2FS_CKPT(sbi
), CP_ORPHAN_PRESENT_FLAG
);
498 clear_sbi_flag(sbi
, SBI_POR_DOING
);
502 static void write_orphan_inodes(struct f2fs_sb_info
*sbi
, block_t start_blk
)
504 struct list_head
*head
;
505 struct f2fs_orphan_block
*orphan_blk
= NULL
;
506 unsigned int nentries
= 0;
507 unsigned short index
;
508 unsigned short orphan_blocks
;
509 struct page
*page
= NULL
;
510 struct ino_entry
*orphan
= NULL
;
511 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
513 orphan_blocks
= GET_ORPHAN_BLOCKS(im
->ino_num
);
515 for (index
= 0; index
< orphan_blocks
; index
++)
516 grab_meta_page(sbi
, start_blk
+ index
);
521 * we don't need to do spin_lock(&im->ino_lock) here, since all the
522 * orphan inode operations are covered under f2fs_lock_op().
523 * And, spin_lock should be avoided due to page operations below.
525 head
= &im
->ino_list
;
527 /* loop for each orphan inode entry and write them in Jornal block */
528 list_for_each_entry(orphan
, head
, list
) {
530 page
= find_get_page(META_MAPPING(sbi
), start_blk
++);
531 f2fs_bug_on(sbi
, !page
);
533 (struct f2fs_orphan_block
*)page_address(page
);
534 memset(orphan_blk
, 0, sizeof(*orphan_blk
));
535 f2fs_put_page(page
, 0);
538 orphan_blk
->ino
[nentries
++] = cpu_to_le32(orphan
->ino
);
540 if (nentries
== F2FS_ORPHANS_PER_BLOCK
) {
542 * an orphan block is full of 1020 entries,
543 * then we need to flush current orphan blocks
544 * and bring another one in memory
546 orphan_blk
->blk_addr
= cpu_to_le16(index
);
547 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
548 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
549 set_page_dirty(page
);
550 f2fs_put_page(page
, 1);
558 orphan_blk
->blk_addr
= cpu_to_le16(index
);
559 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
560 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
561 set_page_dirty(page
);
562 f2fs_put_page(page
, 1);
566 static struct page
*validate_checkpoint(struct f2fs_sb_info
*sbi
,
567 block_t cp_addr
, unsigned long long *version
)
569 struct page
*cp_page_1
, *cp_page_2
= NULL
;
570 unsigned long blk_size
= sbi
->blocksize
;
571 struct f2fs_checkpoint
*cp_block
;
572 unsigned long long cur_version
= 0, pre_version
= 0;
576 /* Read the 1st cp block in this CP pack */
577 cp_page_1
= get_meta_page(sbi
, cp_addr
);
579 /* get the version number */
580 cp_block
= (struct f2fs_checkpoint
*)page_address(cp_page_1
);
581 crc_offset
= le32_to_cpu(cp_block
->checksum_offset
);
582 if (crc_offset
>= blk_size
)
585 crc
= le32_to_cpu(*((__le32
*)((unsigned char *)cp_block
+ crc_offset
)));
586 if (!f2fs_crc_valid(crc
, cp_block
, crc_offset
))
589 pre_version
= cur_cp_version(cp_block
);
591 /* Read the 2nd cp block in this CP pack */
592 cp_addr
+= le32_to_cpu(cp_block
->cp_pack_total_block_count
) - 1;
593 cp_page_2
= get_meta_page(sbi
, cp_addr
);
595 cp_block
= (struct f2fs_checkpoint
*)page_address(cp_page_2
);
596 crc_offset
= le32_to_cpu(cp_block
->checksum_offset
);
597 if (crc_offset
>= blk_size
)
600 crc
= le32_to_cpu(*((__le32
*)((unsigned char *)cp_block
+ crc_offset
)));
601 if (!f2fs_crc_valid(crc
, cp_block
, crc_offset
))
604 cur_version
= cur_cp_version(cp_block
);
606 if (cur_version
== pre_version
) {
607 *version
= cur_version
;
608 f2fs_put_page(cp_page_2
, 1);
612 f2fs_put_page(cp_page_2
, 1);
614 f2fs_put_page(cp_page_1
, 1);
618 int get_valid_checkpoint(struct f2fs_sb_info
*sbi
)
620 struct f2fs_checkpoint
*cp_block
;
621 struct f2fs_super_block
*fsb
= sbi
->raw_super
;
622 struct page
*cp1
, *cp2
, *cur_page
;
623 unsigned long blk_size
= sbi
->blocksize
;
624 unsigned long long cp1_version
= 0, cp2_version
= 0;
625 unsigned long long cp_start_blk_no
;
626 unsigned int cp_blks
= 1 + __cp_payload(sbi
);
630 sbi
->ckpt
= kzalloc(cp_blks
* blk_size
, GFP_KERNEL
);
634 * Finding out valid cp block involves read both
635 * sets( cp pack1 and cp pack 2)
637 cp_start_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
638 cp1
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp1_version
);
640 /* The second checkpoint pack should start at the next segment */
641 cp_start_blk_no
+= ((unsigned long long)1) <<
642 le32_to_cpu(fsb
->log_blocks_per_seg
);
643 cp2
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp2_version
);
646 if (ver_after(cp2_version
, cp1_version
))
658 cp_block
= (struct f2fs_checkpoint
*)page_address(cur_page
);
659 memcpy(sbi
->ckpt
, cp_block
, blk_size
);
664 cp_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
666 cp_blk_no
+= 1 << le32_to_cpu(fsb
->log_blocks_per_seg
);
668 for (i
= 1; i
< cp_blks
; i
++) {
669 void *sit_bitmap_ptr
;
670 unsigned char *ckpt
= (unsigned char *)sbi
->ckpt
;
672 cur_page
= get_meta_page(sbi
, cp_blk_no
+ i
);
673 sit_bitmap_ptr
= page_address(cur_page
);
674 memcpy(ckpt
+ i
* blk_size
, sit_bitmap_ptr
, blk_size
);
675 f2fs_put_page(cur_page
, 1);
678 f2fs_put_page(cp1
, 1);
679 f2fs_put_page(cp2
, 1);
687 static int __add_dirty_inode(struct inode
*inode
, struct inode_entry
*new)
689 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
691 if (is_inode_flag_set(F2FS_I(inode
), FI_DIRTY_DIR
))
694 set_inode_flag(F2FS_I(inode
), FI_DIRTY_DIR
);
695 F2FS_I(inode
)->dirty_dir
= new;
696 list_add_tail(&new->list
, &sbi
->dir_inode_list
);
697 stat_inc_dirty_dir(sbi
);
701 void update_dirty_page(struct inode
*inode
, struct page
*page
)
703 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
704 struct inode_entry
*new;
707 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
))
710 if (!S_ISDIR(inode
->i_mode
)) {
711 inode_inc_dirty_pages(inode
);
715 new = f2fs_kmem_cache_alloc(inode_entry_slab
, GFP_NOFS
);
717 INIT_LIST_HEAD(&new->list
);
719 spin_lock(&sbi
->dir_inode_lock
);
720 ret
= __add_dirty_inode(inode
, new);
721 inode_inc_dirty_pages(inode
);
722 spin_unlock(&sbi
->dir_inode_lock
);
725 kmem_cache_free(inode_entry_slab
, new);
727 SetPagePrivate(page
);
728 f2fs_trace_pid(page
);
731 void add_dirty_dir_inode(struct inode
*inode
)
733 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
734 struct inode_entry
*new =
735 f2fs_kmem_cache_alloc(inode_entry_slab
, GFP_NOFS
);
739 INIT_LIST_HEAD(&new->list
);
741 spin_lock(&sbi
->dir_inode_lock
);
742 ret
= __add_dirty_inode(inode
, new);
743 spin_unlock(&sbi
->dir_inode_lock
);
746 kmem_cache_free(inode_entry_slab
, new);
749 void remove_dirty_dir_inode(struct inode
*inode
)
751 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
752 struct inode_entry
*entry
;
754 if (!S_ISDIR(inode
->i_mode
))
757 spin_lock(&sbi
->dir_inode_lock
);
758 if (get_dirty_pages(inode
) ||
759 !is_inode_flag_set(F2FS_I(inode
), FI_DIRTY_DIR
)) {
760 spin_unlock(&sbi
->dir_inode_lock
);
764 entry
= F2FS_I(inode
)->dirty_dir
;
765 list_del(&entry
->list
);
766 F2FS_I(inode
)->dirty_dir
= NULL
;
767 clear_inode_flag(F2FS_I(inode
), FI_DIRTY_DIR
);
768 stat_dec_dirty_dir(sbi
);
769 spin_unlock(&sbi
->dir_inode_lock
);
770 kmem_cache_free(inode_entry_slab
, entry
);
772 /* Only from the recovery routine */
773 if (is_inode_flag_set(F2FS_I(inode
), FI_DELAY_IPUT
)) {
774 clear_inode_flag(F2FS_I(inode
), FI_DELAY_IPUT
);
779 void sync_dirty_dir_inodes(struct f2fs_sb_info
*sbi
)
781 struct list_head
*head
;
782 struct inode_entry
*entry
;
785 if (unlikely(f2fs_cp_error(sbi
)))
788 spin_lock(&sbi
->dir_inode_lock
);
790 head
= &sbi
->dir_inode_list
;
791 if (list_empty(head
)) {
792 spin_unlock(&sbi
->dir_inode_lock
);
795 entry
= list_entry(head
->next
, struct inode_entry
, list
);
796 inode
= igrab(entry
->inode
);
797 spin_unlock(&sbi
->dir_inode_lock
);
799 filemap_fdatawrite(inode
->i_mapping
);
803 * We should submit bio, since it exists several
804 * wribacking dentry pages in the freeing inode.
806 f2fs_submit_merged_bio(sbi
, DATA
, WRITE
);
813 * Freeze all the FS-operations for checkpoint.
815 static int block_operations(struct f2fs_sb_info
*sbi
)
817 struct writeback_control wbc
= {
818 .sync_mode
= WB_SYNC_ALL
,
819 .nr_to_write
= LONG_MAX
,
822 struct blk_plug plug
;
825 blk_start_plug(&plug
);
829 /* write all the dirty dentry pages */
830 if (get_pages(sbi
, F2FS_DIRTY_DENTS
)) {
831 f2fs_unlock_all(sbi
);
832 sync_dirty_dir_inodes(sbi
);
833 if (unlikely(f2fs_cp_error(sbi
))) {
837 goto retry_flush_dents
;
841 * POR: we should ensure that there are no dirty node pages
842 * until finishing nat/sit flush.
845 down_write(&sbi
->node_write
);
847 if (get_pages(sbi
, F2FS_DIRTY_NODES
)) {
848 up_write(&sbi
->node_write
);
849 sync_node_pages(sbi
, 0, &wbc
);
850 if (unlikely(f2fs_cp_error(sbi
))) {
851 f2fs_unlock_all(sbi
);
855 goto retry_flush_nodes
;
858 blk_finish_plug(&plug
);
862 static void unblock_operations(struct f2fs_sb_info
*sbi
)
864 up_write(&sbi
->node_write
);
865 f2fs_unlock_all(sbi
);
868 static void wait_on_all_pages_writeback(struct f2fs_sb_info
*sbi
)
873 prepare_to_wait(&sbi
->cp_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
875 if (!get_pages(sbi
, F2FS_WRITEBACK
))
880 finish_wait(&sbi
->cp_wait
, &wait
);
883 static void do_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
885 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
886 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_WARM_NODE
);
887 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
888 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
;
889 nid_t last_nid
= nm_i
->next_scan_nid
;
891 unsigned int data_sum_blocks
, orphan_blocks
;
894 int cp_payload_blks
= __cp_payload(sbi
);
897 * This avoids to conduct wrong roll-forward operations and uses
898 * metapages, so should be called prior to sync_meta_pages below.
900 discard_next_dnode(sbi
, NEXT_FREE_BLKADDR(sbi
, curseg
));
902 /* Flush all the NAT/SIT pages */
903 while (get_pages(sbi
, F2FS_DIRTY_META
)) {
904 sync_meta_pages(sbi
, META
, LONG_MAX
);
905 if (unlikely(f2fs_cp_error(sbi
)))
909 next_free_nid(sbi
, &last_nid
);
913 * version number is already updated
915 ckpt
->elapsed_time
= cpu_to_le64(get_mtime(sbi
));
916 ckpt
->valid_block_count
= cpu_to_le64(valid_user_blocks(sbi
));
917 ckpt
->free_segment_count
= cpu_to_le32(free_segments(sbi
));
918 for (i
= 0; i
< NR_CURSEG_NODE_TYPE
; i
++) {
919 ckpt
->cur_node_segno
[i
] =
920 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_NODE
));
921 ckpt
->cur_node_blkoff
[i
] =
922 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_NODE
));
923 ckpt
->alloc_type
[i
+ CURSEG_HOT_NODE
] =
924 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_NODE
);
926 for (i
= 0; i
< NR_CURSEG_DATA_TYPE
; i
++) {
927 ckpt
->cur_data_segno
[i
] =
928 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_DATA
));
929 ckpt
->cur_data_blkoff
[i
] =
930 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_DATA
));
931 ckpt
->alloc_type
[i
+ CURSEG_HOT_DATA
] =
932 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_DATA
);
935 ckpt
->valid_node_count
= cpu_to_le32(valid_node_count(sbi
));
936 ckpt
->valid_inode_count
= cpu_to_le32(valid_inode_count(sbi
));
937 ckpt
->next_free_nid
= cpu_to_le32(last_nid
);
939 /* 2 cp + n data seg summary + orphan inode blocks */
940 data_sum_blocks
= npages_for_summary_flush(sbi
, false);
941 if (data_sum_blocks
< NR_CURSEG_DATA_TYPE
)
942 set_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
944 clear_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
946 orphan_blocks
= GET_ORPHAN_BLOCKS(orphan_num
);
947 ckpt
->cp_pack_start_sum
= cpu_to_le32(1 + cp_payload_blks
+
950 if (__remain_node_summaries(cpc
->reason
))
951 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
952 cp_payload_blks
+ data_sum_blocks
+
953 orphan_blocks
+ NR_CURSEG_NODE_TYPE
);
955 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
956 cp_payload_blks
+ data_sum_blocks
+
959 if (cpc
->reason
== CP_UMOUNT
)
960 set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
962 clear_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
964 if (cpc
->reason
== CP_FASTBOOT
)
965 set_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
967 clear_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
970 set_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
972 clear_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
974 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
))
975 set_ckpt_flags(ckpt
, CP_FSCK_FLAG
);
977 /* update SIT/NAT bitmap */
978 get_sit_bitmap(sbi
, __bitmap_ptr(sbi
, SIT_BITMAP
));
979 get_nat_bitmap(sbi
, __bitmap_ptr(sbi
, NAT_BITMAP
));
981 crc32
= f2fs_crc32(ckpt
, le32_to_cpu(ckpt
->checksum_offset
));
982 *((__le32
*)((unsigned char *)ckpt
+
983 le32_to_cpu(ckpt
->checksum_offset
)))
984 = cpu_to_le32(crc32
);
986 start_blk
= __start_cp_addr(sbi
);
988 /* write out checkpoint buffer at block 0 */
989 update_meta_page(sbi
, ckpt
, start_blk
++);
991 for (i
= 1; i
< 1 + cp_payload_blks
; i
++)
992 update_meta_page(sbi
, (char *)ckpt
+ i
* F2FS_BLKSIZE
,
996 write_orphan_inodes(sbi
, start_blk
);
997 start_blk
+= orphan_blocks
;
1000 write_data_summaries(sbi
, start_blk
);
1001 start_blk
+= data_sum_blocks
;
1002 if (__remain_node_summaries(cpc
->reason
)) {
1003 write_node_summaries(sbi
, start_blk
);
1004 start_blk
+= NR_CURSEG_NODE_TYPE
;
1007 /* writeout checkpoint block */
1008 update_meta_page(sbi
, ckpt
, start_blk
);
1010 /* wait for previous submitted node/meta pages writeback */
1011 wait_on_all_pages_writeback(sbi
);
1013 if (unlikely(f2fs_cp_error(sbi
)))
1016 filemap_fdatawait_range(NODE_MAPPING(sbi
), 0, LONG_MAX
);
1017 filemap_fdatawait_range(META_MAPPING(sbi
), 0, LONG_MAX
);
1019 /* update user_block_counts */
1020 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
1021 sbi
->alloc_valid_block_count
= 0;
1023 /* Here, we only have one bio having CP pack */
1024 sync_meta_pages(sbi
, META_FLUSH
, LONG_MAX
);
1026 /* wait for previous submitted meta pages writeback */
1027 wait_on_all_pages_writeback(sbi
);
1029 release_dirty_inode(sbi
);
1031 if (unlikely(f2fs_cp_error(sbi
)))
1034 clear_prefree_segments(sbi
, cpc
);
1035 clear_sbi_flag(sbi
, SBI_IS_DIRTY
);
1039 * We guarantee that this checkpoint procedure will not fail.
1041 void write_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1043 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1044 unsigned long long ckpt_ver
;
1046 mutex_lock(&sbi
->cp_mutex
);
1048 if (!is_sbi_flag_set(sbi
, SBI_IS_DIRTY
) &&
1049 (cpc
->reason
== CP_FASTBOOT
|| cpc
->reason
== CP_SYNC
||
1050 (cpc
->reason
== CP_DISCARD
&& !sbi
->discard_blks
)))
1052 if (unlikely(f2fs_cp_error(sbi
)))
1054 if (f2fs_readonly(sbi
->sb
))
1057 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "start block_ops");
1059 if (block_operations(sbi
))
1062 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish block_ops");
1064 f2fs_submit_merged_bio(sbi
, DATA
, WRITE
);
1065 f2fs_submit_merged_bio(sbi
, NODE
, WRITE
);
1066 f2fs_submit_merged_bio(sbi
, META
, WRITE
);
1069 * update checkpoint pack index
1070 * Increase the version number so that
1071 * SIT entries and seg summaries are written at correct place
1073 ckpt_ver
= cur_cp_version(ckpt
);
1074 ckpt
->checkpoint_ver
= cpu_to_le64(++ckpt_ver
);
1076 /* write cached NAT/SIT entries to NAT/SIT area */
1077 flush_nat_entries(sbi
);
1078 flush_sit_entries(sbi
, cpc
);
1080 /* unlock all the fs_lock[] in do_checkpoint() */
1081 do_checkpoint(sbi
, cpc
);
1083 unblock_operations(sbi
);
1084 stat_inc_cp_count(sbi
->stat_info
);
1086 if (cpc
->reason
== CP_RECOVERY
)
1087 f2fs_msg(sbi
->sb
, KERN_NOTICE
,
1088 "checkpoint: version = %llx", ckpt_ver
);
1090 mutex_unlock(&sbi
->cp_mutex
);
1091 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish checkpoint");
1094 void init_ino_entry_info(struct f2fs_sb_info
*sbi
)
1098 for (i
= 0; i
< MAX_INO_ENTRY
; i
++) {
1099 struct inode_management
*im
= &sbi
->im
[i
];
1101 INIT_RADIX_TREE(&im
->ino_root
, GFP_ATOMIC
);
1102 spin_lock_init(&im
->ino_lock
);
1103 INIT_LIST_HEAD(&im
->ino_list
);
1107 sbi
->max_orphans
= (sbi
->blocks_per_seg
- F2FS_CP_PACKS
-
1108 NR_CURSEG_TYPE
- __cp_payload(sbi
)) *
1109 F2FS_ORPHANS_PER_BLOCK
;
1112 int __init
create_checkpoint_caches(void)
1114 ino_entry_slab
= f2fs_kmem_cache_create("f2fs_ino_entry",
1115 sizeof(struct ino_entry
));
1116 if (!ino_entry_slab
)
1118 inode_entry_slab
= f2fs_kmem_cache_create("f2fs_inode_entry",
1119 sizeof(struct inode_entry
));
1120 if (!inode_entry_slab
) {
1121 kmem_cache_destroy(ino_entry_slab
);
1127 void destroy_checkpoint_caches(void)
1129 kmem_cache_destroy(ino_entry_slab
);
1130 kmem_cache_destroy(inode_entry_slab
);