2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
23 * DOC: Wireless regulatory infrastructure
25 * The usual implementation is for a driver to read a device EEPROM to
26 * determine which regulatory domain it should be operating under, then
27 * looking up the allowable channels in a driver-local table and finally
28 * registering those channels in the wiphy structure.
30 * Another set of compliance enforcement is for drivers to use their
31 * own compliance limits which can be stored on the EEPROM. The host
32 * driver or firmware may ensure these are used.
34 * In addition to all this we provide an extra layer of regulatory
35 * conformance. For drivers which do not have any regulatory
36 * information CRDA provides the complete regulatory solution.
37 * For others it provides a community effort on further restrictions
38 * to enhance compliance.
40 * Note: When number of rules --> infinity we will not be able to
41 * index on alpha2 any more, instead we'll probably have to
42 * rely on some SHA1 checksum of the regdomain for example.
46 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48 #include <linux/kernel.h>
49 #include <linux/export.h>
50 #include <linux/slab.h>
51 #include <linux/list.h>
52 #include <linux/ctype.h>
53 #include <linux/nl80211.h>
54 #include <linux/platform_device.h>
55 #include <linux/moduleparam.h>
56 #include <net/cfg80211.h>
63 #ifdef CONFIG_CFG80211_REG_DEBUG
64 #define REG_DBG_PRINT(format, args...) \
65 printk(KERN_DEBUG pr_fmt(format), ##args)
67 #define REG_DBG_PRINT(args...)
71 * Grace period we give before making sure all current interfaces reside on
72 * channels allowed by the current regulatory domain.
74 #define REG_ENFORCE_GRACE_MS 60000
77 * enum reg_request_treatment - regulatory request treatment
79 * @REG_REQ_OK: continue processing the regulatory request
80 * @REG_REQ_IGNORE: ignore the regulatory request
81 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
82 * be intersected with the current one.
83 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
84 * regulatory settings, and no further processing is required.
86 enum reg_request_treatment
{
93 static struct regulatory_request core_request_world
= {
94 .initiator
= NL80211_REGDOM_SET_BY_CORE
,
99 .country_ie_env
= ENVIRON_ANY
,
103 * Receipt of information from last regulatory request,
104 * protected by RTNL (and can be accessed with RCU protection)
106 static struct regulatory_request __rcu
*last_request
=
107 (void __force __rcu
*)&core_request_world
;
109 /* To trigger userspace events */
110 static struct platform_device
*reg_pdev
;
113 * Central wireless core regulatory domains, we only need two,
114 * the current one and a world regulatory domain in case we have no
115 * information to give us an alpha2.
116 * (protected by RTNL, can be read under RCU)
118 const struct ieee80211_regdomain __rcu
*cfg80211_regdomain
;
121 * Number of devices that registered to the core
122 * that support cellular base station regulatory hints
123 * (protected by RTNL)
125 static int reg_num_devs_support_basehint
;
128 * State variable indicating if the platform on which the devices
129 * are attached is operating in an indoor environment. The state variable
130 * is relevant for all registered devices.
132 static bool reg_is_indoor
;
133 static spinlock_t reg_indoor_lock
;
135 /* Used to track the userspace process controlling the indoor setting */
136 static u32 reg_is_indoor_portid
;
138 /* Max number of consecutive attempts to communicate with CRDA */
139 #define REG_MAX_CRDA_TIMEOUTS 10
141 static u32 reg_crda_timeouts
;
143 static const struct ieee80211_regdomain
*get_cfg80211_regdom(void)
145 return rtnl_dereference(cfg80211_regdomain
);
148 const struct ieee80211_regdomain
*get_wiphy_regdom(struct wiphy
*wiphy
)
150 return rtnl_dereference(wiphy
->regd
);
153 static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region
)
155 switch (dfs_region
) {
156 case NL80211_DFS_UNSET
:
158 case NL80211_DFS_FCC
:
160 case NL80211_DFS_ETSI
:
168 enum nl80211_dfs_regions
reg_get_dfs_region(struct wiphy
*wiphy
)
170 const struct ieee80211_regdomain
*regd
= NULL
;
171 const struct ieee80211_regdomain
*wiphy_regd
= NULL
;
173 regd
= get_cfg80211_regdom();
177 wiphy_regd
= get_wiphy_regdom(wiphy
);
181 if (wiphy_regd
->dfs_region
== regd
->dfs_region
)
184 REG_DBG_PRINT("%s: device specific dfs_region "
185 "(%s) disagrees with cfg80211's "
186 "central dfs_region (%s)\n",
187 dev_name(&wiphy
->dev
),
188 reg_dfs_region_str(wiphy_regd
->dfs_region
),
189 reg_dfs_region_str(regd
->dfs_region
));
192 return regd
->dfs_region
;
195 static void rcu_free_regdom(const struct ieee80211_regdomain
*r
)
199 kfree_rcu((struct ieee80211_regdomain
*)r
, rcu_head
);
202 static struct regulatory_request
*get_last_request(void)
204 return rcu_dereference_rtnl(last_request
);
207 /* Used to queue up regulatory hints */
208 static LIST_HEAD(reg_requests_list
);
209 static spinlock_t reg_requests_lock
;
211 /* Used to queue up beacon hints for review */
212 static LIST_HEAD(reg_pending_beacons
);
213 static spinlock_t reg_pending_beacons_lock
;
215 /* Used to keep track of processed beacon hints */
216 static LIST_HEAD(reg_beacon_list
);
219 struct list_head list
;
220 struct ieee80211_channel chan
;
223 static void reg_check_chans_work(struct work_struct
*work
);
224 static DECLARE_DELAYED_WORK(reg_check_chans
, reg_check_chans_work
);
226 static void reg_todo(struct work_struct
*work
);
227 static DECLARE_WORK(reg_work
, reg_todo
);
229 static void reg_timeout_work(struct work_struct
*work
);
230 static DECLARE_DELAYED_WORK(reg_timeout
, reg_timeout_work
);
232 /* We keep a static world regulatory domain in case of the absence of CRDA */
233 static const struct ieee80211_regdomain world_regdom
= {
237 /* IEEE 802.11b/g, channels 1..11 */
238 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
239 /* IEEE 802.11b/g, channels 12..13. */
240 REG_RULE(2467-10, 2472+10, 40, 6, 20,
242 /* IEEE 802.11 channel 14 - Only JP enables
243 * this and for 802.11b only */
244 REG_RULE(2484-10, 2484+10, 20, 6, 20,
246 NL80211_RRF_NO_OFDM
),
247 /* IEEE 802.11a, channel 36..48 */
248 REG_RULE(5180-10, 5240+10, 160, 6, 20,
251 /* IEEE 802.11a, channel 52..64 - DFS required */
252 REG_RULE(5260-10, 5320+10, 160, 6, 20,
256 /* IEEE 802.11a, channel 100..144 - DFS required */
257 REG_RULE(5500-10, 5720+10, 160, 6, 20,
261 /* IEEE 802.11a, channel 149..165 */
262 REG_RULE(5745-10, 5825+10, 80, 6, 20,
265 /* IEEE 802.11ad (60gHz), channels 1..3 */
266 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
270 /* protected by RTNL */
271 static const struct ieee80211_regdomain
*cfg80211_world_regdom
=
274 static char *ieee80211_regdom
= "00";
275 static char user_alpha2
[2];
277 module_param(ieee80211_regdom
, charp
, 0444);
278 MODULE_PARM_DESC(ieee80211_regdom
, "IEEE 802.11 regulatory domain code");
280 static void reg_free_request(struct regulatory_request
*request
)
282 if (request
!= get_last_request())
286 static void reg_free_last_request(void)
288 struct regulatory_request
*lr
= get_last_request();
290 if (lr
!= &core_request_world
&& lr
)
291 kfree_rcu(lr
, rcu_head
);
294 static void reg_update_last_request(struct regulatory_request
*request
)
296 struct regulatory_request
*lr
;
298 lr
= get_last_request();
302 reg_free_last_request();
303 rcu_assign_pointer(last_request
, request
);
306 static void reset_regdomains(bool full_reset
,
307 const struct ieee80211_regdomain
*new_regdom
)
309 const struct ieee80211_regdomain
*r
;
313 r
= get_cfg80211_regdom();
315 /* avoid freeing static information or freeing something twice */
316 if (r
== cfg80211_world_regdom
)
318 if (cfg80211_world_regdom
== &world_regdom
)
319 cfg80211_world_regdom
= NULL
;
320 if (r
== &world_regdom
)
324 rcu_free_regdom(cfg80211_world_regdom
);
326 cfg80211_world_regdom
= &world_regdom
;
327 rcu_assign_pointer(cfg80211_regdomain
, new_regdom
);
332 reg_update_last_request(&core_request_world
);
336 * Dynamic world regulatory domain requested by the wireless
337 * core upon initialization
339 static void update_world_regdomain(const struct ieee80211_regdomain
*rd
)
341 struct regulatory_request
*lr
;
343 lr
= get_last_request();
347 reset_regdomains(false, rd
);
349 cfg80211_world_regdom
= rd
;
352 bool is_world_regdom(const char *alpha2
)
356 return alpha2
[0] == '0' && alpha2
[1] == '0';
359 static bool is_alpha2_set(const char *alpha2
)
363 return alpha2
[0] && alpha2
[1];
366 static bool is_unknown_alpha2(const char *alpha2
)
371 * Special case where regulatory domain was built by driver
372 * but a specific alpha2 cannot be determined
374 return alpha2
[0] == '9' && alpha2
[1] == '9';
377 static bool is_intersected_alpha2(const char *alpha2
)
382 * Special case where regulatory domain is the
383 * result of an intersection between two regulatory domain
386 return alpha2
[0] == '9' && alpha2
[1] == '8';
389 static bool is_an_alpha2(const char *alpha2
)
393 return isalpha(alpha2
[0]) && isalpha(alpha2
[1]);
396 static bool alpha2_equal(const char *alpha2_x
, const char *alpha2_y
)
398 if (!alpha2_x
|| !alpha2_y
)
400 return alpha2_x
[0] == alpha2_y
[0] && alpha2_x
[1] == alpha2_y
[1];
403 static bool regdom_changes(const char *alpha2
)
405 const struct ieee80211_regdomain
*r
= get_cfg80211_regdom();
409 return !alpha2_equal(r
->alpha2
, alpha2
);
413 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
414 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
415 * has ever been issued.
417 static bool is_user_regdom_saved(void)
419 if (user_alpha2
[0] == '9' && user_alpha2
[1] == '7')
422 /* This would indicate a mistake on the design */
423 if (WARN(!is_world_regdom(user_alpha2
) && !is_an_alpha2(user_alpha2
),
424 "Unexpected user alpha2: %c%c\n",
425 user_alpha2
[0], user_alpha2
[1]))
431 static const struct ieee80211_regdomain
*
432 reg_copy_regd(const struct ieee80211_regdomain
*src_regd
)
434 struct ieee80211_regdomain
*regd
;
439 sizeof(struct ieee80211_regdomain
) +
440 src_regd
->n_reg_rules
* sizeof(struct ieee80211_reg_rule
);
442 regd
= kzalloc(size_of_regd
, GFP_KERNEL
);
444 return ERR_PTR(-ENOMEM
);
446 memcpy(regd
, src_regd
, sizeof(struct ieee80211_regdomain
));
448 for (i
= 0; i
< src_regd
->n_reg_rules
; i
++)
449 memcpy(®d
->reg_rules
[i
], &src_regd
->reg_rules
[i
],
450 sizeof(struct ieee80211_reg_rule
));
455 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
456 struct reg_regdb_search_request
{
458 struct list_head list
;
461 static LIST_HEAD(reg_regdb_search_list
);
462 static DEFINE_MUTEX(reg_regdb_search_mutex
);
464 static void reg_regdb_search(struct work_struct
*work
)
466 struct reg_regdb_search_request
*request
;
467 const struct ieee80211_regdomain
*curdom
, *regdom
= NULL
;
472 mutex_lock(®_regdb_search_mutex
);
473 while (!list_empty(®_regdb_search_list
)) {
474 request
= list_first_entry(®_regdb_search_list
,
475 struct reg_regdb_search_request
,
477 list_del(&request
->list
);
479 for (i
= 0; i
< reg_regdb_size
; i
++) {
480 curdom
= reg_regdb
[i
];
482 if (alpha2_equal(request
->alpha2
, curdom
->alpha2
)) {
483 regdom
= reg_copy_regd(curdom
);
490 mutex_unlock(®_regdb_search_mutex
);
492 if (!IS_ERR_OR_NULL(regdom
))
493 set_regdom(regdom
, REGD_SOURCE_INTERNAL_DB
);
498 static DECLARE_WORK(reg_regdb_work
, reg_regdb_search
);
500 static void reg_regdb_query(const char *alpha2
)
502 struct reg_regdb_search_request
*request
;
507 request
= kzalloc(sizeof(struct reg_regdb_search_request
), GFP_KERNEL
);
511 memcpy(request
->alpha2
, alpha2
, 2);
513 mutex_lock(®_regdb_search_mutex
);
514 list_add_tail(&request
->list
, ®_regdb_search_list
);
515 mutex_unlock(®_regdb_search_mutex
);
517 schedule_work(®_regdb_work
);
520 /* Feel free to add any other sanity checks here */
521 static void reg_regdb_size_check(void)
523 /* We should ideally BUILD_BUG_ON() but then random builds would fail */
524 WARN_ONCE(!reg_regdb_size
, "db.txt is empty, you should update it...");
527 static inline void reg_regdb_size_check(void) {}
528 static inline void reg_regdb_query(const char *alpha2
) {}
529 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
532 * This lets us keep regulatory code which is updated on a regulatory
533 * basis in userspace.
535 static int call_crda(const char *alpha2
)
538 char *env
[] = { country
, NULL
};
540 snprintf(country
, sizeof(country
), "COUNTRY=%c%c",
541 alpha2
[0], alpha2
[1]);
543 /* query internal regulatory database (if it exists) */
544 reg_regdb_query(alpha2
);
546 if (reg_crda_timeouts
> REG_MAX_CRDA_TIMEOUTS
) {
547 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
551 if (!is_world_regdom((char *) alpha2
))
552 pr_debug("Calling CRDA for country: %c%c\n",
553 alpha2
[0], alpha2
[1]);
555 pr_debug("Calling CRDA to update world regulatory domain\n");
557 return kobject_uevent_env(®_pdev
->dev
.kobj
, KOBJ_CHANGE
, env
);
560 static enum reg_request_treatment
561 reg_call_crda(struct regulatory_request
*request
)
563 if (call_crda(request
->alpha2
))
564 return REG_REQ_IGNORE
;
566 queue_delayed_work(system_power_efficient_wq
,
567 ®_timeout
, msecs_to_jiffies(3142));
571 bool reg_is_valid_request(const char *alpha2
)
573 struct regulatory_request
*lr
= get_last_request();
575 if (!lr
|| lr
->processed
)
578 return alpha2_equal(lr
->alpha2
, alpha2
);
581 static const struct ieee80211_regdomain
*reg_get_regdomain(struct wiphy
*wiphy
)
583 struct regulatory_request
*lr
= get_last_request();
586 * Follow the driver's regulatory domain, if present, unless a country
587 * IE has been processed or a user wants to help complaince further
589 if (lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
590 lr
->initiator
!= NL80211_REGDOM_SET_BY_USER
&&
592 return get_wiphy_regdom(wiphy
);
594 return get_cfg80211_regdom();
598 reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain
*rd
,
599 const struct ieee80211_reg_rule
*rule
)
601 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
602 const struct ieee80211_freq_range
*freq_range_tmp
;
603 const struct ieee80211_reg_rule
*tmp
;
604 u32 start_freq
, end_freq
, idx
, no
;
606 for (idx
= 0; idx
< rd
->n_reg_rules
; idx
++)
607 if (rule
== &rd
->reg_rules
[idx
])
610 if (idx
== rd
->n_reg_rules
)
617 tmp
= &rd
->reg_rules
[--no
];
618 freq_range_tmp
= &tmp
->freq_range
;
620 if (freq_range_tmp
->end_freq_khz
< freq_range
->start_freq_khz
)
623 freq_range
= freq_range_tmp
;
626 start_freq
= freq_range
->start_freq_khz
;
629 freq_range
= &rule
->freq_range
;
632 while (no
< rd
->n_reg_rules
- 1) {
633 tmp
= &rd
->reg_rules
[++no
];
634 freq_range_tmp
= &tmp
->freq_range
;
636 if (freq_range_tmp
->start_freq_khz
> freq_range
->end_freq_khz
)
639 freq_range
= freq_range_tmp
;
642 end_freq
= freq_range
->end_freq_khz
;
644 return end_freq
- start_freq
;
647 unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain
*rd
,
648 const struct ieee80211_reg_rule
*rule
)
650 unsigned int bw
= reg_get_max_bandwidth_from_range(rd
, rule
);
652 if (rule
->flags
& NL80211_RRF_NO_160MHZ
)
653 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(80));
654 if (rule
->flags
& NL80211_RRF_NO_80MHZ
)
655 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(40));
658 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
661 if (rule
->flags
& NL80211_RRF_NO_HT40MINUS
&&
662 rule
->flags
& NL80211_RRF_NO_HT40PLUS
)
663 bw
= min_t(unsigned int, bw
, MHZ_TO_KHZ(20));
668 /* Sanity check on a regulatory rule */
669 static bool is_valid_reg_rule(const struct ieee80211_reg_rule
*rule
)
671 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
674 if (freq_range
->start_freq_khz
<= 0 || freq_range
->end_freq_khz
<= 0)
677 if (freq_range
->start_freq_khz
> freq_range
->end_freq_khz
)
680 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
682 if (freq_range
->end_freq_khz
<= freq_range
->start_freq_khz
||
683 freq_range
->max_bandwidth_khz
> freq_diff
)
689 static bool is_valid_rd(const struct ieee80211_regdomain
*rd
)
691 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
694 if (!rd
->n_reg_rules
)
697 if (WARN_ON(rd
->n_reg_rules
> NL80211_MAX_SUPP_REG_RULES
))
700 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
701 reg_rule
= &rd
->reg_rules
[i
];
702 if (!is_valid_reg_rule(reg_rule
))
709 static bool reg_does_bw_fit(const struct ieee80211_freq_range
*freq_range
,
710 u32 center_freq_khz
, u32 bw_khz
)
712 u32 start_freq_khz
, end_freq_khz
;
714 start_freq_khz
= center_freq_khz
- (bw_khz
/2);
715 end_freq_khz
= center_freq_khz
+ (bw_khz
/2);
717 if (start_freq_khz
>= freq_range
->start_freq_khz
&&
718 end_freq_khz
<= freq_range
->end_freq_khz
)
725 * freq_in_rule_band - tells us if a frequency is in a frequency band
726 * @freq_range: frequency rule we want to query
727 * @freq_khz: frequency we are inquiring about
729 * This lets us know if a specific frequency rule is or is not relevant to
730 * a specific frequency's band. Bands are device specific and artificial
731 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
732 * however it is safe for now to assume that a frequency rule should not be
733 * part of a frequency's band if the start freq or end freq are off by more
734 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 10 GHz for the
736 * This resolution can be lowered and should be considered as we add
737 * regulatory rule support for other "bands".
739 static bool freq_in_rule_band(const struct ieee80211_freq_range
*freq_range
,
742 #define ONE_GHZ_IN_KHZ 1000000
744 * From 802.11ad: directional multi-gigabit (DMG):
745 * Pertaining to operation in a frequency band containing a channel
746 * with the Channel starting frequency above 45 GHz.
748 u32 limit
= freq_khz
> 45 * ONE_GHZ_IN_KHZ
?
749 10 * ONE_GHZ_IN_KHZ
: 2 * ONE_GHZ_IN_KHZ
;
750 if (abs(freq_khz
- freq_range
->start_freq_khz
) <= limit
)
752 if (abs(freq_khz
- freq_range
->end_freq_khz
) <= limit
)
755 #undef ONE_GHZ_IN_KHZ
759 * Later on we can perhaps use the more restrictive DFS
760 * region but we don't have information for that yet so
761 * for now simply disallow conflicts.
763 static enum nl80211_dfs_regions
764 reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1
,
765 const enum nl80211_dfs_regions dfs_region2
)
767 if (dfs_region1
!= dfs_region2
)
768 return NL80211_DFS_UNSET
;
773 * Helper for regdom_intersect(), this does the real
774 * mathematical intersection fun
776 static int reg_rules_intersect(const struct ieee80211_regdomain
*rd1
,
777 const struct ieee80211_regdomain
*rd2
,
778 const struct ieee80211_reg_rule
*rule1
,
779 const struct ieee80211_reg_rule
*rule2
,
780 struct ieee80211_reg_rule
*intersected_rule
)
782 const struct ieee80211_freq_range
*freq_range1
, *freq_range2
;
783 struct ieee80211_freq_range
*freq_range
;
784 const struct ieee80211_power_rule
*power_rule1
, *power_rule2
;
785 struct ieee80211_power_rule
*power_rule
;
786 u32 freq_diff
, max_bandwidth1
, max_bandwidth2
;
788 freq_range1
= &rule1
->freq_range
;
789 freq_range2
= &rule2
->freq_range
;
790 freq_range
= &intersected_rule
->freq_range
;
792 power_rule1
= &rule1
->power_rule
;
793 power_rule2
= &rule2
->power_rule
;
794 power_rule
= &intersected_rule
->power_rule
;
796 freq_range
->start_freq_khz
= max(freq_range1
->start_freq_khz
,
797 freq_range2
->start_freq_khz
);
798 freq_range
->end_freq_khz
= min(freq_range1
->end_freq_khz
,
799 freq_range2
->end_freq_khz
);
801 max_bandwidth1
= freq_range1
->max_bandwidth_khz
;
802 max_bandwidth2
= freq_range2
->max_bandwidth_khz
;
804 if (rule1
->flags
& NL80211_RRF_AUTO_BW
)
805 max_bandwidth1
= reg_get_max_bandwidth(rd1
, rule1
);
806 if (rule2
->flags
& NL80211_RRF_AUTO_BW
)
807 max_bandwidth2
= reg_get_max_bandwidth(rd2
, rule2
);
809 freq_range
->max_bandwidth_khz
= min(max_bandwidth1
, max_bandwidth2
);
811 intersected_rule
->flags
= rule1
->flags
| rule2
->flags
;
814 * In case NL80211_RRF_AUTO_BW requested for both rules
815 * set AUTO_BW in intersected rule also. Next we will
816 * calculate BW correctly in handle_channel function.
817 * In other case remove AUTO_BW flag while we calculate
818 * maximum bandwidth correctly and auto calculation is
821 if ((rule1
->flags
& NL80211_RRF_AUTO_BW
) &&
822 (rule2
->flags
& NL80211_RRF_AUTO_BW
))
823 intersected_rule
->flags
|= NL80211_RRF_AUTO_BW
;
825 intersected_rule
->flags
&= ~NL80211_RRF_AUTO_BW
;
827 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
828 if (freq_range
->max_bandwidth_khz
> freq_diff
)
829 freq_range
->max_bandwidth_khz
= freq_diff
;
831 power_rule
->max_eirp
= min(power_rule1
->max_eirp
,
832 power_rule2
->max_eirp
);
833 power_rule
->max_antenna_gain
= min(power_rule1
->max_antenna_gain
,
834 power_rule2
->max_antenna_gain
);
836 intersected_rule
->dfs_cac_ms
= max(rule1
->dfs_cac_ms
,
839 if (!is_valid_reg_rule(intersected_rule
))
845 /* check whether old rule contains new rule */
846 static bool rule_contains(struct ieee80211_reg_rule
*r1
,
847 struct ieee80211_reg_rule
*r2
)
849 /* for simplicity, currently consider only same flags */
850 if (r1
->flags
!= r2
->flags
)
853 /* verify r1 is more restrictive */
854 if ((r1
->power_rule
.max_antenna_gain
>
855 r2
->power_rule
.max_antenna_gain
) ||
856 r1
->power_rule
.max_eirp
> r2
->power_rule
.max_eirp
)
859 /* make sure r2's range is contained within r1 */
860 if (r1
->freq_range
.start_freq_khz
> r2
->freq_range
.start_freq_khz
||
861 r1
->freq_range
.end_freq_khz
< r2
->freq_range
.end_freq_khz
)
864 /* and finally verify that r1.max_bw >= r2.max_bw */
865 if (r1
->freq_range
.max_bandwidth_khz
<
866 r2
->freq_range
.max_bandwidth_khz
)
872 /* add or extend current rules. do nothing if rule is already contained */
873 static void add_rule(struct ieee80211_reg_rule
*rule
,
874 struct ieee80211_reg_rule
*reg_rules
, u32
*n_rules
)
876 struct ieee80211_reg_rule
*tmp_rule
;
879 for (i
= 0; i
< *n_rules
; i
++) {
880 tmp_rule
= ®_rules
[i
];
881 /* rule is already contained - do nothing */
882 if (rule_contains(tmp_rule
, rule
))
885 /* extend rule if possible */
886 if (rule_contains(rule
, tmp_rule
)) {
887 memcpy(tmp_rule
, rule
, sizeof(*rule
));
892 memcpy(®_rules
[*n_rules
], rule
, sizeof(*rule
));
897 * regdom_intersect - do the intersection between two regulatory domains
898 * @rd1: first regulatory domain
899 * @rd2: second regulatory domain
901 * Use this function to get the intersection between two regulatory domains.
902 * Once completed we will mark the alpha2 for the rd as intersected, "98",
903 * as no one single alpha2 can represent this regulatory domain.
905 * Returns a pointer to the regulatory domain structure which will hold the
906 * resulting intersection of rules between rd1 and rd2. We will
907 * kzalloc() this structure for you.
909 static struct ieee80211_regdomain
*
910 regdom_intersect(const struct ieee80211_regdomain
*rd1
,
911 const struct ieee80211_regdomain
*rd2
)
915 unsigned int num_rules
= 0;
916 const struct ieee80211_reg_rule
*rule1
, *rule2
;
917 struct ieee80211_reg_rule intersected_rule
;
918 struct ieee80211_regdomain
*rd
;
924 * First we get a count of the rules we'll need, then we actually
925 * build them. This is to so we can malloc() and free() a
926 * regdomain once. The reason we use reg_rules_intersect() here
927 * is it will return -EINVAL if the rule computed makes no sense.
928 * All rules that do check out OK are valid.
931 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
932 rule1
= &rd1
->reg_rules
[x
];
933 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
934 rule2
= &rd2
->reg_rules
[y
];
935 if (!reg_rules_intersect(rd1
, rd2
, rule1
, rule2
,
944 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
945 num_rules
* sizeof(struct ieee80211_reg_rule
);
947 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
951 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
952 rule1
= &rd1
->reg_rules
[x
];
953 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
954 rule2
= &rd2
->reg_rules
[y
];
955 r
= reg_rules_intersect(rd1
, rd2
, rule1
, rule2
,
958 * No need to memset here the intersected rule here as
959 * we're not using the stack anymore
964 add_rule(&intersected_rule
, rd
->reg_rules
,
971 rd
->dfs_region
= reg_intersect_dfs_region(rd1
->dfs_region
,
978 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
979 * want to just have the channel structure use these
981 static u32
map_regdom_flags(u32 rd_flags
)
983 u32 channel_flags
= 0;
984 if (rd_flags
& NL80211_RRF_NO_IR_ALL
)
985 channel_flags
|= IEEE80211_CHAN_NO_IR
;
986 if (rd_flags
& NL80211_RRF_DFS
)
987 channel_flags
|= IEEE80211_CHAN_RADAR
;
988 if (rd_flags
& NL80211_RRF_NO_OFDM
)
989 channel_flags
|= IEEE80211_CHAN_NO_OFDM
;
990 if (rd_flags
& NL80211_RRF_NO_OUTDOOR
)
991 channel_flags
|= IEEE80211_CHAN_INDOOR_ONLY
;
992 if (rd_flags
& NL80211_RRF_IR_CONCURRENT
)
993 channel_flags
|= IEEE80211_CHAN_IR_CONCURRENT
;
994 if (rd_flags
& NL80211_RRF_NO_HT40MINUS
)
995 channel_flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
996 if (rd_flags
& NL80211_RRF_NO_HT40PLUS
)
997 channel_flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
998 if (rd_flags
& NL80211_RRF_NO_80MHZ
)
999 channel_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1000 if (rd_flags
& NL80211_RRF_NO_160MHZ
)
1001 channel_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1002 return channel_flags
;
1005 static const struct ieee80211_reg_rule
*
1006 freq_reg_info_regd(struct wiphy
*wiphy
, u32 center_freq
,
1007 const struct ieee80211_regdomain
*regd
)
1010 bool band_rule_found
= false;
1011 bool bw_fits
= false;
1014 return ERR_PTR(-EINVAL
);
1016 for (i
= 0; i
< regd
->n_reg_rules
; i
++) {
1017 const struct ieee80211_reg_rule
*rr
;
1018 const struct ieee80211_freq_range
*fr
= NULL
;
1020 rr
= ®d
->reg_rules
[i
];
1021 fr
= &rr
->freq_range
;
1024 * We only need to know if one frequency rule was
1025 * was in center_freq's band, that's enough, so lets
1026 * not overwrite it once found
1028 if (!band_rule_found
)
1029 band_rule_found
= freq_in_rule_band(fr
, center_freq
);
1031 bw_fits
= reg_does_bw_fit(fr
, center_freq
, MHZ_TO_KHZ(20));
1033 if (band_rule_found
&& bw_fits
)
1037 if (!band_rule_found
)
1038 return ERR_PTR(-ERANGE
);
1040 return ERR_PTR(-EINVAL
);
1043 const struct ieee80211_reg_rule
*freq_reg_info(struct wiphy
*wiphy
,
1046 const struct ieee80211_regdomain
*regd
;
1048 regd
= reg_get_regdomain(wiphy
);
1050 return freq_reg_info_regd(wiphy
, center_freq
, regd
);
1052 EXPORT_SYMBOL(freq_reg_info
);
1054 const char *reg_initiator_name(enum nl80211_reg_initiator initiator
)
1056 switch (initiator
) {
1057 case NL80211_REGDOM_SET_BY_CORE
:
1059 case NL80211_REGDOM_SET_BY_USER
:
1061 case NL80211_REGDOM_SET_BY_DRIVER
:
1063 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
1064 return "country IE";
1070 EXPORT_SYMBOL(reg_initiator_name
);
1072 #ifdef CONFIG_CFG80211_REG_DEBUG
1073 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain
*regd
,
1074 struct ieee80211_channel
*chan
,
1075 const struct ieee80211_reg_rule
*reg_rule
)
1077 const struct ieee80211_power_rule
*power_rule
;
1078 const struct ieee80211_freq_range
*freq_range
;
1079 char max_antenna_gain
[32], bw
[32];
1081 power_rule
= ®_rule
->power_rule
;
1082 freq_range
= ®_rule
->freq_range
;
1084 if (!power_rule
->max_antenna_gain
)
1085 snprintf(max_antenna_gain
, sizeof(max_antenna_gain
), "N/A");
1087 snprintf(max_antenna_gain
, sizeof(max_antenna_gain
), "%d",
1088 power_rule
->max_antenna_gain
);
1090 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
1091 snprintf(bw
, sizeof(bw
), "%d KHz, %d KHz AUTO",
1092 freq_range
->max_bandwidth_khz
,
1093 reg_get_max_bandwidth(regd
, reg_rule
));
1095 snprintf(bw
, sizeof(bw
), "%d KHz",
1096 freq_range
->max_bandwidth_khz
);
1098 REG_DBG_PRINT("Updating information on frequency %d MHz with regulatory rule:\n",
1101 REG_DBG_PRINT("%d KHz - %d KHz @ %s), (%s mBi, %d mBm)\n",
1102 freq_range
->start_freq_khz
, freq_range
->end_freq_khz
,
1103 bw
, max_antenna_gain
,
1104 power_rule
->max_eirp
);
1107 static void chan_reg_rule_print_dbg(const struct ieee80211_regdomain
*regd
,
1108 struct ieee80211_channel
*chan
,
1109 const struct ieee80211_reg_rule
*reg_rule
)
1116 * Note that right now we assume the desired channel bandwidth
1117 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1118 * per channel, the primary and the extension channel).
1120 static void handle_channel(struct wiphy
*wiphy
,
1121 enum nl80211_reg_initiator initiator
,
1122 struct ieee80211_channel
*chan
)
1124 u32 flags
, bw_flags
= 0;
1125 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1126 const struct ieee80211_power_rule
*power_rule
= NULL
;
1127 const struct ieee80211_freq_range
*freq_range
= NULL
;
1128 struct wiphy
*request_wiphy
= NULL
;
1129 struct regulatory_request
*lr
= get_last_request();
1130 const struct ieee80211_regdomain
*regd
;
1131 u32 max_bandwidth_khz
;
1133 request_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
1135 flags
= chan
->orig_flags
;
1137 reg_rule
= freq_reg_info(wiphy
, MHZ_TO_KHZ(chan
->center_freq
));
1138 if (IS_ERR(reg_rule
)) {
1140 * We will disable all channels that do not match our
1141 * received regulatory rule unless the hint is coming
1142 * from a Country IE and the Country IE had no information
1143 * about a band. The IEEE 802.11 spec allows for an AP
1144 * to send only a subset of the regulatory rules allowed,
1145 * so an AP in the US that only supports 2.4 GHz may only send
1146 * a country IE with information for the 2.4 GHz band
1147 * while 5 GHz is still supported.
1149 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1150 PTR_ERR(reg_rule
) == -ERANGE
)
1153 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1154 request_wiphy
&& request_wiphy
== wiphy
&&
1155 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1156 REG_DBG_PRINT("Disabling freq %d MHz for good\n",
1158 chan
->orig_flags
|= IEEE80211_CHAN_DISABLED
;
1159 chan
->flags
= chan
->orig_flags
;
1161 REG_DBG_PRINT("Disabling freq %d MHz\n",
1163 chan
->flags
|= IEEE80211_CHAN_DISABLED
;
1168 regd
= reg_get_regdomain(wiphy
);
1169 chan_reg_rule_print_dbg(regd
, chan
, reg_rule
);
1171 power_rule
= ®_rule
->power_rule
;
1172 freq_range
= ®_rule
->freq_range
;
1174 max_bandwidth_khz
= freq_range
->max_bandwidth_khz
;
1175 /* Check if auto calculation requested */
1176 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
1177 max_bandwidth_khz
= reg_get_max_bandwidth(regd
, reg_rule
);
1179 if (max_bandwidth_khz
< MHZ_TO_KHZ(40))
1180 bw_flags
= IEEE80211_CHAN_NO_HT40
;
1181 if (max_bandwidth_khz
< MHZ_TO_KHZ(80))
1182 bw_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1183 if (max_bandwidth_khz
< MHZ_TO_KHZ(160))
1184 bw_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1186 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1187 request_wiphy
&& request_wiphy
== wiphy
&&
1188 request_wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
1190 * This guarantees the driver's requested regulatory domain
1191 * will always be used as a base for further regulatory
1194 chan
->flags
= chan
->orig_flags
=
1195 map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1196 chan
->max_antenna_gain
= chan
->orig_mag
=
1197 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1198 chan
->max_reg_power
= chan
->max_power
= chan
->orig_mpwr
=
1199 (int) MBM_TO_DBM(power_rule
->max_eirp
);
1201 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1202 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1203 if (reg_rule
->dfs_cac_ms
)
1204 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1210 chan
->dfs_state
= NL80211_DFS_USABLE
;
1211 chan
->dfs_state_entered
= jiffies
;
1213 chan
->beacon_found
= false;
1214 chan
->flags
= flags
| bw_flags
| map_regdom_flags(reg_rule
->flags
);
1215 chan
->max_antenna_gain
=
1216 min_t(int, chan
->orig_mag
,
1217 MBI_TO_DBI(power_rule
->max_antenna_gain
));
1218 chan
->max_reg_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1220 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1221 if (reg_rule
->dfs_cac_ms
)
1222 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1224 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1227 if (chan
->orig_mpwr
) {
1229 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1230 * will always follow the passed country IE power settings.
1232 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1233 wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_FOLLOW_POWER
)
1234 chan
->max_power
= chan
->max_reg_power
;
1236 chan
->max_power
= min(chan
->orig_mpwr
,
1237 chan
->max_reg_power
);
1239 chan
->max_power
= chan
->max_reg_power
;
1242 static void handle_band(struct wiphy
*wiphy
,
1243 enum nl80211_reg_initiator initiator
,
1244 struct ieee80211_supported_band
*sband
)
1251 for (i
= 0; i
< sband
->n_channels
; i
++)
1252 handle_channel(wiphy
, initiator
, &sband
->channels
[i
]);
1255 static bool reg_request_cell_base(struct regulatory_request
*request
)
1257 if (request
->initiator
!= NL80211_REGDOM_SET_BY_USER
)
1259 return request
->user_reg_hint_type
== NL80211_USER_REG_HINT_CELL_BASE
;
1262 bool reg_last_request_cell_base(void)
1264 return reg_request_cell_base(get_last_request());
1267 #ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
1268 /* Core specific check */
1269 static enum reg_request_treatment
1270 reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
1272 struct regulatory_request
*lr
= get_last_request();
1274 if (!reg_num_devs_support_basehint
)
1275 return REG_REQ_IGNORE
;
1277 if (reg_request_cell_base(lr
) &&
1278 !regdom_changes(pending_request
->alpha2
))
1279 return REG_REQ_ALREADY_SET
;
1284 /* Device specific check */
1285 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
1287 return !(wiphy
->features
& NL80211_FEATURE_CELL_BASE_REG_HINTS
);
1290 static int reg_ignore_cell_hint(struct regulatory_request
*pending_request
)
1292 return REG_REQ_IGNORE
;
1295 static bool reg_dev_ignore_cell_hint(struct wiphy
*wiphy
)
1301 static bool wiphy_strict_alpha2_regd(struct wiphy
*wiphy
)
1303 if (wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
&&
1304 !(wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
))
1309 static bool ignore_reg_update(struct wiphy
*wiphy
,
1310 enum nl80211_reg_initiator initiator
)
1312 struct regulatory_request
*lr
= get_last_request();
1314 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
1318 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1319 "since last_request is not set\n",
1320 reg_initiator_name(initiator
));
1324 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
1325 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
) {
1326 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1327 "since the driver uses its own custom "
1328 "regulatory domain\n",
1329 reg_initiator_name(initiator
));
1334 * wiphy->regd will be set once the device has its own
1335 * desired regulatory domain set
1337 if (wiphy_strict_alpha2_regd(wiphy
) && !wiphy
->regd
&&
1338 initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1339 !is_world_regdom(lr
->alpha2
)) {
1340 REG_DBG_PRINT("Ignoring regulatory request set by %s "
1341 "since the driver requires its own regulatory "
1342 "domain to be set first\n",
1343 reg_initiator_name(initiator
));
1347 if (reg_request_cell_base(lr
))
1348 return reg_dev_ignore_cell_hint(wiphy
);
1353 static bool reg_is_world_roaming(struct wiphy
*wiphy
)
1355 const struct ieee80211_regdomain
*cr
= get_cfg80211_regdom();
1356 const struct ieee80211_regdomain
*wr
= get_wiphy_regdom(wiphy
);
1357 struct regulatory_request
*lr
= get_last_request();
1359 if (is_world_regdom(cr
->alpha2
) || (wr
&& is_world_regdom(wr
->alpha2
)))
1362 if (lr
&& lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1363 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
)
1369 static void handle_reg_beacon(struct wiphy
*wiphy
, unsigned int chan_idx
,
1370 struct reg_beacon
*reg_beacon
)
1372 struct ieee80211_supported_band
*sband
;
1373 struct ieee80211_channel
*chan
;
1374 bool channel_changed
= false;
1375 struct ieee80211_channel chan_before
;
1377 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1378 chan
= &sband
->channels
[chan_idx
];
1380 if (likely(chan
->center_freq
!= reg_beacon
->chan
.center_freq
))
1383 if (chan
->beacon_found
)
1386 chan
->beacon_found
= true;
1388 if (!reg_is_world_roaming(wiphy
))
1391 if (wiphy
->regulatory_flags
& REGULATORY_DISABLE_BEACON_HINTS
)
1394 chan_before
.center_freq
= chan
->center_freq
;
1395 chan_before
.flags
= chan
->flags
;
1397 if (chan
->flags
& IEEE80211_CHAN_NO_IR
) {
1398 chan
->flags
&= ~IEEE80211_CHAN_NO_IR
;
1399 channel_changed
= true;
1402 if (channel_changed
)
1403 nl80211_send_beacon_hint_event(wiphy
, &chan_before
, chan
);
1407 * Called when a scan on a wiphy finds a beacon on
1410 static void wiphy_update_new_beacon(struct wiphy
*wiphy
,
1411 struct reg_beacon
*reg_beacon
)
1414 struct ieee80211_supported_band
*sband
;
1416 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1419 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1421 for (i
= 0; i
< sband
->n_channels
; i
++)
1422 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1426 * Called upon reg changes or a new wiphy is added
1428 static void wiphy_update_beacon_reg(struct wiphy
*wiphy
)
1431 struct ieee80211_supported_band
*sband
;
1432 struct reg_beacon
*reg_beacon
;
1434 list_for_each_entry(reg_beacon
, ®_beacon_list
, list
) {
1435 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1437 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1438 for (i
= 0; i
< sband
->n_channels
; i
++)
1439 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1443 /* Reap the advantages of previously found beacons */
1444 static void reg_process_beacons(struct wiphy
*wiphy
)
1447 * Means we are just firing up cfg80211, so no beacons would
1448 * have been processed yet.
1452 wiphy_update_beacon_reg(wiphy
);
1455 static bool is_ht40_allowed(struct ieee80211_channel
*chan
)
1459 if (chan
->flags
& IEEE80211_CHAN_DISABLED
)
1461 /* This would happen when regulatory rules disallow HT40 completely */
1462 if ((chan
->flags
& IEEE80211_CHAN_NO_HT40
) == IEEE80211_CHAN_NO_HT40
)
1467 static void reg_process_ht_flags_channel(struct wiphy
*wiphy
,
1468 struct ieee80211_channel
*channel
)
1470 struct ieee80211_supported_band
*sband
= wiphy
->bands
[channel
->band
];
1471 struct ieee80211_channel
*channel_before
= NULL
, *channel_after
= NULL
;
1474 if (!is_ht40_allowed(channel
)) {
1475 channel
->flags
|= IEEE80211_CHAN_NO_HT40
;
1480 * We need to ensure the extension channels exist to
1481 * be able to use HT40- or HT40+, this finds them (or not)
1483 for (i
= 0; i
< sband
->n_channels
; i
++) {
1484 struct ieee80211_channel
*c
= &sband
->channels
[i
];
1486 if (c
->center_freq
== (channel
->center_freq
- 20))
1488 if (c
->center_freq
== (channel
->center_freq
+ 20))
1493 * Please note that this assumes target bandwidth is 20 MHz,
1494 * if that ever changes we also need to change the below logic
1495 * to include that as well.
1497 if (!is_ht40_allowed(channel_before
))
1498 channel
->flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
1500 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40MINUS
;
1502 if (!is_ht40_allowed(channel_after
))
1503 channel
->flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
1505 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40PLUS
;
1508 static void reg_process_ht_flags_band(struct wiphy
*wiphy
,
1509 struct ieee80211_supported_band
*sband
)
1516 for (i
= 0; i
< sband
->n_channels
; i
++)
1517 reg_process_ht_flags_channel(wiphy
, &sband
->channels
[i
]);
1520 static void reg_process_ht_flags(struct wiphy
*wiphy
)
1522 enum ieee80211_band band
;
1527 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++)
1528 reg_process_ht_flags_band(wiphy
, wiphy
->bands
[band
]);
1531 static void reg_call_notifier(struct wiphy
*wiphy
,
1532 struct regulatory_request
*request
)
1534 if (wiphy
->reg_notifier
)
1535 wiphy
->reg_notifier(wiphy
, request
);
1538 static bool reg_wdev_chan_valid(struct wiphy
*wiphy
, struct wireless_dev
*wdev
)
1540 struct cfg80211_chan_def chandef
;
1541 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wiphy
);
1542 enum nl80211_iftype iftype
;
1545 iftype
= wdev
->iftype
;
1547 /* make sure the interface is active */
1548 if (!wdev
->netdev
|| !netif_running(wdev
->netdev
))
1549 goto wdev_inactive_unlock
;
1552 case NL80211_IFTYPE_AP
:
1553 case NL80211_IFTYPE_P2P_GO
:
1554 if (!wdev
->beacon_interval
)
1555 goto wdev_inactive_unlock
;
1556 chandef
= wdev
->chandef
;
1558 case NL80211_IFTYPE_ADHOC
:
1559 if (!wdev
->ssid_len
)
1560 goto wdev_inactive_unlock
;
1561 chandef
= wdev
->chandef
;
1563 case NL80211_IFTYPE_STATION
:
1564 case NL80211_IFTYPE_P2P_CLIENT
:
1565 if (!wdev
->current_bss
||
1566 !wdev
->current_bss
->pub
.channel
)
1567 goto wdev_inactive_unlock
;
1569 if (!rdev
->ops
->get_channel
||
1570 rdev_get_channel(rdev
, wdev
, &chandef
))
1571 cfg80211_chandef_create(&chandef
,
1572 wdev
->current_bss
->pub
.channel
,
1573 NL80211_CHAN_NO_HT
);
1575 case NL80211_IFTYPE_MONITOR
:
1576 case NL80211_IFTYPE_AP_VLAN
:
1577 case NL80211_IFTYPE_P2P_DEVICE
:
1578 /* no enforcement required */
1581 /* others not implemented for now */
1589 case NL80211_IFTYPE_AP
:
1590 case NL80211_IFTYPE_P2P_GO
:
1591 case NL80211_IFTYPE_ADHOC
:
1592 return cfg80211_reg_can_beacon_relax(wiphy
, &chandef
, iftype
);
1593 case NL80211_IFTYPE_STATION
:
1594 case NL80211_IFTYPE_P2P_CLIENT
:
1595 return cfg80211_chandef_usable(wiphy
, &chandef
,
1596 IEEE80211_CHAN_DISABLED
);
1603 wdev_inactive_unlock
:
1608 static void reg_leave_invalid_chans(struct wiphy
*wiphy
)
1610 struct wireless_dev
*wdev
;
1611 struct cfg80211_registered_device
*rdev
= wiphy_to_rdev(wiphy
);
1615 list_for_each_entry(wdev
, &rdev
->wdev_list
, list
)
1616 if (!reg_wdev_chan_valid(wiphy
, wdev
))
1617 cfg80211_leave(rdev
, wdev
);
1620 static void reg_check_chans_work(struct work_struct
*work
)
1622 struct cfg80211_registered_device
*rdev
;
1624 REG_DBG_PRINT("Verifying active interfaces after reg change\n");
1627 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
1628 if (!(rdev
->wiphy
.regulatory_flags
&
1629 REGULATORY_IGNORE_STALE_KICKOFF
))
1630 reg_leave_invalid_chans(&rdev
->wiphy
);
1635 static void reg_check_channels(void)
1638 * Give usermode a chance to do something nicer (move to another
1639 * channel, orderly disconnection), before forcing a disconnection.
1641 mod_delayed_work(system_power_efficient_wq
,
1643 msecs_to_jiffies(REG_ENFORCE_GRACE_MS
));
1646 static void wiphy_update_regulatory(struct wiphy
*wiphy
,
1647 enum nl80211_reg_initiator initiator
)
1649 enum ieee80211_band band
;
1650 struct regulatory_request
*lr
= get_last_request();
1652 if (ignore_reg_update(wiphy
, initiator
)) {
1654 * Regulatory updates set by CORE are ignored for custom
1655 * regulatory cards. Let us notify the changes to the driver,
1656 * as some drivers used this to restore its orig_* reg domain.
1658 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
1659 wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
)
1660 reg_call_notifier(wiphy
, lr
);
1664 lr
->dfs_region
= get_cfg80211_regdom()->dfs_region
;
1666 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++)
1667 handle_band(wiphy
, initiator
, wiphy
->bands
[band
]);
1669 reg_process_beacons(wiphy
);
1670 reg_process_ht_flags(wiphy
);
1671 reg_call_notifier(wiphy
, lr
);
1674 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator
)
1676 struct cfg80211_registered_device
*rdev
;
1677 struct wiphy
*wiphy
;
1681 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
1682 wiphy
= &rdev
->wiphy
;
1683 wiphy_update_regulatory(wiphy
, initiator
);
1686 reg_check_channels();
1689 static void handle_channel_custom(struct wiphy
*wiphy
,
1690 struct ieee80211_channel
*chan
,
1691 const struct ieee80211_regdomain
*regd
)
1694 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1695 const struct ieee80211_power_rule
*power_rule
= NULL
;
1696 const struct ieee80211_freq_range
*freq_range
= NULL
;
1697 u32 max_bandwidth_khz
;
1699 reg_rule
= freq_reg_info_regd(wiphy
, MHZ_TO_KHZ(chan
->center_freq
),
1702 if (IS_ERR(reg_rule
)) {
1703 REG_DBG_PRINT("Disabling freq %d MHz as custom regd has no rule that fits it\n",
1705 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
) {
1706 chan
->flags
|= IEEE80211_CHAN_DISABLED
;
1708 chan
->orig_flags
|= IEEE80211_CHAN_DISABLED
;
1709 chan
->flags
= chan
->orig_flags
;
1714 chan_reg_rule_print_dbg(regd
, chan
, reg_rule
);
1716 power_rule
= ®_rule
->power_rule
;
1717 freq_range
= ®_rule
->freq_range
;
1719 max_bandwidth_khz
= freq_range
->max_bandwidth_khz
;
1720 /* Check if auto calculation requested */
1721 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
1722 max_bandwidth_khz
= reg_get_max_bandwidth(regd
, reg_rule
);
1724 if (max_bandwidth_khz
< MHZ_TO_KHZ(40))
1725 bw_flags
= IEEE80211_CHAN_NO_HT40
;
1726 if (max_bandwidth_khz
< MHZ_TO_KHZ(80))
1727 bw_flags
|= IEEE80211_CHAN_NO_80MHZ
;
1728 if (max_bandwidth_khz
< MHZ_TO_KHZ(160))
1729 bw_flags
|= IEEE80211_CHAN_NO_160MHZ
;
1731 chan
->dfs_state_entered
= jiffies
;
1732 chan
->dfs_state
= NL80211_DFS_USABLE
;
1734 chan
->beacon_found
= false;
1736 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
1737 chan
->flags
= chan
->orig_flags
| bw_flags
|
1738 map_regdom_flags(reg_rule
->flags
);
1740 chan
->flags
|= map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1742 chan
->max_antenna_gain
= (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1743 chan
->max_reg_power
= chan
->max_power
=
1744 (int) MBM_TO_DBM(power_rule
->max_eirp
);
1746 if (chan
->flags
& IEEE80211_CHAN_RADAR
) {
1747 if (reg_rule
->dfs_cac_ms
)
1748 chan
->dfs_cac_ms
= reg_rule
->dfs_cac_ms
;
1750 chan
->dfs_cac_ms
= IEEE80211_DFS_MIN_CAC_TIME_MS
;
1753 chan
->max_power
= chan
->max_reg_power
;
1756 static void handle_band_custom(struct wiphy
*wiphy
,
1757 struct ieee80211_supported_band
*sband
,
1758 const struct ieee80211_regdomain
*regd
)
1765 for (i
= 0; i
< sband
->n_channels
; i
++)
1766 handle_channel_custom(wiphy
, &sband
->channels
[i
], regd
);
1769 /* Used by drivers prior to wiphy registration */
1770 void wiphy_apply_custom_regulatory(struct wiphy
*wiphy
,
1771 const struct ieee80211_regdomain
*regd
)
1773 enum ieee80211_band band
;
1774 unsigned int bands_set
= 0;
1776 WARN(!(wiphy
->regulatory_flags
& REGULATORY_CUSTOM_REG
),
1777 "wiphy should have REGULATORY_CUSTOM_REG\n");
1778 wiphy
->regulatory_flags
|= REGULATORY_CUSTOM_REG
;
1780 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1781 if (!wiphy
->bands
[band
])
1783 handle_band_custom(wiphy
, wiphy
->bands
[band
], regd
);
1788 * no point in calling this if it won't have any effect
1789 * on your device's supported bands.
1791 WARN_ON(!bands_set
);
1793 EXPORT_SYMBOL(wiphy_apply_custom_regulatory
);
1795 static void reg_set_request_processed(void)
1797 bool need_more_processing
= false;
1798 struct regulatory_request
*lr
= get_last_request();
1800 lr
->processed
= true;
1802 spin_lock(®_requests_lock
);
1803 if (!list_empty(®_requests_list
))
1804 need_more_processing
= true;
1805 spin_unlock(®_requests_lock
);
1807 cancel_delayed_work(®_timeout
);
1809 if (need_more_processing
)
1810 schedule_work(®_work
);
1814 * reg_process_hint_core - process core regulatory requests
1815 * @pending_request: a pending core regulatory request
1817 * The wireless subsystem can use this function to process
1818 * a regulatory request issued by the regulatory core.
1820 * Returns one of the different reg request treatment values.
1822 static enum reg_request_treatment
1823 reg_process_hint_core(struct regulatory_request
*core_request
)
1826 core_request
->intersect
= false;
1827 core_request
->processed
= false;
1829 reg_update_last_request(core_request
);
1831 return reg_call_crda(core_request
);
1834 static enum reg_request_treatment
1835 __reg_process_hint_user(struct regulatory_request
*user_request
)
1837 struct regulatory_request
*lr
= get_last_request();
1839 if (reg_request_cell_base(user_request
))
1840 return reg_ignore_cell_hint(user_request
);
1842 if (reg_request_cell_base(lr
))
1843 return REG_REQ_IGNORE
;
1845 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)
1846 return REG_REQ_INTERSECT
;
1848 * If the user knows better the user should set the regdom
1849 * to their country before the IE is picked up
1851 if (lr
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
1853 return REG_REQ_IGNORE
;
1855 * Process user requests only after previous user/driver/core
1856 * requests have been processed
1858 if ((lr
->initiator
== NL80211_REGDOM_SET_BY_CORE
||
1859 lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
1860 lr
->initiator
== NL80211_REGDOM_SET_BY_USER
) &&
1861 regdom_changes(lr
->alpha2
))
1862 return REG_REQ_IGNORE
;
1864 if (!regdom_changes(user_request
->alpha2
))
1865 return REG_REQ_ALREADY_SET
;
1871 * reg_process_hint_user - process user regulatory requests
1872 * @user_request: a pending user regulatory request
1874 * The wireless subsystem can use this function to process
1875 * a regulatory request initiated by userspace.
1877 * Returns one of the different reg request treatment values.
1879 static enum reg_request_treatment
1880 reg_process_hint_user(struct regulatory_request
*user_request
)
1882 enum reg_request_treatment treatment
;
1884 treatment
= __reg_process_hint_user(user_request
);
1885 if (treatment
== REG_REQ_IGNORE
||
1886 treatment
== REG_REQ_ALREADY_SET
) {
1887 reg_free_request(user_request
);
1891 user_request
->intersect
= treatment
== REG_REQ_INTERSECT
;
1892 user_request
->processed
= false;
1894 reg_update_last_request(user_request
);
1896 user_alpha2
[0] = user_request
->alpha2
[0];
1897 user_alpha2
[1] = user_request
->alpha2
[1];
1899 return reg_call_crda(user_request
);
1902 static enum reg_request_treatment
1903 __reg_process_hint_driver(struct regulatory_request
*driver_request
)
1905 struct regulatory_request
*lr
= get_last_request();
1907 if (lr
->initiator
== NL80211_REGDOM_SET_BY_CORE
) {
1908 if (regdom_changes(driver_request
->alpha2
))
1910 return REG_REQ_ALREADY_SET
;
1914 * This would happen if you unplug and plug your card
1915 * back in or if you add a new device for which the previously
1916 * loaded card also agrees on the regulatory domain.
1918 if (lr
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1919 !regdom_changes(driver_request
->alpha2
))
1920 return REG_REQ_ALREADY_SET
;
1922 return REG_REQ_INTERSECT
;
1926 * reg_process_hint_driver - process driver regulatory requests
1927 * @driver_request: a pending driver regulatory request
1929 * The wireless subsystem can use this function to process
1930 * a regulatory request issued by an 802.11 driver.
1932 * Returns one of the different reg request treatment values.
1934 static enum reg_request_treatment
1935 reg_process_hint_driver(struct wiphy
*wiphy
,
1936 struct regulatory_request
*driver_request
)
1938 const struct ieee80211_regdomain
*regd
, *tmp
;
1939 enum reg_request_treatment treatment
;
1941 treatment
= __reg_process_hint_driver(driver_request
);
1943 switch (treatment
) {
1946 case REG_REQ_IGNORE
:
1947 reg_free_request(driver_request
);
1949 case REG_REQ_INTERSECT
:
1951 case REG_REQ_ALREADY_SET
:
1952 regd
= reg_copy_regd(get_cfg80211_regdom());
1954 reg_free_request(driver_request
);
1955 return REG_REQ_IGNORE
;
1958 tmp
= get_wiphy_regdom(wiphy
);
1959 rcu_assign_pointer(wiphy
->regd
, regd
);
1960 rcu_free_regdom(tmp
);
1964 driver_request
->intersect
= treatment
== REG_REQ_INTERSECT
;
1965 driver_request
->processed
= false;
1967 reg_update_last_request(driver_request
);
1970 * Since CRDA will not be called in this case as we already
1971 * have applied the requested regulatory domain before we just
1972 * inform userspace we have processed the request
1974 if (treatment
== REG_REQ_ALREADY_SET
) {
1975 nl80211_send_reg_change_event(driver_request
);
1976 reg_set_request_processed();
1980 return reg_call_crda(driver_request
);
1983 static enum reg_request_treatment
1984 __reg_process_hint_country_ie(struct wiphy
*wiphy
,
1985 struct regulatory_request
*country_ie_request
)
1987 struct wiphy
*last_wiphy
= NULL
;
1988 struct regulatory_request
*lr
= get_last_request();
1990 if (reg_request_cell_base(lr
)) {
1991 /* Trust a Cell base station over the AP's country IE */
1992 if (regdom_changes(country_ie_request
->alpha2
))
1993 return REG_REQ_IGNORE
;
1994 return REG_REQ_ALREADY_SET
;
1996 if (wiphy
->regulatory_flags
& REGULATORY_COUNTRY_IE_IGNORE
)
1997 return REG_REQ_IGNORE
;
2000 if (unlikely(!is_an_alpha2(country_ie_request
->alpha2
)))
2003 if (lr
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
)
2006 last_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
2008 if (last_wiphy
!= wiphy
) {
2010 * Two cards with two APs claiming different
2011 * Country IE alpha2s. We could
2012 * intersect them, but that seems unlikely
2013 * to be correct. Reject second one for now.
2015 if (regdom_changes(country_ie_request
->alpha2
))
2016 return REG_REQ_IGNORE
;
2017 return REG_REQ_ALREADY_SET
;
2020 if (regdom_changes(country_ie_request
->alpha2
))
2022 return REG_REQ_ALREADY_SET
;
2026 * reg_process_hint_country_ie - process regulatory requests from country IEs
2027 * @country_ie_request: a regulatory request from a country IE
2029 * The wireless subsystem can use this function to process
2030 * a regulatory request issued by a country Information Element.
2032 * Returns one of the different reg request treatment values.
2034 static enum reg_request_treatment
2035 reg_process_hint_country_ie(struct wiphy
*wiphy
,
2036 struct regulatory_request
*country_ie_request
)
2038 enum reg_request_treatment treatment
;
2040 treatment
= __reg_process_hint_country_ie(wiphy
, country_ie_request
);
2042 switch (treatment
) {
2045 case REG_REQ_IGNORE
:
2047 case REG_REQ_ALREADY_SET
:
2048 reg_free_request(country_ie_request
);
2050 case REG_REQ_INTERSECT
:
2051 reg_free_request(country_ie_request
);
2053 * This doesn't happen yet, not sure we
2054 * ever want to support it for this case.
2056 WARN_ONCE(1, "Unexpected intersection for country IEs");
2057 return REG_REQ_IGNORE
;
2060 country_ie_request
->intersect
= false;
2061 country_ie_request
->processed
= false;
2063 reg_update_last_request(country_ie_request
);
2065 return reg_call_crda(country_ie_request
);
2068 /* This processes *all* regulatory hints */
2069 static void reg_process_hint(struct regulatory_request
*reg_request
)
2071 struct wiphy
*wiphy
= NULL
;
2072 enum reg_request_treatment treatment
;
2074 if (reg_request
->wiphy_idx
!= WIPHY_IDX_INVALID
)
2075 wiphy
= wiphy_idx_to_wiphy(reg_request
->wiphy_idx
);
2077 switch (reg_request
->initiator
) {
2078 case NL80211_REGDOM_SET_BY_CORE
:
2079 reg_process_hint_core(reg_request
);
2081 case NL80211_REGDOM_SET_BY_USER
:
2082 treatment
= reg_process_hint_user(reg_request
);
2083 if (treatment
== REG_REQ_IGNORE
||
2084 treatment
== REG_REQ_ALREADY_SET
)
2087 case NL80211_REGDOM_SET_BY_DRIVER
:
2090 treatment
= reg_process_hint_driver(wiphy
, reg_request
);
2092 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
2095 treatment
= reg_process_hint_country_ie(wiphy
, reg_request
);
2098 WARN(1, "invalid initiator %d\n", reg_request
->initiator
);
2102 /* This is required so that the orig_* parameters are saved */
2103 if (treatment
== REG_REQ_ALREADY_SET
&& wiphy
&&
2104 wiphy
->regulatory_flags
& REGULATORY_STRICT_REG
) {
2105 wiphy_update_regulatory(wiphy
, reg_request
->initiator
);
2106 reg_check_channels();
2112 reg_free_request(reg_request
);
2115 static bool reg_only_self_managed_wiphys(void)
2117 struct cfg80211_registered_device
*rdev
;
2118 struct wiphy
*wiphy
;
2119 bool self_managed_found
= false;
2123 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2124 wiphy
= &rdev
->wiphy
;
2125 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
2126 self_managed_found
= true;
2131 /* make sure at least one self-managed wiphy exists */
2132 return self_managed_found
;
2136 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
2137 * Regulatory hints come on a first come first serve basis and we
2138 * must process each one atomically.
2140 static void reg_process_pending_hints(void)
2142 struct regulatory_request
*reg_request
, *lr
;
2144 lr
= get_last_request();
2146 /* When last_request->processed becomes true this will be rescheduled */
2147 if (lr
&& !lr
->processed
) {
2148 reg_process_hint(lr
);
2152 spin_lock(®_requests_lock
);
2154 if (list_empty(®_requests_list
)) {
2155 spin_unlock(®_requests_lock
);
2159 reg_request
= list_first_entry(®_requests_list
,
2160 struct regulatory_request
,
2162 list_del_init(®_request
->list
);
2164 spin_unlock(®_requests_lock
);
2166 if (reg_only_self_managed_wiphys()) {
2167 reg_free_request(reg_request
);
2171 reg_process_hint(reg_request
);
2173 lr
= get_last_request();
2175 spin_lock(®_requests_lock
);
2176 if (!list_empty(®_requests_list
) && lr
&& lr
->processed
)
2177 schedule_work(®_work
);
2178 spin_unlock(®_requests_lock
);
2181 /* Processes beacon hints -- this has nothing to do with country IEs */
2182 static void reg_process_pending_beacon_hints(void)
2184 struct cfg80211_registered_device
*rdev
;
2185 struct reg_beacon
*pending_beacon
, *tmp
;
2187 /* This goes through the _pending_ beacon list */
2188 spin_lock_bh(®_pending_beacons_lock
);
2190 list_for_each_entry_safe(pending_beacon
, tmp
,
2191 ®_pending_beacons
, list
) {
2192 list_del_init(&pending_beacon
->list
);
2194 /* Applies the beacon hint to current wiphys */
2195 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
2196 wiphy_update_new_beacon(&rdev
->wiphy
, pending_beacon
);
2198 /* Remembers the beacon hint for new wiphys or reg changes */
2199 list_add_tail(&pending_beacon
->list
, ®_beacon_list
);
2202 spin_unlock_bh(®_pending_beacons_lock
);
2205 static void reg_process_self_managed_hints(void)
2207 struct cfg80211_registered_device
*rdev
;
2208 struct wiphy
*wiphy
;
2209 const struct ieee80211_regdomain
*tmp
;
2210 const struct ieee80211_regdomain
*regd
;
2211 enum ieee80211_band band
;
2212 struct regulatory_request request
= {};
2214 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2215 wiphy
= &rdev
->wiphy
;
2217 spin_lock(®_requests_lock
);
2218 regd
= rdev
->requested_regd
;
2219 rdev
->requested_regd
= NULL
;
2220 spin_unlock(®_requests_lock
);
2225 tmp
= get_wiphy_regdom(wiphy
);
2226 rcu_assign_pointer(wiphy
->regd
, regd
);
2227 rcu_free_regdom(tmp
);
2229 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++)
2230 handle_band_custom(wiphy
, wiphy
->bands
[band
], regd
);
2232 reg_process_ht_flags(wiphy
);
2234 request
.wiphy_idx
= get_wiphy_idx(wiphy
);
2235 request
.alpha2
[0] = regd
->alpha2
[0];
2236 request
.alpha2
[1] = regd
->alpha2
[1];
2237 request
.initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
2239 nl80211_send_wiphy_reg_change_event(&request
);
2242 reg_check_channels();
2245 static void reg_todo(struct work_struct
*work
)
2248 reg_process_pending_hints();
2249 reg_process_pending_beacon_hints();
2250 reg_process_self_managed_hints();
2254 static void queue_regulatory_request(struct regulatory_request
*request
)
2256 request
->alpha2
[0] = toupper(request
->alpha2
[0]);
2257 request
->alpha2
[1] = toupper(request
->alpha2
[1]);
2259 spin_lock(®_requests_lock
);
2260 list_add_tail(&request
->list
, ®_requests_list
);
2261 spin_unlock(®_requests_lock
);
2263 schedule_work(®_work
);
2267 * Core regulatory hint -- happens during cfg80211_init()
2268 * and when we restore regulatory settings.
2270 static int regulatory_hint_core(const char *alpha2
)
2272 struct regulatory_request
*request
;
2274 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2278 request
->alpha2
[0] = alpha2
[0];
2279 request
->alpha2
[1] = alpha2
[1];
2280 request
->initiator
= NL80211_REGDOM_SET_BY_CORE
;
2282 queue_regulatory_request(request
);
2288 int regulatory_hint_user(const char *alpha2
,
2289 enum nl80211_user_reg_hint_type user_reg_hint_type
)
2291 struct regulatory_request
*request
;
2293 if (WARN_ON(!alpha2
))
2296 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2300 request
->wiphy_idx
= WIPHY_IDX_INVALID
;
2301 request
->alpha2
[0] = alpha2
[0];
2302 request
->alpha2
[1] = alpha2
[1];
2303 request
->initiator
= NL80211_REGDOM_SET_BY_USER
;
2304 request
->user_reg_hint_type
= user_reg_hint_type
;
2306 /* Allow calling CRDA again */
2307 reg_crda_timeouts
= 0;
2309 queue_regulatory_request(request
);
2314 int regulatory_hint_indoor(bool is_indoor
, u32 portid
)
2316 spin_lock(®_indoor_lock
);
2318 /* It is possible that more than one user space process is trying to
2319 * configure the indoor setting. To handle such cases, clear the indoor
2320 * setting in case that some process does not think that the device
2321 * is operating in an indoor environment. In addition, if a user space
2322 * process indicates that it is controlling the indoor setting, save its
2323 * portid, i.e., make it the owner.
2325 reg_is_indoor
= is_indoor
;
2326 if (reg_is_indoor
) {
2327 if (!reg_is_indoor_portid
)
2328 reg_is_indoor_portid
= portid
;
2330 reg_is_indoor_portid
= 0;
2333 spin_unlock(®_indoor_lock
);
2336 reg_check_channels();
2341 void regulatory_netlink_notify(u32 portid
)
2343 spin_lock(®_indoor_lock
);
2345 if (reg_is_indoor_portid
!= portid
) {
2346 spin_unlock(®_indoor_lock
);
2350 reg_is_indoor
= false;
2351 reg_is_indoor_portid
= 0;
2353 spin_unlock(®_indoor_lock
);
2355 reg_check_channels();
2359 int regulatory_hint(struct wiphy
*wiphy
, const char *alpha2
)
2361 struct regulatory_request
*request
;
2363 if (WARN_ON(!alpha2
|| !wiphy
))
2366 wiphy
->regulatory_flags
&= ~REGULATORY_CUSTOM_REG
;
2368 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
2372 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
2374 request
->alpha2
[0] = alpha2
[0];
2375 request
->alpha2
[1] = alpha2
[1];
2376 request
->initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
2378 /* Allow calling CRDA again */
2379 reg_crda_timeouts
= 0;
2381 queue_regulatory_request(request
);
2385 EXPORT_SYMBOL(regulatory_hint
);
2387 void regulatory_hint_country_ie(struct wiphy
*wiphy
, enum ieee80211_band band
,
2388 const u8
*country_ie
, u8 country_ie_len
)
2391 enum environment_cap env
= ENVIRON_ANY
;
2392 struct regulatory_request
*request
= NULL
, *lr
;
2394 /* IE len must be evenly divisible by 2 */
2395 if (country_ie_len
& 0x01)
2398 if (country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
)
2401 request
= kzalloc(sizeof(*request
), GFP_KERNEL
);
2405 alpha2
[0] = country_ie
[0];
2406 alpha2
[1] = country_ie
[1];
2408 if (country_ie
[2] == 'I')
2409 env
= ENVIRON_INDOOR
;
2410 else if (country_ie
[2] == 'O')
2411 env
= ENVIRON_OUTDOOR
;
2414 lr
= get_last_request();
2420 * We will run this only upon a successful connection on cfg80211.
2421 * We leave conflict resolution to the workqueue, where can hold
2424 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
2425 lr
->wiphy_idx
!= WIPHY_IDX_INVALID
)
2428 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
2429 request
->alpha2
[0] = alpha2
[0];
2430 request
->alpha2
[1] = alpha2
[1];
2431 request
->initiator
= NL80211_REGDOM_SET_BY_COUNTRY_IE
;
2432 request
->country_ie_env
= env
;
2434 /* Allow calling CRDA again */
2435 reg_crda_timeouts
= 0;
2437 queue_regulatory_request(request
);
2444 static void restore_alpha2(char *alpha2
, bool reset_user
)
2446 /* indicates there is no alpha2 to consider for restoration */
2450 /* The user setting has precedence over the module parameter */
2451 if (is_user_regdom_saved()) {
2452 /* Unless we're asked to ignore it and reset it */
2454 REG_DBG_PRINT("Restoring regulatory settings including user preference\n");
2455 user_alpha2
[0] = '9';
2456 user_alpha2
[1] = '7';
2459 * If we're ignoring user settings, we still need to
2460 * check the module parameter to ensure we put things
2461 * back as they were for a full restore.
2463 if (!is_world_regdom(ieee80211_regdom
)) {
2464 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2465 ieee80211_regdom
[0], ieee80211_regdom
[1]);
2466 alpha2
[0] = ieee80211_regdom
[0];
2467 alpha2
[1] = ieee80211_regdom
[1];
2470 REG_DBG_PRINT("Restoring regulatory settings while preserving user preference for: %c%c\n",
2471 user_alpha2
[0], user_alpha2
[1]);
2472 alpha2
[0] = user_alpha2
[0];
2473 alpha2
[1] = user_alpha2
[1];
2475 } else if (!is_world_regdom(ieee80211_regdom
)) {
2476 REG_DBG_PRINT("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
2477 ieee80211_regdom
[0], ieee80211_regdom
[1]);
2478 alpha2
[0] = ieee80211_regdom
[0];
2479 alpha2
[1] = ieee80211_regdom
[1];
2481 REG_DBG_PRINT("Restoring regulatory settings\n");
2484 static void restore_custom_reg_settings(struct wiphy
*wiphy
)
2486 struct ieee80211_supported_band
*sband
;
2487 enum ieee80211_band band
;
2488 struct ieee80211_channel
*chan
;
2491 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
2492 sband
= wiphy
->bands
[band
];
2495 for (i
= 0; i
< sband
->n_channels
; i
++) {
2496 chan
= &sband
->channels
[i
];
2497 chan
->flags
= chan
->orig_flags
;
2498 chan
->max_antenna_gain
= chan
->orig_mag
;
2499 chan
->max_power
= chan
->orig_mpwr
;
2500 chan
->beacon_found
= false;
2506 * Restoring regulatory settings involves ingoring any
2507 * possibly stale country IE information and user regulatory
2508 * settings if so desired, this includes any beacon hints
2509 * learned as we could have traveled outside to another country
2510 * after disconnection. To restore regulatory settings we do
2511 * exactly what we did at bootup:
2513 * - send a core regulatory hint
2514 * - send a user regulatory hint if applicable
2516 * Device drivers that send a regulatory hint for a specific country
2517 * keep their own regulatory domain on wiphy->regd so that does does
2518 * not need to be remembered.
2520 static void restore_regulatory_settings(bool reset_user
)
2523 char world_alpha2
[2];
2524 struct reg_beacon
*reg_beacon
, *btmp
;
2525 LIST_HEAD(tmp_reg_req_list
);
2526 struct cfg80211_registered_device
*rdev
;
2531 * Clear the indoor setting in case that it is not controlled by user
2532 * space, as otherwise there is no guarantee that the device is still
2533 * operating in an indoor environment.
2535 spin_lock(®_indoor_lock
);
2536 if (reg_is_indoor
&& !reg_is_indoor_portid
) {
2537 reg_is_indoor
= false;
2538 reg_check_channels();
2540 spin_unlock(®_indoor_lock
);
2542 reset_regdomains(true, &world_regdom
);
2543 restore_alpha2(alpha2
, reset_user
);
2546 * If there's any pending requests we simply
2547 * stash them to a temporary pending queue and
2548 * add then after we've restored regulatory
2551 spin_lock(®_requests_lock
);
2552 list_splice_tail_init(®_requests_list
, &tmp_reg_req_list
);
2553 spin_unlock(®_requests_lock
);
2555 /* Clear beacon hints */
2556 spin_lock_bh(®_pending_beacons_lock
);
2557 list_for_each_entry_safe(reg_beacon
, btmp
, ®_pending_beacons
, list
) {
2558 list_del(®_beacon
->list
);
2561 spin_unlock_bh(®_pending_beacons_lock
);
2563 list_for_each_entry_safe(reg_beacon
, btmp
, ®_beacon_list
, list
) {
2564 list_del(®_beacon
->list
);
2568 /* First restore to the basic regulatory settings */
2569 world_alpha2
[0] = cfg80211_world_regdom
->alpha2
[0];
2570 world_alpha2
[1] = cfg80211_world_regdom
->alpha2
[1];
2572 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
) {
2573 if (rdev
->wiphy
.regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
2575 if (rdev
->wiphy
.regulatory_flags
& REGULATORY_CUSTOM_REG
)
2576 restore_custom_reg_settings(&rdev
->wiphy
);
2579 regulatory_hint_core(world_alpha2
);
2582 * This restores the ieee80211_regdom module parameter
2583 * preference or the last user requested regulatory
2584 * settings, user regulatory settings takes precedence.
2586 if (is_an_alpha2(alpha2
))
2587 regulatory_hint_user(user_alpha2
, NL80211_USER_REG_HINT_USER
);
2589 spin_lock(®_requests_lock
);
2590 list_splice_tail_init(&tmp_reg_req_list
, ®_requests_list
);
2591 spin_unlock(®_requests_lock
);
2593 REG_DBG_PRINT("Kicking the queue\n");
2595 schedule_work(®_work
);
2598 void regulatory_hint_disconnect(void)
2600 REG_DBG_PRINT("All devices are disconnected, going to restore regulatory settings\n");
2601 restore_regulatory_settings(false);
2604 static bool freq_is_chan_12_13_14(u16 freq
)
2606 if (freq
== ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ
) ||
2607 freq
== ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ
) ||
2608 freq
== ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ
))
2613 static bool pending_reg_beacon(struct ieee80211_channel
*beacon_chan
)
2615 struct reg_beacon
*pending_beacon
;
2617 list_for_each_entry(pending_beacon
, ®_pending_beacons
, list
)
2618 if (beacon_chan
->center_freq
==
2619 pending_beacon
->chan
.center_freq
)
2624 int regulatory_hint_found_beacon(struct wiphy
*wiphy
,
2625 struct ieee80211_channel
*beacon_chan
,
2628 struct reg_beacon
*reg_beacon
;
2631 if (beacon_chan
->beacon_found
||
2632 beacon_chan
->flags
& IEEE80211_CHAN_RADAR
||
2633 (beacon_chan
->band
== IEEE80211_BAND_2GHZ
&&
2634 !freq_is_chan_12_13_14(beacon_chan
->center_freq
)))
2637 spin_lock_bh(®_pending_beacons_lock
);
2638 processing
= pending_reg_beacon(beacon_chan
);
2639 spin_unlock_bh(®_pending_beacons_lock
);
2644 reg_beacon
= kzalloc(sizeof(struct reg_beacon
), gfp
);
2648 REG_DBG_PRINT("Found new beacon on frequency: %d MHz (Ch %d) on %s\n",
2649 beacon_chan
->center_freq
,
2650 ieee80211_frequency_to_channel(beacon_chan
->center_freq
),
2653 memcpy(®_beacon
->chan
, beacon_chan
,
2654 sizeof(struct ieee80211_channel
));
2657 * Since we can be called from BH or and non-BH context
2658 * we must use spin_lock_bh()
2660 spin_lock_bh(®_pending_beacons_lock
);
2661 list_add_tail(®_beacon
->list
, ®_pending_beacons
);
2662 spin_unlock_bh(®_pending_beacons_lock
);
2664 schedule_work(®_work
);
2669 static void print_rd_rules(const struct ieee80211_regdomain
*rd
)
2672 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
2673 const struct ieee80211_freq_range
*freq_range
= NULL
;
2674 const struct ieee80211_power_rule
*power_rule
= NULL
;
2675 char bw
[32], cac_time
[32];
2677 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
2679 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
2680 reg_rule
= &rd
->reg_rules
[i
];
2681 freq_range
= ®_rule
->freq_range
;
2682 power_rule
= ®_rule
->power_rule
;
2684 if (reg_rule
->flags
& NL80211_RRF_AUTO_BW
)
2685 snprintf(bw
, sizeof(bw
), "%d KHz, %d KHz AUTO",
2686 freq_range
->max_bandwidth_khz
,
2687 reg_get_max_bandwidth(rd
, reg_rule
));
2689 snprintf(bw
, sizeof(bw
), "%d KHz",
2690 freq_range
->max_bandwidth_khz
);
2692 if (reg_rule
->flags
& NL80211_RRF_DFS
)
2693 scnprintf(cac_time
, sizeof(cac_time
), "%u s",
2694 reg_rule
->dfs_cac_ms
/1000);
2696 scnprintf(cac_time
, sizeof(cac_time
), "N/A");
2700 * There may not be documentation for max antenna gain
2701 * in certain regions
2703 if (power_rule
->max_antenna_gain
)
2704 pr_info(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
2705 freq_range
->start_freq_khz
,
2706 freq_range
->end_freq_khz
,
2708 power_rule
->max_antenna_gain
,
2709 power_rule
->max_eirp
,
2712 pr_info(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
2713 freq_range
->start_freq_khz
,
2714 freq_range
->end_freq_khz
,
2716 power_rule
->max_eirp
,
2721 bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region
)
2723 switch (dfs_region
) {
2724 case NL80211_DFS_UNSET
:
2725 case NL80211_DFS_FCC
:
2726 case NL80211_DFS_ETSI
:
2727 case NL80211_DFS_JP
:
2730 REG_DBG_PRINT("Ignoring uknown DFS master region: %d\n",
2736 static void print_regdomain(const struct ieee80211_regdomain
*rd
)
2738 struct regulatory_request
*lr
= get_last_request();
2740 if (is_intersected_alpha2(rd
->alpha2
)) {
2741 if (lr
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
2742 struct cfg80211_registered_device
*rdev
;
2743 rdev
= cfg80211_rdev_by_wiphy_idx(lr
->wiphy_idx
);
2745 pr_info("Current regulatory domain updated by AP to: %c%c\n",
2746 rdev
->country_ie_alpha2
[0],
2747 rdev
->country_ie_alpha2
[1]);
2749 pr_info("Current regulatory domain intersected:\n");
2751 pr_info("Current regulatory domain intersected:\n");
2752 } else if (is_world_regdom(rd
->alpha2
)) {
2753 pr_info("World regulatory domain updated:\n");
2755 if (is_unknown_alpha2(rd
->alpha2
))
2756 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
2758 if (reg_request_cell_base(lr
))
2759 pr_info("Regulatory domain changed to country: %c%c by Cell Station\n",
2760 rd
->alpha2
[0], rd
->alpha2
[1]);
2762 pr_info("Regulatory domain changed to country: %c%c\n",
2763 rd
->alpha2
[0], rd
->alpha2
[1]);
2767 pr_info(" DFS Master region: %s", reg_dfs_region_str(rd
->dfs_region
));
2771 static void print_regdomain_info(const struct ieee80211_regdomain
*rd
)
2773 pr_info("Regulatory domain: %c%c\n", rd
->alpha2
[0], rd
->alpha2
[1]);
2777 static int reg_set_rd_core(const struct ieee80211_regdomain
*rd
)
2779 if (!is_world_regdom(rd
->alpha2
))
2781 update_world_regdomain(rd
);
2785 static int reg_set_rd_user(const struct ieee80211_regdomain
*rd
,
2786 struct regulatory_request
*user_request
)
2788 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
2790 if (!regdom_changes(rd
->alpha2
))
2793 if (!is_valid_rd(rd
)) {
2794 pr_err("Invalid regulatory domain detected:\n");
2795 print_regdomain_info(rd
);
2799 if (!user_request
->intersect
) {
2800 reset_regdomains(false, rd
);
2804 intersected_rd
= regdom_intersect(rd
, get_cfg80211_regdom());
2805 if (!intersected_rd
)
2810 reset_regdomains(false, intersected_rd
);
2815 static int reg_set_rd_driver(const struct ieee80211_regdomain
*rd
,
2816 struct regulatory_request
*driver_request
)
2818 const struct ieee80211_regdomain
*regd
;
2819 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
2820 const struct ieee80211_regdomain
*tmp
;
2821 struct wiphy
*request_wiphy
;
2823 if (is_world_regdom(rd
->alpha2
))
2826 if (!regdom_changes(rd
->alpha2
))
2829 if (!is_valid_rd(rd
)) {
2830 pr_err("Invalid regulatory domain detected:\n");
2831 print_regdomain_info(rd
);
2835 request_wiphy
= wiphy_idx_to_wiphy(driver_request
->wiphy_idx
);
2836 if (!request_wiphy
) {
2837 queue_delayed_work(system_power_efficient_wq
,
2842 if (!driver_request
->intersect
) {
2843 if (request_wiphy
->regd
)
2846 regd
= reg_copy_regd(rd
);
2848 return PTR_ERR(regd
);
2850 rcu_assign_pointer(request_wiphy
->regd
, regd
);
2851 reset_regdomains(false, rd
);
2855 intersected_rd
= regdom_intersect(rd
, get_cfg80211_regdom());
2856 if (!intersected_rd
)
2860 * We can trash what CRDA provided now.
2861 * However if a driver requested this specific regulatory
2862 * domain we keep it for its private use
2864 tmp
= get_wiphy_regdom(request_wiphy
);
2865 rcu_assign_pointer(request_wiphy
->regd
, rd
);
2866 rcu_free_regdom(tmp
);
2870 reset_regdomains(false, intersected_rd
);
2875 static int reg_set_rd_country_ie(const struct ieee80211_regdomain
*rd
,
2876 struct regulatory_request
*country_ie_request
)
2878 struct wiphy
*request_wiphy
;
2880 if (!is_alpha2_set(rd
->alpha2
) && !is_an_alpha2(rd
->alpha2
) &&
2881 !is_unknown_alpha2(rd
->alpha2
))
2885 * Lets only bother proceeding on the same alpha2 if the current
2886 * rd is non static (it means CRDA was present and was used last)
2887 * and the pending request came in from a country IE
2890 if (!is_valid_rd(rd
)) {
2891 pr_err("Invalid regulatory domain detected:\n");
2892 print_regdomain_info(rd
);
2896 request_wiphy
= wiphy_idx_to_wiphy(country_ie_request
->wiphy_idx
);
2897 if (!request_wiphy
) {
2898 queue_delayed_work(system_power_efficient_wq
,
2903 if (country_ie_request
->intersect
)
2906 reset_regdomains(false, rd
);
2911 * Use this call to set the current regulatory domain. Conflicts with
2912 * multiple drivers can be ironed out later. Caller must've already
2913 * kmalloc'd the rd structure.
2915 int set_regdom(const struct ieee80211_regdomain
*rd
,
2916 enum ieee80211_regd_source regd_src
)
2918 struct regulatory_request
*lr
;
2919 bool user_reset
= false;
2922 if (!reg_is_valid_request(rd
->alpha2
)) {
2927 if (regd_src
== REGD_SOURCE_CRDA
)
2928 reg_crda_timeouts
= 0;
2930 lr
= get_last_request();
2932 /* Note that this doesn't update the wiphys, this is done below */
2933 switch (lr
->initiator
) {
2934 case NL80211_REGDOM_SET_BY_CORE
:
2935 r
= reg_set_rd_core(rd
);
2937 case NL80211_REGDOM_SET_BY_USER
:
2938 r
= reg_set_rd_user(rd
, lr
);
2941 case NL80211_REGDOM_SET_BY_DRIVER
:
2942 r
= reg_set_rd_driver(rd
, lr
);
2944 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
2945 r
= reg_set_rd_country_ie(rd
, lr
);
2948 WARN(1, "invalid initiator %d\n", lr
->initiator
);
2955 reg_set_request_processed();
2958 /* Back to world regulatory in case of errors */
2959 restore_regulatory_settings(user_reset
);
2966 /* This would make this whole thing pointless */
2967 if (WARN_ON(!lr
->intersect
&& rd
!= get_cfg80211_regdom()))
2970 /* update all wiphys now with the new established regulatory domain */
2971 update_all_wiphy_regulatory(lr
->initiator
);
2973 print_regdomain(get_cfg80211_regdom());
2975 nl80211_send_reg_change_event(lr
);
2977 reg_set_request_processed();
2982 static int __regulatory_set_wiphy_regd(struct wiphy
*wiphy
,
2983 struct ieee80211_regdomain
*rd
)
2985 const struct ieee80211_regdomain
*regd
;
2986 const struct ieee80211_regdomain
*prev_regd
;
2987 struct cfg80211_registered_device
*rdev
;
2989 if (WARN_ON(!wiphy
|| !rd
))
2992 if (WARN(!(wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
),
2993 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
2996 if (WARN(!is_valid_rd(rd
), "Invalid regulatory domain detected\n")) {
2997 print_regdomain_info(rd
);
3001 regd
= reg_copy_regd(rd
);
3003 return PTR_ERR(regd
);
3005 rdev
= wiphy_to_rdev(wiphy
);
3007 spin_lock(®_requests_lock
);
3008 prev_regd
= rdev
->requested_regd
;
3009 rdev
->requested_regd
= regd
;
3010 spin_unlock(®_requests_lock
);
3016 int regulatory_set_wiphy_regd(struct wiphy
*wiphy
,
3017 struct ieee80211_regdomain
*rd
)
3019 int ret
= __regulatory_set_wiphy_regd(wiphy
, rd
);
3024 schedule_work(®_work
);
3027 EXPORT_SYMBOL(regulatory_set_wiphy_regd
);
3029 int regulatory_set_wiphy_regd_sync_rtnl(struct wiphy
*wiphy
,
3030 struct ieee80211_regdomain
*rd
)
3036 ret
= __regulatory_set_wiphy_regd(wiphy
, rd
);
3040 /* process the request immediately */
3041 reg_process_self_managed_hints();
3044 EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync_rtnl
);
3046 void wiphy_regulatory_register(struct wiphy
*wiphy
)
3048 struct regulatory_request
*lr
;
3050 /* self-managed devices ignore external hints */
3051 if (wiphy
->regulatory_flags
& REGULATORY_WIPHY_SELF_MANAGED
)
3052 wiphy
->regulatory_flags
|= REGULATORY_DISABLE_BEACON_HINTS
|
3053 REGULATORY_COUNTRY_IE_IGNORE
;
3055 if (!reg_dev_ignore_cell_hint(wiphy
))
3056 reg_num_devs_support_basehint
++;
3058 lr
= get_last_request();
3059 wiphy_update_regulatory(wiphy
, lr
->initiator
);
3062 void wiphy_regulatory_deregister(struct wiphy
*wiphy
)
3064 struct wiphy
*request_wiphy
= NULL
;
3065 struct regulatory_request
*lr
;
3067 lr
= get_last_request();
3069 if (!reg_dev_ignore_cell_hint(wiphy
))
3070 reg_num_devs_support_basehint
--;
3072 rcu_free_regdom(get_wiphy_regdom(wiphy
));
3073 RCU_INIT_POINTER(wiphy
->regd
, NULL
);
3076 request_wiphy
= wiphy_idx_to_wiphy(lr
->wiphy_idx
);
3078 if (!request_wiphy
|| request_wiphy
!= wiphy
)
3081 lr
->wiphy_idx
= WIPHY_IDX_INVALID
;
3082 lr
->country_ie_env
= ENVIRON_ANY
;
3085 static void reg_timeout_work(struct work_struct
*work
)
3087 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
3089 reg_crda_timeouts
++;
3090 restore_regulatory_settings(true);
3095 * See http://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii, for
3096 * UNII band definitions
3098 int cfg80211_get_unii(int freq
)
3101 if (freq
>= 5150 && freq
<= 5250)
3105 if (freq
> 5250 && freq
<= 5350)
3109 if (freq
> 5350 && freq
<= 5470)
3113 if (freq
> 5470 && freq
<= 5725)
3117 if (freq
> 5725 && freq
<= 5825)
3123 bool regulatory_indoor_allowed(void)
3125 return reg_is_indoor
;
3128 int __init
regulatory_init(void)
3132 reg_pdev
= platform_device_register_simple("regulatory", 0, NULL
, 0);
3133 if (IS_ERR(reg_pdev
))
3134 return PTR_ERR(reg_pdev
);
3136 spin_lock_init(®_requests_lock
);
3137 spin_lock_init(®_pending_beacons_lock
);
3138 spin_lock_init(®_indoor_lock
);
3140 reg_regdb_size_check();
3142 rcu_assign_pointer(cfg80211_regdomain
, cfg80211_world_regdom
);
3144 user_alpha2
[0] = '9';
3145 user_alpha2
[1] = '7';
3147 /* We always try to get an update for the static regdomain */
3148 err
= regulatory_hint_core(cfg80211_world_regdom
->alpha2
);
3153 * N.B. kobject_uevent_env() can fail mainly for when we're out
3154 * memory which is handled and propagated appropriately above
3155 * but it can also fail during a netlink_broadcast() or during
3156 * early boot for call_usermodehelper(). For now treat these
3157 * errors as non-fatal.
3159 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
3163 * Finally, if the user set the module parameter treat it
3166 if (!is_world_regdom(ieee80211_regdom
))
3167 regulatory_hint_user(ieee80211_regdom
,
3168 NL80211_USER_REG_HINT_USER
);
3173 void regulatory_exit(void)
3175 struct regulatory_request
*reg_request
, *tmp
;
3176 struct reg_beacon
*reg_beacon
, *btmp
;
3178 cancel_work_sync(®_work
);
3179 cancel_delayed_work_sync(®_timeout
);
3180 cancel_delayed_work_sync(®_check_chans
);
3182 /* Lock to suppress warnings */
3184 reset_regdomains(true, NULL
);
3187 dev_set_uevent_suppress(®_pdev
->dev
, true);
3189 platform_device_unregister(reg_pdev
);
3191 list_for_each_entry_safe(reg_beacon
, btmp
, ®_pending_beacons
, list
) {
3192 list_del(®_beacon
->list
);
3196 list_for_each_entry_safe(reg_beacon
, btmp
, ®_beacon_list
, list
) {
3197 list_del(®_beacon
->list
);
3201 list_for_each_entry_safe(reg_request
, tmp
, ®_requests_list
, list
) {
3202 list_del(®_request
->list
);