ALSA: seq: Fix snd_seq_call_port_info_ioctl in compat mode
[linux/fpc-iii.git] / fs / btrfs / transaction.c
blob1f214689fa5e61a1c650eaed4efba4e03934b4b3
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
35 #define BTRFS_ROOT_TRANS_TAG 0
37 static void put_transaction(struct btrfs_transaction *transaction)
39 WARN_ON(atomic_read(&transaction->use_count) == 0);
40 if (atomic_dec_and_test(&transaction->use_count)) {
41 BUG_ON(!list_empty(&transaction->list));
42 WARN_ON(transaction->delayed_refs.root.rb_node);
43 kmem_cache_free(btrfs_transaction_cachep, transaction);
47 static noinline void switch_commit_root(struct btrfs_root *root)
49 free_extent_buffer(root->commit_root);
50 root->commit_root = btrfs_root_node(root);
53 static inline int can_join_transaction(struct btrfs_transaction *trans,
54 int type)
56 return !(trans->in_commit &&
57 type != TRANS_JOIN &&
58 type != TRANS_JOIN_NOLOCK);
62 * either allocate a new transaction or hop into the existing one
64 static noinline int join_transaction(struct btrfs_root *root, int type)
66 struct btrfs_transaction *cur_trans;
67 struct btrfs_fs_info *fs_info = root->fs_info;
69 spin_lock(&fs_info->trans_lock);
70 loop:
71 /* The file system has been taken offline. No new transactions. */
72 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
73 spin_unlock(&fs_info->trans_lock);
74 return -EROFS;
77 if (fs_info->trans_no_join) {
78 /*
79 * If we are JOIN_NOLOCK we're already committing a current
80 * transaction, we just need a handle to deal with something
81 * when committing the transaction, such as inode cache and
82 * space cache. It is a special case.
84 if (type != TRANS_JOIN_NOLOCK) {
85 spin_unlock(&fs_info->trans_lock);
86 return -EBUSY;
90 cur_trans = fs_info->running_transaction;
91 if (cur_trans) {
92 if (cur_trans->aborted) {
93 spin_unlock(&fs_info->trans_lock);
94 return cur_trans->aborted;
96 if (!can_join_transaction(cur_trans, type)) {
97 spin_unlock(&fs_info->trans_lock);
98 return -EBUSY;
100 atomic_inc(&cur_trans->use_count);
101 atomic_inc(&cur_trans->num_writers);
102 cur_trans->num_joined++;
103 spin_unlock(&fs_info->trans_lock);
104 return 0;
106 spin_unlock(&fs_info->trans_lock);
109 * If we are ATTACH, we just want to catch the current transaction,
110 * and commit it. If there is no transaction, just return ENOENT.
112 if (type == TRANS_ATTACH)
113 return -ENOENT;
115 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
116 if (!cur_trans)
117 return -ENOMEM;
119 spin_lock(&fs_info->trans_lock);
120 if (fs_info->running_transaction) {
122 * someone started a transaction after we unlocked. Make sure
123 * to redo the trans_no_join checks above
125 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
126 goto loop;
127 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
128 spin_unlock(&fs_info->trans_lock);
129 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
130 return -EROFS;
133 atomic_set(&cur_trans->num_writers, 1);
134 cur_trans->num_joined = 0;
135 init_waitqueue_head(&cur_trans->writer_wait);
136 init_waitqueue_head(&cur_trans->commit_wait);
137 cur_trans->in_commit = 0;
138 cur_trans->blocked = 0;
140 * One for this trans handle, one so it will live on until we
141 * commit the transaction.
143 atomic_set(&cur_trans->use_count, 2);
144 cur_trans->commit_done = 0;
145 cur_trans->start_time = get_seconds();
147 cur_trans->delayed_refs.root = RB_ROOT;
148 cur_trans->delayed_refs.num_entries = 0;
149 cur_trans->delayed_refs.num_heads_ready = 0;
150 cur_trans->delayed_refs.num_heads = 0;
151 cur_trans->delayed_refs.flushing = 0;
152 cur_trans->delayed_refs.run_delayed_start = 0;
155 * although the tree mod log is per file system and not per transaction,
156 * the log must never go across transaction boundaries.
158 smp_mb();
159 if (!list_empty(&fs_info->tree_mod_seq_list))
160 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
161 "creating a fresh transaction\n");
162 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
163 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
164 "creating a fresh transaction\n");
165 atomic64_set(&fs_info->tree_mod_seq, 0);
167 spin_lock_init(&cur_trans->commit_lock);
168 spin_lock_init(&cur_trans->delayed_refs.lock);
169 atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
170 atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
171 init_waitqueue_head(&cur_trans->delayed_refs.wait);
173 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
174 INIT_LIST_HEAD(&cur_trans->ordered_operations);
175 list_add_tail(&cur_trans->list, &fs_info->trans_list);
176 extent_io_tree_init(&cur_trans->dirty_pages,
177 fs_info->btree_inode->i_mapping);
178 fs_info->generation++;
179 cur_trans->transid = fs_info->generation;
180 fs_info->running_transaction = cur_trans;
181 cur_trans->aborted = 0;
182 spin_unlock(&fs_info->trans_lock);
184 return 0;
188 * this does all the record keeping required to make sure that a reference
189 * counted root is properly recorded in a given transaction. This is required
190 * to make sure the old root from before we joined the transaction is deleted
191 * when the transaction commits
193 static int record_root_in_trans(struct btrfs_trans_handle *trans,
194 struct btrfs_root *root)
196 if (root->ref_cows && root->last_trans < trans->transid) {
197 WARN_ON(root == root->fs_info->extent_root);
198 WARN_ON(root->commit_root != root->node);
201 * see below for in_trans_setup usage rules
202 * we have the reloc mutex held now, so there
203 * is only one writer in this function
205 root->in_trans_setup = 1;
207 /* make sure readers find in_trans_setup before
208 * they find our root->last_trans update
210 smp_wmb();
212 spin_lock(&root->fs_info->fs_roots_radix_lock);
213 if (root->last_trans == trans->transid) {
214 spin_unlock(&root->fs_info->fs_roots_radix_lock);
215 return 0;
217 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
218 (unsigned long)root->root_key.objectid,
219 BTRFS_ROOT_TRANS_TAG);
220 spin_unlock(&root->fs_info->fs_roots_radix_lock);
221 root->last_trans = trans->transid;
223 /* this is pretty tricky. We don't want to
224 * take the relocation lock in btrfs_record_root_in_trans
225 * unless we're really doing the first setup for this root in
226 * this transaction.
228 * Normally we'd use root->last_trans as a flag to decide
229 * if we want to take the expensive mutex.
231 * But, we have to set root->last_trans before we
232 * init the relocation root, otherwise, we trip over warnings
233 * in ctree.c. The solution used here is to flag ourselves
234 * with root->in_trans_setup. When this is 1, we're still
235 * fixing up the reloc trees and everyone must wait.
237 * When this is zero, they can trust root->last_trans and fly
238 * through btrfs_record_root_in_trans without having to take the
239 * lock. smp_wmb() makes sure that all the writes above are
240 * done before we pop in the zero below
242 btrfs_init_reloc_root(trans, root);
243 smp_wmb();
244 root->in_trans_setup = 0;
246 return 0;
250 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
251 struct btrfs_root *root)
253 if (!root->ref_cows)
254 return 0;
257 * see record_root_in_trans for comments about in_trans_setup usage
258 * and barriers
260 smp_rmb();
261 if (root->last_trans == trans->transid &&
262 !root->in_trans_setup)
263 return 0;
265 mutex_lock(&root->fs_info->reloc_mutex);
266 record_root_in_trans(trans, root);
267 mutex_unlock(&root->fs_info->reloc_mutex);
269 return 0;
272 /* wait for commit against the current transaction to become unblocked
273 * when this is done, it is safe to start a new transaction, but the current
274 * transaction might not be fully on disk.
276 static void wait_current_trans(struct btrfs_root *root)
278 struct btrfs_transaction *cur_trans;
280 spin_lock(&root->fs_info->trans_lock);
281 cur_trans = root->fs_info->running_transaction;
282 if (cur_trans && cur_trans->blocked) {
283 atomic_inc(&cur_trans->use_count);
284 spin_unlock(&root->fs_info->trans_lock);
286 wait_event(root->fs_info->transaction_wait,
287 !cur_trans->blocked);
288 put_transaction(cur_trans);
289 } else {
290 spin_unlock(&root->fs_info->trans_lock);
294 static int may_wait_transaction(struct btrfs_root *root, int type)
296 if (root->fs_info->log_root_recovering)
297 return 0;
299 if (type == TRANS_USERSPACE)
300 return 1;
302 if (type == TRANS_START &&
303 !atomic_read(&root->fs_info->open_ioctl_trans))
304 return 1;
306 return 0;
309 static struct btrfs_trans_handle *
310 start_transaction(struct btrfs_root *root, u64 num_items, int type,
311 enum btrfs_reserve_flush_enum flush)
313 struct btrfs_trans_handle *h;
314 struct btrfs_transaction *cur_trans;
315 u64 num_bytes = 0;
316 int ret;
317 u64 qgroup_reserved = 0;
319 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
320 return ERR_PTR(-EROFS);
322 if (current->journal_info) {
323 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
324 h = current->journal_info;
325 h->use_count++;
326 WARN_ON(h->use_count > 2);
327 h->orig_rsv = h->block_rsv;
328 h->block_rsv = NULL;
329 goto got_it;
333 * Do the reservation before we join the transaction so we can do all
334 * the appropriate flushing if need be.
336 if (num_items > 0 && root != root->fs_info->chunk_root) {
337 if (root->fs_info->quota_enabled &&
338 is_fstree(root->root_key.objectid)) {
339 qgroup_reserved = num_items * root->leafsize;
340 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
341 if (ret)
342 return ERR_PTR(ret);
345 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
346 ret = btrfs_block_rsv_add(root,
347 &root->fs_info->trans_block_rsv,
348 num_bytes, flush);
349 if (ret)
350 goto reserve_fail;
352 again:
353 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
354 if (!h) {
355 ret = -ENOMEM;
356 goto alloc_fail;
360 * If we are JOIN_NOLOCK we're already committing a transaction and
361 * waiting on this guy, so we don't need to do the sb_start_intwrite
362 * because we're already holding a ref. We need this because we could
363 * have raced in and did an fsync() on a file which can kick a commit
364 * and then we deadlock with somebody doing a freeze.
366 * If we are ATTACH, it means we just want to catch the current
367 * transaction and commit it, so we needn't do sb_start_intwrite().
369 if (type < TRANS_JOIN_NOLOCK)
370 sb_start_intwrite(root->fs_info->sb);
372 if (may_wait_transaction(root, type))
373 wait_current_trans(root);
375 do {
376 ret = join_transaction(root, type);
377 if (ret == -EBUSY) {
378 wait_current_trans(root);
379 if (unlikely(type == TRANS_ATTACH))
380 ret = -ENOENT;
382 } while (ret == -EBUSY);
384 if (ret < 0) {
385 /* We must get the transaction if we are JOIN_NOLOCK. */
386 BUG_ON(type == TRANS_JOIN_NOLOCK);
387 goto join_fail;
390 cur_trans = root->fs_info->running_transaction;
392 h->transid = cur_trans->transid;
393 h->transaction = cur_trans;
394 h->blocks_used = 0;
395 h->bytes_reserved = 0;
396 h->root = root;
397 h->delayed_ref_updates = 0;
398 h->use_count = 1;
399 h->adding_csums = 0;
400 h->block_rsv = NULL;
401 h->orig_rsv = NULL;
402 h->aborted = 0;
403 h->qgroup_reserved = 0;
404 h->delayed_ref_elem.seq = 0;
405 h->type = type;
406 h->allocating_chunk = false;
407 INIT_LIST_HEAD(&h->qgroup_ref_list);
408 INIT_LIST_HEAD(&h->new_bgs);
410 smp_mb();
411 if (cur_trans->blocked && may_wait_transaction(root, type)) {
412 btrfs_commit_transaction(h, root);
413 goto again;
416 if (num_bytes) {
417 trace_btrfs_space_reservation(root->fs_info, "transaction",
418 h->transid, num_bytes, 1);
419 h->block_rsv = &root->fs_info->trans_block_rsv;
420 h->bytes_reserved = num_bytes;
422 h->qgroup_reserved = qgroup_reserved;
424 got_it:
425 btrfs_record_root_in_trans(h, root);
427 if (!current->journal_info && type != TRANS_USERSPACE)
428 current->journal_info = h;
429 return h;
431 join_fail:
432 if (type < TRANS_JOIN_NOLOCK)
433 sb_end_intwrite(root->fs_info->sb);
434 kmem_cache_free(btrfs_trans_handle_cachep, h);
435 alloc_fail:
436 if (num_bytes)
437 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
438 num_bytes);
439 reserve_fail:
440 if (qgroup_reserved)
441 btrfs_qgroup_free(root, qgroup_reserved);
442 return ERR_PTR(ret);
445 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
446 int num_items)
448 return start_transaction(root, num_items, TRANS_START,
449 BTRFS_RESERVE_FLUSH_ALL);
452 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
453 struct btrfs_root *root, int num_items)
455 return start_transaction(root, num_items, TRANS_START,
456 BTRFS_RESERVE_FLUSH_LIMIT);
459 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
461 return start_transaction(root, 0, TRANS_JOIN, 0);
464 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
466 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
469 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
471 return start_transaction(root, 0, TRANS_USERSPACE, 0);
475 * btrfs_attach_transaction() - catch the running transaction
477 * It is used when we want to commit the current the transaction, but
478 * don't want to start a new one.
480 * Note: If this function return -ENOENT, it just means there is no
481 * running transaction. But it is possible that the inactive transaction
482 * is still in the memory, not fully on disk. If you hope there is no
483 * inactive transaction in the fs when -ENOENT is returned, you should
484 * invoke
485 * btrfs_attach_transaction_barrier()
487 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
489 return start_transaction(root, 0, TRANS_ATTACH, 0);
493 * btrfs_attach_transaction() - catch the running transaction
495 * It is similar to the above function, the differentia is this one
496 * will wait for all the inactive transactions until they fully
497 * complete.
499 struct btrfs_trans_handle *
500 btrfs_attach_transaction_barrier(struct btrfs_root *root)
502 struct btrfs_trans_handle *trans;
504 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
505 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
506 btrfs_wait_for_commit(root, 0);
508 return trans;
511 /* wait for a transaction commit to be fully complete */
512 static noinline void wait_for_commit(struct btrfs_root *root,
513 struct btrfs_transaction *commit)
515 wait_event(commit->commit_wait, commit->commit_done);
518 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
520 struct btrfs_transaction *cur_trans = NULL, *t;
521 int ret = 0;
523 if (transid) {
524 if (transid <= root->fs_info->last_trans_committed)
525 goto out;
527 /* find specified transaction */
528 spin_lock(&root->fs_info->trans_lock);
529 list_for_each_entry(t, &root->fs_info->trans_list, list) {
530 if (t->transid == transid) {
531 cur_trans = t;
532 atomic_inc(&cur_trans->use_count);
533 ret = 0;
534 break;
536 if (t->transid > transid) {
537 ret = 0;
538 break;
541 spin_unlock(&root->fs_info->trans_lock);
544 * The specified transaction doesn't exist, or we
545 * raced with btrfs_commit_transaction
547 if (!cur_trans) {
548 if (transid > root->fs_info->last_trans_committed)
549 ret = -EINVAL;
550 goto out;
552 } else {
553 /* find newest transaction that is committing | committed */
554 spin_lock(&root->fs_info->trans_lock);
555 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
556 list) {
557 if (t->in_commit) {
558 if (t->commit_done)
559 break;
560 cur_trans = t;
561 atomic_inc(&cur_trans->use_count);
562 break;
565 spin_unlock(&root->fs_info->trans_lock);
566 if (!cur_trans)
567 goto out; /* nothing committing|committed */
570 wait_for_commit(root, cur_trans);
571 put_transaction(cur_trans);
572 out:
573 return ret;
576 void btrfs_throttle(struct btrfs_root *root)
578 if (!atomic_read(&root->fs_info->open_ioctl_trans))
579 wait_current_trans(root);
582 static int should_end_transaction(struct btrfs_trans_handle *trans,
583 struct btrfs_root *root)
585 int ret;
587 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
588 return ret ? 1 : 0;
591 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
592 struct btrfs_root *root)
594 struct btrfs_transaction *cur_trans = trans->transaction;
595 int updates;
596 int err;
598 smp_mb();
599 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
600 return 1;
602 updates = trans->delayed_ref_updates;
603 trans->delayed_ref_updates = 0;
604 if (updates) {
605 err = btrfs_run_delayed_refs(trans, root, updates);
606 if (err) /* Error code will also eval true */
607 return err;
610 return should_end_transaction(trans, root);
613 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
614 struct btrfs_root *root, int throttle)
616 struct btrfs_transaction *cur_trans = trans->transaction;
617 struct btrfs_fs_info *info = root->fs_info;
618 int count = 0;
619 int lock = (trans->type != TRANS_JOIN_NOLOCK);
620 int err = 0;
622 if (--trans->use_count) {
623 trans->block_rsv = trans->orig_rsv;
624 return 0;
628 * do the qgroup accounting as early as possible
630 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
632 btrfs_trans_release_metadata(trans, root);
633 trans->block_rsv = NULL;
635 if (trans->qgroup_reserved) {
637 * the same root has to be passed here between start_transaction
638 * and end_transaction. Subvolume quota depends on this.
640 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
641 trans->qgroup_reserved = 0;
644 if (!list_empty(&trans->new_bgs))
645 btrfs_create_pending_block_groups(trans, root);
647 while (count < 1) {
648 unsigned long cur = trans->delayed_ref_updates;
649 trans->delayed_ref_updates = 0;
650 if (cur &&
651 trans->transaction->delayed_refs.num_heads_ready > 64) {
652 trans->delayed_ref_updates = 0;
653 btrfs_run_delayed_refs(trans, root, cur);
654 } else {
655 break;
657 count++;
660 btrfs_trans_release_metadata(trans, root);
661 trans->block_rsv = NULL;
663 if (!list_empty(&trans->new_bgs))
664 btrfs_create_pending_block_groups(trans, root);
666 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
667 should_end_transaction(trans, root)) {
668 trans->transaction->blocked = 1;
669 smp_wmb();
672 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
673 if (throttle) {
675 * We may race with somebody else here so end up having
676 * to call end_transaction on ourselves again, so inc
677 * our use_count.
679 trans->use_count++;
680 return btrfs_commit_transaction(trans, root);
681 } else {
682 wake_up_process(info->transaction_kthread);
686 if (trans->type < TRANS_JOIN_NOLOCK)
687 sb_end_intwrite(root->fs_info->sb);
689 WARN_ON(cur_trans != info->running_transaction);
690 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
691 atomic_dec(&cur_trans->num_writers);
693 smp_mb();
694 if (waitqueue_active(&cur_trans->writer_wait))
695 wake_up(&cur_trans->writer_wait);
696 put_transaction(cur_trans);
698 if (current->journal_info == trans)
699 current->journal_info = NULL;
701 if (throttle)
702 btrfs_run_delayed_iputs(root);
704 if (trans->aborted ||
705 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
706 err = -EIO;
707 assert_qgroups_uptodate(trans);
709 kmem_cache_free(btrfs_trans_handle_cachep, trans);
710 return err;
713 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
714 struct btrfs_root *root)
716 return __btrfs_end_transaction(trans, root, 0);
719 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
720 struct btrfs_root *root)
722 return __btrfs_end_transaction(trans, root, 1);
725 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
726 struct btrfs_root *root)
728 return __btrfs_end_transaction(trans, root, 1);
732 * when btree blocks are allocated, they have some corresponding bits set for
733 * them in one of two extent_io trees. This is used to make sure all of
734 * those extents are sent to disk but does not wait on them
736 int btrfs_write_marked_extents(struct btrfs_root *root,
737 struct extent_io_tree *dirty_pages, int mark)
739 int err = 0;
740 int werr = 0;
741 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
742 struct extent_state *cached_state = NULL;
743 u64 start = 0;
744 u64 end;
745 struct blk_plug plug;
747 blk_start_plug(&plug);
748 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
749 mark, &cached_state)) {
750 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
751 mark, &cached_state, GFP_NOFS);
752 cached_state = NULL;
753 err = filemap_fdatawrite_range(mapping, start, end);
754 if (err)
755 werr = err;
756 cond_resched();
757 start = end + 1;
759 if (err)
760 werr = err;
761 blk_finish_plug(&plug);
762 return werr;
766 * when btree blocks are allocated, they have some corresponding bits set for
767 * them in one of two extent_io trees. This is used to make sure all of
768 * those extents are on disk for transaction or log commit. We wait
769 * on all the pages and clear them from the dirty pages state tree
771 int btrfs_wait_marked_extents(struct btrfs_root *root,
772 struct extent_io_tree *dirty_pages, int mark)
774 int err = 0;
775 int werr = 0;
776 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
777 struct extent_state *cached_state = NULL;
778 u64 start = 0;
779 u64 end;
781 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
782 EXTENT_NEED_WAIT, &cached_state)) {
783 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
784 0, 0, &cached_state, GFP_NOFS);
785 err = filemap_fdatawait_range(mapping, start, end);
786 if (err)
787 werr = err;
788 cond_resched();
789 start = end + 1;
791 if (err)
792 werr = err;
793 return werr;
797 * when btree blocks are allocated, they have some corresponding bits set for
798 * them in one of two extent_io trees. This is used to make sure all of
799 * those extents are on disk for transaction or log commit
801 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
802 struct extent_io_tree *dirty_pages, int mark)
804 int ret;
805 int ret2;
807 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
808 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
810 if (ret)
811 return ret;
812 if (ret2)
813 return ret2;
814 return 0;
817 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
818 struct btrfs_root *root)
820 if (!trans || !trans->transaction) {
821 struct inode *btree_inode;
822 btree_inode = root->fs_info->btree_inode;
823 return filemap_write_and_wait(btree_inode->i_mapping);
825 return btrfs_write_and_wait_marked_extents(root,
826 &trans->transaction->dirty_pages,
827 EXTENT_DIRTY);
831 * this is used to update the root pointer in the tree of tree roots.
833 * But, in the case of the extent allocation tree, updating the root
834 * pointer may allocate blocks which may change the root of the extent
835 * allocation tree.
837 * So, this loops and repeats and makes sure the cowonly root didn't
838 * change while the root pointer was being updated in the metadata.
840 static int update_cowonly_root(struct btrfs_trans_handle *trans,
841 struct btrfs_root *root)
843 int ret;
844 u64 old_root_bytenr;
845 u64 old_root_used;
846 struct btrfs_root *tree_root = root->fs_info->tree_root;
848 old_root_used = btrfs_root_used(&root->root_item);
849 btrfs_write_dirty_block_groups(trans, root);
851 while (1) {
852 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
853 if (old_root_bytenr == root->node->start &&
854 old_root_used == btrfs_root_used(&root->root_item))
855 break;
857 btrfs_set_root_node(&root->root_item, root->node);
858 ret = btrfs_update_root(trans, tree_root,
859 &root->root_key,
860 &root->root_item);
861 if (ret)
862 return ret;
864 old_root_used = btrfs_root_used(&root->root_item);
865 ret = btrfs_write_dirty_block_groups(trans, root);
866 if (ret)
867 return ret;
870 if (root != root->fs_info->extent_root)
871 switch_commit_root(root);
873 return 0;
877 * update all the cowonly tree roots on disk
879 * The error handling in this function may not be obvious. Any of the
880 * failures will cause the file system to go offline. We still need
881 * to clean up the delayed refs.
883 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
884 struct btrfs_root *root)
886 struct btrfs_fs_info *fs_info = root->fs_info;
887 struct list_head *next;
888 struct extent_buffer *eb;
889 int ret;
891 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
892 if (ret)
893 return ret;
895 eb = btrfs_lock_root_node(fs_info->tree_root);
896 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
897 0, &eb);
898 btrfs_tree_unlock(eb);
899 free_extent_buffer(eb);
901 if (ret)
902 return ret;
904 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
905 if (ret)
906 return ret;
908 ret = btrfs_run_dev_stats(trans, root->fs_info);
909 WARN_ON(ret);
910 ret = btrfs_run_dev_replace(trans, root->fs_info);
911 WARN_ON(ret);
913 ret = btrfs_run_qgroups(trans, root->fs_info);
914 BUG_ON(ret);
916 /* run_qgroups might have added some more refs */
917 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
918 BUG_ON(ret);
920 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
921 next = fs_info->dirty_cowonly_roots.next;
922 list_del_init(next);
923 root = list_entry(next, struct btrfs_root, dirty_list);
925 ret = update_cowonly_root(trans, root);
926 if (ret)
927 return ret;
930 down_write(&fs_info->extent_commit_sem);
931 switch_commit_root(fs_info->extent_root);
932 up_write(&fs_info->extent_commit_sem);
934 btrfs_after_dev_replace_commit(fs_info);
936 return 0;
940 * dead roots are old snapshots that need to be deleted. This allocates
941 * a dirty root struct and adds it into the list of dead roots that need to
942 * be deleted
944 int btrfs_add_dead_root(struct btrfs_root *root)
946 spin_lock(&root->fs_info->trans_lock);
947 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
948 spin_unlock(&root->fs_info->trans_lock);
949 return 0;
953 * update all the cowonly tree roots on disk
955 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
956 struct btrfs_root *root)
958 struct btrfs_root *gang[8];
959 struct btrfs_fs_info *fs_info = root->fs_info;
960 int i;
961 int ret;
962 int err = 0;
964 spin_lock(&fs_info->fs_roots_radix_lock);
965 while (1) {
966 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
967 (void **)gang, 0,
968 ARRAY_SIZE(gang),
969 BTRFS_ROOT_TRANS_TAG);
970 if (ret == 0)
971 break;
972 for (i = 0; i < ret; i++) {
973 root = gang[i];
974 radix_tree_tag_clear(&fs_info->fs_roots_radix,
975 (unsigned long)root->root_key.objectid,
976 BTRFS_ROOT_TRANS_TAG);
977 spin_unlock(&fs_info->fs_roots_radix_lock);
979 btrfs_free_log(trans, root);
980 btrfs_update_reloc_root(trans, root);
981 btrfs_orphan_commit_root(trans, root);
983 btrfs_save_ino_cache(root, trans);
985 /* see comments in should_cow_block() */
986 root->force_cow = 0;
987 smp_wmb();
989 if (root->commit_root != root->node) {
990 mutex_lock(&root->fs_commit_mutex);
991 switch_commit_root(root);
992 btrfs_unpin_free_ino(root);
993 mutex_unlock(&root->fs_commit_mutex);
995 btrfs_set_root_node(&root->root_item,
996 root->node);
999 err = btrfs_update_root(trans, fs_info->tree_root,
1000 &root->root_key,
1001 &root->root_item);
1002 spin_lock(&fs_info->fs_roots_radix_lock);
1003 if (err)
1004 break;
1007 spin_unlock(&fs_info->fs_roots_radix_lock);
1008 return err;
1012 * defrag a given btree.
1013 * Every leaf in the btree is read and defragged.
1015 int btrfs_defrag_root(struct btrfs_root *root)
1017 struct btrfs_fs_info *info = root->fs_info;
1018 struct btrfs_trans_handle *trans;
1019 int ret;
1021 if (xchg(&root->defrag_running, 1))
1022 return 0;
1024 while (1) {
1025 trans = btrfs_start_transaction(root, 0);
1026 if (IS_ERR(trans))
1027 return PTR_ERR(trans);
1029 ret = btrfs_defrag_leaves(trans, root);
1031 btrfs_end_transaction(trans, root);
1032 btrfs_btree_balance_dirty(info->tree_root);
1033 cond_resched();
1035 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1036 break;
1038 if (btrfs_defrag_cancelled(root->fs_info)) {
1039 printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1040 ret = -EAGAIN;
1041 break;
1044 root->defrag_running = 0;
1045 return ret;
1049 * new snapshots need to be created at a very specific time in the
1050 * transaction commit. This does the actual creation.
1052 * Note:
1053 * If the error which may affect the commitment of the current transaction
1054 * happens, we should return the error number. If the error which just affect
1055 * the creation of the pending snapshots, just return 0.
1057 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1058 struct btrfs_fs_info *fs_info,
1059 struct btrfs_pending_snapshot *pending)
1061 struct btrfs_key key;
1062 struct btrfs_root_item *new_root_item;
1063 struct btrfs_root *tree_root = fs_info->tree_root;
1064 struct btrfs_root *root = pending->root;
1065 struct btrfs_root *parent_root;
1066 struct btrfs_block_rsv *rsv;
1067 struct inode *parent_inode;
1068 struct btrfs_path *path;
1069 struct btrfs_dir_item *dir_item;
1070 struct dentry *dentry;
1071 struct extent_buffer *tmp;
1072 struct extent_buffer *old;
1073 struct timespec cur_time = CURRENT_TIME;
1074 int ret = 0;
1075 u64 to_reserve = 0;
1076 u64 index = 0;
1077 u64 objectid;
1078 u64 root_flags;
1079 uuid_le new_uuid;
1081 path = btrfs_alloc_path();
1082 if (!path) {
1083 pending->error = -ENOMEM;
1084 return 0;
1087 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1088 if (!new_root_item) {
1089 pending->error = -ENOMEM;
1090 goto root_item_alloc_fail;
1093 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1094 if (pending->error)
1095 goto no_free_objectid;
1097 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1099 if (to_reserve > 0) {
1100 pending->error = btrfs_block_rsv_add(root,
1101 &pending->block_rsv,
1102 to_reserve,
1103 BTRFS_RESERVE_NO_FLUSH);
1104 if (pending->error)
1105 goto no_free_objectid;
1108 pending->error = btrfs_qgroup_inherit(trans, fs_info,
1109 root->root_key.objectid,
1110 objectid, pending->inherit);
1111 if (pending->error)
1112 goto no_free_objectid;
1114 key.objectid = objectid;
1115 key.offset = (u64)-1;
1116 key.type = BTRFS_ROOT_ITEM_KEY;
1118 rsv = trans->block_rsv;
1119 trans->block_rsv = &pending->block_rsv;
1120 trans->bytes_reserved = trans->block_rsv->reserved;
1122 dentry = pending->dentry;
1123 parent_inode = pending->dir;
1124 parent_root = BTRFS_I(parent_inode)->root;
1125 record_root_in_trans(trans, parent_root);
1128 * insert the directory item
1130 ret = btrfs_set_inode_index(parent_inode, &index);
1131 BUG_ON(ret); /* -ENOMEM */
1133 /* check if there is a file/dir which has the same name. */
1134 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1135 btrfs_ino(parent_inode),
1136 dentry->d_name.name,
1137 dentry->d_name.len, 0);
1138 if (dir_item != NULL && !IS_ERR(dir_item)) {
1139 pending->error = -EEXIST;
1140 goto dir_item_existed;
1141 } else if (IS_ERR(dir_item)) {
1142 ret = PTR_ERR(dir_item);
1143 btrfs_abort_transaction(trans, root, ret);
1144 goto fail;
1146 btrfs_release_path(path);
1149 * pull in the delayed directory update
1150 * and the delayed inode item
1151 * otherwise we corrupt the FS during
1152 * snapshot
1154 ret = btrfs_run_delayed_items(trans, root);
1155 if (ret) { /* Transaction aborted */
1156 btrfs_abort_transaction(trans, root, ret);
1157 goto fail;
1160 record_root_in_trans(trans, root);
1161 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1162 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1163 btrfs_check_and_init_root_item(new_root_item);
1165 root_flags = btrfs_root_flags(new_root_item);
1166 if (pending->readonly)
1167 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1168 else
1169 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1170 btrfs_set_root_flags(new_root_item, root_flags);
1172 btrfs_set_root_generation_v2(new_root_item,
1173 trans->transid);
1174 uuid_le_gen(&new_uuid);
1175 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1176 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1177 BTRFS_UUID_SIZE);
1178 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1179 memset(new_root_item->received_uuid, 0,
1180 sizeof(new_root_item->received_uuid));
1181 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1182 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1183 btrfs_set_root_stransid(new_root_item, 0);
1184 btrfs_set_root_rtransid(new_root_item, 0);
1186 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1187 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1188 btrfs_set_root_otransid(new_root_item, trans->transid);
1190 old = btrfs_lock_root_node(root);
1191 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1192 if (ret) {
1193 btrfs_tree_unlock(old);
1194 free_extent_buffer(old);
1195 btrfs_abort_transaction(trans, root, ret);
1196 goto fail;
1199 btrfs_set_lock_blocking(old);
1201 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1202 /* clean up in any case */
1203 btrfs_tree_unlock(old);
1204 free_extent_buffer(old);
1205 if (ret) {
1206 btrfs_abort_transaction(trans, root, ret);
1207 goto fail;
1210 /* see comments in should_cow_block() */
1211 root->force_cow = 1;
1212 smp_wmb();
1214 btrfs_set_root_node(new_root_item, tmp);
1215 /* record when the snapshot was created in key.offset */
1216 key.offset = trans->transid;
1217 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1218 btrfs_tree_unlock(tmp);
1219 free_extent_buffer(tmp);
1220 if (ret) {
1221 btrfs_abort_transaction(trans, root, ret);
1222 goto fail;
1226 * insert root back/forward references
1228 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1229 parent_root->root_key.objectid,
1230 btrfs_ino(parent_inode), index,
1231 dentry->d_name.name, dentry->d_name.len);
1232 if (ret) {
1233 btrfs_abort_transaction(trans, root, ret);
1234 goto fail;
1237 key.offset = (u64)-1;
1238 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1239 if (IS_ERR(pending->snap)) {
1240 ret = PTR_ERR(pending->snap);
1241 btrfs_abort_transaction(trans, root, ret);
1242 goto fail;
1245 ret = btrfs_reloc_post_snapshot(trans, pending);
1246 if (ret) {
1247 btrfs_abort_transaction(trans, root, ret);
1248 goto fail;
1251 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1252 if (ret) {
1253 btrfs_abort_transaction(trans, root, ret);
1254 goto fail;
1257 ret = btrfs_insert_dir_item(trans, parent_root,
1258 dentry->d_name.name, dentry->d_name.len,
1259 parent_inode, &key,
1260 BTRFS_FT_DIR, index);
1261 /* We have check then name at the beginning, so it is impossible. */
1262 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1263 if (ret) {
1264 btrfs_abort_transaction(trans, root, ret);
1265 goto fail;
1268 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1269 dentry->d_name.len * 2);
1270 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1271 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1272 if (ret)
1273 btrfs_abort_transaction(trans, root, ret);
1274 fail:
1275 pending->error = ret;
1276 dir_item_existed:
1277 trans->block_rsv = rsv;
1278 trans->bytes_reserved = 0;
1279 no_free_objectid:
1280 kfree(new_root_item);
1281 root_item_alloc_fail:
1282 btrfs_free_path(path);
1283 return ret;
1287 * create all the snapshots we've scheduled for creation
1289 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1290 struct btrfs_fs_info *fs_info)
1292 struct btrfs_pending_snapshot *pending, *next;
1293 struct list_head *head = &trans->transaction->pending_snapshots;
1294 int ret = 0;
1296 list_for_each_entry_safe(pending, next, head, list) {
1297 list_del(&pending->list);
1298 ret = create_pending_snapshot(trans, fs_info, pending);
1299 if (ret)
1300 break;
1302 return ret;
1305 static void update_super_roots(struct btrfs_root *root)
1307 struct btrfs_root_item *root_item;
1308 struct btrfs_super_block *super;
1310 super = root->fs_info->super_copy;
1312 root_item = &root->fs_info->chunk_root->root_item;
1313 super->chunk_root = root_item->bytenr;
1314 super->chunk_root_generation = root_item->generation;
1315 super->chunk_root_level = root_item->level;
1317 root_item = &root->fs_info->tree_root->root_item;
1318 super->root = root_item->bytenr;
1319 super->generation = root_item->generation;
1320 super->root_level = root_item->level;
1321 if (btrfs_test_opt(root, SPACE_CACHE))
1322 super->cache_generation = root_item->generation;
1325 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1327 int ret = 0;
1328 spin_lock(&info->trans_lock);
1329 if (info->running_transaction)
1330 ret = info->running_transaction->in_commit;
1331 spin_unlock(&info->trans_lock);
1332 return ret;
1335 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1337 int ret = 0;
1338 spin_lock(&info->trans_lock);
1339 if (info->running_transaction)
1340 ret = info->running_transaction->blocked;
1341 spin_unlock(&info->trans_lock);
1342 return ret;
1346 * wait for the current transaction commit to start and block subsequent
1347 * transaction joins
1349 static void wait_current_trans_commit_start(struct btrfs_root *root,
1350 struct btrfs_transaction *trans)
1352 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1356 * wait for the current transaction to start and then become unblocked.
1357 * caller holds ref.
1359 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1360 struct btrfs_transaction *trans)
1362 wait_event(root->fs_info->transaction_wait,
1363 trans->commit_done || (trans->in_commit && !trans->blocked));
1367 * commit transactions asynchronously. once btrfs_commit_transaction_async
1368 * returns, any subsequent transaction will not be allowed to join.
1370 struct btrfs_async_commit {
1371 struct btrfs_trans_handle *newtrans;
1372 struct btrfs_root *root;
1373 struct work_struct work;
1376 static void do_async_commit(struct work_struct *work)
1378 struct btrfs_async_commit *ac =
1379 container_of(work, struct btrfs_async_commit, work);
1382 * We've got freeze protection passed with the transaction.
1383 * Tell lockdep about it.
1385 if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1386 rwsem_acquire_read(
1387 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1388 0, 1, _THIS_IP_);
1390 current->journal_info = ac->newtrans;
1392 btrfs_commit_transaction(ac->newtrans, ac->root);
1393 kfree(ac);
1396 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1397 struct btrfs_root *root,
1398 int wait_for_unblock)
1400 struct btrfs_async_commit *ac;
1401 struct btrfs_transaction *cur_trans;
1403 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1404 if (!ac)
1405 return -ENOMEM;
1407 INIT_WORK(&ac->work, do_async_commit);
1408 ac->root = root;
1409 ac->newtrans = btrfs_join_transaction(root);
1410 if (IS_ERR(ac->newtrans)) {
1411 int err = PTR_ERR(ac->newtrans);
1412 kfree(ac);
1413 return err;
1416 /* take transaction reference */
1417 cur_trans = trans->transaction;
1418 atomic_inc(&cur_trans->use_count);
1420 btrfs_end_transaction(trans, root);
1423 * Tell lockdep we've released the freeze rwsem, since the
1424 * async commit thread will be the one to unlock it.
1426 if (trans->type < TRANS_JOIN_NOLOCK)
1427 rwsem_release(
1428 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1429 1, _THIS_IP_);
1431 schedule_work(&ac->work);
1433 /* wait for transaction to start and unblock */
1434 if (wait_for_unblock)
1435 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1436 else
1437 wait_current_trans_commit_start(root, cur_trans);
1439 if (current->journal_info == trans)
1440 current->journal_info = NULL;
1442 put_transaction(cur_trans);
1443 return 0;
1447 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1448 struct btrfs_root *root, int err)
1450 struct btrfs_transaction *cur_trans = trans->transaction;
1451 DEFINE_WAIT(wait);
1453 WARN_ON(trans->use_count > 1);
1455 btrfs_abort_transaction(trans, root, err);
1457 spin_lock(&root->fs_info->trans_lock);
1459 if (list_empty(&cur_trans->list)) {
1460 spin_unlock(&root->fs_info->trans_lock);
1461 btrfs_end_transaction(trans, root);
1462 return;
1465 list_del_init(&cur_trans->list);
1466 if (cur_trans == root->fs_info->running_transaction) {
1467 root->fs_info->trans_no_join = 1;
1468 spin_unlock(&root->fs_info->trans_lock);
1469 wait_event(cur_trans->writer_wait,
1470 atomic_read(&cur_trans->num_writers) == 1);
1472 spin_lock(&root->fs_info->trans_lock);
1473 root->fs_info->running_transaction = NULL;
1475 spin_unlock(&root->fs_info->trans_lock);
1477 btrfs_cleanup_one_transaction(trans->transaction, root);
1479 put_transaction(cur_trans);
1480 put_transaction(cur_trans);
1482 trace_btrfs_transaction_commit(root);
1484 btrfs_scrub_continue(root);
1486 if (current->journal_info == trans)
1487 current->journal_info = NULL;
1489 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1491 spin_lock(&root->fs_info->trans_lock);
1492 root->fs_info->trans_no_join = 0;
1493 spin_unlock(&root->fs_info->trans_lock);
1496 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1497 struct btrfs_root *root)
1499 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1500 int snap_pending = 0;
1501 int ret;
1503 if (!flush_on_commit) {
1504 spin_lock(&root->fs_info->trans_lock);
1505 if (!list_empty(&trans->transaction->pending_snapshots))
1506 snap_pending = 1;
1507 spin_unlock(&root->fs_info->trans_lock);
1510 if (flush_on_commit || snap_pending) {
1511 ret = btrfs_start_delalloc_inodes(root, 1);
1512 if (ret)
1513 return ret;
1514 btrfs_wait_ordered_extents(root, 1);
1517 ret = btrfs_run_delayed_items(trans, root);
1518 if (ret)
1519 return ret;
1522 * running the delayed items may have added new refs. account
1523 * them now so that they hinder processing of more delayed refs
1524 * as little as possible.
1526 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1529 * rename don't use btrfs_join_transaction, so, once we
1530 * set the transaction to blocked above, we aren't going
1531 * to get any new ordered operations. We can safely run
1532 * it here and no for sure that nothing new will be added
1533 * to the list
1535 ret = btrfs_run_ordered_operations(trans, root, 1);
1537 return ret;
1541 * btrfs_transaction state sequence:
1542 * in_commit = 0, blocked = 0 (initial)
1543 * in_commit = 1, blocked = 1
1544 * blocked = 0
1545 * commit_done = 1
1547 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1548 struct btrfs_root *root)
1550 unsigned long joined = 0;
1551 struct btrfs_transaction *cur_trans = trans->transaction;
1552 struct btrfs_transaction *prev_trans = NULL;
1553 DEFINE_WAIT(wait);
1554 int ret;
1555 int should_grow = 0;
1556 unsigned long now = get_seconds();
1558 ret = btrfs_run_ordered_operations(trans, root, 0);
1559 if (ret) {
1560 btrfs_abort_transaction(trans, root, ret);
1561 btrfs_end_transaction(trans, root);
1562 return ret;
1565 /* Stop the commit early if ->aborted is set */
1566 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1567 ret = cur_trans->aborted;
1568 btrfs_end_transaction(trans, root);
1569 return ret;
1572 /* make a pass through all the delayed refs we have so far
1573 * any runnings procs may add more while we are here
1575 ret = btrfs_run_delayed_refs(trans, root, 0);
1576 if (ret) {
1577 btrfs_end_transaction(trans, root);
1578 return ret;
1581 btrfs_trans_release_metadata(trans, root);
1582 trans->block_rsv = NULL;
1583 if (trans->qgroup_reserved) {
1584 btrfs_qgroup_free(root, trans->qgroup_reserved);
1585 trans->qgroup_reserved = 0;
1588 cur_trans = trans->transaction;
1591 * set the flushing flag so procs in this transaction have to
1592 * start sending their work down.
1594 cur_trans->delayed_refs.flushing = 1;
1596 if (!list_empty(&trans->new_bgs))
1597 btrfs_create_pending_block_groups(trans, root);
1599 ret = btrfs_run_delayed_refs(trans, root, 0);
1600 if (ret) {
1601 btrfs_end_transaction(trans, root);
1602 return ret;
1605 spin_lock(&cur_trans->commit_lock);
1606 if (cur_trans->in_commit) {
1607 spin_unlock(&cur_trans->commit_lock);
1608 atomic_inc(&cur_trans->use_count);
1609 ret = btrfs_end_transaction(trans, root);
1611 wait_for_commit(root, cur_trans);
1613 put_transaction(cur_trans);
1615 return ret;
1618 trans->transaction->in_commit = 1;
1619 trans->transaction->blocked = 1;
1620 spin_unlock(&cur_trans->commit_lock);
1621 wake_up(&root->fs_info->transaction_blocked_wait);
1623 spin_lock(&root->fs_info->trans_lock);
1624 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1625 prev_trans = list_entry(cur_trans->list.prev,
1626 struct btrfs_transaction, list);
1627 if (!prev_trans->commit_done) {
1628 atomic_inc(&prev_trans->use_count);
1629 spin_unlock(&root->fs_info->trans_lock);
1631 wait_for_commit(root, prev_trans);
1633 put_transaction(prev_trans);
1634 } else {
1635 spin_unlock(&root->fs_info->trans_lock);
1637 } else {
1638 spin_unlock(&root->fs_info->trans_lock);
1641 if (!btrfs_test_opt(root, SSD) &&
1642 (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1643 should_grow = 1;
1645 do {
1646 joined = cur_trans->num_joined;
1648 WARN_ON(cur_trans != trans->transaction);
1650 ret = btrfs_flush_all_pending_stuffs(trans, root);
1651 if (ret)
1652 goto cleanup_transaction;
1654 prepare_to_wait(&cur_trans->writer_wait, &wait,
1655 TASK_UNINTERRUPTIBLE);
1657 if (atomic_read(&cur_trans->num_writers) > 1)
1658 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1659 else if (should_grow)
1660 schedule_timeout(1);
1662 finish_wait(&cur_trans->writer_wait, &wait);
1663 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1664 (should_grow && cur_trans->num_joined != joined));
1666 ret = btrfs_flush_all_pending_stuffs(trans, root);
1667 if (ret)
1668 goto cleanup_transaction;
1671 * Ok now we need to make sure to block out any other joins while we
1672 * commit the transaction. We could have started a join before setting
1673 * no_join so make sure to wait for num_writers to == 1 again.
1675 spin_lock(&root->fs_info->trans_lock);
1676 root->fs_info->trans_no_join = 1;
1677 spin_unlock(&root->fs_info->trans_lock);
1678 wait_event(cur_trans->writer_wait,
1679 atomic_read(&cur_trans->num_writers) == 1);
1681 /* ->aborted might be set after the previous check, so check it */
1682 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1683 ret = cur_trans->aborted;
1684 goto cleanup_transaction;
1687 * the reloc mutex makes sure that we stop
1688 * the balancing code from coming in and moving
1689 * extents around in the middle of the commit
1691 mutex_lock(&root->fs_info->reloc_mutex);
1694 * We needn't worry about the delayed items because we will
1695 * deal with them in create_pending_snapshot(), which is the
1696 * core function of the snapshot creation.
1698 ret = create_pending_snapshots(trans, root->fs_info);
1699 if (ret) {
1700 mutex_unlock(&root->fs_info->reloc_mutex);
1701 goto cleanup_transaction;
1705 * We insert the dir indexes of the snapshots and update the inode
1706 * of the snapshots' parents after the snapshot creation, so there
1707 * are some delayed items which are not dealt with. Now deal with
1708 * them.
1710 * We needn't worry that this operation will corrupt the snapshots,
1711 * because all the tree which are snapshoted will be forced to COW
1712 * the nodes and leaves.
1714 ret = btrfs_run_delayed_items(trans, root);
1715 if (ret) {
1716 mutex_unlock(&root->fs_info->reloc_mutex);
1717 goto cleanup_transaction;
1720 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1721 if (ret) {
1722 mutex_unlock(&root->fs_info->reloc_mutex);
1723 goto cleanup_transaction;
1727 * make sure none of the code above managed to slip in a
1728 * delayed item
1730 btrfs_assert_delayed_root_empty(root);
1732 WARN_ON(cur_trans != trans->transaction);
1734 btrfs_scrub_pause(root);
1735 /* btrfs_commit_tree_roots is responsible for getting the
1736 * various roots consistent with each other. Every pointer
1737 * in the tree of tree roots has to point to the most up to date
1738 * root for every subvolume and other tree. So, we have to keep
1739 * the tree logging code from jumping in and changing any
1740 * of the trees.
1742 * At this point in the commit, there can't be any tree-log
1743 * writers, but a little lower down we drop the trans mutex
1744 * and let new people in. By holding the tree_log_mutex
1745 * from now until after the super is written, we avoid races
1746 * with the tree-log code.
1748 mutex_lock(&root->fs_info->tree_log_mutex);
1750 ret = commit_fs_roots(trans, root);
1751 if (ret) {
1752 mutex_unlock(&root->fs_info->tree_log_mutex);
1753 mutex_unlock(&root->fs_info->reloc_mutex);
1754 goto cleanup_transaction;
1757 /* commit_fs_roots gets rid of all the tree log roots, it is now
1758 * safe to free the root of tree log roots
1760 btrfs_free_log_root_tree(trans, root->fs_info);
1762 ret = commit_cowonly_roots(trans, root);
1763 if (ret) {
1764 mutex_unlock(&root->fs_info->tree_log_mutex);
1765 mutex_unlock(&root->fs_info->reloc_mutex);
1766 goto cleanup_transaction;
1770 * The tasks which save the space cache and inode cache may also
1771 * update ->aborted, check it.
1773 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1774 ret = cur_trans->aborted;
1775 mutex_unlock(&root->fs_info->tree_log_mutex);
1776 mutex_unlock(&root->fs_info->reloc_mutex);
1777 goto cleanup_transaction;
1780 btrfs_prepare_extent_commit(trans, root);
1782 cur_trans = root->fs_info->running_transaction;
1784 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1785 root->fs_info->tree_root->node);
1786 switch_commit_root(root->fs_info->tree_root);
1788 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1789 root->fs_info->chunk_root->node);
1790 switch_commit_root(root->fs_info->chunk_root);
1792 assert_qgroups_uptodate(trans);
1793 update_super_roots(root);
1795 if (!root->fs_info->log_root_recovering) {
1796 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1797 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1800 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1801 sizeof(*root->fs_info->super_copy));
1803 trans->transaction->blocked = 0;
1804 spin_lock(&root->fs_info->trans_lock);
1805 root->fs_info->running_transaction = NULL;
1806 root->fs_info->trans_no_join = 0;
1807 spin_unlock(&root->fs_info->trans_lock);
1808 mutex_unlock(&root->fs_info->reloc_mutex);
1810 wake_up(&root->fs_info->transaction_wait);
1812 ret = btrfs_write_and_wait_transaction(trans, root);
1813 if (ret) {
1814 btrfs_error(root->fs_info, ret,
1815 "Error while writing out transaction");
1816 mutex_unlock(&root->fs_info->tree_log_mutex);
1817 goto cleanup_transaction;
1820 ret = write_ctree_super(trans, root, 0);
1821 if (ret) {
1822 mutex_unlock(&root->fs_info->tree_log_mutex);
1823 goto cleanup_transaction;
1827 * the super is written, we can safely allow the tree-loggers
1828 * to go about their business
1830 mutex_unlock(&root->fs_info->tree_log_mutex);
1832 btrfs_finish_extent_commit(trans, root);
1834 cur_trans->commit_done = 1;
1836 root->fs_info->last_trans_committed = cur_trans->transid;
1838 wake_up(&cur_trans->commit_wait);
1840 spin_lock(&root->fs_info->trans_lock);
1841 list_del_init(&cur_trans->list);
1842 spin_unlock(&root->fs_info->trans_lock);
1844 put_transaction(cur_trans);
1845 put_transaction(cur_trans);
1847 if (trans->type < TRANS_JOIN_NOLOCK)
1848 sb_end_intwrite(root->fs_info->sb);
1850 trace_btrfs_transaction_commit(root);
1852 btrfs_scrub_continue(root);
1854 if (current->journal_info == trans)
1855 current->journal_info = NULL;
1857 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1859 if (current != root->fs_info->transaction_kthread)
1860 btrfs_run_delayed_iputs(root);
1862 return ret;
1864 cleanup_transaction:
1865 btrfs_trans_release_metadata(trans, root);
1866 trans->block_rsv = NULL;
1867 if (trans->qgroup_reserved) {
1868 btrfs_qgroup_free(root, trans->qgroup_reserved);
1869 trans->qgroup_reserved = 0;
1871 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1872 if (current->journal_info == trans)
1873 current->journal_info = NULL;
1874 cleanup_transaction(trans, root, ret);
1876 return ret;
1880 * return < 0 if error
1881 * 0 if there are no more dead_roots at the time of call
1882 * 1 there are more to be processed, call me again
1884 * The return value indicates there are certainly more snapshots to delete, but
1885 * if there comes a new one during processing, it may return 0. We don't mind,
1886 * because btrfs_commit_super will poke cleaner thread and it will process it a
1887 * few seconds later.
1889 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1891 int ret;
1892 struct btrfs_fs_info *fs_info = root->fs_info;
1894 if (fs_info->sb->s_flags & MS_RDONLY) {
1895 pr_debug("btrfs: cleaner called for RO fs!\n");
1896 return 0;
1899 spin_lock(&fs_info->trans_lock);
1900 if (list_empty(&fs_info->dead_roots)) {
1901 spin_unlock(&fs_info->trans_lock);
1902 return 0;
1904 root = list_first_entry(&fs_info->dead_roots,
1905 struct btrfs_root, root_list);
1906 list_del(&root->root_list);
1907 spin_unlock(&fs_info->trans_lock);
1909 pr_debug("btrfs: cleaner removing %llu\n",
1910 (unsigned long long)root->objectid);
1912 btrfs_kill_all_delayed_nodes(root);
1914 if (btrfs_header_backref_rev(root->node) <
1915 BTRFS_MIXED_BACKREF_REV)
1916 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1917 else
1918 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
1920 * If we encounter a transaction abort during snapshot cleaning, we
1921 * don't want to crash here
1923 BUG_ON(ret < 0 && ret != -EAGAIN && ret != -EROFS);
1924 return 1;