4 * Kernel internal timers, basic process system calls
6 * Copyright (C) 1991, 1992 Linus Torvalds
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/div64.h>
47 #include <asm/timex.h>
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/timer.h>
53 u64 jiffies_64 __cacheline_aligned_in_smp
= INITIAL_JIFFIES
;
55 EXPORT_SYMBOL(jiffies_64
);
58 * per-CPU timer vector definitions:
60 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62 #define TVN_SIZE (1 << TVN_BITS)
63 #define TVR_SIZE (1 << TVR_BITS)
64 #define TVN_MASK (TVN_SIZE - 1)
65 #define TVR_MASK (TVR_SIZE - 1)
66 #define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
69 struct list_head vec
[TVN_SIZE
];
73 struct list_head vec
[TVR_SIZE
];
78 struct timer_list
*running_timer
;
79 unsigned long timer_jiffies
;
80 unsigned long next_timer
;
86 } ____cacheline_aligned
;
88 struct tvec_base boot_tvec_bases
;
89 EXPORT_SYMBOL(boot_tvec_bases
);
90 static DEFINE_PER_CPU(struct tvec_base
*, tvec_bases
) = &boot_tvec_bases
;
92 /* Functions below help us manage 'deferrable' flag */
93 static inline unsigned int tbase_get_deferrable(struct tvec_base
*base
)
95 return ((unsigned int)(unsigned long)base
& TBASE_DEFERRABLE_FLAG
);
98 static inline struct tvec_base
*tbase_get_base(struct tvec_base
*base
)
100 return ((struct tvec_base
*)((unsigned long)base
& ~TBASE_DEFERRABLE_FLAG
));
103 static inline void timer_set_deferrable(struct timer_list
*timer
)
105 timer
->base
= TBASE_MAKE_DEFERRED(timer
->base
);
109 timer_set_base(struct timer_list
*timer
, struct tvec_base
*new_base
)
111 timer
->base
= (struct tvec_base
*)((unsigned long)(new_base
) |
112 tbase_get_deferrable(timer
->base
));
115 static unsigned long round_jiffies_common(unsigned long j
, int cpu
,
119 unsigned long original
= j
;
122 * We don't want all cpus firing their timers at once hitting the
123 * same lock or cachelines, so we skew each extra cpu with an extra
124 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
126 * The skew is done by adding 3*cpunr, then round, then subtract this
127 * extra offset again.
134 * If the target jiffie is just after a whole second (which can happen
135 * due to delays of the timer irq, long irq off times etc etc) then
136 * we should round down to the whole second, not up. Use 1/4th second
137 * as cutoff for this rounding as an extreme upper bound for this.
138 * But never round down if @force_up is set.
140 if (rem
< HZ
/4 && !force_up
) /* round down */
145 /* now that we have rounded, subtract the extra skew again */
149 * Make sure j is still in the future. Otherwise return the
152 return time_is_after_jiffies(j
) ? j
: original
;
156 * __round_jiffies - function to round jiffies to a full second
157 * @j: the time in (absolute) jiffies that should be rounded
158 * @cpu: the processor number on which the timeout will happen
160 * __round_jiffies() rounds an absolute time in the future (in jiffies)
161 * up or down to (approximately) full seconds. This is useful for timers
162 * for which the exact time they fire does not matter too much, as long as
163 * they fire approximately every X seconds.
165 * By rounding these timers to whole seconds, all such timers will fire
166 * at the same time, rather than at various times spread out. The goal
167 * of this is to have the CPU wake up less, which saves power.
169 * The exact rounding is skewed for each processor to avoid all
170 * processors firing at the exact same time, which could lead
171 * to lock contention or spurious cache line bouncing.
173 * The return value is the rounded version of the @j parameter.
175 unsigned long __round_jiffies(unsigned long j
, int cpu
)
177 return round_jiffies_common(j
, cpu
, false);
179 EXPORT_SYMBOL_GPL(__round_jiffies
);
182 * __round_jiffies_relative - function to round jiffies to a full second
183 * @j: the time in (relative) jiffies that should be rounded
184 * @cpu: the processor number on which the timeout will happen
186 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
187 * up or down to (approximately) full seconds. This is useful for timers
188 * for which the exact time they fire does not matter too much, as long as
189 * they fire approximately every X seconds.
191 * By rounding these timers to whole seconds, all such timers will fire
192 * at the same time, rather than at various times spread out. The goal
193 * of this is to have the CPU wake up less, which saves power.
195 * The exact rounding is skewed for each processor to avoid all
196 * processors firing at the exact same time, which could lead
197 * to lock contention or spurious cache line bouncing.
199 * The return value is the rounded version of the @j parameter.
201 unsigned long __round_jiffies_relative(unsigned long j
, int cpu
)
203 unsigned long j0
= jiffies
;
205 /* Use j0 because jiffies might change while we run */
206 return round_jiffies_common(j
+ j0
, cpu
, false) - j0
;
208 EXPORT_SYMBOL_GPL(__round_jiffies_relative
);
211 * round_jiffies - function to round jiffies to a full second
212 * @j: the time in (absolute) jiffies that should be rounded
214 * round_jiffies() rounds an absolute time in the future (in jiffies)
215 * up or down to (approximately) full seconds. This is useful for timers
216 * for which the exact time they fire does not matter too much, as long as
217 * they fire approximately every X seconds.
219 * By rounding these timers to whole seconds, all such timers will fire
220 * at the same time, rather than at various times spread out. The goal
221 * of this is to have the CPU wake up less, which saves power.
223 * The return value is the rounded version of the @j parameter.
225 unsigned long round_jiffies(unsigned long j
)
227 return round_jiffies_common(j
, raw_smp_processor_id(), false);
229 EXPORT_SYMBOL_GPL(round_jiffies
);
232 * round_jiffies_relative - function to round jiffies to a full second
233 * @j: the time in (relative) jiffies that should be rounded
235 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
236 * up or down to (approximately) full seconds. This is useful for timers
237 * for which the exact time they fire does not matter too much, as long as
238 * they fire approximately every X seconds.
240 * By rounding these timers to whole seconds, all such timers will fire
241 * at the same time, rather than at various times spread out. The goal
242 * of this is to have the CPU wake up less, which saves power.
244 * The return value is the rounded version of the @j parameter.
246 unsigned long round_jiffies_relative(unsigned long j
)
248 return __round_jiffies_relative(j
, raw_smp_processor_id());
250 EXPORT_SYMBOL_GPL(round_jiffies_relative
);
253 * __round_jiffies_up - function to round jiffies up to a full second
254 * @j: the time in (absolute) jiffies that should be rounded
255 * @cpu: the processor number on which the timeout will happen
257 * This is the same as __round_jiffies() except that it will never
258 * round down. This is useful for timeouts for which the exact time
259 * of firing does not matter too much, as long as they don't fire too
262 unsigned long __round_jiffies_up(unsigned long j
, int cpu
)
264 return round_jiffies_common(j
, cpu
, true);
266 EXPORT_SYMBOL_GPL(__round_jiffies_up
);
269 * __round_jiffies_up_relative - function to round jiffies up to a full second
270 * @j: the time in (relative) jiffies that should be rounded
271 * @cpu: the processor number on which the timeout will happen
273 * This is the same as __round_jiffies_relative() except that it will never
274 * round down. This is useful for timeouts for which the exact time
275 * of firing does not matter too much, as long as they don't fire too
278 unsigned long __round_jiffies_up_relative(unsigned long j
, int cpu
)
280 unsigned long j0
= jiffies
;
282 /* Use j0 because jiffies might change while we run */
283 return round_jiffies_common(j
+ j0
, cpu
, true) - j0
;
285 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative
);
288 * round_jiffies_up - function to round jiffies up to a full second
289 * @j: the time in (absolute) jiffies that should be rounded
291 * This is the same as round_jiffies() except that it will never
292 * round down. This is useful for timeouts for which the exact time
293 * of firing does not matter too much, as long as they don't fire too
296 unsigned long round_jiffies_up(unsigned long j
)
298 return round_jiffies_common(j
, raw_smp_processor_id(), true);
300 EXPORT_SYMBOL_GPL(round_jiffies_up
);
303 * round_jiffies_up_relative - function to round jiffies up to a full second
304 * @j: the time in (relative) jiffies that should be rounded
306 * This is the same as round_jiffies_relative() except that it will never
307 * round down. This is useful for timeouts for which the exact time
308 * of firing does not matter too much, as long as they don't fire too
311 unsigned long round_jiffies_up_relative(unsigned long j
)
313 return __round_jiffies_up_relative(j
, raw_smp_processor_id());
315 EXPORT_SYMBOL_GPL(round_jiffies_up_relative
);
318 * set_timer_slack - set the allowed slack for a timer
319 * @timer: the timer to be modified
320 * @slack_hz: the amount of time (in jiffies) allowed for rounding
322 * Set the amount of time, in jiffies, that a certain timer has
323 * in terms of slack. By setting this value, the timer subsystem
324 * will schedule the actual timer somewhere between
325 * the time mod_timer() asks for, and that time plus the slack.
327 * By setting the slack to -1, a percentage of the delay is used
330 void set_timer_slack(struct timer_list
*timer
, int slack_hz
)
332 timer
->slack
= slack_hz
;
334 EXPORT_SYMBOL_GPL(set_timer_slack
);
336 static void internal_add_timer(struct tvec_base
*base
, struct timer_list
*timer
)
338 unsigned long expires
= timer
->expires
;
339 unsigned long idx
= expires
- base
->timer_jiffies
;
340 struct list_head
*vec
;
342 if (idx
< TVR_SIZE
) {
343 int i
= expires
& TVR_MASK
;
344 vec
= base
->tv1
.vec
+ i
;
345 } else if (idx
< 1 << (TVR_BITS
+ TVN_BITS
)) {
346 int i
= (expires
>> TVR_BITS
) & TVN_MASK
;
347 vec
= base
->tv2
.vec
+ i
;
348 } else if (idx
< 1 << (TVR_BITS
+ 2 * TVN_BITS
)) {
349 int i
= (expires
>> (TVR_BITS
+ TVN_BITS
)) & TVN_MASK
;
350 vec
= base
->tv3
.vec
+ i
;
351 } else if (idx
< 1 << (TVR_BITS
+ 3 * TVN_BITS
)) {
352 int i
= (expires
>> (TVR_BITS
+ 2 * TVN_BITS
)) & TVN_MASK
;
353 vec
= base
->tv4
.vec
+ i
;
354 } else if ((signed long) idx
< 0) {
356 * Can happen if you add a timer with expires == jiffies,
357 * or you set a timer to go off in the past
359 vec
= base
->tv1
.vec
+ (base
->timer_jiffies
& TVR_MASK
);
362 /* If the timeout is larger than MAX_TVAL (on 64-bit
363 * architectures or with CONFIG_BASE_SMALL=1) then we
364 * use the maximum timeout.
366 if (idx
> MAX_TVAL
) {
368 expires
= idx
+ base
->timer_jiffies
;
370 i
= (expires
>> (TVR_BITS
+ 3 * TVN_BITS
)) & TVN_MASK
;
371 vec
= base
->tv5
.vec
+ i
;
376 list_add_tail(&timer
->entry
, vec
);
379 #ifdef CONFIG_TIMER_STATS
380 void __timer_stats_timer_set_start_info(struct timer_list
*timer
, void *addr
)
382 if (timer
->start_site
)
385 timer
->start_site
= addr
;
386 memcpy(timer
->start_comm
, current
->comm
, TASK_COMM_LEN
);
387 timer
->start_pid
= current
->pid
;
390 static void timer_stats_account_timer(struct timer_list
*timer
)
392 unsigned int flag
= 0;
394 if (likely(!timer
->start_site
))
396 if (unlikely(tbase_get_deferrable(timer
->base
)))
397 flag
|= TIMER_STATS_FLAG_DEFERRABLE
;
399 timer_stats_update_stats(timer
, timer
->start_pid
, timer
->start_site
,
400 timer
->function
, timer
->start_comm
, flag
);
404 static void timer_stats_account_timer(struct timer_list
*timer
) {}
407 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
409 static struct debug_obj_descr timer_debug_descr
;
411 static void *timer_debug_hint(void *addr
)
413 return ((struct timer_list
*) addr
)->function
;
417 * fixup_init is called when:
418 * - an active object is initialized
420 static int timer_fixup_init(void *addr
, enum debug_obj_state state
)
422 struct timer_list
*timer
= addr
;
425 case ODEBUG_STATE_ACTIVE
:
426 del_timer_sync(timer
);
427 debug_object_init(timer
, &timer_debug_descr
);
435 * fixup_activate is called when:
436 * - an active object is activated
437 * - an unknown object is activated (might be a statically initialized object)
439 static int timer_fixup_activate(void *addr
, enum debug_obj_state state
)
441 struct timer_list
*timer
= addr
;
445 case ODEBUG_STATE_NOTAVAILABLE
:
447 * This is not really a fixup. The timer was
448 * statically initialized. We just make sure that it
449 * is tracked in the object tracker.
451 if (timer
->entry
.next
== NULL
&&
452 timer
->entry
.prev
== TIMER_ENTRY_STATIC
) {
453 debug_object_init(timer
, &timer_debug_descr
);
454 debug_object_activate(timer
, &timer_debug_descr
);
461 case ODEBUG_STATE_ACTIVE
:
470 * fixup_free is called when:
471 * - an active object is freed
473 static int timer_fixup_free(void *addr
, enum debug_obj_state state
)
475 struct timer_list
*timer
= addr
;
478 case ODEBUG_STATE_ACTIVE
:
479 del_timer_sync(timer
);
480 debug_object_free(timer
, &timer_debug_descr
);
487 static struct debug_obj_descr timer_debug_descr
= {
488 .name
= "timer_list",
489 .debug_hint
= timer_debug_hint
,
490 .fixup_init
= timer_fixup_init
,
491 .fixup_activate
= timer_fixup_activate
,
492 .fixup_free
= timer_fixup_free
,
495 static inline void debug_timer_init(struct timer_list
*timer
)
497 debug_object_init(timer
, &timer_debug_descr
);
500 static inline void debug_timer_activate(struct timer_list
*timer
)
502 debug_object_activate(timer
, &timer_debug_descr
);
505 static inline void debug_timer_deactivate(struct timer_list
*timer
)
507 debug_object_deactivate(timer
, &timer_debug_descr
);
510 static inline void debug_timer_free(struct timer_list
*timer
)
512 debug_object_free(timer
, &timer_debug_descr
);
515 static void __init_timer(struct timer_list
*timer
,
517 struct lock_class_key
*key
);
519 void init_timer_on_stack_key(struct timer_list
*timer
,
521 struct lock_class_key
*key
)
523 debug_object_init_on_stack(timer
, &timer_debug_descr
);
524 __init_timer(timer
, name
, key
);
526 EXPORT_SYMBOL_GPL(init_timer_on_stack_key
);
528 void destroy_timer_on_stack(struct timer_list
*timer
)
530 debug_object_free(timer
, &timer_debug_descr
);
532 EXPORT_SYMBOL_GPL(destroy_timer_on_stack
);
535 static inline void debug_timer_init(struct timer_list
*timer
) { }
536 static inline void debug_timer_activate(struct timer_list
*timer
) { }
537 static inline void debug_timer_deactivate(struct timer_list
*timer
) { }
540 static inline void debug_init(struct timer_list
*timer
)
542 debug_timer_init(timer
);
543 trace_timer_init(timer
);
547 debug_activate(struct timer_list
*timer
, unsigned long expires
)
549 debug_timer_activate(timer
);
550 trace_timer_start(timer
, expires
);
553 static inline void debug_deactivate(struct timer_list
*timer
)
555 debug_timer_deactivate(timer
);
556 trace_timer_cancel(timer
);
559 static void __init_timer(struct timer_list
*timer
,
561 struct lock_class_key
*key
)
563 timer
->entry
.next
= NULL
;
564 timer
->base
= __raw_get_cpu_var(tvec_bases
);
566 #ifdef CONFIG_TIMER_STATS
567 timer
->start_site
= NULL
;
568 timer
->start_pid
= -1;
569 memset(timer
->start_comm
, 0, TASK_COMM_LEN
);
571 lockdep_init_map(&timer
->lockdep_map
, name
, key
, 0);
574 void setup_deferrable_timer_on_stack_key(struct timer_list
*timer
,
576 struct lock_class_key
*key
,
577 void (*function
)(unsigned long),
580 timer
->function
= function
;
582 init_timer_on_stack_key(timer
, name
, key
);
583 timer_set_deferrable(timer
);
585 EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key
);
588 * init_timer_key - initialize a timer
589 * @timer: the timer to be initialized
590 * @name: name of the timer
591 * @key: lockdep class key of the fake lock used for tracking timer
592 * sync lock dependencies
594 * init_timer_key() must be done to a timer prior calling *any* of the
595 * other timer functions.
597 void init_timer_key(struct timer_list
*timer
,
599 struct lock_class_key
*key
)
602 __init_timer(timer
, name
, key
);
604 EXPORT_SYMBOL(init_timer_key
);
606 void init_timer_deferrable_key(struct timer_list
*timer
,
608 struct lock_class_key
*key
)
610 init_timer_key(timer
, name
, key
);
611 timer_set_deferrable(timer
);
613 EXPORT_SYMBOL(init_timer_deferrable_key
);
615 static inline void detach_timer(struct timer_list
*timer
,
618 struct list_head
*entry
= &timer
->entry
;
620 debug_deactivate(timer
);
622 __list_del(entry
->prev
, entry
->next
);
625 entry
->prev
= LIST_POISON2
;
629 * We are using hashed locking: holding per_cpu(tvec_bases).lock
630 * means that all timers which are tied to this base via timer->base are
631 * locked, and the base itself is locked too.
633 * So __run_timers/migrate_timers can safely modify all timers which could
634 * be found on ->tvX lists.
636 * When the timer's base is locked, and the timer removed from list, it is
637 * possible to set timer->base = NULL and drop the lock: the timer remains
640 static struct tvec_base
*lock_timer_base(struct timer_list
*timer
,
641 unsigned long *flags
)
642 __acquires(timer
->base
->lock
)
644 struct tvec_base
*base
;
647 struct tvec_base
*prelock_base
= timer
->base
;
648 base
= tbase_get_base(prelock_base
);
649 if (likely(base
!= NULL
)) {
650 spin_lock_irqsave(&base
->lock
, *flags
);
651 if (likely(prelock_base
== timer
->base
))
653 /* The timer has migrated to another CPU */
654 spin_unlock_irqrestore(&base
->lock
, *flags
);
661 __mod_timer(struct timer_list
*timer
, unsigned long expires
,
662 bool pending_only
, int pinned
)
664 struct tvec_base
*base
, *new_base
;
668 timer_stats_timer_set_start_info(timer
);
669 BUG_ON(!timer
->function
);
671 base
= lock_timer_base(timer
, &flags
);
673 if (timer_pending(timer
)) {
674 detach_timer(timer
, 0);
675 if (timer
->expires
== base
->next_timer
&&
676 !tbase_get_deferrable(timer
->base
))
677 base
->next_timer
= base
->timer_jiffies
;
684 debug_activate(timer
, expires
);
686 cpu
= smp_processor_id();
688 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
689 if (!pinned
&& get_sysctl_timer_migration() && idle_cpu(cpu
))
690 cpu
= get_nohz_timer_target();
692 new_base
= per_cpu(tvec_bases
, cpu
);
694 if (base
!= new_base
) {
696 * We are trying to schedule the timer on the local CPU.
697 * However we can't change timer's base while it is running,
698 * otherwise del_timer_sync() can't detect that the timer's
699 * handler yet has not finished. This also guarantees that
700 * the timer is serialized wrt itself.
702 if (likely(base
->running_timer
!= timer
)) {
703 /* See the comment in lock_timer_base() */
704 timer_set_base(timer
, NULL
);
705 spin_unlock(&base
->lock
);
707 spin_lock(&base
->lock
);
708 timer_set_base(timer
, base
);
712 timer
->expires
= expires
;
713 if (time_before(timer
->expires
, base
->next_timer
) &&
714 !tbase_get_deferrable(timer
->base
))
715 base
->next_timer
= timer
->expires
;
716 internal_add_timer(base
, timer
);
719 spin_unlock_irqrestore(&base
->lock
, flags
);
725 * mod_timer_pending - modify a pending timer's timeout
726 * @timer: the pending timer to be modified
727 * @expires: new timeout in jiffies
729 * mod_timer_pending() is the same for pending timers as mod_timer(),
730 * but will not re-activate and modify already deleted timers.
732 * It is useful for unserialized use of timers.
734 int mod_timer_pending(struct timer_list
*timer
, unsigned long expires
)
736 return __mod_timer(timer
, expires
, true, TIMER_NOT_PINNED
);
738 EXPORT_SYMBOL(mod_timer_pending
);
741 * Decide where to put the timer while taking the slack into account
744 * 1) calculate the maximum (absolute) time
745 * 2) calculate the highest bit where the expires and new max are different
746 * 3) use this bit to make a mask
747 * 4) use the bitmask to round down the maximum time, so that all last
751 unsigned long apply_slack(struct timer_list
*timer
, unsigned long expires
)
753 unsigned long expires_limit
, mask
;
756 if (timer
->slack
>= 0) {
757 expires_limit
= expires
+ timer
->slack
;
759 long delta
= expires
- jiffies
;
764 expires_limit
= expires
+ delta
/ 256;
766 mask
= expires
^ expires_limit
;
770 bit
= find_last_bit(&mask
, BITS_PER_LONG
);
772 mask
= (1 << bit
) - 1;
774 expires_limit
= expires_limit
& ~(mask
);
776 return expires_limit
;
780 * mod_timer - modify a timer's timeout
781 * @timer: the timer to be modified
782 * @expires: new timeout in jiffies
784 * mod_timer() is a more efficient way to update the expire field of an
785 * active timer (if the timer is inactive it will be activated)
787 * mod_timer(timer, expires) is equivalent to:
789 * del_timer(timer); timer->expires = expires; add_timer(timer);
791 * Note that if there are multiple unserialized concurrent users of the
792 * same timer, then mod_timer() is the only safe way to modify the timeout,
793 * since add_timer() cannot modify an already running timer.
795 * The function returns whether it has modified a pending timer or not.
796 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
797 * active timer returns 1.)
799 int mod_timer(struct timer_list
*timer
, unsigned long expires
)
801 expires
= apply_slack(timer
, expires
);
804 * This is a common optimization triggered by the
805 * networking code - if the timer is re-modified
806 * to be the same thing then just return:
808 if (timer_pending(timer
) && timer
->expires
== expires
)
811 return __mod_timer(timer
, expires
, false, TIMER_NOT_PINNED
);
813 EXPORT_SYMBOL(mod_timer
);
816 * mod_timer_pinned - modify a timer's timeout
817 * @timer: the timer to be modified
818 * @expires: new timeout in jiffies
820 * mod_timer_pinned() is a way to update the expire field of an
821 * active timer (if the timer is inactive it will be activated)
822 * and not allow the timer to be migrated to a different CPU.
824 * mod_timer_pinned(timer, expires) is equivalent to:
826 * del_timer(timer); timer->expires = expires; add_timer(timer);
828 int mod_timer_pinned(struct timer_list
*timer
, unsigned long expires
)
830 if (timer
->expires
== expires
&& timer_pending(timer
))
833 return __mod_timer(timer
, expires
, false, TIMER_PINNED
);
835 EXPORT_SYMBOL(mod_timer_pinned
);
838 * add_timer - start a timer
839 * @timer: the timer to be added
841 * The kernel will do a ->function(->data) callback from the
842 * timer interrupt at the ->expires point in the future. The
843 * current time is 'jiffies'.
845 * The timer's ->expires, ->function (and if the handler uses it, ->data)
846 * fields must be set prior calling this function.
848 * Timers with an ->expires field in the past will be executed in the next
851 void add_timer(struct timer_list
*timer
)
853 BUG_ON(timer_pending(timer
));
854 mod_timer(timer
, timer
->expires
);
856 EXPORT_SYMBOL(add_timer
);
859 * add_timer_on - start a timer on a particular CPU
860 * @timer: the timer to be added
861 * @cpu: the CPU to start it on
863 * This is not very scalable on SMP. Double adds are not possible.
865 void add_timer_on(struct timer_list
*timer
, int cpu
)
867 struct tvec_base
*base
= per_cpu(tvec_bases
, cpu
);
870 timer_stats_timer_set_start_info(timer
);
871 BUG_ON(timer_pending(timer
) || !timer
->function
);
872 spin_lock_irqsave(&base
->lock
, flags
);
873 timer_set_base(timer
, base
);
874 debug_activate(timer
, timer
->expires
);
875 if (time_before(timer
->expires
, base
->next_timer
) &&
876 !tbase_get_deferrable(timer
->base
))
877 base
->next_timer
= timer
->expires
;
878 internal_add_timer(base
, timer
);
880 * Check whether the other CPU is idle and needs to be
881 * triggered to reevaluate the timer wheel when nohz is
882 * active. We are protected against the other CPU fiddling
883 * with the timer by holding the timer base lock. This also
884 * makes sure that a CPU on the way to idle can not evaluate
887 wake_up_idle_cpu(cpu
);
888 spin_unlock_irqrestore(&base
->lock
, flags
);
890 EXPORT_SYMBOL_GPL(add_timer_on
);
893 * del_timer - deactive a timer.
894 * @timer: the timer to be deactivated
896 * del_timer() deactivates a timer - this works on both active and inactive
899 * The function returns whether it has deactivated a pending timer or not.
900 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
901 * active timer returns 1.)
903 int del_timer(struct timer_list
*timer
)
905 struct tvec_base
*base
;
909 timer_stats_timer_clear_start_info(timer
);
910 if (timer_pending(timer
)) {
911 base
= lock_timer_base(timer
, &flags
);
912 if (timer_pending(timer
)) {
913 detach_timer(timer
, 1);
914 if (timer
->expires
== base
->next_timer
&&
915 !tbase_get_deferrable(timer
->base
))
916 base
->next_timer
= base
->timer_jiffies
;
919 spin_unlock_irqrestore(&base
->lock
, flags
);
924 EXPORT_SYMBOL(del_timer
);
927 * try_to_del_timer_sync - Try to deactivate a timer
928 * @timer: timer do del
930 * This function tries to deactivate a timer. Upon successful (ret >= 0)
931 * exit the timer is not queued and the handler is not running on any CPU.
933 int try_to_del_timer_sync(struct timer_list
*timer
)
935 struct tvec_base
*base
;
939 base
= lock_timer_base(timer
, &flags
);
941 if (base
->running_timer
== timer
)
944 timer_stats_timer_clear_start_info(timer
);
946 if (timer_pending(timer
)) {
947 detach_timer(timer
, 1);
948 if (timer
->expires
== base
->next_timer
&&
949 !tbase_get_deferrable(timer
->base
))
950 base
->next_timer
= base
->timer_jiffies
;
954 spin_unlock_irqrestore(&base
->lock
, flags
);
958 EXPORT_SYMBOL(try_to_del_timer_sync
);
962 * del_timer_sync - deactivate a timer and wait for the handler to finish.
963 * @timer: the timer to be deactivated
965 * This function only differs from del_timer() on SMP: besides deactivating
966 * the timer it also makes sure the handler has finished executing on other
969 * Synchronization rules: Callers must prevent restarting of the timer,
970 * otherwise this function is meaningless. It must not be called from
971 * interrupt contexts. The caller must not hold locks which would prevent
972 * completion of the timer's handler. The timer's handler must not call
973 * add_timer_on(). Upon exit the timer is not queued and the handler is
974 * not running on any CPU.
976 * Note: You must not hold locks that are held in interrupt context
977 * while calling this function. Even if the lock has nothing to do
978 * with the timer in question. Here's why:
984 * base->running_timer = mytimer;
985 * spin_lock_irq(somelock);
987 * spin_lock(somelock);
988 * del_timer_sync(mytimer);
989 * while (base->running_timer == mytimer);
991 * Now del_timer_sync() will never return and never release somelock.
992 * The interrupt on the other CPU is waiting to grab somelock but
993 * it has interrupted the softirq that CPU0 is waiting to finish.
995 * The function returns whether it has deactivated a pending timer or not.
997 int del_timer_sync(struct timer_list
*timer
)
999 #ifdef CONFIG_LOCKDEP
1000 unsigned long flags
;
1003 * If lockdep gives a backtrace here, please reference
1004 * the synchronization rules above.
1006 local_irq_save(flags
);
1007 lock_map_acquire(&timer
->lockdep_map
);
1008 lock_map_release(&timer
->lockdep_map
);
1009 local_irq_restore(flags
);
1012 * don't use it in hardirq context, because it
1013 * could lead to deadlock.
1017 int ret
= try_to_del_timer_sync(timer
);
1023 EXPORT_SYMBOL(del_timer_sync
);
1026 static int cascade(struct tvec_base
*base
, struct tvec
*tv
, int index
)
1028 /* cascade all the timers from tv up one level */
1029 struct timer_list
*timer
, *tmp
;
1030 struct list_head tv_list
;
1032 list_replace_init(tv
->vec
+ index
, &tv_list
);
1035 * We are removing _all_ timers from the list, so we
1036 * don't have to detach them individually.
1038 list_for_each_entry_safe(timer
, tmp
, &tv_list
, entry
) {
1039 BUG_ON(tbase_get_base(timer
->base
) != base
);
1040 internal_add_timer(base
, timer
);
1046 static void call_timer_fn(struct timer_list
*timer
, void (*fn
)(unsigned long),
1049 int preempt_count
= preempt_count();
1051 #ifdef CONFIG_LOCKDEP
1053 * It is permissible to free the timer from inside the
1054 * function that is called from it, this we need to take into
1055 * account for lockdep too. To avoid bogus "held lock freed"
1056 * warnings as well as problems when looking into
1057 * timer->lockdep_map, make a copy and use that here.
1059 struct lockdep_map lockdep_map
= timer
->lockdep_map
;
1062 * Couple the lock chain with the lock chain at
1063 * del_timer_sync() by acquiring the lock_map around the fn()
1064 * call here and in del_timer_sync().
1066 lock_map_acquire(&lockdep_map
);
1068 trace_timer_expire_entry(timer
);
1070 trace_timer_expire_exit(timer
);
1072 lock_map_release(&lockdep_map
);
1074 if (preempt_count
!= preempt_count()) {
1075 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1076 fn
, preempt_count
, preempt_count());
1078 * Restore the preempt count. That gives us a decent
1079 * chance to survive and extract information. If the
1080 * callback kept a lock held, bad luck, but not worse
1081 * than the BUG() we had.
1083 preempt_count() = preempt_count
;
1087 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1090 * __run_timers - run all expired timers (if any) on this CPU.
1091 * @base: the timer vector to be processed.
1093 * This function cascades all vectors and executes all expired timer
1096 static inline void __run_timers(struct tvec_base
*base
)
1098 struct timer_list
*timer
;
1100 spin_lock_irq(&base
->lock
);
1101 while (time_after_eq(jiffies
, base
->timer_jiffies
)) {
1102 struct list_head work_list
;
1103 struct list_head
*head
= &work_list
;
1104 int index
= base
->timer_jiffies
& TVR_MASK
;
1110 (!cascade(base
, &base
->tv2
, INDEX(0))) &&
1111 (!cascade(base
, &base
->tv3
, INDEX(1))) &&
1112 !cascade(base
, &base
->tv4
, INDEX(2)))
1113 cascade(base
, &base
->tv5
, INDEX(3));
1114 ++base
->timer_jiffies
;
1115 list_replace_init(base
->tv1
.vec
+ index
, &work_list
);
1116 while (!list_empty(head
)) {
1117 void (*fn
)(unsigned long);
1120 timer
= list_first_entry(head
, struct timer_list
,entry
);
1121 fn
= timer
->function
;
1124 timer_stats_account_timer(timer
);
1126 base
->running_timer
= timer
;
1127 detach_timer(timer
, 1);
1129 spin_unlock_irq(&base
->lock
);
1130 call_timer_fn(timer
, fn
, data
);
1131 spin_lock_irq(&base
->lock
);
1134 base
->running_timer
= NULL
;
1135 spin_unlock_irq(&base
->lock
);
1140 * Find out when the next timer event is due to happen. This
1141 * is used on S/390 to stop all activity when a CPU is idle.
1142 * This function needs to be called with interrupts disabled.
1144 static unsigned long __next_timer_interrupt(struct tvec_base
*base
)
1146 unsigned long timer_jiffies
= base
->timer_jiffies
;
1147 unsigned long expires
= timer_jiffies
+ NEXT_TIMER_MAX_DELTA
;
1148 int index
, slot
, array
, found
= 0;
1149 struct timer_list
*nte
;
1150 struct tvec
*varray
[4];
1152 /* Look for timer events in tv1. */
1153 index
= slot
= timer_jiffies
& TVR_MASK
;
1155 list_for_each_entry(nte
, base
->tv1
.vec
+ slot
, entry
) {
1156 if (tbase_get_deferrable(nte
->base
))
1160 expires
= nte
->expires
;
1161 /* Look at the cascade bucket(s)? */
1162 if (!index
|| slot
< index
)
1166 slot
= (slot
+ 1) & TVR_MASK
;
1167 } while (slot
!= index
);
1170 /* Calculate the next cascade event */
1172 timer_jiffies
+= TVR_SIZE
- index
;
1173 timer_jiffies
>>= TVR_BITS
;
1175 /* Check tv2-tv5. */
1176 varray
[0] = &base
->tv2
;
1177 varray
[1] = &base
->tv3
;
1178 varray
[2] = &base
->tv4
;
1179 varray
[3] = &base
->tv5
;
1181 for (array
= 0; array
< 4; array
++) {
1182 struct tvec
*varp
= varray
[array
];
1184 index
= slot
= timer_jiffies
& TVN_MASK
;
1186 list_for_each_entry(nte
, varp
->vec
+ slot
, entry
) {
1187 if (tbase_get_deferrable(nte
->base
))
1191 if (time_before(nte
->expires
, expires
))
1192 expires
= nte
->expires
;
1195 * Do we still search for the first timer or are
1196 * we looking up the cascade buckets ?
1199 /* Look at the cascade bucket(s)? */
1200 if (!index
|| slot
< index
)
1204 slot
= (slot
+ 1) & TVN_MASK
;
1205 } while (slot
!= index
);
1208 timer_jiffies
+= TVN_SIZE
- index
;
1209 timer_jiffies
>>= TVN_BITS
;
1215 * Check, if the next hrtimer event is before the next timer wheel
1218 static unsigned long cmp_next_hrtimer_event(unsigned long now
,
1219 unsigned long expires
)
1221 ktime_t hr_delta
= hrtimer_get_next_event();
1222 struct timespec tsdelta
;
1223 unsigned long delta
;
1225 if (hr_delta
.tv64
== KTIME_MAX
)
1229 * Expired timer available, let it expire in the next tick
1231 if (hr_delta
.tv64
<= 0)
1234 tsdelta
= ktime_to_timespec(hr_delta
);
1235 delta
= timespec_to_jiffies(&tsdelta
);
1238 * Limit the delta to the max value, which is checked in
1239 * tick_nohz_stop_sched_tick():
1241 if (delta
> NEXT_TIMER_MAX_DELTA
)
1242 delta
= NEXT_TIMER_MAX_DELTA
;
1245 * Take rounding errors in to account and make sure, that it
1246 * expires in the next tick. Otherwise we go into an endless
1247 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1253 if (time_before(now
, expires
))
1259 * get_next_timer_interrupt - return the jiffy of the next pending timer
1260 * @now: current time (in jiffies)
1262 unsigned long get_next_timer_interrupt(unsigned long now
)
1264 struct tvec_base
*base
= __this_cpu_read(tvec_bases
);
1265 unsigned long expires
;
1268 * Pretend that there is no timer pending if the cpu is offline.
1269 * Possible pending timers will be migrated later to an active cpu.
1271 if (cpu_is_offline(smp_processor_id()))
1272 return now
+ NEXT_TIMER_MAX_DELTA
;
1273 spin_lock(&base
->lock
);
1274 if (time_before_eq(base
->next_timer
, base
->timer_jiffies
))
1275 base
->next_timer
= __next_timer_interrupt(base
);
1276 expires
= base
->next_timer
;
1277 spin_unlock(&base
->lock
);
1279 if (time_before_eq(expires
, now
))
1282 return cmp_next_hrtimer_event(now
, expires
);
1287 * Called from the timer interrupt handler to charge one tick to the current
1288 * process. user_tick is 1 if the tick is user time, 0 for system.
1290 void update_process_times(int user_tick
)
1292 struct task_struct
*p
= current
;
1293 int cpu
= smp_processor_id();
1295 /* Note: this timer irq context must be accounted for as well. */
1296 account_process_tick(p
, user_tick
);
1298 rcu_check_callbacks(cpu
, user_tick
);
1300 #ifdef CONFIG_IRQ_WORK
1305 run_posix_cpu_timers(p
);
1309 * This function runs timers and the timer-tq in bottom half context.
1311 static void run_timer_softirq(struct softirq_action
*h
)
1313 struct tvec_base
*base
= __this_cpu_read(tvec_bases
);
1315 hrtimer_run_pending();
1317 if (time_after_eq(jiffies
, base
->timer_jiffies
))
1322 * Called by the local, per-CPU timer interrupt on SMP.
1324 void run_local_timers(void)
1326 hrtimer_run_queues();
1327 raise_softirq(TIMER_SOFTIRQ
);
1330 #ifdef __ARCH_WANT_SYS_ALARM
1333 * For backwards compatibility? This can be done in libc so Alpha
1334 * and all newer ports shouldn't need it.
1336 SYSCALL_DEFINE1(alarm
, unsigned int, seconds
)
1338 return alarm_setitimer(seconds
);
1346 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1347 * should be moved into arch/i386 instead?
1351 * sys_getpid - return the thread group id of the current process
1353 * Note, despite the name, this returns the tgid not the pid. The tgid and
1354 * the pid are identical unless CLONE_THREAD was specified on clone() in
1355 * which case the tgid is the same in all threads of the same group.
1357 * This is SMP safe as current->tgid does not change.
1359 SYSCALL_DEFINE0(getpid
)
1361 return task_tgid_vnr(current
);
1365 * Accessing ->real_parent is not SMP-safe, it could
1366 * change from under us. However, we can use a stale
1367 * value of ->real_parent under rcu_read_lock(), see
1368 * release_task()->call_rcu(delayed_put_task_struct).
1370 SYSCALL_DEFINE0(getppid
)
1375 pid
= task_tgid_vnr(rcu_dereference(current
->real_parent
));
1381 SYSCALL_DEFINE0(getuid
)
1383 /* Only we change this so SMP safe */
1384 return current_uid();
1387 SYSCALL_DEFINE0(geteuid
)
1389 /* Only we change this so SMP safe */
1390 return current_euid();
1393 SYSCALL_DEFINE0(getgid
)
1395 /* Only we change this so SMP safe */
1396 return current_gid();
1399 SYSCALL_DEFINE0(getegid
)
1401 /* Only we change this so SMP safe */
1402 return current_egid();
1407 static void process_timeout(unsigned long __data
)
1409 wake_up_process((struct task_struct
*)__data
);
1413 * schedule_timeout - sleep until timeout
1414 * @timeout: timeout value in jiffies
1416 * Make the current task sleep until @timeout jiffies have
1417 * elapsed. The routine will return immediately unless
1418 * the current task state has been set (see set_current_state()).
1420 * You can set the task state as follows -
1422 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1423 * pass before the routine returns. The routine will return 0
1425 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1426 * delivered to the current task. In this case the remaining time
1427 * in jiffies will be returned, or 0 if the timer expired in time
1429 * The current task state is guaranteed to be TASK_RUNNING when this
1432 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1433 * the CPU away without a bound on the timeout. In this case the return
1434 * value will be %MAX_SCHEDULE_TIMEOUT.
1436 * In all cases the return value is guaranteed to be non-negative.
1438 signed long __sched
schedule_timeout(signed long timeout
)
1440 struct timer_list timer
;
1441 unsigned long expire
;
1445 case MAX_SCHEDULE_TIMEOUT
:
1447 * These two special cases are useful to be comfortable
1448 * in the caller. Nothing more. We could take
1449 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1450 * but I' d like to return a valid offset (>=0) to allow
1451 * the caller to do everything it want with the retval.
1457 * Another bit of PARANOID. Note that the retval will be
1458 * 0 since no piece of kernel is supposed to do a check
1459 * for a negative retval of schedule_timeout() (since it
1460 * should never happens anyway). You just have the printk()
1461 * that will tell you if something is gone wrong and where.
1464 printk(KERN_ERR
"schedule_timeout: wrong timeout "
1465 "value %lx\n", timeout
);
1467 current
->state
= TASK_RUNNING
;
1472 expire
= timeout
+ jiffies
;
1474 setup_timer_on_stack(&timer
, process_timeout
, (unsigned long)current
);
1475 __mod_timer(&timer
, expire
, false, TIMER_NOT_PINNED
);
1477 del_singleshot_timer_sync(&timer
);
1479 /* Remove the timer from the object tracker */
1480 destroy_timer_on_stack(&timer
);
1482 timeout
= expire
- jiffies
;
1485 return timeout
< 0 ? 0 : timeout
;
1487 EXPORT_SYMBOL(schedule_timeout
);
1490 * We can use __set_current_state() here because schedule_timeout() calls
1491 * schedule() unconditionally.
1493 signed long __sched
schedule_timeout_interruptible(signed long timeout
)
1495 __set_current_state(TASK_INTERRUPTIBLE
);
1496 return schedule_timeout(timeout
);
1498 EXPORT_SYMBOL(schedule_timeout_interruptible
);
1500 signed long __sched
schedule_timeout_killable(signed long timeout
)
1502 __set_current_state(TASK_KILLABLE
);
1503 return schedule_timeout(timeout
);
1505 EXPORT_SYMBOL(schedule_timeout_killable
);
1507 signed long __sched
schedule_timeout_uninterruptible(signed long timeout
)
1509 __set_current_state(TASK_UNINTERRUPTIBLE
);
1510 return schedule_timeout(timeout
);
1512 EXPORT_SYMBOL(schedule_timeout_uninterruptible
);
1514 /* Thread ID - the internal kernel "pid" */
1515 SYSCALL_DEFINE0(gettid
)
1517 return task_pid_vnr(current
);
1521 * do_sysinfo - fill in sysinfo struct
1522 * @info: pointer to buffer to fill
1524 int do_sysinfo(struct sysinfo
*info
)
1526 unsigned long mem_total
, sav_total
;
1527 unsigned int mem_unit
, bitcount
;
1530 memset(info
, 0, sizeof(struct sysinfo
));
1533 monotonic_to_bootbased(&tp
);
1534 info
->uptime
= tp
.tv_sec
+ (tp
.tv_nsec
? 1 : 0);
1536 get_avenrun(info
->loads
, 0, SI_LOAD_SHIFT
- FSHIFT
);
1538 info
->procs
= nr_threads
;
1544 * If the sum of all the available memory (i.e. ram + swap)
1545 * is less than can be stored in a 32 bit unsigned long then
1546 * we can be binary compatible with 2.2.x kernels. If not,
1547 * well, in that case 2.2.x was broken anyways...
1549 * -Erik Andersen <andersee@debian.org>
1552 mem_total
= info
->totalram
+ info
->totalswap
;
1553 if (mem_total
< info
->totalram
|| mem_total
< info
->totalswap
)
1556 mem_unit
= info
->mem_unit
;
1557 while (mem_unit
> 1) {
1560 sav_total
= mem_total
;
1562 if (mem_total
< sav_total
)
1567 * If mem_total did not overflow, multiply all memory values by
1568 * info->mem_unit and set it to 1. This leaves things compatible
1569 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1574 info
->totalram
<<= bitcount
;
1575 info
->freeram
<<= bitcount
;
1576 info
->sharedram
<<= bitcount
;
1577 info
->bufferram
<<= bitcount
;
1578 info
->totalswap
<<= bitcount
;
1579 info
->freeswap
<<= bitcount
;
1580 info
->totalhigh
<<= bitcount
;
1581 info
->freehigh
<<= bitcount
;
1587 SYSCALL_DEFINE1(sysinfo
, struct sysinfo __user
*, info
)
1593 if (copy_to_user(info
, &val
, sizeof(struct sysinfo
)))
1599 static int __cpuinit
init_timers_cpu(int cpu
)
1602 struct tvec_base
*base
;
1603 static char __cpuinitdata tvec_base_done
[NR_CPUS
];
1605 if (!tvec_base_done
[cpu
]) {
1606 static char boot_done
;
1610 * The APs use this path later in boot
1612 base
= kmalloc_node(sizeof(*base
),
1613 GFP_KERNEL
| __GFP_ZERO
,
1618 /* Make sure that tvec_base is 2 byte aligned */
1619 if (tbase_get_deferrable(base
)) {
1624 per_cpu(tvec_bases
, cpu
) = base
;
1627 * This is for the boot CPU - we use compile-time
1628 * static initialisation because per-cpu memory isn't
1629 * ready yet and because the memory allocators are not
1630 * initialised either.
1633 base
= &boot_tvec_bases
;
1635 spin_lock_init(&base
->lock
);
1636 tvec_base_done
[cpu
] = 1;
1638 base
= per_cpu(tvec_bases
, cpu
);
1642 for (j
= 0; j
< TVN_SIZE
; j
++) {
1643 INIT_LIST_HEAD(base
->tv5
.vec
+ j
);
1644 INIT_LIST_HEAD(base
->tv4
.vec
+ j
);
1645 INIT_LIST_HEAD(base
->tv3
.vec
+ j
);
1646 INIT_LIST_HEAD(base
->tv2
.vec
+ j
);
1648 for (j
= 0; j
< TVR_SIZE
; j
++)
1649 INIT_LIST_HEAD(base
->tv1
.vec
+ j
);
1651 base
->timer_jiffies
= jiffies
;
1652 base
->next_timer
= base
->timer_jiffies
;
1656 #ifdef CONFIG_HOTPLUG_CPU
1657 static void migrate_timer_list(struct tvec_base
*new_base
, struct list_head
*head
)
1659 struct timer_list
*timer
;
1661 while (!list_empty(head
)) {
1662 timer
= list_first_entry(head
, struct timer_list
, entry
);
1663 detach_timer(timer
, 0);
1664 timer_set_base(timer
, new_base
);
1665 if (time_before(timer
->expires
, new_base
->next_timer
) &&
1666 !tbase_get_deferrable(timer
->base
))
1667 new_base
->next_timer
= timer
->expires
;
1668 internal_add_timer(new_base
, timer
);
1672 static void __cpuinit
migrate_timers(int cpu
)
1674 struct tvec_base
*old_base
;
1675 struct tvec_base
*new_base
;
1678 BUG_ON(cpu_online(cpu
));
1679 old_base
= per_cpu(tvec_bases
, cpu
);
1680 new_base
= get_cpu_var(tvec_bases
);
1682 * The caller is globally serialized and nobody else
1683 * takes two locks at once, deadlock is not possible.
1685 spin_lock_irq(&new_base
->lock
);
1686 spin_lock_nested(&old_base
->lock
, SINGLE_DEPTH_NESTING
);
1688 BUG_ON(old_base
->running_timer
);
1690 for (i
= 0; i
< TVR_SIZE
; i
++)
1691 migrate_timer_list(new_base
, old_base
->tv1
.vec
+ i
);
1692 for (i
= 0; i
< TVN_SIZE
; i
++) {
1693 migrate_timer_list(new_base
, old_base
->tv2
.vec
+ i
);
1694 migrate_timer_list(new_base
, old_base
->tv3
.vec
+ i
);
1695 migrate_timer_list(new_base
, old_base
->tv4
.vec
+ i
);
1696 migrate_timer_list(new_base
, old_base
->tv5
.vec
+ i
);
1699 spin_unlock(&old_base
->lock
);
1700 spin_unlock_irq(&new_base
->lock
);
1701 put_cpu_var(tvec_bases
);
1703 #endif /* CONFIG_HOTPLUG_CPU */
1705 static int __cpuinit
timer_cpu_notify(struct notifier_block
*self
,
1706 unsigned long action
, void *hcpu
)
1708 long cpu
= (long)hcpu
;
1712 case CPU_UP_PREPARE
:
1713 case CPU_UP_PREPARE_FROZEN
:
1714 err
= init_timers_cpu(cpu
);
1716 return notifier_from_errno(err
);
1718 #ifdef CONFIG_HOTPLUG_CPU
1720 case CPU_DEAD_FROZEN
:
1721 migrate_timers(cpu
);
1730 static struct notifier_block __cpuinitdata timers_nb
= {
1731 .notifier_call
= timer_cpu_notify
,
1735 void __init
init_timers(void)
1737 int err
= timer_cpu_notify(&timers_nb
, (unsigned long)CPU_UP_PREPARE
,
1738 (void *)(long)smp_processor_id());
1742 BUG_ON(err
!= NOTIFY_OK
);
1743 register_cpu_notifier(&timers_nb
);
1744 open_softirq(TIMER_SOFTIRQ
, run_timer_softirq
);
1748 * msleep - sleep safely even with waitqueue interruptions
1749 * @msecs: Time in milliseconds to sleep for
1751 void msleep(unsigned int msecs
)
1753 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1756 timeout
= schedule_timeout_uninterruptible(timeout
);
1759 EXPORT_SYMBOL(msleep
);
1762 * msleep_interruptible - sleep waiting for signals
1763 * @msecs: Time in milliseconds to sleep for
1765 unsigned long msleep_interruptible(unsigned int msecs
)
1767 unsigned long timeout
= msecs_to_jiffies(msecs
) + 1;
1769 while (timeout
&& !signal_pending(current
))
1770 timeout
= schedule_timeout_interruptible(timeout
);
1771 return jiffies_to_msecs(timeout
);
1774 EXPORT_SYMBOL(msleep_interruptible
);
1776 static int __sched
do_usleep_range(unsigned long min
, unsigned long max
)
1779 unsigned long delta
;
1781 kmin
= ktime_set(0, min
* NSEC_PER_USEC
);
1782 delta
= (max
- min
) * NSEC_PER_USEC
;
1783 return schedule_hrtimeout_range(&kmin
, delta
, HRTIMER_MODE_REL
);
1787 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1788 * @min: Minimum time in usecs to sleep
1789 * @max: Maximum time in usecs to sleep
1791 void usleep_range(unsigned long min
, unsigned long max
)
1793 __set_current_state(TASK_UNINTERRUPTIBLE
);
1794 do_usleep_range(min
, max
);
1796 EXPORT_SYMBOL(usleep_range
);