2 * Software multibuffer async crypto daemon.
4 * Copyright (c) 2014 Tim Chen <tim.c.chen@linux.intel.com>
6 * Adapted from crypto daemon.
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License as published by the Free
10 * Software Foundation; either version 2 of the License, or (at your option)
15 #include <crypto/algapi.h>
16 #include <crypto/internal/hash.h>
17 #include <crypto/internal/aead.h>
18 #include <crypto/mcryptd.h>
19 #include <crypto/crypto_wq.h>
20 #include <linux/err.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/list.h>
24 #include <linux/module.h>
25 #include <linux/scatterlist.h>
26 #include <linux/sched.h>
27 #include <linux/sched/stat.h>
28 #include <linux/slab.h>
29 #include <linux/hardirq.h>
31 #define MCRYPTD_MAX_CPU_QLEN 100
32 #define MCRYPTD_BATCH 9
34 static void *mcryptd_alloc_instance(struct crypto_alg
*alg
, unsigned int head
,
37 struct mcryptd_flush_list
{
38 struct list_head list
;
42 static struct mcryptd_flush_list __percpu
*mcryptd_flist
;
44 struct hashd_instance_ctx
{
45 struct crypto_ahash_spawn spawn
;
46 struct mcryptd_queue
*queue
;
49 static void mcryptd_queue_worker(struct work_struct
*work
);
51 void mcryptd_arm_flusher(struct mcryptd_alg_cstate
*cstate
, unsigned long delay
)
53 struct mcryptd_flush_list
*flist
;
55 if (!cstate
->flusher_engaged
) {
56 /* put the flusher on the flush list */
57 flist
= per_cpu_ptr(mcryptd_flist
, smp_processor_id());
58 mutex_lock(&flist
->lock
);
59 list_add_tail(&cstate
->flush_list
, &flist
->list
);
60 cstate
->flusher_engaged
= true;
61 cstate
->next_flush
= jiffies
+ delay
;
62 queue_delayed_work_on(smp_processor_id(), kcrypto_wq
,
63 &cstate
->flush
, delay
);
64 mutex_unlock(&flist
->lock
);
67 EXPORT_SYMBOL(mcryptd_arm_flusher
);
69 static int mcryptd_init_queue(struct mcryptd_queue
*queue
,
70 unsigned int max_cpu_qlen
)
73 struct mcryptd_cpu_queue
*cpu_queue
;
75 queue
->cpu_queue
= alloc_percpu(struct mcryptd_cpu_queue
);
76 pr_debug("mqueue:%p mcryptd_cpu_queue %p\n", queue
, queue
->cpu_queue
);
77 if (!queue
->cpu_queue
)
79 for_each_possible_cpu(cpu
) {
80 cpu_queue
= per_cpu_ptr(queue
->cpu_queue
, cpu
);
81 pr_debug("cpu_queue #%d %p\n", cpu
, queue
->cpu_queue
);
82 crypto_init_queue(&cpu_queue
->queue
, max_cpu_qlen
);
83 INIT_WORK(&cpu_queue
->work
, mcryptd_queue_worker
);
84 spin_lock_init(&cpu_queue
->q_lock
);
89 static void mcryptd_fini_queue(struct mcryptd_queue
*queue
)
92 struct mcryptd_cpu_queue
*cpu_queue
;
94 for_each_possible_cpu(cpu
) {
95 cpu_queue
= per_cpu_ptr(queue
->cpu_queue
, cpu
);
96 BUG_ON(cpu_queue
->queue
.qlen
);
98 free_percpu(queue
->cpu_queue
);
101 static int mcryptd_enqueue_request(struct mcryptd_queue
*queue
,
102 struct crypto_async_request
*request
,
103 struct mcryptd_hash_request_ctx
*rctx
)
106 struct mcryptd_cpu_queue
*cpu_queue
;
108 cpu_queue
= raw_cpu_ptr(queue
->cpu_queue
);
109 spin_lock(&cpu_queue
->q_lock
);
110 cpu
= smp_processor_id();
111 rctx
->tag
.cpu
= smp_processor_id();
113 err
= crypto_enqueue_request(&cpu_queue
->queue
, request
);
114 pr_debug("enqueue request: cpu %d cpu_queue %p request %p\n",
115 cpu
, cpu_queue
, request
);
116 spin_unlock(&cpu_queue
->q_lock
);
117 queue_work_on(cpu
, kcrypto_wq
, &cpu_queue
->work
);
123 * Try to opportunisticlly flush the partially completed jobs if
124 * crypto daemon is the only task running.
126 static void mcryptd_opportunistic_flush(void)
128 struct mcryptd_flush_list
*flist
;
129 struct mcryptd_alg_cstate
*cstate
;
131 flist
= per_cpu_ptr(mcryptd_flist
, smp_processor_id());
132 while (single_task_running()) {
133 mutex_lock(&flist
->lock
);
134 cstate
= list_first_entry_or_null(&flist
->list
,
135 struct mcryptd_alg_cstate
, flush_list
);
136 if (!cstate
|| !cstate
->flusher_engaged
) {
137 mutex_unlock(&flist
->lock
);
140 list_del(&cstate
->flush_list
);
141 cstate
->flusher_engaged
= false;
142 mutex_unlock(&flist
->lock
);
143 cstate
->alg_state
->flusher(cstate
);
148 * Called in workqueue context, do one real cryption work (via
149 * req->complete) and reschedule itself if there are more work to
152 static void mcryptd_queue_worker(struct work_struct
*work
)
154 struct mcryptd_cpu_queue
*cpu_queue
;
155 struct crypto_async_request
*req
, *backlog
;
159 * Need to loop through more than once for multi-buffer to
163 cpu_queue
= container_of(work
, struct mcryptd_cpu_queue
, work
);
165 while (i
< MCRYPTD_BATCH
|| single_task_running()) {
167 spin_lock_bh(&cpu_queue
->q_lock
);
168 backlog
= crypto_get_backlog(&cpu_queue
->queue
);
169 req
= crypto_dequeue_request(&cpu_queue
->queue
);
170 spin_unlock_bh(&cpu_queue
->q_lock
);
173 mcryptd_opportunistic_flush();
178 backlog
->complete(backlog
, -EINPROGRESS
);
179 req
->complete(req
, 0);
180 if (!cpu_queue
->queue
.qlen
)
184 if (cpu_queue
->queue
.qlen
)
185 queue_work_on(smp_processor_id(), kcrypto_wq
, &cpu_queue
->work
);
188 void mcryptd_flusher(struct work_struct
*__work
)
190 struct mcryptd_alg_cstate
*alg_cpu_state
;
191 struct mcryptd_alg_state
*alg_state
;
192 struct mcryptd_flush_list
*flist
;
195 cpu
= smp_processor_id();
196 alg_cpu_state
= container_of(to_delayed_work(__work
),
197 struct mcryptd_alg_cstate
, flush
);
198 alg_state
= alg_cpu_state
->alg_state
;
199 if (alg_cpu_state
->cpu
!= cpu
)
200 pr_debug("mcryptd error: work on cpu %d, should be cpu %d\n",
201 cpu
, alg_cpu_state
->cpu
);
203 if (alg_cpu_state
->flusher_engaged
) {
204 flist
= per_cpu_ptr(mcryptd_flist
, cpu
);
205 mutex_lock(&flist
->lock
);
206 list_del(&alg_cpu_state
->flush_list
);
207 alg_cpu_state
->flusher_engaged
= false;
208 mutex_unlock(&flist
->lock
);
209 alg_state
->flusher(alg_cpu_state
);
212 EXPORT_SYMBOL_GPL(mcryptd_flusher
);
214 static inline struct mcryptd_queue
*mcryptd_get_queue(struct crypto_tfm
*tfm
)
216 struct crypto_instance
*inst
= crypto_tfm_alg_instance(tfm
);
217 struct mcryptd_instance_ctx
*ictx
= crypto_instance_ctx(inst
);
222 static void *mcryptd_alloc_instance(struct crypto_alg
*alg
, unsigned int head
,
226 struct crypto_instance
*inst
;
229 p
= kzalloc(head
+ sizeof(*inst
) + tail
, GFP_KERNEL
);
231 return ERR_PTR(-ENOMEM
);
233 inst
= (void *)(p
+ head
);
236 if (snprintf(inst
->alg
.cra_driver_name
, CRYPTO_MAX_ALG_NAME
,
237 "mcryptd(%s)", alg
->cra_driver_name
) >= CRYPTO_MAX_ALG_NAME
)
240 memcpy(inst
->alg
.cra_name
, alg
->cra_name
, CRYPTO_MAX_ALG_NAME
);
242 inst
->alg
.cra_priority
= alg
->cra_priority
+ 50;
243 inst
->alg
.cra_blocksize
= alg
->cra_blocksize
;
244 inst
->alg
.cra_alignmask
= alg
->cra_alignmask
;
255 static inline bool mcryptd_check_internal(struct rtattr
**tb
, u32
*type
,
258 struct crypto_attr_type
*algt
;
260 algt
= crypto_get_attr_type(tb
);
264 *type
|= algt
->type
& CRYPTO_ALG_INTERNAL
;
265 *mask
|= algt
->mask
& CRYPTO_ALG_INTERNAL
;
267 if (*type
& *mask
& CRYPTO_ALG_INTERNAL
)
273 static int mcryptd_hash_init_tfm(struct crypto_tfm
*tfm
)
275 struct crypto_instance
*inst
= crypto_tfm_alg_instance(tfm
);
276 struct hashd_instance_ctx
*ictx
= crypto_instance_ctx(inst
);
277 struct crypto_ahash_spawn
*spawn
= &ictx
->spawn
;
278 struct mcryptd_hash_ctx
*ctx
= crypto_tfm_ctx(tfm
);
279 struct crypto_ahash
*hash
;
281 hash
= crypto_spawn_ahash(spawn
);
283 return PTR_ERR(hash
);
286 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
287 sizeof(struct mcryptd_hash_request_ctx
) +
288 crypto_ahash_reqsize(hash
));
292 static void mcryptd_hash_exit_tfm(struct crypto_tfm
*tfm
)
294 struct mcryptd_hash_ctx
*ctx
= crypto_tfm_ctx(tfm
);
296 crypto_free_ahash(ctx
->child
);
299 static int mcryptd_hash_setkey(struct crypto_ahash
*parent
,
300 const u8
*key
, unsigned int keylen
)
302 struct mcryptd_hash_ctx
*ctx
= crypto_ahash_ctx(parent
);
303 struct crypto_ahash
*child
= ctx
->child
;
306 crypto_ahash_clear_flags(child
, CRYPTO_TFM_REQ_MASK
);
307 crypto_ahash_set_flags(child
, crypto_ahash_get_flags(parent
) &
308 CRYPTO_TFM_REQ_MASK
);
309 err
= crypto_ahash_setkey(child
, key
, keylen
);
310 crypto_ahash_set_flags(parent
, crypto_ahash_get_flags(child
) &
311 CRYPTO_TFM_RES_MASK
);
315 static int mcryptd_hash_enqueue(struct ahash_request
*req
,
316 crypto_completion_t complete
)
320 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
321 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
322 struct mcryptd_queue
*queue
=
323 mcryptd_get_queue(crypto_ahash_tfm(tfm
));
325 rctx
->complete
= req
->base
.complete
;
326 req
->base
.complete
= complete
;
328 ret
= mcryptd_enqueue_request(queue
, &req
->base
, rctx
);
333 static void mcryptd_hash_init(struct crypto_async_request
*req_async
, int err
)
335 struct mcryptd_hash_ctx
*ctx
= crypto_tfm_ctx(req_async
->tfm
);
336 struct crypto_ahash
*child
= ctx
->child
;
337 struct ahash_request
*req
= ahash_request_cast(req_async
);
338 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
339 struct ahash_request
*desc
= &rctx
->areq
;
341 if (unlikely(err
== -EINPROGRESS
))
344 ahash_request_set_tfm(desc
, child
);
345 ahash_request_set_callback(desc
, CRYPTO_TFM_REQ_MAY_SLEEP
,
346 rctx
->complete
, req_async
);
348 rctx
->out
= req
->result
;
349 err
= crypto_ahash_init(desc
);
353 rctx
->complete(&req
->base
, err
);
357 static int mcryptd_hash_init_enqueue(struct ahash_request
*req
)
359 return mcryptd_hash_enqueue(req
, mcryptd_hash_init
);
362 static void mcryptd_hash_update(struct crypto_async_request
*req_async
, int err
)
364 struct ahash_request
*req
= ahash_request_cast(req_async
);
365 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
367 if (unlikely(err
== -EINPROGRESS
))
370 rctx
->out
= req
->result
;
371 err
= ahash_mcryptd_update(&rctx
->areq
);
373 req
->base
.complete
= rctx
->complete
;
380 rctx
->complete(&req
->base
, err
);
384 static int mcryptd_hash_update_enqueue(struct ahash_request
*req
)
386 return mcryptd_hash_enqueue(req
, mcryptd_hash_update
);
389 static void mcryptd_hash_final(struct crypto_async_request
*req_async
, int err
)
391 struct ahash_request
*req
= ahash_request_cast(req_async
);
392 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
394 if (unlikely(err
== -EINPROGRESS
))
397 rctx
->out
= req
->result
;
398 err
= ahash_mcryptd_final(&rctx
->areq
);
400 req
->base
.complete
= rctx
->complete
;
407 rctx
->complete(&req
->base
, err
);
411 static int mcryptd_hash_final_enqueue(struct ahash_request
*req
)
413 return mcryptd_hash_enqueue(req
, mcryptd_hash_final
);
416 static void mcryptd_hash_finup(struct crypto_async_request
*req_async
, int err
)
418 struct ahash_request
*req
= ahash_request_cast(req_async
);
419 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
421 if (unlikely(err
== -EINPROGRESS
))
423 rctx
->out
= req
->result
;
424 err
= ahash_mcryptd_finup(&rctx
->areq
);
427 req
->base
.complete
= rctx
->complete
;
434 rctx
->complete(&req
->base
, err
);
438 static int mcryptd_hash_finup_enqueue(struct ahash_request
*req
)
440 return mcryptd_hash_enqueue(req
, mcryptd_hash_finup
);
443 static void mcryptd_hash_digest(struct crypto_async_request
*req_async
, int err
)
445 struct mcryptd_hash_ctx
*ctx
= crypto_tfm_ctx(req_async
->tfm
);
446 struct crypto_ahash
*child
= ctx
->child
;
447 struct ahash_request
*req
= ahash_request_cast(req_async
);
448 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
449 struct ahash_request
*desc
= &rctx
->areq
;
451 if (unlikely(err
== -EINPROGRESS
))
454 ahash_request_set_tfm(desc
, child
);
455 ahash_request_set_callback(desc
, CRYPTO_TFM_REQ_MAY_SLEEP
,
456 rctx
->complete
, req_async
);
458 rctx
->out
= req
->result
;
459 err
= ahash_mcryptd_digest(desc
);
463 rctx
->complete(&req
->base
, err
);
467 static int mcryptd_hash_digest_enqueue(struct ahash_request
*req
)
469 return mcryptd_hash_enqueue(req
, mcryptd_hash_digest
);
472 static int mcryptd_hash_export(struct ahash_request
*req
, void *out
)
474 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
476 return crypto_ahash_export(&rctx
->areq
, out
);
479 static int mcryptd_hash_import(struct ahash_request
*req
, const void *in
)
481 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
483 return crypto_ahash_import(&rctx
->areq
, in
);
486 static int mcryptd_create_hash(struct crypto_template
*tmpl
, struct rtattr
**tb
,
487 struct mcryptd_queue
*queue
)
489 struct hashd_instance_ctx
*ctx
;
490 struct ahash_instance
*inst
;
491 struct hash_alg_common
*halg
;
492 struct crypto_alg
*alg
;
497 if (!mcryptd_check_internal(tb
, &type
, &mask
))
500 halg
= ahash_attr_alg(tb
[1], type
, mask
);
502 return PTR_ERR(halg
);
505 pr_debug("crypto: mcryptd hash alg: %s\n", alg
->cra_name
);
506 inst
= mcryptd_alloc_instance(alg
, ahash_instance_headroom(),
512 ctx
= ahash_instance_ctx(inst
);
515 err
= crypto_init_ahash_spawn(&ctx
->spawn
, halg
,
516 ahash_crypto_instance(inst
));
520 inst
->alg
.halg
.base
.cra_flags
= CRYPTO_ALG_ASYNC
|
521 (alg
->cra_flags
& (CRYPTO_ALG_INTERNAL
|
522 CRYPTO_ALG_OPTIONAL_KEY
));
524 inst
->alg
.halg
.digestsize
= halg
->digestsize
;
525 inst
->alg
.halg
.statesize
= halg
->statesize
;
526 inst
->alg
.halg
.base
.cra_ctxsize
= sizeof(struct mcryptd_hash_ctx
);
528 inst
->alg
.halg
.base
.cra_init
= mcryptd_hash_init_tfm
;
529 inst
->alg
.halg
.base
.cra_exit
= mcryptd_hash_exit_tfm
;
531 inst
->alg
.init
= mcryptd_hash_init_enqueue
;
532 inst
->alg
.update
= mcryptd_hash_update_enqueue
;
533 inst
->alg
.final
= mcryptd_hash_final_enqueue
;
534 inst
->alg
.finup
= mcryptd_hash_finup_enqueue
;
535 inst
->alg
.export
= mcryptd_hash_export
;
536 inst
->alg
.import
= mcryptd_hash_import
;
537 if (crypto_hash_alg_has_setkey(halg
))
538 inst
->alg
.setkey
= mcryptd_hash_setkey
;
539 inst
->alg
.digest
= mcryptd_hash_digest_enqueue
;
541 err
= ahash_register_instance(tmpl
, inst
);
543 crypto_drop_ahash(&ctx
->spawn
);
553 static struct mcryptd_queue mqueue
;
555 static int mcryptd_create(struct crypto_template
*tmpl
, struct rtattr
**tb
)
557 struct crypto_attr_type
*algt
;
559 algt
= crypto_get_attr_type(tb
);
561 return PTR_ERR(algt
);
563 switch (algt
->type
& algt
->mask
& CRYPTO_ALG_TYPE_MASK
) {
564 case CRYPTO_ALG_TYPE_DIGEST
:
565 return mcryptd_create_hash(tmpl
, tb
, &mqueue
);
572 static void mcryptd_free(struct crypto_instance
*inst
)
574 struct mcryptd_instance_ctx
*ctx
= crypto_instance_ctx(inst
);
575 struct hashd_instance_ctx
*hctx
= crypto_instance_ctx(inst
);
577 switch (inst
->alg
.cra_flags
& CRYPTO_ALG_TYPE_MASK
) {
578 case CRYPTO_ALG_TYPE_AHASH
:
579 crypto_drop_ahash(&hctx
->spawn
);
580 kfree(ahash_instance(inst
));
583 crypto_drop_spawn(&ctx
->spawn
);
588 static struct crypto_template mcryptd_tmpl
= {
590 .create
= mcryptd_create
,
591 .free
= mcryptd_free
,
592 .module
= THIS_MODULE
,
595 struct mcryptd_ahash
*mcryptd_alloc_ahash(const char *alg_name
,
598 char mcryptd_alg_name
[CRYPTO_MAX_ALG_NAME
];
599 struct crypto_ahash
*tfm
;
601 if (snprintf(mcryptd_alg_name
, CRYPTO_MAX_ALG_NAME
,
602 "mcryptd(%s)", alg_name
) >= CRYPTO_MAX_ALG_NAME
)
603 return ERR_PTR(-EINVAL
);
604 tfm
= crypto_alloc_ahash(mcryptd_alg_name
, type
, mask
);
606 return ERR_CAST(tfm
);
607 if (tfm
->base
.__crt_alg
->cra_module
!= THIS_MODULE
) {
608 crypto_free_ahash(tfm
);
609 return ERR_PTR(-EINVAL
);
612 return __mcryptd_ahash_cast(tfm
);
614 EXPORT_SYMBOL_GPL(mcryptd_alloc_ahash
);
616 int ahash_mcryptd_digest(struct ahash_request
*desc
)
618 return crypto_ahash_init(desc
) ?: ahash_mcryptd_finup(desc
);
621 int ahash_mcryptd_update(struct ahash_request
*desc
)
623 /* alignment is to be done by multi-buffer crypto algorithm if needed */
625 return crypto_ahash_update(desc
);
628 int ahash_mcryptd_finup(struct ahash_request
*desc
)
630 /* alignment is to be done by multi-buffer crypto algorithm if needed */
632 return crypto_ahash_finup(desc
);
635 int ahash_mcryptd_final(struct ahash_request
*desc
)
637 /* alignment is to be done by multi-buffer crypto algorithm if needed */
639 return crypto_ahash_final(desc
);
642 struct crypto_ahash
*mcryptd_ahash_child(struct mcryptd_ahash
*tfm
)
644 struct mcryptd_hash_ctx
*ctx
= crypto_ahash_ctx(&tfm
->base
);
648 EXPORT_SYMBOL_GPL(mcryptd_ahash_child
);
650 struct ahash_request
*mcryptd_ahash_desc(struct ahash_request
*req
)
652 struct mcryptd_hash_request_ctx
*rctx
= ahash_request_ctx(req
);
655 EXPORT_SYMBOL_GPL(mcryptd_ahash_desc
);
657 void mcryptd_free_ahash(struct mcryptd_ahash
*tfm
)
659 crypto_free_ahash(&tfm
->base
);
661 EXPORT_SYMBOL_GPL(mcryptd_free_ahash
);
663 static int __init
mcryptd_init(void)
666 struct mcryptd_flush_list
*flist
;
668 mcryptd_flist
= alloc_percpu(struct mcryptd_flush_list
);
669 for_each_possible_cpu(cpu
) {
670 flist
= per_cpu_ptr(mcryptd_flist
, cpu
);
671 INIT_LIST_HEAD(&flist
->list
);
672 mutex_init(&flist
->lock
);
675 err
= mcryptd_init_queue(&mqueue
, MCRYPTD_MAX_CPU_QLEN
);
677 free_percpu(mcryptd_flist
);
681 err
= crypto_register_template(&mcryptd_tmpl
);
683 mcryptd_fini_queue(&mqueue
);
684 free_percpu(mcryptd_flist
);
690 static void __exit
mcryptd_exit(void)
692 mcryptd_fini_queue(&mqueue
);
693 crypto_unregister_template(&mcryptd_tmpl
);
694 free_percpu(mcryptd_flist
);
697 subsys_initcall(mcryptd_init
);
698 module_exit(mcryptd_exit
);
700 MODULE_LICENSE("GPL");
701 MODULE_DESCRIPTION("Software async multibuffer crypto daemon");
702 MODULE_ALIAS_CRYPTO("mcryptd");