2 * Copyright (c) 2007 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/pagemap.h>
34 #include <linux/slab.h>
35 #include <linux/rbtree.h>
36 #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */
43 * - should we detect duplicate keys on a socket? hmm.
44 * - an rdma is an mlock, apply rlimit?
48 * get the number of pages by looking at the page indices that the start and
49 * end addresses fall in.
51 * Returns 0 if the vec is invalid. It is invalid if the number of bytes
52 * causes the address to wrap or overflows an unsigned int. This comes
53 * from being stored in the 'length' member of 'struct scatterlist'.
55 static unsigned int rds_pages_in_vec(struct rds_iovec
*vec
)
57 if ((vec
->addr
+ vec
->bytes
<= vec
->addr
) ||
58 (vec
->bytes
> (u64
)UINT_MAX
))
61 return ((vec
->addr
+ vec
->bytes
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
) -
62 (vec
->addr
>> PAGE_SHIFT
);
65 static struct rds_mr
*rds_mr_tree_walk(struct rb_root
*root
, u64 key
,
66 struct rds_mr
*insert
)
68 struct rb_node
**p
= &root
->rb_node
;
69 struct rb_node
*parent
= NULL
;
74 mr
= rb_entry(parent
, struct rds_mr
, r_rb_node
);
78 else if (key
> mr
->r_key
)
85 rb_link_node(&insert
->r_rb_node
, parent
, p
);
86 rb_insert_color(&insert
->r_rb_node
, root
);
87 refcount_inc(&insert
->r_refcount
);
93 * Destroy the transport-specific part of a MR.
95 static void rds_destroy_mr(struct rds_mr
*mr
)
97 struct rds_sock
*rs
= mr
->r_sock
;
98 void *trans_private
= NULL
;
101 rdsdebug("RDS: destroy mr key is %x refcnt %u\n",
102 mr
->r_key
, refcount_read(&mr
->r_refcount
));
104 if (test_and_set_bit(RDS_MR_DEAD
, &mr
->r_state
))
107 spin_lock_irqsave(&rs
->rs_rdma_lock
, flags
);
108 if (!RB_EMPTY_NODE(&mr
->r_rb_node
))
109 rb_erase(&mr
->r_rb_node
, &rs
->rs_rdma_keys
);
110 trans_private
= mr
->r_trans_private
;
111 mr
->r_trans_private
= NULL
;
112 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
115 mr
->r_trans
->free_mr(trans_private
, mr
->r_invalidate
);
118 void __rds_put_mr_final(struct rds_mr
*mr
)
125 * By the time this is called we can't have any more ioctls called on
126 * the socket so we don't need to worry about racing with others.
128 void rds_rdma_drop_keys(struct rds_sock
*rs
)
131 struct rb_node
*node
;
134 /* Release any MRs associated with this socket */
135 spin_lock_irqsave(&rs
->rs_rdma_lock
, flags
);
136 while ((node
= rb_first(&rs
->rs_rdma_keys
))) {
137 mr
= rb_entry(node
, struct rds_mr
, r_rb_node
);
138 if (mr
->r_trans
== rs
->rs_transport
)
139 mr
->r_invalidate
= 0;
140 rb_erase(&mr
->r_rb_node
, &rs
->rs_rdma_keys
);
141 RB_CLEAR_NODE(&mr
->r_rb_node
);
142 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
145 spin_lock_irqsave(&rs
->rs_rdma_lock
, flags
);
147 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
149 if (rs
->rs_transport
&& rs
->rs_transport
->flush_mrs
)
150 rs
->rs_transport
->flush_mrs();
154 * Helper function to pin user pages.
156 static int rds_pin_pages(unsigned long user_addr
, unsigned int nr_pages
,
157 struct page
**pages
, int write
)
161 ret
= get_user_pages_fast(user_addr
, nr_pages
, write
, pages
);
163 if (ret
>= 0 && ret
< nr_pages
) {
165 put_page(pages
[ret
]);
172 static int __rds_rdma_map(struct rds_sock
*rs
, struct rds_get_mr_args
*args
,
173 u64
*cookie_ret
, struct rds_mr
**mr_ret
)
175 struct rds_mr
*mr
= NULL
, *found
;
176 unsigned int nr_pages
;
177 struct page
**pages
= NULL
;
178 struct scatterlist
*sg
;
181 rds_rdma_cookie_t cookie
;
186 if (rs
->rs_bound_addr
== 0 || !rs
->rs_transport
) {
187 ret
= -ENOTCONN
; /* XXX not a great errno */
191 if (!rs
->rs_transport
->get_mr
) {
196 nr_pages
= rds_pages_in_vec(&args
->vec
);
202 /* Restrict the size of mr irrespective of underlying transport
203 * To account for unaligned mr regions, subtract one from nr_pages
205 if ((nr_pages
- 1) > (RDS_MAX_MSG_SIZE
>> PAGE_SHIFT
)) {
210 rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n",
211 args
->vec
.addr
, args
->vec
.bytes
, nr_pages
);
213 /* XXX clamp nr_pages to limit the size of this alloc? */
214 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_KERNEL
);
220 mr
= kzalloc(sizeof(struct rds_mr
), GFP_KERNEL
);
226 refcount_set(&mr
->r_refcount
, 1);
227 RB_CLEAR_NODE(&mr
->r_rb_node
);
228 mr
->r_trans
= rs
->rs_transport
;
231 if (args
->flags
& RDS_RDMA_USE_ONCE
)
233 if (args
->flags
& RDS_RDMA_INVALIDATE
)
234 mr
->r_invalidate
= 1;
235 if (args
->flags
& RDS_RDMA_READWRITE
)
239 * Pin the pages that make up the user buffer and transfer the page
240 * pointers to the mr's sg array. We check to see if we've mapped
241 * the whole region after transferring the partial page references
242 * to the sg array so that we can have one page ref cleanup path.
244 * For now we have no flag that tells us whether the mapping is
245 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to
248 ret
= rds_pin_pages(args
->vec
.addr
, nr_pages
, pages
, 1);
253 sg
= kcalloc(nents
, sizeof(*sg
), GFP_KERNEL
);
259 sg_init_table(sg
, nents
);
261 /* Stick all pages into the scatterlist */
262 for (i
= 0 ; i
< nents
; i
++)
263 sg_set_page(&sg
[i
], pages
[i
], PAGE_SIZE
, 0);
265 rdsdebug("RDS: trans_private nents is %u\n", nents
);
267 /* Obtain a transport specific MR. If this succeeds, the
268 * s/g list is now owned by the MR.
269 * Note that dma_map() implies that pending writes are
270 * flushed to RAM, so no dma_sync is needed here. */
271 trans_private
= rs
->rs_transport
->get_mr(sg
, nents
, rs
,
274 if (IS_ERR(trans_private
)) {
275 for (i
= 0 ; i
< nents
; i
++)
276 put_page(sg_page(&sg
[i
]));
278 ret
= PTR_ERR(trans_private
);
282 mr
->r_trans_private
= trans_private
;
284 rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n",
285 mr
->r_key
, (void *)(unsigned long) args
->cookie_addr
);
287 /* The user may pass us an unaligned address, but we can only
288 * map page aligned regions. So we keep the offset, and build
289 * a 64bit cookie containing <R_Key, offset> and pass that
291 cookie
= rds_rdma_make_cookie(mr
->r_key
, args
->vec
.addr
& ~PAGE_MASK
);
293 *cookie_ret
= cookie
;
295 if (args
->cookie_addr
&& put_user(cookie
, (u64 __user
*)(unsigned long) args
->cookie_addr
)) {
300 /* Inserting the new MR into the rbtree bumps its
301 * reference count. */
302 spin_lock_irqsave(&rs
->rs_rdma_lock
, flags
);
303 found
= rds_mr_tree_walk(&rs
->rs_rdma_keys
, mr
->r_key
, mr
);
304 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
306 BUG_ON(found
&& found
!= mr
);
308 rdsdebug("RDS: get_mr key is %x\n", mr
->r_key
);
310 refcount_inc(&mr
->r_refcount
);
322 int rds_get_mr(struct rds_sock
*rs
, char __user
*optval
, int optlen
)
324 struct rds_get_mr_args args
;
326 if (optlen
!= sizeof(struct rds_get_mr_args
))
329 if (copy_from_user(&args
, (struct rds_get_mr_args __user
*)optval
,
330 sizeof(struct rds_get_mr_args
)))
333 return __rds_rdma_map(rs
, &args
, NULL
, NULL
);
336 int rds_get_mr_for_dest(struct rds_sock
*rs
, char __user
*optval
, int optlen
)
338 struct rds_get_mr_for_dest_args args
;
339 struct rds_get_mr_args new_args
;
341 if (optlen
!= sizeof(struct rds_get_mr_for_dest_args
))
344 if (copy_from_user(&args
, (struct rds_get_mr_for_dest_args __user
*)optval
,
345 sizeof(struct rds_get_mr_for_dest_args
)))
349 * Initially, just behave like get_mr().
350 * TODO: Implement get_mr as wrapper around this
353 new_args
.vec
= args
.vec
;
354 new_args
.cookie_addr
= args
.cookie_addr
;
355 new_args
.flags
= args
.flags
;
357 return __rds_rdma_map(rs
, &new_args
, NULL
, NULL
);
361 * Free the MR indicated by the given R_Key
363 int rds_free_mr(struct rds_sock
*rs
, char __user
*optval
, int optlen
)
365 struct rds_free_mr_args args
;
369 if (optlen
!= sizeof(struct rds_free_mr_args
))
372 if (copy_from_user(&args
, (struct rds_free_mr_args __user
*)optval
,
373 sizeof(struct rds_free_mr_args
)))
376 /* Special case - a null cookie means flush all unused MRs */
377 if (args
.cookie
== 0) {
378 if (!rs
->rs_transport
|| !rs
->rs_transport
->flush_mrs
)
380 rs
->rs_transport
->flush_mrs();
384 /* Look up the MR given its R_key and remove it from the rbtree
385 * so nobody else finds it.
386 * This should also prevent races with rds_rdma_unuse.
388 spin_lock_irqsave(&rs
->rs_rdma_lock
, flags
);
389 mr
= rds_mr_tree_walk(&rs
->rs_rdma_keys
, rds_rdma_cookie_key(args
.cookie
), NULL
);
391 rb_erase(&mr
->r_rb_node
, &rs
->rs_rdma_keys
);
392 RB_CLEAR_NODE(&mr
->r_rb_node
);
393 if (args
.flags
& RDS_RDMA_INVALIDATE
)
394 mr
->r_invalidate
= 1;
396 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
402 * call rds_destroy_mr() ourselves so that we're sure it's done by the time
403 * we return. If we let rds_mr_put() do it it might not happen until
404 * someone else drops their ref.
412 * This is called when we receive an extension header that
413 * tells us this MR was used. It allows us to implement
416 void rds_rdma_unuse(struct rds_sock
*rs
, u32 r_key
, int force
)
422 spin_lock_irqsave(&rs
->rs_rdma_lock
, flags
);
423 mr
= rds_mr_tree_walk(&rs
->rs_rdma_keys
, r_key
, NULL
);
425 pr_debug("rds: trying to unuse MR with unknown r_key %u!\n",
427 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
431 if (mr
->r_use_once
|| force
) {
432 rb_erase(&mr
->r_rb_node
, &rs
->rs_rdma_keys
);
433 RB_CLEAR_NODE(&mr
->r_rb_node
);
436 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
438 /* May have to issue a dma_sync on this memory region.
439 * Note we could avoid this if the operation was a RDMA READ,
440 * but at this point we can't tell. */
441 if (mr
->r_trans
->sync_mr
)
442 mr
->r_trans
->sync_mr(mr
->r_trans_private
, DMA_FROM_DEVICE
);
444 /* If the MR was marked as invalidate, this will
445 * trigger an async flush. */
452 void rds_rdma_free_op(struct rm_rdma_op
*ro
)
456 for (i
= 0; i
< ro
->op_nents
; i
++) {
457 struct page
*page
= sg_page(&ro
->op_sg
[i
]);
459 /* Mark page dirty if it was possibly modified, which
460 * is the case for a RDMA_READ which copies from remote
463 WARN_ON(!page
->mapping
&& irqs_disabled());
464 set_page_dirty(page
);
469 kfree(ro
->op_notifier
);
470 ro
->op_notifier
= NULL
;
474 void rds_atomic_free_op(struct rm_atomic_op
*ao
)
476 struct page
*page
= sg_page(ao
->op_sg
);
478 /* Mark page dirty if it was possibly modified, which
479 * is the case for a RDMA_READ which copies from remote
481 set_page_dirty(page
);
484 kfree(ao
->op_notifier
);
485 ao
->op_notifier
= NULL
;
491 * Count the number of pages needed to describe an incoming iovec array.
493 static int rds_rdma_pages(struct rds_iovec iov
[], int nr_iovecs
)
496 unsigned int nr_pages
;
499 /* figure out the number of pages in the vector */
500 for (i
= 0; i
< nr_iovecs
; i
++) {
501 nr_pages
= rds_pages_in_vec(&iov
[i
]);
505 tot_pages
+= nr_pages
;
508 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
509 * so tot_pages cannot overflow without first going negative.
518 int rds_rdma_extra_size(struct rds_rdma_args
*args
)
520 struct rds_iovec vec
;
521 struct rds_iovec __user
*local_vec
;
523 unsigned int nr_pages
;
526 local_vec
= (struct rds_iovec __user
*)(unsigned long) args
->local_vec_addr
;
528 if (args
->nr_local
== 0)
531 /* figure out the number of pages in the vector */
532 for (i
= 0; i
< args
->nr_local
; i
++) {
533 if (copy_from_user(&vec
, &local_vec
[i
],
534 sizeof(struct rds_iovec
)))
537 nr_pages
= rds_pages_in_vec(&vec
);
541 tot_pages
+= nr_pages
;
544 * nr_pages for one entry is limited to (UINT_MAX>>PAGE_SHIFT)+1,
545 * so tot_pages cannot overflow without first going negative.
551 return tot_pages
* sizeof(struct scatterlist
);
555 * The application asks for a RDMA transfer.
556 * Extract all arguments and set up the rdma_op
558 int rds_cmsg_rdma_args(struct rds_sock
*rs
, struct rds_message
*rm
,
559 struct cmsghdr
*cmsg
)
561 struct rds_rdma_args
*args
;
562 struct rm_rdma_op
*op
= &rm
->rdma
;
564 unsigned int nr_bytes
;
565 struct page
**pages
= NULL
;
566 struct rds_iovec iovstack
[UIO_FASTIOV
], *iovs
= iovstack
;
571 if (cmsg
->cmsg_len
< CMSG_LEN(sizeof(struct rds_rdma_args
))
572 || rm
->rdma
.op_active
)
575 args
= CMSG_DATA(cmsg
);
577 if (rs
->rs_bound_addr
== 0) {
578 ret
= -ENOTCONN
; /* XXX not a great errno */
582 if (args
->nr_local
> UIO_MAXIOV
) {
587 /* Check whether to allocate the iovec area */
588 iov_size
= args
->nr_local
* sizeof(struct rds_iovec
);
589 if (args
->nr_local
> UIO_FASTIOV
) {
590 iovs
= sock_kmalloc(rds_rs_to_sk(rs
), iov_size
, GFP_KERNEL
);
597 if (copy_from_user(iovs
, (struct rds_iovec __user
*)(unsigned long) args
->local_vec_addr
, iov_size
)) {
602 nr_pages
= rds_rdma_pages(iovs
, args
->nr_local
);
608 pages
= kcalloc(nr_pages
, sizeof(struct page
*), GFP_KERNEL
);
614 op
->op_write
= !!(args
->flags
& RDS_RDMA_READWRITE
);
615 op
->op_fence
= !!(args
->flags
& RDS_RDMA_FENCE
);
616 op
->op_notify
= !!(args
->flags
& RDS_RDMA_NOTIFY_ME
);
617 op
->op_silent
= !!(args
->flags
& RDS_RDMA_SILENT
);
619 op
->op_recverr
= rs
->rs_recverr
;
621 op
->op_sg
= rds_message_alloc_sgs(rm
, nr_pages
);
627 if (op
->op_notify
|| op
->op_recverr
) {
628 /* We allocate an uninitialized notifier here, because
629 * we don't want to do that in the completion handler. We
630 * would have to use GFP_ATOMIC there, and don't want to deal
631 * with failed allocations.
633 op
->op_notifier
= kmalloc(sizeof(struct rds_notifier
), GFP_KERNEL
);
634 if (!op
->op_notifier
) {
638 op
->op_notifier
->n_user_token
= args
->user_token
;
639 op
->op_notifier
->n_status
= RDS_RDMA_SUCCESS
;
641 /* Enable rmda notification on data operation for composite
642 * rds messages and make sure notification is enabled only
643 * for the data operation which follows it so that application
644 * gets notified only after full message gets delivered.
646 if (rm
->data
.op_sg
) {
647 rm
->rdma
.op_notify
= 0;
648 rm
->data
.op_notify
= !!(args
->flags
& RDS_RDMA_NOTIFY_ME
);
652 /* The cookie contains the R_Key of the remote memory region, and
653 * optionally an offset into it. This is how we implement RDMA into
655 * When setting up the RDMA, we need to add that offset to the
656 * destination address (which is really an offset into the MR)
657 * FIXME: We may want to move this into ib_rdma.c
659 op
->op_rkey
= rds_rdma_cookie_key(args
->cookie
);
660 op
->op_remote_addr
= args
->remote_vec
.addr
+ rds_rdma_cookie_offset(args
->cookie
);
664 rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n",
665 (unsigned long long)args
->nr_local
,
666 (unsigned long long)args
->remote_vec
.addr
,
669 for (i
= 0; i
< args
->nr_local
; i
++) {
670 struct rds_iovec
*iov
= &iovs
[i
];
671 /* don't need to check, rds_rdma_pages() verified nr will be +nonzero */
672 unsigned int nr
= rds_pages_in_vec(iov
);
674 rs
->rs_user_addr
= iov
->addr
;
675 rs
->rs_user_bytes
= iov
->bytes
;
677 /* If it's a WRITE operation, we want to pin the pages for reading.
678 * If it's a READ operation, we need to pin the pages for writing.
680 ret
= rds_pin_pages(iov
->addr
, nr
, pages
, !op
->op_write
);
686 rdsdebug("RDS: nr_bytes %u nr %u iov->bytes %llu iov->addr %llx\n",
687 nr_bytes
, nr
, iov
->bytes
, iov
->addr
);
689 nr_bytes
+= iov
->bytes
;
691 for (j
= 0; j
< nr
; j
++) {
692 unsigned int offset
= iov
->addr
& ~PAGE_MASK
;
693 struct scatterlist
*sg
;
695 sg
= &op
->op_sg
[op
->op_nents
+ j
];
696 sg_set_page(sg
, pages
[j
],
697 min_t(unsigned int, iov
->bytes
, PAGE_SIZE
- offset
),
700 rdsdebug("RDS: sg->offset %x sg->len %x iov->addr %llx iov->bytes %llu\n",
701 sg
->offset
, sg
->length
, iov
->addr
, iov
->bytes
);
703 iov
->addr
+= sg
->length
;
704 iov
->bytes
-= sg
->length
;
710 if (nr_bytes
> args
->remote_vec
.bytes
) {
711 rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n",
713 (unsigned int) args
->remote_vec
.bytes
);
717 op
->op_bytes
= nr_bytes
;
720 if (iovs
!= iovstack
)
721 sock_kfree_s(rds_rs_to_sk(rs
), iovs
, iov_size
);
725 rds_rdma_free_op(op
);
727 rds_stats_inc(s_send_rdma
);
733 * The application wants us to pass an RDMA destination (aka MR)
736 int rds_cmsg_rdma_dest(struct rds_sock
*rs
, struct rds_message
*rm
,
737 struct cmsghdr
*cmsg
)
744 if (cmsg
->cmsg_len
< CMSG_LEN(sizeof(rds_rdma_cookie_t
)) ||
745 rm
->m_rdma_cookie
!= 0)
748 memcpy(&rm
->m_rdma_cookie
, CMSG_DATA(cmsg
), sizeof(rm
->m_rdma_cookie
));
750 /* We are reusing a previously mapped MR here. Most likely, the
751 * application has written to the buffer, so we need to explicitly
752 * flush those writes to RAM. Otherwise the HCA may not see them
753 * when doing a DMA from that buffer.
755 r_key
= rds_rdma_cookie_key(rm
->m_rdma_cookie
);
757 spin_lock_irqsave(&rs
->rs_rdma_lock
, flags
);
758 mr
= rds_mr_tree_walk(&rs
->rs_rdma_keys
, r_key
, NULL
);
760 err
= -EINVAL
; /* invalid r_key */
762 refcount_inc(&mr
->r_refcount
);
763 spin_unlock_irqrestore(&rs
->rs_rdma_lock
, flags
);
766 mr
->r_trans
->sync_mr(mr
->r_trans_private
, DMA_TO_DEVICE
);
767 rm
->rdma
.op_rdma_mr
= mr
;
773 * The application passes us an address range it wants to enable RDMA
774 * to/from. We map the area, and save the <R_Key,offset> pair
775 * in rm->m_rdma_cookie. This causes it to be sent along to the peer
776 * in an extension header.
778 int rds_cmsg_rdma_map(struct rds_sock
*rs
, struct rds_message
*rm
,
779 struct cmsghdr
*cmsg
)
781 if (cmsg
->cmsg_len
< CMSG_LEN(sizeof(struct rds_get_mr_args
)) ||
782 rm
->m_rdma_cookie
!= 0)
785 return __rds_rdma_map(rs
, CMSG_DATA(cmsg
), &rm
->m_rdma_cookie
, &rm
->rdma
.op_rdma_mr
);
789 * Fill in rds_message for an atomic request.
791 int rds_cmsg_atomic(struct rds_sock
*rs
, struct rds_message
*rm
,
792 struct cmsghdr
*cmsg
)
794 struct page
*page
= NULL
;
795 struct rds_atomic_args
*args
;
798 if (cmsg
->cmsg_len
< CMSG_LEN(sizeof(struct rds_atomic_args
))
799 || rm
->atomic
.op_active
)
802 args
= CMSG_DATA(cmsg
);
804 /* Nonmasked & masked cmsg ops converted to masked hw ops */
805 switch (cmsg
->cmsg_type
) {
806 case RDS_CMSG_ATOMIC_FADD
:
807 rm
->atomic
.op_type
= RDS_ATOMIC_TYPE_FADD
;
808 rm
->atomic
.op_m_fadd
.add
= args
->fadd
.add
;
809 rm
->atomic
.op_m_fadd
.nocarry_mask
= 0;
811 case RDS_CMSG_MASKED_ATOMIC_FADD
:
812 rm
->atomic
.op_type
= RDS_ATOMIC_TYPE_FADD
;
813 rm
->atomic
.op_m_fadd
.add
= args
->m_fadd
.add
;
814 rm
->atomic
.op_m_fadd
.nocarry_mask
= args
->m_fadd
.nocarry_mask
;
816 case RDS_CMSG_ATOMIC_CSWP
:
817 rm
->atomic
.op_type
= RDS_ATOMIC_TYPE_CSWP
;
818 rm
->atomic
.op_m_cswp
.compare
= args
->cswp
.compare
;
819 rm
->atomic
.op_m_cswp
.swap
= args
->cswp
.swap
;
820 rm
->atomic
.op_m_cswp
.compare_mask
= ~0;
821 rm
->atomic
.op_m_cswp
.swap_mask
= ~0;
823 case RDS_CMSG_MASKED_ATOMIC_CSWP
:
824 rm
->atomic
.op_type
= RDS_ATOMIC_TYPE_CSWP
;
825 rm
->atomic
.op_m_cswp
.compare
= args
->m_cswp
.compare
;
826 rm
->atomic
.op_m_cswp
.swap
= args
->m_cswp
.swap
;
827 rm
->atomic
.op_m_cswp
.compare_mask
= args
->m_cswp
.compare_mask
;
828 rm
->atomic
.op_m_cswp
.swap_mask
= args
->m_cswp
.swap_mask
;
831 BUG(); /* should never happen */
834 rm
->atomic
.op_notify
= !!(args
->flags
& RDS_RDMA_NOTIFY_ME
);
835 rm
->atomic
.op_silent
= !!(args
->flags
& RDS_RDMA_SILENT
);
836 rm
->atomic
.op_active
= 1;
837 rm
->atomic
.op_recverr
= rs
->rs_recverr
;
838 rm
->atomic
.op_sg
= rds_message_alloc_sgs(rm
, 1);
839 if (!rm
->atomic
.op_sg
) {
844 /* verify 8 byte-aligned */
845 if (args
->local_addr
& 0x7) {
850 ret
= rds_pin_pages(args
->local_addr
, 1, &page
, 1);
855 sg_set_page(rm
->atomic
.op_sg
, page
, 8, offset_in_page(args
->local_addr
));
857 if (rm
->atomic
.op_notify
|| rm
->atomic
.op_recverr
) {
858 /* We allocate an uninitialized notifier here, because
859 * we don't want to do that in the completion handler. We
860 * would have to use GFP_ATOMIC there, and don't want to deal
861 * with failed allocations.
863 rm
->atomic
.op_notifier
= kmalloc(sizeof(*rm
->atomic
.op_notifier
), GFP_KERNEL
);
864 if (!rm
->atomic
.op_notifier
) {
869 rm
->atomic
.op_notifier
->n_user_token
= args
->user_token
;
870 rm
->atomic
.op_notifier
->n_status
= RDS_RDMA_SUCCESS
;
873 rm
->atomic
.op_rkey
= rds_rdma_cookie_key(args
->cookie
);
874 rm
->atomic
.op_remote_addr
= args
->remote_addr
+ rds_rdma_cookie_offset(args
->cookie
);
880 rm
->atomic
.op_active
= 0;
881 kfree(rm
->atomic
.op_notifier
);