2 * Dynamic DMA mapping support.
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
20 #define pr_fmt(fmt) "software IO TLB: " fmt
22 #include <linux/cache.h>
23 #include <linux/dma-direct.h>
24 #include <linux/dma-noncoherent.h>
26 #include <linux/export.h>
27 #include <linux/spinlock.h>
28 #include <linux/string.h>
29 #include <linux/swiotlb.h>
30 #include <linux/pfn.h>
31 #include <linux/types.h>
32 #include <linux/ctype.h>
33 #include <linux/highmem.h>
34 #include <linux/gfp.h>
35 #include <linux/scatterlist.h>
36 #include <linux/mem_encrypt.h>
37 #include <linux/set_memory.h>
42 #include <linux/init.h>
43 #include <linux/memblock.h>
44 #include <linux/iommu-helper.h>
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/swiotlb.h>
49 #define OFFSET(val,align) ((unsigned long) \
50 ( (val) & ( (align) - 1)))
52 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
55 * Minimum IO TLB size to bother booting with. Systems with mainly
56 * 64bit capable cards will only lightly use the swiotlb. If we can't
57 * allocate a contiguous 1MB, we're probably in trouble anyway.
59 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
61 enum swiotlb_force swiotlb_force
;
64 * Used to do a quick range check in swiotlb_tbl_unmap_single and
65 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
68 static phys_addr_t io_tlb_start
, io_tlb_end
;
71 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
72 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
74 static unsigned long io_tlb_nslabs
;
77 * This is a free list describing the number of free entries available from
80 static unsigned int *io_tlb_list
;
81 static unsigned int io_tlb_index
;
84 * Max segment that we can provide which (if pages are contingous) will
85 * not be bounced (unless SWIOTLB_FORCE is set).
87 unsigned int max_segment
;
90 * We need to save away the original address corresponding to a mapped entry
91 * for the sync operations.
93 #define INVALID_PHYS_ADDR (~(phys_addr_t)0)
94 static phys_addr_t
*io_tlb_orig_addr
;
97 * Protect the above data structures in the map and unmap calls
99 static DEFINE_SPINLOCK(io_tlb_lock
);
101 static int late_alloc
;
104 setup_io_tlb_npages(char *str
)
107 io_tlb_nslabs
= simple_strtoul(str
, &str
, 0);
108 /* avoid tail segment of size < IO_TLB_SEGSIZE */
109 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
113 if (!strcmp(str
, "force")) {
114 swiotlb_force
= SWIOTLB_FORCE
;
115 } else if (!strcmp(str
, "noforce")) {
116 swiotlb_force
= SWIOTLB_NO_FORCE
;
122 early_param("swiotlb", setup_io_tlb_npages
);
124 unsigned long swiotlb_nr_tbl(void)
126 return io_tlb_nslabs
;
128 EXPORT_SYMBOL_GPL(swiotlb_nr_tbl
);
130 unsigned int swiotlb_max_segment(void)
134 EXPORT_SYMBOL_GPL(swiotlb_max_segment
);
136 void swiotlb_set_max_segment(unsigned int val
)
138 if (swiotlb_force
== SWIOTLB_FORCE
)
141 max_segment
= rounddown(val
, PAGE_SIZE
);
144 /* default to 64MB */
145 #define IO_TLB_DEFAULT_SIZE (64UL<<20)
146 unsigned long swiotlb_size_or_default(void)
150 size
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
152 return size
? size
: (IO_TLB_DEFAULT_SIZE
);
155 static bool no_iotlb_memory
;
157 void swiotlb_print_info(void)
159 unsigned long bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
161 if (no_iotlb_memory
) {
162 pr_warn("No low mem\n");
166 pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n",
167 (unsigned long long)io_tlb_start
,
168 (unsigned long long)io_tlb_end
,
173 * Early SWIOTLB allocation may be too early to allow an architecture to
174 * perform the desired operations. This function allows the architecture to
175 * call SWIOTLB when the operations are possible. It needs to be called
176 * before the SWIOTLB memory is used.
178 void __init
swiotlb_update_mem_attributes(void)
183 if (no_iotlb_memory
|| late_alloc
)
186 vaddr
= phys_to_virt(io_tlb_start
);
187 bytes
= PAGE_ALIGN(io_tlb_nslabs
<< IO_TLB_SHIFT
);
188 set_memory_decrypted((unsigned long)vaddr
, bytes
>> PAGE_SHIFT
);
189 memset(vaddr
, 0, bytes
);
192 int __init
swiotlb_init_with_tbl(char *tlb
, unsigned long nslabs
, int verbose
)
194 unsigned long i
, bytes
;
196 bytes
= nslabs
<< IO_TLB_SHIFT
;
198 io_tlb_nslabs
= nslabs
;
199 io_tlb_start
= __pa(tlb
);
200 io_tlb_end
= io_tlb_start
+ bytes
;
203 * Allocate and initialize the free list array. This array is used
204 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
205 * between io_tlb_start and io_tlb_end.
207 io_tlb_list
= memblock_alloc(
208 PAGE_ALIGN(io_tlb_nslabs
* sizeof(int)),
210 io_tlb_orig_addr
= memblock_alloc(
211 PAGE_ALIGN(io_tlb_nslabs
* sizeof(phys_addr_t
)),
213 for (i
= 0; i
< io_tlb_nslabs
; i
++) {
214 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
215 io_tlb_orig_addr
[i
] = INVALID_PHYS_ADDR
;
220 swiotlb_print_info();
222 swiotlb_set_max_segment(io_tlb_nslabs
<< IO_TLB_SHIFT
);
227 * Statically reserve bounce buffer space and initialize bounce buffer data
228 * structures for the software IO TLB used to implement the DMA API.
231 swiotlb_init(int verbose
)
233 size_t default_size
= IO_TLB_DEFAULT_SIZE
;
234 unsigned char *vstart
;
237 if (!io_tlb_nslabs
) {
238 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
239 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
242 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
244 /* Get IO TLB memory from the low pages */
245 vstart
= memblock_alloc_low_nopanic(PAGE_ALIGN(bytes
), PAGE_SIZE
);
246 if (vstart
&& !swiotlb_init_with_tbl(vstart
, io_tlb_nslabs
, verbose
))
250 memblock_free_early(io_tlb_start
,
251 PAGE_ALIGN(io_tlb_nslabs
<< IO_TLB_SHIFT
));
252 pr_warn("Cannot allocate buffer");
253 no_iotlb_memory
= true;
257 * Systems with larger DMA zones (those that don't support ISA) can
258 * initialize the swiotlb later using the slab allocator if needed.
259 * This should be just like above, but with some error catching.
262 swiotlb_late_init_with_default_size(size_t default_size
)
264 unsigned long bytes
, req_nslabs
= io_tlb_nslabs
;
265 unsigned char *vstart
= NULL
;
269 if (!io_tlb_nslabs
) {
270 io_tlb_nslabs
= (default_size
>> IO_TLB_SHIFT
);
271 io_tlb_nslabs
= ALIGN(io_tlb_nslabs
, IO_TLB_SEGSIZE
);
275 * Get IO TLB memory from the low pages
277 order
= get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
);
278 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
279 bytes
= io_tlb_nslabs
<< IO_TLB_SHIFT
;
281 while ((SLABS_PER_PAGE
<< order
) > IO_TLB_MIN_SLABS
) {
282 vstart
= (void *)__get_free_pages(GFP_DMA
| __GFP_NOWARN
,
290 io_tlb_nslabs
= req_nslabs
;
293 if (order
!= get_order(bytes
)) {
294 pr_warn("only able to allocate %ld MB\n",
295 (PAGE_SIZE
<< order
) >> 20);
296 io_tlb_nslabs
= SLABS_PER_PAGE
<< order
;
298 rc
= swiotlb_late_init_with_tbl(vstart
, io_tlb_nslabs
);
300 free_pages((unsigned long)vstart
, order
);
306 swiotlb_late_init_with_tbl(char *tlb
, unsigned long nslabs
)
308 unsigned long i
, bytes
;
310 bytes
= nslabs
<< IO_TLB_SHIFT
;
312 io_tlb_nslabs
= nslabs
;
313 io_tlb_start
= virt_to_phys(tlb
);
314 io_tlb_end
= io_tlb_start
+ bytes
;
316 set_memory_decrypted((unsigned long)tlb
, bytes
>> PAGE_SHIFT
);
317 memset(tlb
, 0, bytes
);
320 * Allocate and initialize the free list array. This array is used
321 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
322 * between io_tlb_start and io_tlb_end.
324 io_tlb_list
= (unsigned int *)__get_free_pages(GFP_KERNEL
,
325 get_order(io_tlb_nslabs
* sizeof(int)));
329 io_tlb_orig_addr
= (phys_addr_t
*)
330 __get_free_pages(GFP_KERNEL
,
331 get_order(io_tlb_nslabs
*
332 sizeof(phys_addr_t
)));
333 if (!io_tlb_orig_addr
)
336 for (i
= 0; i
< io_tlb_nslabs
; i
++) {
337 io_tlb_list
[i
] = IO_TLB_SEGSIZE
- OFFSET(i
, IO_TLB_SEGSIZE
);
338 io_tlb_orig_addr
[i
] = INVALID_PHYS_ADDR
;
342 swiotlb_print_info();
346 swiotlb_set_max_segment(io_tlb_nslabs
<< IO_TLB_SHIFT
);
351 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
362 void __init
swiotlb_exit(void)
364 if (!io_tlb_orig_addr
)
368 free_pages((unsigned long)io_tlb_orig_addr
,
369 get_order(io_tlb_nslabs
* sizeof(phys_addr_t
)));
370 free_pages((unsigned long)io_tlb_list
, get_order(io_tlb_nslabs
*
372 free_pages((unsigned long)phys_to_virt(io_tlb_start
),
373 get_order(io_tlb_nslabs
<< IO_TLB_SHIFT
));
375 memblock_free_late(__pa(io_tlb_orig_addr
),
376 PAGE_ALIGN(io_tlb_nslabs
* sizeof(phys_addr_t
)));
377 memblock_free_late(__pa(io_tlb_list
),
378 PAGE_ALIGN(io_tlb_nslabs
* sizeof(int)));
379 memblock_free_late(io_tlb_start
,
380 PAGE_ALIGN(io_tlb_nslabs
<< IO_TLB_SHIFT
));
386 static int is_swiotlb_buffer(phys_addr_t paddr
)
388 return paddr
>= io_tlb_start
&& paddr
< io_tlb_end
;
392 * Bounce: copy the swiotlb buffer back to the original dma location
394 static void swiotlb_bounce(phys_addr_t orig_addr
, phys_addr_t tlb_addr
,
395 size_t size
, enum dma_data_direction dir
)
397 unsigned long pfn
= PFN_DOWN(orig_addr
);
398 unsigned char *vaddr
= phys_to_virt(tlb_addr
);
400 if (PageHighMem(pfn_to_page(pfn
))) {
401 /* The buffer does not have a mapping. Map it in and copy */
402 unsigned int offset
= orig_addr
& ~PAGE_MASK
;
408 sz
= min_t(size_t, PAGE_SIZE
- offset
, size
);
410 local_irq_save(flags
);
411 buffer
= kmap_atomic(pfn_to_page(pfn
));
412 if (dir
== DMA_TO_DEVICE
)
413 memcpy(vaddr
, buffer
+ offset
, sz
);
415 memcpy(buffer
+ offset
, vaddr
, sz
);
416 kunmap_atomic(buffer
);
417 local_irq_restore(flags
);
424 } else if (dir
== DMA_TO_DEVICE
) {
425 memcpy(vaddr
, phys_to_virt(orig_addr
), size
);
427 memcpy(phys_to_virt(orig_addr
), vaddr
, size
);
431 phys_addr_t
swiotlb_tbl_map_single(struct device
*hwdev
,
432 dma_addr_t tbl_dma_addr
,
433 phys_addr_t orig_addr
, size_t size
,
434 enum dma_data_direction dir
,
438 phys_addr_t tlb_addr
;
439 unsigned int nslots
, stride
, index
, wrap
;
442 unsigned long offset_slots
;
443 unsigned long max_slots
;
446 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
448 if (mem_encrypt_active())
449 pr_warn_once("%s is active and system is using DMA bounce buffers\n",
450 sme_active() ? "SME" : "SEV");
452 mask
= dma_get_seg_boundary(hwdev
);
454 tbl_dma_addr
&= mask
;
456 offset_slots
= ALIGN(tbl_dma_addr
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
459 * Carefully handle integer overflow which can occur when mask == ~0UL.
462 ? ALIGN(mask
+ 1, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
463 : 1UL << (BITS_PER_LONG
- IO_TLB_SHIFT
);
466 * For mappings greater than or equal to a page, we limit the stride
467 * (and hence alignment) to a page size.
469 nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
470 if (size
>= PAGE_SIZE
)
471 stride
= (1 << (PAGE_SHIFT
- IO_TLB_SHIFT
));
478 * Find suitable number of IO TLB entries size that will fit this
479 * request and allocate a buffer from that IO TLB pool.
481 spin_lock_irqsave(&io_tlb_lock
, flags
);
482 index
= ALIGN(io_tlb_index
, stride
);
483 if (index
>= io_tlb_nslabs
)
488 while (iommu_is_span_boundary(index
, nslots
, offset_slots
,
491 if (index
>= io_tlb_nslabs
)
498 * If we find a slot that indicates we have 'nslots' number of
499 * contiguous buffers, we allocate the buffers from that slot
500 * and mark the entries as '0' indicating unavailable.
502 if (io_tlb_list
[index
] >= nslots
) {
505 for (i
= index
; i
< (int) (index
+ nslots
); i
++)
507 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
- 1) && io_tlb_list
[i
]; i
--)
508 io_tlb_list
[i
] = ++count
;
509 tlb_addr
= io_tlb_start
+ (index
<< IO_TLB_SHIFT
);
512 * Update the indices to avoid searching in the next
515 io_tlb_index
= ((index
+ nslots
) < io_tlb_nslabs
516 ? (index
+ nslots
) : 0);
521 if (index
>= io_tlb_nslabs
)
523 } while (index
!= wrap
);
526 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
527 if (!(attrs
& DMA_ATTR_NO_WARN
) && printk_ratelimit())
528 dev_warn(hwdev
, "swiotlb buffer is full (sz: %zd bytes)\n", size
);
529 return SWIOTLB_MAP_ERROR
;
531 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
534 * Save away the mapping from the original address to the DMA address.
535 * This is needed when we sync the memory. Then we sync the buffer if
538 for (i
= 0; i
< nslots
; i
++)
539 io_tlb_orig_addr
[index
+i
] = orig_addr
+ (i
<< IO_TLB_SHIFT
);
540 if (!(attrs
& DMA_ATTR_SKIP_CPU_SYNC
) &&
541 (dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
542 swiotlb_bounce(orig_addr
, tlb_addr
, size
, DMA_TO_DEVICE
);
548 * tlb_addr is the physical address of the bounce buffer to unmap.
550 void swiotlb_tbl_unmap_single(struct device
*hwdev
, phys_addr_t tlb_addr
,
551 size_t size
, enum dma_data_direction dir
,
555 int i
, count
, nslots
= ALIGN(size
, 1 << IO_TLB_SHIFT
) >> IO_TLB_SHIFT
;
556 int index
= (tlb_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
557 phys_addr_t orig_addr
= io_tlb_orig_addr
[index
];
560 * First, sync the memory before unmapping the entry
562 if (orig_addr
!= INVALID_PHYS_ADDR
&&
563 !(attrs
& DMA_ATTR_SKIP_CPU_SYNC
) &&
564 ((dir
== DMA_FROM_DEVICE
) || (dir
== DMA_BIDIRECTIONAL
)))
565 swiotlb_bounce(orig_addr
, tlb_addr
, size
, DMA_FROM_DEVICE
);
568 * Return the buffer to the free list by setting the corresponding
569 * entries to indicate the number of contiguous entries available.
570 * While returning the entries to the free list, we merge the entries
571 * with slots below and above the pool being returned.
573 spin_lock_irqsave(&io_tlb_lock
, flags
);
575 count
= ((index
+ nslots
) < ALIGN(index
+ 1, IO_TLB_SEGSIZE
) ?
576 io_tlb_list
[index
+ nslots
] : 0);
578 * Step 1: return the slots to the free list, merging the
579 * slots with superceeding slots
581 for (i
= index
+ nslots
- 1; i
>= index
; i
--) {
582 io_tlb_list
[i
] = ++count
;
583 io_tlb_orig_addr
[i
] = INVALID_PHYS_ADDR
;
586 * Step 2: merge the returned slots with the preceding slots,
587 * if available (non zero)
589 for (i
= index
- 1; (OFFSET(i
, IO_TLB_SEGSIZE
) != IO_TLB_SEGSIZE
-1) && io_tlb_list
[i
]; i
--)
590 io_tlb_list
[i
] = ++count
;
592 spin_unlock_irqrestore(&io_tlb_lock
, flags
);
595 void swiotlb_tbl_sync_single(struct device
*hwdev
, phys_addr_t tlb_addr
,
596 size_t size
, enum dma_data_direction dir
,
597 enum dma_sync_target target
)
599 int index
= (tlb_addr
- io_tlb_start
) >> IO_TLB_SHIFT
;
600 phys_addr_t orig_addr
= io_tlb_orig_addr
[index
];
602 if (orig_addr
== INVALID_PHYS_ADDR
)
604 orig_addr
+= (unsigned long)tlb_addr
& ((1 << IO_TLB_SHIFT
) - 1);
608 if (likely(dir
== DMA_FROM_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
609 swiotlb_bounce(orig_addr
, tlb_addr
,
610 size
, DMA_FROM_DEVICE
);
612 BUG_ON(dir
!= DMA_TO_DEVICE
);
614 case SYNC_FOR_DEVICE
:
615 if (likely(dir
== DMA_TO_DEVICE
|| dir
== DMA_BIDIRECTIONAL
))
616 swiotlb_bounce(orig_addr
, tlb_addr
,
617 size
, DMA_TO_DEVICE
);
619 BUG_ON(dir
!= DMA_FROM_DEVICE
);
626 static dma_addr_t
swiotlb_bounce_page(struct device
*dev
, phys_addr_t
*phys
,
627 size_t size
, enum dma_data_direction dir
, unsigned long attrs
)
631 if (unlikely(swiotlb_force
== SWIOTLB_NO_FORCE
)) {
632 dev_warn_ratelimited(dev
,
633 "Cannot do DMA to address %pa\n", phys
);
634 return DIRECT_MAPPING_ERROR
;
637 /* Oh well, have to allocate and map a bounce buffer. */
638 *phys
= swiotlb_tbl_map_single(dev
, __phys_to_dma(dev
, io_tlb_start
),
639 *phys
, size
, dir
, attrs
);
640 if (*phys
== SWIOTLB_MAP_ERROR
)
641 return DIRECT_MAPPING_ERROR
;
643 /* Ensure that the address returned is DMA'ble */
644 dma_addr
= __phys_to_dma(dev
, *phys
);
645 if (unlikely(!dma_capable(dev
, dma_addr
, size
))) {
646 swiotlb_tbl_unmap_single(dev
, *phys
, size
, dir
,
647 attrs
| DMA_ATTR_SKIP_CPU_SYNC
);
648 return DIRECT_MAPPING_ERROR
;
655 * Map a single buffer of the indicated size for DMA in streaming mode. The
656 * physical address to use is returned.
658 * Once the device is given the dma address, the device owns this memory until
659 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
661 dma_addr_t
swiotlb_map_page(struct device
*dev
, struct page
*page
,
662 unsigned long offset
, size_t size
,
663 enum dma_data_direction dir
,
666 phys_addr_t phys
= page_to_phys(page
) + offset
;
667 dma_addr_t dev_addr
= phys_to_dma(dev
, phys
);
669 BUG_ON(dir
== DMA_NONE
);
671 * If the address happens to be in the device's DMA window,
672 * we can safely return the device addr and not worry about bounce
675 if (!dma_capable(dev
, dev_addr
, size
) ||
676 swiotlb_force
== SWIOTLB_FORCE
) {
677 trace_swiotlb_bounced(dev
, dev_addr
, size
, swiotlb_force
);
678 dev_addr
= swiotlb_bounce_page(dev
, &phys
, size
, dir
, attrs
);
681 if (!dev_is_dma_coherent(dev
) &&
682 (attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0 &&
683 dev_addr
!= DIRECT_MAPPING_ERROR
)
684 arch_sync_dma_for_device(dev
, phys
, size
, dir
);
690 * Unmap a single streaming mode DMA translation. The dma_addr and size must
691 * match what was provided for in a previous swiotlb_map_page call. All
692 * other usages are undefined.
694 * After this call, reads by the cpu to the buffer are guaranteed to see
695 * whatever the device wrote there.
697 void swiotlb_unmap_page(struct device
*hwdev
, dma_addr_t dev_addr
,
698 size_t size
, enum dma_data_direction dir
,
701 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
703 BUG_ON(dir
== DMA_NONE
);
705 if (!dev_is_dma_coherent(hwdev
) &&
706 (attrs
& DMA_ATTR_SKIP_CPU_SYNC
) == 0)
707 arch_sync_dma_for_cpu(hwdev
, paddr
, size
, dir
);
709 if (is_swiotlb_buffer(paddr
)) {
710 swiotlb_tbl_unmap_single(hwdev
, paddr
, size
, dir
, attrs
);
714 if (dir
!= DMA_FROM_DEVICE
)
718 * phys_to_virt doesn't work with hihgmem page but we could
719 * call dma_mark_clean() with hihgmem page here. However, we
720 * are fine since dma_mark_clean() is null on POWERPC. We can
721 * make dma_mark_clean() take a physical address if necessary.
723 dma_mark_clean(phys_to_virt(paddr
), size
);
727 * Make physical memory consistent for a single streaming mode DMA translation
730 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
731 * using the cpu, yet do not wish to teardown the dma mapping, you must
732 * call this function before doing so. At the next point you give the dma
733 * address back to the card, you must first perform a
734 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
737 swiotlb_sync_single(struct device
*hwdev
, dma_addr_t dev_addr
,
738 size_t size
, enum dma_data_direction dir
,
739 enum dma_sync_target target
)
741 phys_addr_t paddr
= dma_to_phys(hwdev
, dev_addr
);
743 BUG_ON(dir
== DMA_NONE
);
745 if (!dev_is_dma_coherent(hwdev
) && target
== SYNC_FOR_CPU
)
746 arch_sync_dma_for_cpu(hwdev
, paddr
, size
, dir
);
748 if (is_swiotlb_buffer(paddr
))
749 swiotlb_tbl_sync_single(hwdev
, paddr
, size
, dir
, target
);
751 if (!dev_is_dma_coherent(hwdev
) && target
== SYNC_FOR_DEVICE
)
752 arch_sync_dma_for_device(hwdev
, paddr
, size
, dir
);
754 if (!is_swiotlb_buffer(paddr
) && dir
== DMA_FROM_DEVICE
)
755 dma_mark_clean(phys_to_virt(paddr
), size
);
759 swiotlb_sync_single_for_cpu(struct device
*hwdev
, dma_addr_t dev_addr
,
760 size_t size
, enum dma_data_direction dir
)
762 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_CPU
);
766 swiotlb_sync_single_for_device(struct device
*hwdev
, dma_addr_t dev_addr
,
767 size_t size
, enum dma_data_direction dir
)
769 swiotlb_sync_single(hwdev
, dev_addr
, size
, dir
, SYNC_FOR_DEVICE
);
773 * Map a set of buffers described by scatterlist in streaming mode for DMA.
774 * This is the scatter-gather version of the above swiotlb_map_page
775 * interface. Here the scatter gather list elements are each tagged with the
776 * appropriate dma address and length. They are obtained via
777 * sg_dma_{address,length}(SG).
779 * Device ownership issues as mentioned above for swiotlb_map_page are the
783 swiotlb_map_sg_attrs(struct device
*dev
, struct scatterlist
*sgl
, int nelems
,
784 enum dma_data_direction dir
, unsigned long attrs
)
786 struct scatterlist
*sg
;
789 for_each_sg(sgl
, sg
, nelems
, i
) {
790 sg
->dma_address
= swiotlb_map_page(dev
, sg_page(sg
), sg
->offset
,
791 sg
->length
, dir
, attrs
);
792 if (sg
->dma_address
== DIRECT_MAPPING_ERROR
)
794 sg_dma_len(sg
) = sg
->length
;
800 swiotlb_unmap_sg_attrs(dev
, sgl
, i
, dir
,
801 attrs
| DMA_ATTR_SKIP_CPU_SYNC
);
807 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
808 * concerning calls here are the same as for swiotlb_unmap_page() above.
811 swiotlb_unmap_sg_attrs(struct device
*hwdev
, struct scatterlist
*sgl
,
812 int nelems
, enum dma_data_direction dir
,
815 struct scatterlist
*sg
;
818 BUG_ON(dir
== DMA_NONE
);
820 for_each_sg(sgl
, sg
, nelems
, i
)
821 swiotlb_unmap_page(hwdev
, sg
->dma_address
, sg_dma_len(sg
), dir
,
826 * Make physical memory consistent for a set of streaming mode DMA translations
829 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
833 swiotlb_sync_sg(struct device
*hwdev
, struct scatterlist
*sgl
,
834 int nelems
, enum dma_data_direction dir
,
835 enum dma_sync_target target
)
837 struct scatterlist
*sg
;
840 for_each_sg(sgl
, sg
, nelems
, i
)
841 swiotlb_sync_single(hwdev
, sg
->dma_address
,
842 sg_dma_len(sg
), dir
, target
);
846 swiotlb_sync_sg_for_cpu(struct device
*hwdev
, struct scatterlist
*sg
,
847 int nelems
, enum dma_data_direction dir
)
849 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_CPU
);
853 swiotlb_sync_sg_for_device(struct device
*hwdev
, struct scatterlist
*sg
,
854 int nelems
, enum dma_data_direction dir
)
856 swiotlb_sync_sg(hwdev
, sg
, nelems
, dir
, SYNC_FOR_DEVICE
);
860 * Return whether the given device DMA address mask can be supported
861 * properly. For example, if your device can only drive the low 24-bits
862 * during bus mastering, then you would pass 0x00ffffff as the mask to
866 swiotlb_dma_supported(struct device
*hwdev
, u64 mask
)
868 return __phys_to_dma(hwdev
, io_tlb_end
- 1) <= mask
;
871 const struct dma_map_ops swiotlb_dma_ops
= {
872 .mapping_error
= dma_direct_mapping_error
,
873 .alloc
= dma_direct_alloc
,
874 .free
= dma_direct_free
,
875 .sync_single_for_cpu
= swiotlb_sync_single_for_cpu
,
876 .sync_single_for_device
= swiotlb_sync_single_for_device
,
877 .sync_sg_for_cpu
= swiotlb_sync_sg_for_cpu
,
878 .sync_sg_for_device
= swiotlb_sync_sg_for_device
,
879 .map_sg
= swiotlb_map_sg_attrs
,
880 .unmap_sg
= swiotlb_unmap_sg_attrs
,
881 .map_page
= swiotlb_map_page
,
882 .unmap_page
= swiotlb_unmap_page
,
883 .dma_supported
= dma_direct_supported
,
885 EXPORT_SYMBOL(swiotlb_dma_ops
);