V4L/DVB (10353): gspca - some subdrivers: Don't get the control values from the webcam.
[linux/fpc-iii.git] / drivers / net / fec.c
bloba515acccc61f7f64a7b19ecda6773e5af26131c2
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/string.h>
25 #include <linux/ptrace.h>
26 #include <linux/errno.h>
27 #include <linux/ioport.h>
28 #include <linux/slab.h>
29 #include <linux/interrupt.h>
30 #include <linux/pci.h>
31 #include <linux/init.h>
32 #include <linux/delay.h>
33 #include <linux/netdevice.h>
34 #include <linux/etherdevice.h>
35 #include <linux/skbuff.h>
36 #include <linux/spinlock.h>
37 #include <linux/workqueue.h>
38 #include <linux/bitops.h>
39 #include <linux/io.h>
40 #include <linux/irq.h>
41 #include <linux/clk.h>
42 #include <linux/platform_device.h>
44 #include <asm/cacheflush.h>
46 #ifndef CONFIG_ARCH_MXC
47 #include <asm/coldfire.h>
48 #include <asm/mcfsim.h>
49 #endif
51 #include "fec.h"
53 #ifdef CONFIG_ARCH_MXC
54 #include <mach/hardware.h>
55 #define FEC_ALIGNMENT 0xf
56 #else
57 #define FEC_ALIGNMENT 0x3
58 #endif
61 * Define the fixed address of the FEC hardware.
63 #if defined(CONFIG_M5272)
64 #define HAVE_mii_link_interrupt
66 static unsigned char fec_mac_default[] = {
67 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
71 * Some hardware gets it MAC address out of local flash memory.
72 * if this is non-zero then assume it is the address to get MAC from.
74 #if defined(CONFIG_NETtel)
75 #define FEC_FLASHMAC 0xf0006006
76 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
77 #define FEC_FLASHMAC 0xf0006000
78 #elif defined(CONFIG_CANCam)
79 #define FEC_FLASHMAC 0xf0020000
80 #elif defined (CONFIG_M5272C3)
81 #define FEC_FLASHMAC (0xffe04000 + 4)
82 #elif defined(CONFIG_MOD5272)
83 #define FEC_FLASHMAC 0xffc0406b
84 #else
85 #define FEC_FLASHMAC 0
86 #endif
87 #endif /* CONFIG_M5272 */
89 /* Forward declarations of some structures to support different PHYs
92 typedef struct {
93 uint mii_data;
94 void (*funct)(uint mii_reg, struct net_device *dev);
95 } phy_cmd_t;
97 typedef struct {
98 uint id;
99 char *name;
101 const phy_cmd_t *config;
102 const phy_cmd_t *startup;
103 const phy_cmd_t *ack_int;
104 const phy_cmd_t *shutdown;
105 } phy_info_t;
107 /* The number of Tx and Rx buffers. These are allocated from the page
108 * pool. The code may assume these are power of two, so it it best
109 * to keep them that size.
110 * We don't need to allocate pages for the transmitter. We just use
111 * the skbuffer directly.
113 #define FEC_ENET_RX_PAGES 8
114 #define FEC_ENET_RX_FRSIZE 2048
115 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
116 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
117 #define FEC_ENET_TX_FRSIZE 2048
118 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
119 #define TX_RING_SIZE 16 /* Must be power of two */
120 #define TX_RING_MOD_MASK 15 /* for this to work */
122 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
123 #error "FEC: descriptor ring size constants too large"
124 #endif
126 /* Interrupt events/masks.
128 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
129 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
130 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
131 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
132 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
133 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
134 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
135 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
136 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
137 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
139 /* The FEC stores dest/src/type, data, and checksum for receive packets.
141 #define PKT_MAXBUF_SIZE 1518
142 #define PKT_MINBUF_SIZE 64
143 #define PKT_MAXBLR_SIZE 1520
147 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
148 * size bits. Other FEC hardware does not, so we need to take that into
149 * account when setting it.
151 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
152 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARCH_MXC)
153 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
154 #else
155 #define OPT_FRAME_SIZE 0
156 #endif
158 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
159 * tx_bd_base always point to the base of the buffer descriptors. The
160 * cur_rx and cur_tx point to the currently available buffer.
161 * The dirty_tx tracks the current buffer that is being sent by the
162 * controller. The cur_tx and dirty_tx are equal under both completely
163 * empty and completely full conditions. The empty/ready indicator in
164 * the buffer descriptor determines the actual condition.
166 struct fec_enet_private {
167 /* Hardware registers of the FEC device */
168 volatile fec_t *hwp;
170 struct net_device *netdev;
172 struct clk *clk;
174 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
175 unsigned char *tx_bounce[TX_RING_SIZE];
176 struct sk_buff* tx_skbuff[TX_RING_SIZE];
177 ushort skb_cur;
178 ushort skb_dirty;
180 /* CPM dual port RAM relative addresses.
182 dma_addr_t bd_dma;
183 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
184 cbd_t *tx_bd_base;
185 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
186 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
187 uint tx_full;
188 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
189 spinlock_t hw_lock;
190 /* hold while accessing the mii_list_t() elements */
191 spinlock_t mii_lock;
193 uint phy_id;
194 uint phy_id_done;
195 uint phy_status;
196 uint phy_speed;
197 phy_info_t const *phy;
198 struct work_struct phy_task;
200 uint sequence_done;
201 uint mii_phy_task_queued;
203 uint phy_addr;
205 int index;
206 int opened;
207 int link;
208 int old_link;
209 int full_duplex;
212 static int fec_enet_open(struct net_device *dev);
213 static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
214 static void fec_enet_mii(struct net_device *dev);
215 static irqreturn_t fec_enet_interrupt(int irq, void * dev_id);
216 static void fec_enet_tx(struct net_device *dev);
217 static void fec_enet_rx(struct net_device *dev);
218 static int fec_enet_close(struct net_device *dev);
219 static void set_multicast_list(struct net_device *dev);
220 static void fec_restart(struct net_device *dev, int duplex);
221 static void fec_stop(struct net_device *dev);
222 static void fec_set_mac_address(struct net_device *dev);
225 /* MII processing. We keep this as simple as possible. Requests are
226 * placed on the list (if there is room). When the request is finished
227 * by the MII, an optional function may be called.
229 typedef struct mii_list {
230 uint mii_regval;
231 void (*mii_func)(uint val, struct net_device *dev);
232 struct mii_list *mii_next;
233 } mii_list_t;
235 #define NMII 20
236 static mii_list_t mii_cmds[NMII];
237 static mii_list_t *mii_free;
238 static mii_list_t *mii_head;
239 static mii_list_t *mii_tail;
241 static int mii_queue(struct net_device *dev, int request,
242 void (*func)(uint, struct net_device *));
244 /* Make MII read/write commands for the FEC.
246 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
247 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
248 (VAL & 0xffff))
249 #define mk_mii_end 0
251 /* Transmitter timeout.
253 #define TX_TIMEOUT (2*HZ)
255 /* Register definitions for the PHY.
258 #define MII_REG_CR 0 /* Control Register */
259 #define MII_REG_SR 1 /* Status Register */
260 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
261 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
262 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
263 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
264 #define MII_REG_ANER 6 /* A-N Expansion Register */
265 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
266 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
268 /* values for phy_status */
270 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
271 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
272 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
273 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
274 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
275 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
276 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
278 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
279 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
280 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
281 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
282 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
283 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
284 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
285 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
288 static int
289 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
291 struct fec_enet_private *fep;
292 volatile fec_t *fecp;
293 volatile cbd_t *bdp;
294 unsigned short status;
295 unsigned long flags;
297 fep = netdev_priv(dev);
298 fecp = (volatile fec_t*)dev->base_addr;
300 if (!fep->link) {
301 /* Link is down or autonegotiation is in progress. */
302 return 1;
305 spin_lock_irqsave(&fep->hw_lock, flags);
306 /* Fill in a Tx ring entry */
307 bdp = fep->cur_tx;
309 status = bdp->cbd_sc;
310 #ifndef final_version
311 if (status & BD_ENET_TX_READY) {
312 /* Ooops. All transmit buffers are full. Bail out.
313 * This should not happen, since dev->tbusy should be set.
315 printk("%s: tx queue full!.\n", dev->name);
316 spin_unlock_irqrestore(&fep->hw_lock, flags);
317 return 1;
319 #endif
321 /* Clear all of the status flags.
323 status &= ~BD_ENET_TX_STATS;
325 /* Set buffer length and buffer pointer.
327 bdp->cbd_bufaddr = __pa(skb->data);
328 bdp->cbd_datlen = skb->len;
331 * On some FEC implementations data must be aligned on
332 * 4-byte boundaries. Use bounce buffers to copy data
333 * and get it aligned. Ugh.
335 if (bdp->cbd_bufaddr & FEC_ALIGNMENT) {
336 unsigned int index;
337 index = bdp - fep->tx_bd_base;
338 memcpy(fep->tx_bounce[index], (void *)skb->data, skb->len);
339 bdp->cbd_bufaddr = __pa(fep->tx_bounce[index]);
342 /* Save skb pointer.
344 fep->tx_skbuff[fep->skb_cur] = skb;
346 dev->stats.tx_bytes += skb->len;
347 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
349 /* Push the data cache so the CPM does not get stale memory
350 * data.
352 dma_sync_single(NULL, bdp->cbd_bufaddr,
353 bdp->cbd_datlen, DMA_TO_DEVICE);
355 /* Send it on its way. Tell FEC it's ready, interrupt when done,
356 * it's the last BD of the frame, and to put the CRC on the end.
359 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
360 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
361 bdp->cbd_sc = status;
363 dev->trans_start = jiffies;
365 /* Trigger transmission start */
366 fecp->fec_x_des_active = 0;
368 /* If this was the last BD in the ring, start at the beginning again.
370 if (status & BD_ENET_TX_WRAP) {
371 bdp = fep->tx_bd_base;
372 } else {
373 bdp++;
376 if (bdp == fep->dirty_tx) {
377 fep->tx_full = 1;
378 netif_stop_queue(dev);
381 fep->cur_tx = (cbd_t *)bdp;
383 spin_unlock_irqrestore(&fep->hw_lock, flags);
385 return 0;
388 static void
389 fec_timeout(struct net_device *dev)
391 struct fec_enet_private *fep = netdev_priv(dev);
393 printk("%s: transmit timed out.\n", dev->name);
394 dev->stats.tx_errors++;
395 #ifndef final_version
397 int i;
398 cbd_t *bdp;
400 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
401 (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
402 (unsigned long)fep->dirty_tx,
403 (unsigned long)fep->cur_rx);
405 bdp = fep->tx_bd_base;
406 printk(" tx: %u buffers\n", TX_RING_SIZE);
407 for (i = 0 ; i < TX_RING_SIZE; i++) {
408 printk(" %08x: %04x %04x %08x\n",
409 (uint) bdp,
410 bdp->cbd_sc,
411 bdp->cbd_datlen,
412 (int) bdp->cbd_bufaddr);
413 bdp++;
416 bdp = fep->rx_bd_base;
417 printk(" rx: %lu buffers\n", (unsigned long) RX_RING_SIZE);
418 for (i = 0 ; i < RX_RING_SIZE; i++) {
419 printk(" %08x: %04x %04x %08x\n",
420 (uint) bdp,
421 bdp->cbd_sc,
422 bdp->cbd_datlen,
423 (int) bdp->cbd_bufaddr);
424 bdp++;
427 #endif
428 fec_restart(dev, fep->full_duplex);
429 netif_wake_queue(dev);
432 /* The interrupt handler.
433 * This is called from the MPC core interrupt.
435 static irqreturn_t
436 fec_enet_interrupt(int irq, void * dev_id)
438 struct net_device *dev = dev_id;
439 volatile fec_t *fecp;
440 uint int_events;
441 irqreturn_t ret = IRQ_NONE;
443 fecp = (volatile fec_t*)dev->base_addr;
445 /* Get the interrupt events that caused us to be here.
447 do {
448 int_events = fecp->fec_ievent;
449 fecp->fec_ievent = int_events;
451 /* Handle receive event in its own function.
453 if (int_events & FEC_ENET_RXF) {
454 ret = IRQ_HANDLED;
455 fec_enet_rx(dev);
458 /* Transmit OK, or non-fatal error. Update the buffer
459 descriptors. FEC handles all errors, we just discover
460 them as part of the transmit process.
462 if (int_events & FEC_ENET_TXF) {
463 ret = IRQ_HANDLED;
464 fec_enet_tx(dev);
467 if (int_events & FEC_ENET_MII) {
468 ret = IRQ_HANDLED;
469 fec_enet_mii(dev);
472 } while (int_events);
474 return ret;
478 static void
479 fec_enet_tx(struct net_device *dev)
481 struct fec_enet_private *fep;
482 volatile cbd_t *bdp;
483 unsigned short status;
484 struct sk_buff *skb;
486 fep = netdev_priv(dev);
487 spin_lock_irq(&fep->hw_lock);
488 bdp = fep->dirty_tx;
490 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
491 if (bdp == fep->cur_tx && fep->tx_full == 0) break;
493 skb = fep->tx_skbuff[fep->skb_dirty];
494 /* Check for errors. */
495 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
496 BD_ENET_TX_RL | BD_ENET_TX_UN |
497 BD_ENET_TX_CSL)) {
498 dev->stats.tx_errors++;
499 if (status & BD_ENET_TX_HB) /* No heartbeat */
500 dev->stats.tx_heartbeat_errors++;
501 if (status & BD_ENET_TX_LC) /* Late collision */
502 dev->stats.tx_window_errors++;
503 if (status & BD_ENET_TX_RL) /* Retrans limit */
504 dev->stats.tx_aborted_errors++;
505 if (status & BD_ENET_TX_UN) /* Underrun */
506 dev->stats.tx_fifo_errors++;
507 if (status & BD_ENET_TX_CSL) /* Carrier lost */
508 dev->stats.tx_carrier_errors++;
509 } else {
510 dev->stats.tx_packets++;
513 #ifndef final_version
514 if (status & BD_ENET_TX_READY)
515 printk("HEY! Enet xmit interrupt and TX_READY.\n");
516 #endif
517 /* Deferred means some collisions occurred during transmit,
518 * but we eventually sent the packet OK.
520 if (status & BD_ENET_TX_DEF)
521 dev->stats.collisions++;
523 /* Free the sk buffer associated with this last transmit.
525 dev_kfree_skb_any(skb);
526 fep->tx_skbuff[fep->skb_dirty] = NULL;
527 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
529 /* Update pointer to next buffer descriptor to be transmitted.
531 if (status & BD_ENET_TX_WRAP)
532 bdp = fep->tx_bd_base;
533 else
534 bdp++;
536 /* Since we have freed up a buffer, the ring is no longer
537 * full.
539 if (fep->tx_full) {
540 fep->tx_full = 0;
541 if (netif_queue_stopped(dev))
542 netif_wake_queue(dev);
545 fep->dirty_tx = (cbd_t *)bdp;
546 spin_unlock_irq(&fep->hw_lock);
550 /* During a receive, the cur_rx points to the current incoming buffer.
551 * When we update through the ring, if the next incoming buffer has
552 * not been given to the system, we just set the empty indicator,
553 * effectively tossing the packet.
555 static void
556 fec_enet_rx(struct net_device *dev)
558 struct fec_enet_private *fep;
559 volatile fec_t *fecp;
560 volatile cbd_t *bdp;
561 unsigned short status;
562 struct sk_buff *skb;
563 ushort pkt_len;
564 __u8 *data;
566 #ifdef CONFIG_M532x
567 flush_cache_all();
568 #endif
570 fep = netdev_priv(dev);
571 fecp = (volatile fec_t*)dev->base_addr;
573 spin_lock_irq(&fep->hw_lock);
575 /* First, grab all of the stats for the incoming packet.
576 * These get messed up if we get called due to a busy condition.
578 bdp = fep->cur_rx;
580 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
582 #ifndef final_version
583 /* Since we have allocated space to hold a complete frame,
584 * the last indicator should be set.
586 if ((status & BD_ENET_RX_LAST) == 0)
587 printk("FEC ENET: rcv is not +last\n");
588 #endif
590 if (!fep->opened)
591 goto rx_processing_done;
593 /* Check for errors. */
594 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
595 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
596 dev->stats.rx_errors++;
597 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
598 /* Frame too long or too short. */
599 dev->stats.rx_length_errors++;
601 if (status & BD_ENET_RX_NO) /* Frame alignment */
602 dev->stats.rx_frame_errors++;
603 if (status & BD_ENET_RX_CR) /* CRC Error */
604 dev->stats.rx_crc_errors++;
605 if (status & BD_ENET_RX_OV) /* FIFO overrun */
606 dev->stats.rx_fifo_errors++;
609 /* Report late collisions as a frame error.
610 * On this error, the BD is closed, but we don't know what we
611 * have in the buffer. So, just drop this frame on the floor.
613 if (status & BD_ENET_RX_CL) {
614 dev->stats.rx_errors++;
615 dev->stats.rx_frame_errors++;
616 goto rx_processing_done;
619 /* Process the incoming frame.
621 dev->stats.rx_packets++;
622 pkt_len = bdp->cbd_datlen;
623 dev->stats.rx_bytes += pkt_len;
624 data = (__u8*)__va(bdp->cbd_bufaddr);
626 dma_sync_single(NULL, (unsigned long)__pa(data),
627 pkt_len - 4, DMA_FROM_DEVICE);
629 /* This does 16 byte alignment, exactly what we need.
630 * The packet length includes FCS, but we don't want to
631 * include that when passing upstream as it messes up
632 * bridging applications.
634 skb = dev_alloc_skb(pkt_len-4);
636 if (skb == NULL) {
637 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
638 dev->stats.rx_dropped++;
639 } else {
640 skb_put(skb,pkt_len-4); /* Make room */
641 skb_copy_to_linear_data(skb, data, pkt_len-4);
642 skb->protocol=eth_type_trans(skb,dev);
643 netif_rx(skb);
645 rx_processing_done:
647 /* Clear the status flags for this buffer.
649 status &= ~BD_ENET_RX_STATS;
651 /* Mark the buffer empty.
653 status |= BD_ENET_RX_EMPTY;
654 bdp->cbd_sc = status;
656 /* Update BD pointer to next entry.
658 if (status & BD_ENET_RX_WRAP)
659 bdp = fep->rx_bd_base;
660 else
661 bdp++;
663 #if 1
664 /* Doing this here will keep the FEC running while we process
665 * incoming frames. On a heavily loaded network, we should be
666 * able to keep up at the expense of system resources.
668 fecp->fec_r_des_active = 0;
669 #endif
670 } /* while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) */
671 fep->cur_rx = (cbd_t *)bdp;
673 #if 0
674 /* Doing this here will allow us to process all frames in the
675 * ring before the FEC is allowed to put more there. On a heavily
676 * loaded network, some frames may be lost. Unfortunately, this
677 * increases the interrupt overhead since we can potentially work
678 * our way back to the interrupt return only to come right back
679 * here.
681 fecp->fec_r_des_active = 0;
682 #endif
684 spin_unlock_irq(&fep->hw_lock);
688 /* called from interrupt context */
689 static void
690 fec_enet_mii(struct net_device *dev)
692 struct fec_enet_private *fep;
693 volatile fec_t *ep;
694 mii_list_t *mip;
695 uint mii_reg;
697 fep = netdev_priv(dev);
698 spin_lock_irq(&fep->mii_lock);
700 ep = fep->hwp;
701 mii_reg = ep->fec_mii_data;
703 if ((mip = mii_head) == NULL) {
704 printk("MII and no head!\n");
705 goto unlock;
708 if (mip->mii_func != NULL)
709 (*(mip->mii_func))(mii_reg, dev);
711 mii_head = mip->mii_next;
712 mip->mii_next = mii_free;
713 mii_free = mip;
715 if ((mip = mii_head) != NULL)
716 ep->fec_mii_data = mip->mii_regval;
718 unlock:
719 spin_unlock_irq(&fep->mii_lock);
722 static int
723 mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
725 struct fec_enet_private *fep;
726 unsigned long flags;
727 mii_list_t *mip;
728 int retval;
730 /* Add PHY address to register command.
732 fep = netdev_priv(dev);
733 spin_lock_irqsave(&fep->mii_lock, flags);
735 regval |= fep->phy_addr << 23;
736 retval = 0;
738 if ((mip = mii_free) != NULL) {
739 mii_free = mip->mii_next;
740 mip->mii_regval = regval;
741 mip->mii_func = func;
742 mip->mii_next = NULL;
743 if (mii_head) {
744 mii_tail->mii_next = mip;
745 mii_tail = mip;
746 } else {
747 mii_head = mii_tail = mip;
748 fep->hwp->fec_mii_data = regval;
750 } else {
751 retval = 1;
754 spin_unlock_irqrestore(&fep->mii_lock, flags);
755 return retval;
758 static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
760 if(!c)
761 return;
763 for (; c->mii_data != mk_mii_end; c++)
764 mii_queue(dev, c->mii_data, c->funct);
767 static void mii_parse_sr(uint mii_reg, struct net_device *dev)
769 struct fec_enet_private *fep = netdev_priv(dev);
770 volatile uint *s = &(fep->phy_status);
771 uint status;
773 status = *s & ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
775 if (mii_reg & 0x0004)
776 status |= PHY_STAT_LINK;
777 if (mii_reg & 0x0010)
778 status |= PHY_STAT_FAULT;
779 if (mii_reg & 0x0020)
780 status |= PHY_STAT_ANC;
781 *s = status;
784 static void mii_parse_cr(uint mii_reg, struct net_device *dev)
786 struct fec_enet_private *fep = netdev_priv(dev);
787 volatile uint *s = &(fep->phy_status);
788 uint status;
790 status = *s & ~(PHY_CONF_ANE | PHY_CONF_LOOP);
792 if (mii_reg & 0x1000)
793 status |= PHY_CONF_ANE;
794 if (mii_reg & 0x4000)
795 status |= PHY_CONF_LOOP;
796 *s = status;
799 static void mii_parse_anar(uint mii_reg, struct net_device *dev)
801 struct fec_enet_private *fep = netdev_priv(dev);
802 volatile uint *s = &(fep->phy_status);
803 uint status;
805 status = *s & ~(PHY_CONF_SPMASK);
807 if (mii_reg & 0x0020)
808 status |= PHY_CONF_10HDX;
809 if (mii_reg & 0x0040)
810 status |= PHY_CONF_10FDX;
811 if (mii_reg & 0x0080)
812 status |= PHY_CONF_100HDX;
813 if (mii_reg & 0x00100)
814 status |= PHY_CONF_100FDX;
815 *s = status;
818 /* ------------------------------------------------------------------------- */
819 /* The Level one LXT970 is used by many boards */
821 #define MII_LXT970_MIRROR 16 /* Mirror register */
822 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
823 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
824 #define MII_LXT970_CONFIG 19 /* Configuration Register */
825 #define MII_LXT970_CSR 20 /* Chip Status Register */
827 static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
829 struct fec_enet_private *fep = netdev_priv(dev);
830 volatile uint *s = &(fep->phy_status);
831 uint status;
833 status = *s & ~(PHY_STAT_SPMASK);
834 if (mii_reg & 0x0800) {
835 if (mii_reg & 0x1000)
836 status |= PHY_STAT_100FDX;
837 else
838 status |= PHY_STAT_100HDX;
839 } else {
840 if (mii_reg & 0x1000)
841 status |= PHY_STAT_10FDX;
842 else
843 status |= PHY_STAT_10HDX;
845 *s = status;
848 static phy_cmd_t const phy_cmd_lxt970_config[] = {
849 { mk_mii_read(MII_REG_CR), mii_parse_cr },
850 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
851 { mk_mii_end, }
853 static phy_cmd_t const phy_cmd_lxt970_startup[] = { /* enable interrupts */
854 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
855 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
856 { mk_mii_end, }
858 static phy_cmd_t const phy_cmd_lxt970_ack_int[] = {
859 /* read SR and ISR to acknowledge */
860 { mk_mii_read(MII_REG_SR), mii_parse_sr },
861 { mk_mii_read(MII_LXT970_ISR), NULL },
863 /* find out the current status */
864 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
865 { mk_mii_end, }
867 static phy_cmd_t const phy_cmd_lxt970_shutdown[] = { /* disable interrupts */
868 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
869 { mk_mii_end, }
871 static phy_info_t const phy_info_lxt970 = {
872 .id = 0x07810000,
873 .name = "LXT970",
874 .config = phy_cmd_lxt970_config,
875 .startup = phy_cmd_lxt970_startup,
876 .ack_int = phy_cmd_lxt970_ack_int,
877 .shutdown = phy_cmd_lxt970_shutdown
880 /* ------------------------------------------------------------------------- */
881 /* The Level one LXT971 is used on some of my custom boards */
883 /* register definitions for the 971 */
885 #define MII_LXT971_PCR 16 /* Port Control Register */
886 #define MII_LXT971_SR2 17 /* Status Register 2 */
887 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
888 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
889 #define MII_LXT971_LCR 20 /* LED Control Register */
890 #define MII_LXT971_TCR 30 /* Transmit Control Register */
893 * I had some nice ideas of running the MDIO faster...
894 * The 971 should support 8MHz and I tried it, but things acted really
895 * weird, so 2.5 MHz ought to be enough for anyone...
898 static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
900 struct fec_enet_private *fep = netdev_priv(dev);
901 volatile uint *s = &(fep->phy_status);
902 uint status;
904 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
906 if (mii_reg & 0x0400) {
907 fep->link = 1;
908 status |= PHY_STAT_LINK;
909 } else {
910 fep->link = 0;
912 if (mii_reg & 0x0080)
913 status |= PHY_STAT_ANC;
914 if (mii_reg & 0x4000) {
915 if (mii_reg & 0x0200)
916 status |= PHY_STAT_100FDX;
917 else
918 status |= PHY_STAT_100HDX;
919 } else {
920 if (mii_reg & 0x0200)
921 status |= PHY_STAT_10FDX;
922 else
923 status |= PHY_STAT_10HDX;
925 if (mii_reg & 0x0008)
926 status |= PHY_STAT_FAULT;
928 *s = status;
931 static phy_cmd_t const phy_cmd_lxt971_config[] = {
932 /* limit to 10MBit because my prototype board
933 * doesn't work with 100. */
934 { mk_mii_read(MII_REG_CR), mii_parse_cr },
935 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
936 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
937 { mk_mii_end, }
939 static phy_cmd_t const phy_cmd_lxt971_startup[] = { /* enable interrupts */
940 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
941 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
942 { mk_mii_write(MII_LXT971_LCR, 0xd422), NULL }, /* LED config */
943 /* Somehow does the 971 tell me that the link is down
944 * the first read after power-up.
945 * read here to get a valid value in ack_int */
946 { mk_mii_read(MII_REG_SR), mii_parse_sr },
947 { mk_mii_end, }
949 static phy_cmd_t const phy_cmd_lxt971_ack_int[] = {
950 /* acknowledge the int before reading status ! */
951 { mk_mii_read(MII_LXT971_ISR), NULL },
952 /* find out the current status */
953 { mk_mii_read(MII_REG_SR), mii_parse_sr },
954 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
955 { mk_mii_end, }
957 static phy_cmd_t const phy_cmd_lxt971_shutdown[] = { /* disable interrupts */
958 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
959 { mk_mii_end, }
961 static phy_info_t const phy_info_lxt971 = {
962 .id = 0x0001378e,
963 .name = "LXT971",
964 .config = phy_cmd_lxt971_config,
965 .startup = phy_cmd_lxt971_startup,
966 .ack_int = phy_cmd_lxt971_ack_int,
967 .shutdown = phy_cmd_lxt971_shutdown
970 /* ------------------------------------------------------------------------- */
971 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
973 /* register definitions */
975 #define MII_QS6612_MCR 17 /* Mode Control Register */
976 #define MII_QS6612_FTR 27 /* Factory Test Register */
977 #define MII_QS6612_MCO 28 /* Misc. Control Register */
978 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
979 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
980 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
982 static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
984 struct fec_enet_private *fep = netdev_priv(dev);
985 volatile uint *s = &(fep->phy_status);
986 uint status;
988 status = *s & ~(PHY_STAT_SPMASK);
990 switch((mii_reg >> 2) & 7) {
991 case 1: status |= PHY_STAT_10HDX; break;
992 case 2: status |= PHY_STAT_100HDX; break;
993 case 5: status |= PHY_STAT_10FDX; break;
994 case 6: status |= PHY_STAT_100FDX; break;
997 *s = status;
1000 static phy_cmd_t const phy_cmd_qs6612_config[] = {
1001 /* The PHY powers up isolated on the RPX,
1002 * so send a command to allow operation.
1004 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1006 /* parse cr and anar to get some info */
1007 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1008 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1009 { mk_mii_end, }
1011 static phy_cmd_t const phy_cmd_qs6612_startup[] = { /* enable interrupts */
1012 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1013 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1014 { mk_mii_end, }
1016 static phy_cmd_t const phy_cmd_qs6612_ack_int[] = {
1017 /* we need to read ISR, SR and ANER to acknowledge */
1018 { mk_mii_read(MII_QS6612_ISR), NULL },
1019 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1020 { mk_mii_read(MII_REG_ANER), NULL },
1022 /* read pcr to get info */
1023 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1024 { mk_mii_end, }
1026 static phy_cmd_t const phy_cmd_qs6612_shutdown[] = { /* disable interrupts */
1027 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1028 { mk_mii_end, }
1030 static phy_info_t const phy_info_qs6612 = {
1031 .id = 0x00181440,
1032 .name = "QS6612",
1033 .config = phy_cmd_qs6612_config,
1034 .startup = phy_cmd_qs6612_startup,
1035 .ack_int = phy_cmd_qs6612_ack_int,
1036 .shutdown = phy_cmd_qs6612_shutdown
1039 /* ------------------------------------------------------------------------- */
1040 /* AMD AM79C874 phy */
1042 /* register definitions for the 874 */
1044 #define MII_AM79C874_MFR 16 /* Miscellaneous Feature Register */
1045 #define MII_AM79C874_ICSR 17 /* Interrupt/Status Register */
1046 #define MII_AM79C874_DR 18 /* Diagnostic Register */
1047 #define MII_AM79C874_PMLR 19 /* Power and Loopback Register */
1048 #define MII_AM79C874_MCR 21 /* ModeControl Register */
1049 #define MII_AM79C874_DC 23 /* Disconnect Counter */
1050 #define MII_AM79C874_REC 24 /* Recieve Error Counter */
1052 static void mii_parse_am79c874_dr(uint mii_reg, struct net_device *dev)
1054 struct fec_enet_private *fep = netdev_priv(dev);
1055 volatile uint *s = &(fep->phy_status);
1056 uint status;
1058 status = *s & ~(PHY_STAT_SPMASK | PHY_STAT_ANC);
1060 if (mii_reg & 0x0080)
1061 status |= PHY_STAT_ANC;
1062 if (mii_reg & 0x0400)
1063 status |= ((mii_reg & 0x0800) ? PHY_STAT_100FDX : PHY_STAT_100HDX);
1064 else
1065 status |= ((mii_reg & 0x0800) ? PHY_STAT_10FDX : PHY_STAT_10HDX);
1067 *s = status;
1070 static phy_cmd_t const phy_cmd_am79c874_config[] = {
1071 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1072 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1073 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1074 { mk_mii_end, }
1076 static phy_cmd_t const phy_cmd_am79c874_startup[] = { /* enable interrupts */
1077 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1078 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1079 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1080 { mk_mii_end, }
1082 static phy_cmd_t const phy_cmd_am79c874_ack_int[] = {
1083 /* find out the current status */
1084 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1085 { mk_mii_read(MII_AM79C874_DR), mii_parse_am79c874_dr },
1086 /* we only need to read ISR to acknowledge */
1087 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1088 { mk_mii_end, }
1090 static phy_cmd_t const phy_cmd_am79c874_shutdown[] = { /* disable interrupts */
1091 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1092 { mk_mii_end, }
1094 static phy_info_t const phy_info_am79c874 = {
1095 .id = 0x00022561,
1096 .name = "AM79C874",
1097 .config = phy_cmd_am79c874_config,
1098 .startup = phy_cmd_am79c874_startup,
1099 .ack_int = phy_cmd_am79c874_ack_int,
1100 .shutdown = phy_cmd_am79c874_shutdown
1104 /* ------------------------------------------------------------------------- */
1105 /* Kendin KS8721BL phy */
1107 /* register definitions for the 8721 */
1109 #define MII_KS8721BL_RXERCR 21
1110 #define MII_KS8721BL_ICSR 27
1111 #define MII_KS8721BL_PHYCR 31
1113 static phy_cmd_t const phy_cmd_ks8721bl_config[] = {
1114 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1115 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1116 { mk_mii_end, }
1118 static phy_cmd_t const phy_cmd_ks8721bl_startup[] = { /* enable interrupts */
1119 { mk_mii_write(MII_KS8721BL_ICSR, 0xff00), NULL },
1120 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1121 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1122 { mk_mii_end, }
1124 static phy_cmd_t const phy_cmd_ks8721bl_ack_int[] = {
1125 /* find out the current status */
1126 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1127 /* we only need to read ISR to acknowledge */
1128 { mk_mii_read(MII_KS8721BL_ICSR), NULL },
1129 { mk_mii_end, }
1131 static phy_cmd_t const phy_cmd_ks8721bl_shutdown[] = { /* disable interrupts */
1132 { mk_mii_write(MII_KS8721BL_ICSR, 0x0000), NULL },
1133 { mk_mii_end, }
1135 static phy_info_t const phy_info_ks8721bl = {
1136 .id = 0x00022161,
1137 .name = "KS8721BL",
1138 .config = phy_cmd_ks8721bl_config,
1139 .startup = phy_cmd_ks8721bl_startup,
1140 .ack_int = phy_cmd_ks8721bl_ack_int,
1141 .shutdown = phy_cmd_ks8721bl_shutdown
1144 /* ------------------------------------------------------------------------- */
1145 /* register definitions for the DP83848 */
1147 #define MII_DP8384X_PHYSTST 16 /* PHY Status Register */
1149 static void mii_parse_dp8384x_sr2(uint mii_reg, struct net_device *dev)
1151 struct fec_enet_private *fep = netdev_priv(dev);
1152 volatile uint *s = &(fep->phy_status);
1154 *s &= ~(PHY_STAT_SPMASK | PHY_STAT_LINK | PHY_STAT_ANC);
1156 /* Link up */
1157 if (mii_reg & 0x0001) {
1158 fep->link = 1;
1159 *s |= PHY_STAT_LINK;
1160 } else
1161 fep->link = 0;
1162 /* Status of link */
1163 if (mii_reg & 0x0010) /* Autonegotioation complete */
1164 *s |= PHY_STAT_ANC;
1165 if (mii_reg & 0x0002) { /* 10MBps? */
1166 if (mii_reg & 0x0004) /* Full Duplex? */
1167 *s |= PHY_STAT_10FDX;
1168 else
1169 *s |= PHY_STAT_10HDX;
1170 } else { /* 100 Mbps? */
1171 if (mii_reg & 0x0004) /* Full Duplex? */
1172 *s |= PHY_STAT_100FDX;
1173 else
1174 *s |= PHY_STAT_100HDX;
1176 if (mii_reg & 0x0008)
1177 *s |= PHY_STAT_FAULT;
1180 static phy_info_t phy_info_dp83848= {
1181 0x020005c9,
1182 "DP83848",
1184 (const phy_cmd_t []) { /* config */
1185 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1186 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1187 { mk_mii_read(MII_DP8384X_PHYSTST), mii_parse_dp8384x_sr2 },
1188 { mk_mii_end, }
1190 (const phy_cmd_t []) { /* startup - enable interrupts */
1191 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1192 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1193 { mk_mii_end, }
1195 (const phy_cmd_t []) { /* ack_int - never happens, no interrupt */
1196 { mk_mii_end, }
1198 (const phy_cmd_t []) { /* shutdown */
1199 { mk_mii_end, }
1203 /* ------------------------------------------------------------------------- */
1205 static phy_info_t const * const phy_info[] = {
1206 &phy_info_lxt970,
1207 &phy_info_lxt971,
1208 &phy_info_qs6612,
1209 &phy_info_am79c874,
1210 &phy_info_ks8721bl,
1211 &phy_info_dp83848,
1212 NULL
1215 /* ------------------------------------------------------------------------- */
1216 #ifdef HAVE_mii_link_interrupt
1217 static irqreturn_t
1218 mii_link_interrupt(int irq, void * dev_id);
1221 * This is specific to the MII interrupt setup of the M5272EVB.
1223 static void __inline__ fec_request_mii_intr(struct net_device *dev)
1225 if (request_irq(66, mii_link_interrupt, IRQF_DISABLED, "fec(MII)", dev) != 0)
1226 printk("FEC: Could not allocate fec(MII) IRQ(66)!\n");
1229 static void __inline__ fec_disable_phy_intr(void)
1231 volatile unsigned long *icrp;
1232 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1233 *icrp = 0x08000000;
1236 static void __inline__ fec_phy_ack_intr(void)
1238 volatile unsigned long *icrp;
1239 /* Acknowledge the interrupt */
1240 icrp = (volatile unsigned long *) (MCF_MBAR + MCFSIM_ICR1);
1241 *icrp = 0x0d000000;
1244 #ifdef CONFIG_M5272
1245 static void __inline__ fec_get_mac(struct net_device *dev)
1247 struct fec_enet_private *fep = netdev_priv(dev);
1248 volatile fec_t *fecp;
1249 unsigned char *iap, tmpaddr[ETH_ALEN];
1251 fecp = fep->hwp;
1253 if (FEC_FLASHMAC) {
1255 * Get MAC address from FLASH.
1256 * If it is all 1's or 0's, use the default.
1258 iap = (unsigned char *)FEC_FLASHMAC;
1259 if ((iap[0] == 0) && (iap[1] == 0) && (iap[2] == 0) &&
1260 (iap[3] == 0) && (iap[4] == 0) && (iap[5] == 0))
1261 iap = fec_mac_default;
1262 if ((iap[0] == 0xff) && (iap[1] == 0xff) && (iap[2] == 0xff) &&
1263 (iap[3] == 0xff) && (iap[4] == 0xff) && (iap[5] == 0xff))
1264 iap = fec_mac_default;
1265 } else {
1266 *((unsigned long *) &tmpaddr[0]) = fecp->fec_addr_low;
1267 *((unsigned short *) &tmpaddr[4]) = (fecp->fec_addr_high >> 16);
1268 iap = &tmpaddr[0];
1271 memcpy(dev->dev_addr, iap, ETH_ALEN);
1273 /* Adjust MAC if using default MAC address */
1274 if (iap == fec_mac_default)
1275 dev->dev_addr[ETH_ALEN-1] = fec_mac_default[ETH_ALEN-1] + fep->index;
1277 #endif
1279 /* ------------------------------------------------------------------------- */
1281 static void mii_display_status(struct net_device *dev)
1283 struct fec_enet_private *fep = netdev_priv(dev);
1284 volatile uint *s = &(fep->phy_status);
1286 if (!fep->link && !fep->old_link) {
1287 /* Link is still down - don't print anything */
1288 return;
1291 printk("%s: status: ", dev->name);
1293 if (!fep->link) {
1294 printk("link down");
1295 } else {
1296 printk("link up");
1298 switch(*s & PHY_STAT_SPMASK) {
1299 case PHY_STAT_100FDX: printk(", 100MBit Full Duplex"); break;
1300 case PHY_STAT_100HDX: printk(", 100MBit Half Duplex"); break;
1301 case PHY_STAT_10FDX: printk(", 10MBit Full Duplex"); break;
1302 case PHY_STAT_10HDX: printk(", 10MBit Half Duplex"); break;
1303 default:
1304 printk(", Unknown speed/duplex");
1307 if (*s & PHY_STAT_ANC)
1308 printk(", auto-negotiation complete");
1311 if (*s & PHY_STAT_FAULT)
1312 printk(", remote fault");
1314 printk(".\n");
1317 static void mii_display_config(struct work_struct *work)
1319 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1320 struct net_device *dev = fep->netdev;
1321 uint status = fep->phy_status;
1324 ** When we get here, phy_task is already removed from
1325 ** the workqueue. It is thus safe to allow to reuse it.
1327 fep->mii_phy_task_queued = 0;
1328 printk("%s: config: auto-negotiation ", dev->name);
1330 if (status & PHY_CONF_ANE)
1331 printk("on");
1332 else
1333 printk("off");
1335 if (status & PHY_CONF_100FDX)
1336 printk(", 100FDX");
1337 if (status & PHY_CONF_100HDX)
1338 printk(", 100HDX");
1339 if (status & PHY_CONF_10FDX)
1340 printk(", 10FDX");
1341 if (status & PHY_CONF_10HDX)
1342 printk(", 10HDX");
1343 if (!(status & PHY_CONF_SPMASK))
1344 printk(", No speed/duplex selected?");
1346 if (status & PHY_CONF_LOOP)
1347 printk(", loopback enabled");
1349 printk(".\n");
1351 fep->sequence_done = 1;
1354 static void mii_relink(struct work_struct *work)
1356 struct fec_enet_private *fep = container_of(work, struct fec_enet_private, phy_task);
1357 struct net_device *dev = fep->netdev;
1358 int duplex;
1361 ** When we get here, phy_task is already removed from
1362 ** the workqueue. It is thus safe to allow to reuse it.
1364 fep->mii_phy_task_queued = 0;
1365 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1366 mii_display_status(dev);
1367 fep->old_link = fep->link;
1369 if (fep->link) {
1370 duplex = 0;
1371 if (fep->phy_status
1372 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1373 duplex = 1;
1374 fec_restart(dev, duplex);
1375 } else
1376 fec_stop(dev);
1378 #if 0
1379 enable_irq(fep->mii_irq);
1380 #endif
1384 /* mii_queue_relink is called in interrupt context from mii_link_interrupt */
1385 static void mii_queue_relink(uint mii_reg, struct net_device *dev)
1387 struct fec_enet_private *fep = netdev_priv(dev);
1390 ** We cannot queue phy_task twice in the workqueue. It
1391 ** would cause an endless loop in the workqueue.
1392 ** Fortunately, if the last mii_relink entry has not yet been
1393 ** executed now, it will do the job for the current interrupt,
1394 ** which is just what we want.
1396 if (fep->mii_phy_task_queued)
1397 return;
1399 fep->mii_phy_task_queued = 1;
1400 INIT_WORK(&fep->phy_task, mii_relink);
1401 schedule_work(&fep->phy_task);
1404 /* mii_queue_config is called in interrupt context from fec_enet_mii */
1405 static void mii_queue_config(uint mii_reg, struct net_device *dev)
1407 struct fec_enet_private *fep = netdev_priv(dev);
1409 if (fep->mii_phy_task_queued)
1410 return;
1412 fep->mii_phy_task_queued = 1;
1413 INIT_WORK(&fep->phy_task, mii_display_config);
1414 schedule_work(&fep->phy_task);
1417 phy_cmd_t const phy_cmd_relink[] = {
1418 { mk_mii_read(MII_REG_CR), mii_queue_relink },
1419 { mk_mii_end, }
1421 phy_cmd_t const phy_cmd_config[] = {
1422 { mk_mii_read(MII_REG_CR), mii_queue_config },
1423 { mk_mii_end, }
1426 /* Read remainder of PHY ID.
1428 static void
1429 mii_discover_phy3(uint mii_reg, struct net_device *dev)
1431 struct fec_enet_private *fep;
1432 int i;
1434 fep = netdev_priv(dev);
1435 fep->phy_id |= (mii_reg & 0xffff);
1436 printk("fec: PHY @ 0x%x, ID 0x%08x", fep->phy_addr, fep->phy_id);
1438 for(i = 0; phy_info[i]; i++) {
1439 if(phy_info[i]->id == (fep->phy_id >> 4))
1440 break;
1443 if (phy_info[i])
1444 printk(" -- %s\n", phy_info[i]->name);
1445 else
1446 printk(" -- unknown PHY!\n");
1448 fep->phy = phy_info[i];
1449 fep->phy_id_done = 1;
1452 /* Scan all of the MII PHY addresses looking for someone to respond
1453 * with a valid ID. This usually happens quickly.
1455 static void
1456 mii_discover_phy(uint mii_reg, struct net_device *dev)
1458 struct fec_enet_private *fep;
1459 volatile fec_t *fecp;
1460 uint phytype;
1462 fep = netdev_priv(dev);
1463 fecp = fep->hwp;
1465 if (fep->phy_addr < 32) {
1466 if ((phytype = (mii_reg & 0xffff)) != 0xffff && phytype != 0) {
1468 /* Got first part of ID, now get remainder.
1470 fep->phy_id = phytype << 16;
1471 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2),
1472 mii_discover_phy3);
1473 } else {
1474 fep->phy_addr++;
1475 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
1476 mii_discover_phy);
1478 } else {
1479 printk("FEC: No PHY device found.\n");
1480 /* Disable external MII interface */
1481 fecp->fec_mii_speed = fep->phy_speed = 0;
1482 #ifdef HAVE_mii_link_interrupt
1483 fec_disable_phy_intr();
1484 #endif
1488 /* This interrupt occurs when the PHY detects a link change.
1490 #ifdef HAVE_mii_link_interrupt
1491 static irqreturn_t
1492 mii_link_interrupt(int irq, void * dev_id)
1494 struct net_device *dev = dev_id;
1495 struct fec_enet_private *fep = netdev_priv(dev);
1497 fec_phy_ack_intr();
1499 #if 0
1500 disable_irq(fep->mii_irq); /* disable now, enable later */
1501 #endif
1503 mii_do_cmd(dev, fep->phy->ack_int);
1504 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
1506 return IRQ_HANDLED;
1508 #endif
1510 static int
1511 fec_enet_open(struct net_device *dev)
1513 struct fec_enet_private *fep = netdev_priv(dev);
1515 /* I should reset the ring buffers here, but I don't yet know
1516 * a simple way to do that.
1518 fec_set_mac_address(dev);
1520 fep->sequence_done = 0;
1521 fep->link = 0;
1523 if (fep->phy) {
1524 mii_do_cmd(dev, fep->phy->ack_int);
1525 mii_do_cmd(dev, fep->phy->config);
1526 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
1528 /* Poll until the PHY tells us its configuration
1529 * (not link state).
1530 * Request is initiated by mii_do_cmd above, but answer
1531 * comes by interrupt.
1532 * This should take about 25 usec per register at 2.5 MHz,
1533 * and we read approximately 5 registers.
1535 while(!fep->sequence_done)
1536 schedule();
1538 mii_do_cmd(dev, fep->phy->startup);
1540 /* Set the initial link state to true. A lot of hardware
1541 * based on this device does not implement a PHY interrupt,
1542 * so we are never notified of link change.
1544 fep->link = 1;
1545 } else {
1546 fep->link = 1; /* lets just try it and see */
1547 /* no phy, go full duplex, it's most likely a hub chip */
1548 fec_restart(dev, 1);
1551 netif_start_queue(dev);
1552 fep->opened = 1;
1553 return 0; /* Success */
1556 static int
1557 fec_enet_close(struct net_device *dev)
1559 struct fec_enet_private *fep = netdev_priv(dev);
1561 /* Don't know what to do yet.
1563 fep->opened = 0;
1564 netif_stop_queue(dev);
1565 fec_stop(dev);
1567 return 0;
1570 /* Set or clear the multicast filter for this adaptor.
1571 * Skeleton taken from sunlance driver.
1572 * The CPM Ethernet implementation allows Multicast as well as individual
1573 * MAC address filtering. Some of the drivers check to make sure it is
1574 * a group multicast address, and discard those that are not. I guess I
1575 * will do the same for now, but just remove the test if you want
1576 * individual filtering as well (do the upper net layers want or support
1577 * this kind of feature?).
1580 #define HASH_BITS 6 /* #bits in hash */
1581 #define CRC32_POLY 0xEDB88320
1583 static void set_multicast_list(struct net_device *dev)
1585 struct fec_enet_private *fep;
1586 volatile fec_t *ep;
1587 struct dev_mc_list *dmi;
1588 unsigned int i, j, bit, data, crc;
1589 unsigned char hash;
1591 fep = netdev_priv(dev);
1592 ep = fep->hwp;
1594 if (dev->flags&IFF_PROMISC) {
1595 ep->fec_r_cntrl |= 0x0008;
1596 } else {
1598 ep->fec_r_cntrl &= ~0x0008;
1600 if (dev->flags & IFF_ALLMULTI) {
1601 /* Catch all multicast addresses, so set the
1602 * filter to all 1's.
1604 ep->fec_grp_hash_table_high = 0xffffffff;
1605 ep->fec_grp_hash_table_low = 0xffffffff;
1606 } else {
1607 /* Clear filter and add the addresses in hash register.
1609 ep->fec_grp_hash_table_high = 0;
1610 ep->fec_grp_hash_table_low = 0;
1612 dmi = dev->mc_list;
1614 for (j = 0; j < dev->mc_count; j++, dmi = dmi->next)
1616 /* Only support group multicast for now.
1618 if (!(dmi->dmi_addr[0] & 1))
1619 continue;
1621 /* calculate crc32 value of mac address
1623 crc = 0xffffffff;
1625 for (i = 0; i < dmi->dmi_addrlen; i++)
1627 data = dmi->dmi_addr[i];
1628 for (bit = 0; bit < 8; bit++, data >>= 1)
1630 crc = (crc >> 1) ^
1631 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1635 /* only upper 6 bits (HASH_BITS) are used
1636 which point to specific bit in he hash registers
1638 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1640 if (hash > 31)
1641 ep->fec_grp_hash_table_high |= 1 << (hash - 32);
1642 else
1643 ep->fec_grp_hash_table_low |= 1 << hash;
1649 /* Set a MAC change in hardware.
1651 static void
1652 fec_set_mac_address(struct net_device *dev)
1654 volatile fec_t *fecp;
1656 fecp = ((struct fec_enet_private *)netdev_priv(dev))->hwp;
1658 /* Set station address. */
1659 fecp->fec_addr_low = dev->dev_addr[3] | (dev->dev_addr[2] << 8) |
1660 (dev->dev_addr[1] << 16) | (dev->dev_addr[0] << 24);
1661 fecp->fec_addr_high = (dev->dev_addr[5] << 16) |
1662 (dev->dev_addr[4] << 24);
1667 * XXX: We need to clean up on failure exits here.
1669 * index is only used in legacy code
1671 int __init fec_enet_init(struct net_device *dev, int index)
1673 struct fec_enet_private *fep = netdev_priv(dev);
1674 unsigned long mem_addr;
1675 volatile cbd_t *bdp;
1676 cbd_t *cbd_base;
1677 volatile fec_t *fecp;
1678 int i, j;
1680 /* Allocate memory for buffer descriptors.
1682 mem_addr = (unsigned long)dma_alloc_coherent(NULL, PAGE_SIZE,
1683 &fep->bd_dma, GFP_KERNEL);
1684 if (mem_addr == 0) {
1685 printk("FEC: allocate descriptor memory failed?\n");
1686 return -ENOMEM;
1689 spin_lock_init(&fep->hw_lock);
1690 spin_lock_init(&fep->mii_lock);
1692 /* Create an Ethernet device instance.
1694 fecp = (volatile fec_t *)dev->base_addr;
1696 fep->index = index;
1697 fep->hwp = fecp;
1698 fep->netdev = dev;
1700 /* Whack a reset. We should wait for this.
1702 fecp->fec_ecntrl = 1;
1703 udelay(10);
1705 /* Set the Ethernet address */
1706 #ifdef CONFIG_M5272
1707 fec_get_mac(dev);
1708 #else
1710 unsigned long l;
1711 l = fecp->fec_addr_low;
1712 dev->dev_addr[0] = (unsigned char)((l & 0xFF000000) >> 24);
1713 dev->dev_addr[1] = (unsigned char)((l & 0x00FF0000) >> 16);
1714 dev->dev_addr[2] = (unsigned char)((l & 0x0000FF00) >> 8);
1715 dev->dev_addr[3] = (unsigned char)((l & 0x000000FF) >> 0);
1716 l = fecp->fec_addr_high;
1717 dev->dev_addr[4] = (unsigned char)((l & 0xFF000000) >> 24);
1718 dev->dev_addr[5] = (unsigned char)((l & 0x00FF0000) >> 16);
1720 #endif
1722 cbd_base = (cbd_t *)mem_addr;
1724 /* Set receive and transmit descriptor base.
1726 fep->rx_bd_base = cbd_base;
1727 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1729 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
1730 fep->cur_rx = fep->rx_bd_base;
1732 fep->skb_cur = fep->skb_dirty = 0;
1734 /* Initialize the receive buffer descriptors.
1736 bdp = fep->rx_bd_base;
1737 for (i=0; i<FEC_ENET_RX_PAGES; i++) {
1739 /* Allocate a page.
1741 mem_addr = __get_free_page(GFP_KERNEL);
1742 /* XXX: missing check for allocation failure */
1744 /* Initialize the BD for every fragment in the page.
1746 for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
1747 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1748 bdp->cbd_bufaddr = __pa(mem_addr);
1749 mem_addr += FEC_ENET_RX_FRSIZE;
1750 bdp++;
1754 /* Set the last buffer to wrap.
1756 bdp--;
1757 bdp->cbd_sc |= BD_SC_WRAP;
1759 /* ...and the same for transmmit.
1761 bdp = fep->tx_bd_base;
1762 for (i=0, j=FEC_ENET_TX_FRPPG; i<TX_RING_SIZE; i++) {
1763 if (j >= FEC_ENET_TX_FRPPG) {
1764 mem_addr = __get_free_page(GFP_KERNEL);
1765 j = 1;
1766 } else {
1767 mem_addr += FEC_ENET_TX_FRSIZE;
1768 j++;
1770 fep->tx_bounce[i] = (unsigned char *) mem_addr;
1772 /* Initialize the BD for every fragment in the page.
1774 bdp->cbd_sc = 0;
1775 bdp->cbd_bufaddr = 0;
1776 bdp++;
1779 /* Set the last buffer to wrap.
1781 bdp--;
1782 bdp->cbd_sc |= BD_SC_WRAP;
1784 /* Set receive and transmit descriptor base.
1786 fecp->fec_r_des_start = fep->bd_dma;
1787 fecp->fec_x_des_start = (unsigned long)fep->bd_dma + sizeof(cbd_t)
1788 * RX_RING_SIZE;
1790 #ifdef HAVE_mii_link_interrupt
1791 fec_request_mii_intr(dev);
1792 #endif
1794 fecp->fec_grp_hash_table_high = 0;
1795 fecp->fec_grp_hash_table_low = 0;
1796 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
1797 fecp->fec_ecntrl = 2;
1798 fecp->fec_r_des_active = 0;
1799 #ifndef CONFIG_M5272
1800 fecp->fec_hash_table_high = 0;
1801 fecp->fec_hash_table_low = 0;
1802 #endif
1804 /* The FEC Ethernet specific entries in the device structure. */
1805 dev->open = fec_enet_open;
1806 dev->hard_start_xmit = fec_enet_start_xmit;
1807 dev->tx_timeout = fec_timeout;
1808 dev->watchdog_timeo = TX_TIMEOUT;
1809 dev->stop = fec_enet_close;
1810 dev->set_multicast_list = set_multicast_list;
1812 for (i=0; i<NMII-1; i++)
1813 mii_cmds[i].mii_next = &mii_cmds[i+1];
1814 mii_free = mii_cmds;
1816 /* setup MII interface */
1817 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;
1818 fecp->fec_x_cntrl = 0x00;
1821 * Set MII speed to 2.5 MHz
1823 fep->phy_speed = ((((clk_get_rate(fep->clk) / 2 + 4999999)
1824 / 2500000) / 2) & 0x3F) << 1;
1825 fecp->fec_mii_speed = fep->phy_speed;
1826 fec_restart(dev, 0);
1828 /* Clear and enable interrupts */
1829 fecp->fec_ievent = 0xffc00000;
1830 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
1832 /* Queue up command to detect the PHY and initialize the
1833 * remainder of the interface.
1835 fep->phy_id_done = 0;
1836 fep->phy_addr = 0;
1837 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
1839 return 0;
1842 /* This function is called to start or restart the FEC during a link
1843 * change. This only happens when switching between half and full
1844 * duplex.
1846 static void
1847 fec_restart(struct net_device *dev, int duplex)
1849 struct fec_enet_private *fep;
1850 volatile cbd_t *bdp;
1851 volatile fec_t *fecp;
1852 int i;
1854 fep = netdev_priv(dev);
1855 fecp = fep->hwp;
1857 /* Whack a reset. We should wait for this.
1859 fecp->fec_ecntrl = 1;
1860 udelay(10);
1862 /* Clear any outstanding interrupt.
1864 fecp->fec_ievent = 0xffc00000;
1866 /* Set station address.
1868 fec_set_mac_address(dev);
1870 /* Reset all multicast.
1872 fecp->fec_grp_hash_table_high = 0;
1873 fecp->fec_grp_hash_table_low = 0;
1875 /* Set maximum receive buffer size.
1877 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
1879 /* Set receive and transmit descriptor base.
1881 fecp->fec_r_des_start = fep->bd_dma;
1882 fecp->fec_x_des_start = (unsigned long)fep->bd_dma + sizeof(cbd_t)
1883 * RX_RING_SIZE;
1885 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
1886 fep->cur_rx = fep->rx_bd_base;
1888 /* Reset SKB transmit buffers.
1890 fep->skb_cur = fep->skb_dirty = 0;
1891 for (i=0; i<=TX_RING_MOD_MASK; i++) {
1892 if (fep->tx_skbuff[i] != NULL) {
1893 dev_kfree_skb_any(fep->tx_skbuff[i]);
1894 fep->tx_skbuff[i] = NULL;
1898 /* Initialize the receive buffer descriptors.
1900 bdp = fep->rx_bd_base;
1901 for (i=0; i<RX_RING_SIZE; i++) {
1903 /* Initialize the BD for every fragment in the page.
1905 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1906 bdp++;
1909 /* Set the last buffer to wrap.
1911 bdp--;
1912 bdp->cbd_sc |= BD_SC_WRAP;
1914 /* ...and the same for transmmit.
1916 bdp = fep->tx_bd_base;
1917 for (i=0; i<TX_RING_SIZE; i++) {
1919 /* Initialize the BD for every fragment in the page.
1921 bdp->cbd_sc = 0;
1922 bdp->cbd_bufaddr = 0;
1923 bdp++;
1926 /* Set the last buffer to wrap.
1928 bdp--;
1929 bdp->cbd_sc |= BD_SC_WRAP;
1931 /* Enable MII mode.
1933 if (duplex) {
1934 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x04;/* MII enable */
1935 fecp->fec_x_cntrl = 0x04; /* FD enable */
1936 } else {
1937 /* MII enable|No Rcv on Xmit */
1938 fecp->fec_r_cntrl = OPT_FRAME_SIZE | 0x06;
1939 fecp->fec_x_cntrl = 0x00;
1941 fep->full_duplex = duplex;
1943 /* Set MII speed.
1945 fecp->fec_mii_speed = fep->phy_speed;
1947 /* And last, enable the transmit and receive processing.
1949 fecp->fec_ecntrl = 2;
1950 fecp->fec_r_des_active = 0;
1952 /* Enable interrupts we wish to service.
1954 fecp->fec_imask = (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII);
1957 static void
1958 fec_stop(struct net_device *dev)
1960 volatile fec_t *fecp;
1961 struct fec_enet_private *fep;
1963 fep = netdev_priv(dev);
1964 fecp = fep->hwp;
1967 ** We cannot expect a graceful transmit stop without link !!!
1969 if (fep->link)
1971 fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
1972 udelay(10);
1973 if (!(fecp->fec_ievent & FEC_ENET_GRA))
1974 printk("fec_stop : Graceful transmit stop did not complete !\n");
1977 /* Whack a reset. We should wait for this.
1979 fecp->fec_ecntrl = 1;
1980 udelay(10);
1982 /* Clear outstanding MII command interrupts.
1984 fecp->fec_ievent = FEC_ENET_MII;
1986 fecp->fec_imask = FEC_ENET_MII;
1987 fecp->fec_mii_speed = fep->phy_speed;
1990 static int __devinit
1991 fec_probe(struct platform_device *pdev)
1993 struct fec_enet_private *fep;
1994 struct net_device *ndev;
1995 int i, irq, ret = 0;
1996 struct resource *r;
1998 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1999 if (!r)
2000 return -ENXIO;
2002 r = request_mem_region(r->start, resource_size(r), pdev->name);
2003 if (!r)
2004 return -EBUSY;
2006 /* Init network device */
2007 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
2008 if (!ndev)
2009 return -ENOMEM;
2011 SET_NETDEV_DEV(ndev, &pdev->dev);
2013 /* setup board info structure */
2014 fep = netdev_priv(ndev);
2015 memset(fep, 0, sizeof(*fep));
2017 ndev->base_addr = (unsigned long)ioremap(r->start, resource_size(r));
2019 if (!ndev->base_addr) {
2020 ret = -ENOMEM;
2021 goto failed_ioremap;
2024 platform_set_drvdata(pdev, ndev);
2026 /* This device has up to three irqs on some platforms */
2027 for (i = 0; i < 3; i++) {
2028 irq = platform_get_irq(pdev, i);
2029 if (i && irq < 0)
2030 break;
2031 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
2032 if (ret) {
2033 while (i >= 0) {
2034 irq = platform_get_irq(pdev, i);
2035 free_irq(irq, ndev);
2036 i--;
2038 goto failed_irq;
2042 fep->clk = clk_get(&pdev->dev, "fec_clk");
2043 if (IS_ERR(fep->clk)) {
2044 ret = PTR_ERR(fep->clk);
2045 goto failed_clk;
2047 clk_enable(fep->clk);
2049 ret = fec_enet_init(ndev, 0);
2050 if (ret)
2051 goto failed_init;
2053 ret = register_netdev(ndev);
2054 if (ret)
2055 goto failed_register;
2057 return 0;
2059 failed_register:
2060 failed_init:
2061 clk_disable(fep->clk);
2062 clk_put(fep->clk);
2063 failed_clk:
2064 for (i = 0; i < 3; i++) {
2065 irq = platform_get_irq(pdev, i);
2066 if (irq > 0)
2067 free_irq(irq, ndev);
2069 failed_irq:
2070 iounmap((void __iomem *)ndev->base_addr);
2071 failed_ioremap:
2072 free_netdev(ndev);
2074 return ret;
2077 static int __devexit
2078 fec_drv_remove(struct platform_device *pdev)
2080 struct net_device *ndev = platform_get_drvdata(pdev);
2081 struct fec_enet_private *fep = netdev_priv(ndev);
2083 platform_set_drvdata(pdev, NULL);
2085 fec_stop(ndev);
2086 clk_disable(fep->clk);
2087 clk_put(fep->clk);
2088 iounmap((void __iomem *)ndev->base_addr);
2089 unregister_netdev(ndev);
2090 free_netdev(ndev);
2091 return 0;
2094 static int
2095 fec_suspend(struct platform_device *dev, pm_message_t state)
2097 struct net_device *ndev = platform_get_drvdata(dev);
2098 struct fec_enet_private *fep;
2100 if (ndev) {
2101 fep = netdev_priv(ndev);
2102 if (netif_running(ndev)) {
2103 netif_device_detach(ndev);
2104 fec_stop(ndev);
2107 return 0;
2110 static int
2111 fec_resume(struct platform_device *dev)
2113 struct net_device *ndev = platform_get_drvdata(dev);
2115 if (ndev) {
2116 if (netif_running(ndev)) {
2117 fec_enet_init(ndev, 0);
2118 netif_device_attach(ndev);
2121 return 0;
2124 static struct platform_driver fec_driver = {
2125 .driver = {
2126 .name = "fec",
2127 .owner = THIS_MODULE,
2129 .probe = fec_probe,
2130 .remove = __devexit_p(fec_drv_remove),
2131 .suspend = fec_suspend,
2132 .resume = fec_resume,
2135 static int __init
2136 fec_enet_module_init(void)
2138 printk(KERN_INFO "FEC Ethernet Driver\n");
2140 return platform_driver_register(&fec_driver);
2143 static void __exit
2144 fec_enet_cleanup(void)
2146 platform_driver_unregister(&fec_driver);
2149 module_exit(fec_enet_cleanup);
2150 module_init(fec_enet_module_init);
2152 MODULE_LICENSE("GPL");