h8300: Add missing closing parenthesis in flat_get_addr_from_rp()
[linux/fpc-iii.git] / fs / f2fs / checkpoint.c
blob56bbf592e487577b4d21614d7f56c1dbfc45e2c3
1 /*
2 * fs/f2fs/checkpoint.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
31 set_ckpt_flags(sbi, CP_ERROR_FLAG);
32 sbi->sb->s_flags |= MS_RDONLY;
33 if (!end_io)
34 f2fs_flush_merged_writes(sbi);
38 * We guarantee no failure on the returned page.
40 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
42 struct address_space *mapping = META_MAPPING(sbi);
43 struct page *page = NULL;
44 repeat:
45 page = f2fs_grab_cache_page(mapping, index, false);
46 if (!page) {
47 cond_resched();
48 goto repeat;
50 f2fs_wait_on_page_writeback(page, META, true);
51 if (!PageUptodate(page))
52 SetPageUptodate(page);
53 return page;
57 * We guarantee no failure on the returned page.
59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60 bool is_meta)
62 struct address_space *mapping = META_MAPPING(sbi);
63 struct page *page;
64 struct f2fs_io_info fio = {
65 .sbi = sbi,
66 .type = META,
67 .op = REQ_OP_READ,
68 .op_flags = REQ_META | REQ_PRIO,
69 .old_blkaddr = index,
70 .new_blkaddr = index,
71 .encrypted_page = NULL,
74 if (unlikely(!is_meta))
75 fio.op_flags &= ~REQ_META;
76 repeat:
77 page = f2fs_grab_cache_page(mapping, index, false);
78 if (!page) {
79 cond_resched();
80 goto repeat;
82 if (PageUptodate(page))
83 goto out;
85 fio.page = page;
87 if (f2fs_submit_page_bio(&fio)) {
88 f2fs_put_page(page, 1);
89 goto repeat;
92 lock_page(page);
93 if (unlikely(page->mapping != mapping)) {
94 f2fs_put_page(page, 1);
95 goto repeat;
99 * if there is any IO error when accessing device, make our filesystem
100 * readonly and make sure do not write checkpoint with non-uptodate
101 * meta page.
103 if (unlikely(!PageUptodate(page)))
104 f2fs_stop_checkpoint(sbi, false);
105 out:
106 return page;
109 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
111 return __get_meta_page(sbi, index, true);
114 /* for POR only */
115 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
117 return __get_meta_page(sbi, index, false);
120 bool is_valid_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr, int type)
122 switch (type) {
123 case META_NAT:
124 break;
125 case META_SIT:
126 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
127 return false;
128 break;
129 case META_SSA:
130 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
131 blkaddr < SM_I(sbi)->ssa_blkaddr))
132 return false;
133 break;
134 case META_CP:
135 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
136 blkaddr < __start_cp_addr(sbi)))
137 return false;
138 break;
139 case META_POR:
140 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
141 blkaddr < MAIN_BLKADDR(sbi)))
142 return false;
143 break;
144 default:
145 BUG();
148 return true;
152 * Readahead CP/NAT/SIT/SSA pages
154 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
155 int type, bool sync)
157 struct page *page;
158 block_t blkno = start;
159 struct f2fs_io_info fio = {
160 .sbi = sbi,
161 .type = META,
162 .op = REQ_OP_READ,
163 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
164 .encrypted_page = NULL,
165 .in_list = false,
167 struct blk_plug plug;
169 if (unlikely(type == META_POR))
170 fio.op_flags &= ~REQ_META;
172 blk_start_plug(&plug);
173 for (; nrpages-- > 0; blkno++) {
175 if (!is_valid_blkaddr(sbi, blkno, type))
176 goto out;
178 switch (type) {
179 case META_NAT:
180 if (unlikely(blkno >=
181 NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
182 blkno = 0;
183 /* get nat block addr */
184 fio.new_blkaddr = current_nat_addr(sbi,
185 blkno * NAT_ENTRY_PER_BLOCK);
186 break;
187 case META_SIT:
188 /* get sit block addr */
189 fio.new_blkaddr = current_sit_addr(sbi,
190 blkno * SIT_ENTRY_PER_BLOCK);
191 break;
192 case META_SSA:
193 case META_CP:
194 case META_POR:
195 fio.new_blkaddr = blkno;
196 break;
197 default:
198 BUG();
201 page = f2fs_grab_cache_page(META_MAPPING(sbi),
202 fio.new_blkaddr, false);
203 if (!page)
204 continue;
205 if (PageUptodate(page)) {
206 f2fs_put_page(page, 1);
207 continue;
210 fio.page = page;
211 f2fs_submit_page_bio(&fio);
212 f2fs_put_page(page, 0);
214 out:
215 blk_finish_plug(&plug);
216 return blkno - start;
219 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
221 struct page *page;
222 bool readahead = false;
224 page = find_get_page(META_MAPPING(sbi), index);
225 if (!page || !PageUptodate(page))
226 readahead = true;
227 f2fs_put_page(page, 0);
229 if (readahead)
230 ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
233 static int f2fs_write_meta_page(struct page *page,
234 struct writeback_control *wbc)
236 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
238 trace_f2fs_writepage(page, META);
240 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
241 goto redirty_out;
242 if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
243 goto redirty_out;
244 if (unlikely(f2fs_cp_error(sbi)))
245 goto redirty_out;
247 write_meta_page(sbi, page);
248 dec_page_count(sbi, F2FS_DIRTY_META);
250 if (wbc->for_reclaim)
251 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
252 0, page->index, META);
254 unlock_page(page);
256 if (unlikely(f2fs_cp_error(sbi)))
257 f2fs_submit_merged_write(sbi, META);
259 return 0;
261 redirty_out:
262 redirty_page_for_writepage(wbc, page);
263 return AOP_WRITEPAGE_ACTIVATE;
266 static int f2fs_write_meta_pages(struct address_space *mapping,
267 struct writeback_control *wbc)
269 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
270 long diff, written;
272 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
273 goto skip_write;
275 /* collect a number of dirty meta pages and write together */
276 if (wbc->for_kupdate ||
277 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
278 goto skip_write;
280 /* if locked failed, cp will flush dirty pages instead */
281 if (!mutex_trylock(&sbi->cp_mutex))
282 goto skip_write;
284 trace_f2fs_writepages(mapping->host, wbc, META);
285 diff = nr_pages_to_write(sbi, META, wbc);
286 written = sync_meta_pages(sbi, META, wbc->nr_to_write);
287 mutex_unlock(&sbi->cp_mutex);
288 wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
289 return 0;
291 skip_write:
292 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
293 trace_f2fs_writepages(mapping->host, wbc, META);
294 return 0;
297 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
298 long nr_to_write)
300 struct address_space *mapping = META_MAPPING(sbi);
301 pgoff_t index = 0, end = ULONG_MAX, prev = ULONG_MAX;
302 struct pagevec pvec;
303 long nwritten = 0;
304 struct writeback_control wbc = {
305 .for_reclaim = 0,
307 struct blk_plug plug;
309 pagevec_init(&pvec, 0);
311 blk_start_plug(&plug);
313 while (index <= end) {
314 int i, nr_pages;
315 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
316 PAGECACHE_TAG_DIRTY,
317 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
318 if (unlikely(nr_pages == 0))
319 break;
321 for (i = 0; i < nr_pages; i++) {
322 struct page *page = pvec.pages[i];
324 if (prev == ULONG_MAX)
325 prev = page->index - 1;
326 if (nr_to_write != LONG_MAX && page->index != prev + 1) {
327 pagevec_release(&pvec);
328 goto stop;
331 lock_page(page);
333 if (unlikely(page->mapping != mapping)) {
334 continue_unlock:
335 unlock_page(page);
336 continue;
338 if (!PageDirty(page)) {
339 /* someone wrote it for us */
340 goto continue_unlock;
343 f2fs_wait_on_page_writeback(page, META, true);
345 BUG_ON(PageWriteback(page));
346 if (!clear_page_dirty_for_io(page))
347 goto continue_unlock;
349 if (mapping->a_ops->writepage(page, &wbc)) {
350 unlock_page(page);
351 break;
353 nwritten++;
354 prev = page->index;
355 if (unlikely(nwritten >= nr_to_write))
356 break;
358 pagevec_release(&pvec);
359 cond_resched();
361 stop:
362 if (nwritten)
363 f2fs_submit_merged_write(sbi, type);
365 blk_finish_plug(&plug);
367 return nwritten;
370 static int f2fs_set_meta_page_dirty(struct page *page)
372 trace_f2fs_set_page_dirty(page, META);
374 if (!PageUptodate(page))
375 SetPageUptodate(page);
376 if (!PageDirty(page)) {
377 f2fs_set_page_dirty_nobuffers(page);
378 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
379 SetPagePrivate(page);
380 f2fs_trace_pid(page);
381 return 1;
383 return 0;
386 const struct address_space_operations f2fs_meta_aops = {
387 .writepage = f2fs_write_meta_page,
388 .writepages = f2fs_write_meta_pages,
389 .set_page_dirty = f2fs_set_meta_page_dirty,
390 .invalidatepage = f2fs_invalidate_page,
391 .releasepage = f2fs_release_page,
392 #ifdef CONFIG_MIGRATION
393 .migratepage = f2fs_migrate_page,
394 #endif
397 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
399 struct inode_management *im = &sbi->im[type];
400 struct ino_entry *e, *tmp;
402 tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
403 retry:
404 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
406 spin_lock(&im->ino_lock);
407 e = radix_tree_lookup(&im->ino_root, ino);
408 if (!e) {
409 e = tmp;
410 if (radix_tree_insert(&im->ino_root, ino, e)) {
411 spin_unlock(&im->ino_lock);
412 radix_tree_preload_end();
413 goto retry;
415 memset(e, 0, sizeof(struct ino_entry));
416 e->ino = ino;
418 list_add_tail(&e->list, &im->ino_list);
419 if (type != ORPHAN_INO)
420 im->ino_num++;
422 spin_unlock(&im->ino_lock);
423 radix_tree_preload_end();
425 if (e != tmp)
426 kmem_cache_free(ino_entry_slab, tmp);
429 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
431 struct inode_management *im = &sbi->im[type];
432 struct ino_entry *e;
434 spin_lock(&im->ino_lock);
435 e = radix_tree_lookup(&im->ino_root, ino);
436 if (e) {
437 list_del(&e->list);
438 radix_tree_delete(&im->ino_root, ino);
439 im->ino_num--;
440 spin_unlock(&im->ino_lock);
441 kmem_cache_free(ino_entry_slab, e);
442 return;
444 spin_unlock(&im->ino_lock);
447 void add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
449 /* add new dirty ino entry into list */
450 __add_ino_entry(sbi, ino, type);
453 void remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
455 /* remove dirty ino entry from list */
456 __remove_ino_entry(sbi, ino, type);
459 /* mode should be APPEND_INO or UPDATE_INO */
460 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
462 struct inode_management *im = &sbi->im[mode];
463 struct ino_entry *e;
465 spin_lock(&im->ino_lock);
466 e = radix_tree_lookup(&im->ino_root, ino);
467 spin_unlock(&im->ino_lock);
468 return e ? true : false;
471 void release_ino_entry(struct f2fs_sb_info *sbi, bool all)
473 struct ino_entry *e, *tmp;
474 int i;
476 for (i = all ? ORPHAN_INO: APPEND_INO; i <= UPDATE_INO; i++) {
477 struct inode_management *im = &sbi->im[i];
479 spin_lock(&im->ino_lock);
480 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
481 list_del(&e->list);
482 radix_tree_delete(&im->ino_root, e->ino);
483 kmem_cache_free(ino_entry_slab, e);
484 im->ino_num--;
486 spin_unlock(&im->ino_lock);
490 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
492 struct inode_management *im = &sbi->im[ORPHAN_INO];
493 int err = 0;
495 spin_lock(&im->ino_lock);
497 #ifdef CONFIG_F2FS_FAULT_INJECTION
498 if (time_to_inject(sbi, FAULT_ORPHAN)) {
499 spin_unlock(&im->ino_lock);
500 f2fs_show_injection_info(FAULT_ORPHAN);
501 return -ENOSPC;
503 #endif
504 if (unlikely(im->ino_num >= sbi->max_orphans))
505 err = -ENOSPC;
506 else
507 im->ino_num++;
508 spin_unlock(&im->ino_lock);
510 return err;
513 void release_orphan_inode(struct f2fs_sb_info *sbi)
515 struct inode_management *im = &sbi->im[ORPHAN_INO];
517 spin_lock(&im->ino_lock);
518 f2fs_bug_on(sbi, im->ino_num == 0);
519 im->ino_num--;
520 spin_unlock(&im->ino_lock);
523 void add_orphan_inode(struct inode *inode)
525 /* add new orphan ino entry into list */
526 __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, ORPHAN_INO);
527 update_inode_page(inode);
530 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
532 /* remove orphan entry from orphan list */
533 __remove_ino_entry(sbi, ino, ORPHAN_INO);
536 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
538 struct inode *inode;
539 struct node_info ni;
540 int err = acquire_orphan_inode(sbi);
542 if (err) {
543 set_sbi_flag(sbi, SBI_NEED_FSCK);
544 f2fs_msg(sbi->sb, KERN_WARNING,
545 "%s: orphan failed (ino=%x), run fsck to fix.",
546 __func__, ino);
547 return err;
550 __add_ino_entry(sbi, ino, ORPHAN_INO);
552 inode = f2fs_iget_retry(sbi->sb, ino);
553 if (IS_ERR(inode)) {
555 * there should be a bug that we can't find the entry
556 * to orphan inode.
558 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
559 return PTR_ERR(inode);
562 clear_nlink(inode);
564 /* truncate all the data during iput */
565 iput(inode);
567 get_node_info(sbi, ino, &ni);
569 /* ENOMEM was fully retried in f2fs_evict_inode. */
570 if (ni.blk_addr != NULL_ADDR) {
571 set_sbi_flag(sbi, SBI_NEED_FSCK);
572 f2fs_msg(sbi->sb, KERN_WARNING,
573 "%s: orphan failed (ino=%x) by kernel, retry mount.",
574 __func__, ino);
575 return -EIO;
577 __remove_ino_entry(sbi, ino, ORPHAN_INO);
578 return 0;
581 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
583 block_t start_blk, orphan_blocks, i, j;
584 int err;
586 if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
587 return 0;
589 start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
590 orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
592 ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
594 for (i = 0; i < orphan_blocks; i++) {
595 struct page *page = get_meta_page(sbi, start_blk + i);
596 struct f2fs_orphan_block *orphan_blk;
598 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
599 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
600 nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
601 err = recover_orphan_inode(sbi, ino);
602 if (err) {
603 f2fs_put_page(page, 1);
604 return err;
607 f2fs_put_page(page, 1);
609 /* clear Orphan Flag */
610 clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
611 return 0;
614 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
616 struct list_head *head;
617 struct f2fs_orphan_block *orphan_blk = NULL;
618 unsigned int nentries = 0;
619 unsigned short index = 1;
620 unsigned short orphan_blocks;
621 struct page *page = NULL;
622 struct ino_entry *orphan = NULL;
623 struct inode_management *im = &sbi->im[ORPHAN_INO];
625 orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
628 * we don't need to do spin_lock(&im->ino_lock) here, since all the
629 * orphan inode operations are covered under f2fs_lock_op().
630 * And, spin_lock should be avoided due to page operations below.
632 head = &im->ino_list;
634 /* loop for each orphan inode entry and write them in Jornal block */
635 list_for_each_entry(orphan, head, list) {
636 if (!page) {
637 page = grab_meta_page(sbi, start_blk++);
638 orphan_blk =
639 (struct f2fs_orphan_block *)page_address(page);
640 memset(orphan_blk, 0, sizeof(*orphan_blk));
643 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
645 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
647 * an orphan block is full of 1020 entries,
648 * then we need to flush current orphan blocks
649 * and bring another one in memory
651 orphan_blk->blk_addr = cpu_to_le16(index);
652 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
653 orphan_blk->entry_count = cpu_to_le32(nentries);
654 set_page_dirty(page);
655 f2fs_put_page(page, 1);
656 index++;
657 nentries = 0;
658 page = NULL;
662 if (page) {
663 orphan_blk->blk_addr = cpu_to_le16(index);
664 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
665 orphan_blk->entry_count = cpu_to_le32(nentries);
666 set_page_dirty(page);
667 f2fs_put_page(page, 1);
671 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
672 struct f2fs_checkpoint **cp_block, struct page **cp_page,
673 unsigned long long *version)
675 unsigned long blk_size = sbi->blocksize;
676 size_t crc_offset = 0;
677 __u32 crc = 0;
679 *cp_page = get_meta_page(sbi, cp_addr);
680 *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
682 crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
683 if (crc_offset > (blk_size - sizeof(__le32))) {
684 f2fs_msg(sbi->sb, KERN_WARNING,
685 "invalid crc_offset: %zu", crc_offset);
686 return -EINVAL;
689 crc = cur_cp_crc(*cp_block);
690 if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
691 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
692 return -EINVAL;
695 *version = cur_cp_version(*cp_block);
696 return 0;
699 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
700 block_t cp_addr, unsigned long long *version)
702 struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
703 struct f2fs_checkpoint *cp_block = NULL;
704 unsigned long long cur_version = 0, pre_version = 0;
705 int err;
707 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
708 &cp_page_1, version);
709 if (err)
710 goto invalid_cp1;
711 pre_version = *version;
713 cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
714 err = get_checkpoint_version(sbi, cp_addr, &cp_block,
715 &cp_page_2, version);
716 if (err)
717 goto invalid_cp2;
718 cur_version = *version;
720 if (cur_version == pre_version) {
721 *version = cur_version;
722 f2fs_put_page(cp_page_2, 1);
723 return cp_page_1;
725 invalid_cp2:
726 f2fs_put_page(cp_page_2, 1);
727 invalid_cp1:
728 f2fs_put_page(cp_page_1, 1);
729 return NULL;
732 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
734 struct f2fs_checkpoint *cp_block;
735 struct f2fs_super_block *fsb = sbi->raw_super;
736 struct page *cp1, *cp2, *cur_page;
737 unsigned long blk_size = sbi->blocksize;
738 unsigned long long cp1_version = 0, cp2_version = 0;
739 unsigned long long cp_start_blk_no;
740 unsigned int cp_blks = 1 + __cp_payload(sbi);
741 block_t cp_blk_no;
742 int i;
744 sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
745 if (!sbi->ckpt)
746 return -ENOMEM;
748 * Finding out valid cp block involves read both
749 * sets( cp pack1 and cp pack 2)
751 cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
752 cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
754 /* The second checkpoint pack should start at the next segment */
755 cp_start_blk_no += ((unsigned long long)1) <<
756 le32_to_cpu(fsb->log_blocks_per_seg);
757 cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
759 if (cp1 && cp2) {
760 if (ver_after(cp2_version, cp1_version))
761 cur_page = cp2;
762 else
763 cur_page = cp1;
764 } else if (cp1) {
765 cur_page = cp1;
766 } else if (cp2) {
767 cur_page = cp2;
768 } else {
769 goto fail_no_cp;
772 cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
773 memcpy(sbi->ckpt, cp_block, blk_size);
775 /* Sanity checking of checkpoint */
776 if (sanity_check_ckpt(sbi))
777 goto free_fail_no_cp;
779 if (cur_page == cp1)
780 sbi->cur_cp_pack = 1;
781 else
782 sbi->cur_cp_pack = 2;
784 if (cp_blks <= 1)
785 goto done;
787 cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
788 if (cur_page == cp2)
789 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
791 for (i = 1; i < cp_blks; i++) {
792 void *sit_bitmap_ptr;
793 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
795 cur_page = get_meta_page(sbi, cp_blk_no + i);
796 sit_bitmap_ptr = page_address(cur_page);
797 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
798 f2fs_put_page(cur_page, 1);
800 done:
801 f2fs_put_page(cp1, 1);
802 f2fs_put_page(cp2, 1);
803 return 0;
805 free_fail_no_cp:
806 f2fs_put_page(cp1, 1);
807 f2fs_put_page(cp2, 1);
808 fail_no_cp:
809 kfree(sbi->ckpt);
810 return -EINVAL;
813 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
815 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
816 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
818 if (is_inode_flag_set(inode, flag))
819 return;
821 set_inode_flag(inode, flag);
822 if (!f2fs_is_volatile_file(inode))
823 list_add_tail(&F2FS_I(inode)->dirty_list,
824 &sbi->inode_list[type]);
825 stat_inc_dirty_inode(sbi, type);
828 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
830 int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
832 if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
833 return;
835 list_del_init(&F2FS_I(inode)->dirty_list);
836 clear_inode_flag(inode, flag);
837 stat_dec_dirty_inode(F2FS_I_SB(inode), type);
840 void update_dirty_page(struct inode *inode, struct page *page)
842 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
843 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
845 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
846 !S_ISLNK(inode->i_mode))
847 return;
849 spin_lock(&sbi->inode_lock[type]);
850 if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
851 __add_dirty_inode(inode, type);
852 inode_inc_dirty_pages(inode);
853 spin_unlock(&sbi->inode_lock[type]);
855 SetPagePrivate(page);
856 f2fs_trace_pid(page);
859 void remove_dirty_inode(struct inode *inode)
861 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
862 enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
864 if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
865 !S_ISLNK(inode->i_mode))
866 return;
868 if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
869 return;
871 spin_lock(&sbi->inode_lock[type]);
872 __remove_dirty_inode(inode, type);
873 spin_unlock(&sbi->inode_lock[type]);
876 int sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
878 struct list_head *head;
879 struct inode *inode;
880 struct f2fs_inode_info *fi;
881 bool is_dir = (type == DIR_INODE);
883 trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
884 get_pages(sbi, is_dir ?
885 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
886 retry:
887 if (unlikely(f2fs_cp_error(sbi)))
888 return -EIO;
890 spin_lock(&sbi->inode_lock[type]);
892 head = &sbi->inode_list[type];
893 if (list_empty(head)) {
894 spin_unlock(&sbi->inode_lock[type]);
895 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
896 get_pages(sbi, is_dir ?
897 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
898 return 0;
900 fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
901 inode = igrab(&fi->vfs_inode);
902 spin_unlock(&sbi->inode_lock[type]);
903 if (inode) {
904 filemap_fdatawrite(inode->i_mapping);
905 iput(inode);
906 } else {
908 * We should submit bio, since it exists several
909 * wribacking dentry pages in the freeing inode.
911 f2fs_submit_merged_write(sbi, DATA);
912 cond_resched();
914 goto retry;
917 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
919 struct list_head *head = &sbi->inode_list[DIRTY_META];
920 struct inode *inode;
921 struct f2fs_inode_info *fi;
922 s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
924 while (total--) {
925 if (unlikely(f2fs_cp_error(sbi)))
926 return -EIO;
928 spin_lock(&sbi->inode_lock[DIRTY_META]);
929 if (list_empty(head)) {
930 spin_unlock(&sbi->inode_lock[DIRTY_META]);
931 return 0;
933 fi = list_first_entry(head, struct f2fs_inode_info,
934 gdirty_list);
935 inode = igrab(&fi->vfs_inode);
936 spin_unlock(&sbi->inode_lock[DIRTY_META]);
937 if (inode) {
938 sync_inode_metadata(inode, 0);
940 /* it's on eviction */
941 if (is_inode_flag_set(inode, FI_DIRTY_INODE))
942 update_inode_page(inode);
943 iput(inode);
946 return 0;
949 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
951 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
952 struct f2fs_nm_info *nm_i = NM_I(sbi);
953 nid_t last_nid = nm_i->next_scan_nid;
955 next_free_nid(sbi, &last_nid);
956 ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
957 ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
958 ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
959 ckpt->next_free_nid = cpu_to_le32(last_nid);
963 * Freeze all the FS-operations for checkpoint.
965 static int block_operations(struct f2fs_sb_info *sbi)
967 struct writeback_control wbc = {
968 .sync_mode = WB_SYNC_ALL,
969 .nr_to_write = LONG_MAX,
970 .for_reclaim = 0,
972 struct blk_plug plug;
973 int err = 0;
975 blk_start_plug(&plug);
977 retry_flush_dents:
978 f2fs_lock_all(sbi);
979 /* write all the dirty dentry pages */
980 if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
981 f2fs_unlock_all(sbi);
982 err = sync_dirty_inodes(sbi, DIR_INODE);
983 if (err)
984 goto out;
985 cond_resched();
986 goto retry_flush_dents;
990 * POR: we should ensure that there are no dirty node pages
991 * until finishing nat/sit flush. inode->i_blocks can be updated.
993 down_write(&sbi->node_change);
995 if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
996 up_write(&sbi->node_change);
997 f2fs_unlock_all(sbi);
998 err = f2fs_sync_inode_meta(sbi);
999 if (err)
1000 goto out;
1001 cond_resched();
1002 goto retry_flush_dents;
1005 retry_flush_nodes:
1006 down_write(&sbi->node_write);
1008 if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1009 up_write(&sbi->node_write);
1010 err = sync_node_pages(sbi, &wbc);
1011 if (err) {
1012 up_write(&sbi->node_change);
1013 f2fs_unlock_all(sbi);
1014 goto out;
1016 cond_resched();
1017 goto retry_flush_nodes;
1021 * sbi->node_change is used only for AIO write_begin path which produces
1022 * dirty node blocks and some checkpoint values by block allocation.
1024 __prepare_cp_block(sbi);
1025 up_write(&sbi->node_change);
1026 out:
1027 blk_finish_plug(&plug);
1028 return err;
1031 static void unblock_operations(struct f2fs_sb_info *sbi)
1033 up_write(&sbi->node_write);
1034 f2fs_unlock_all(sbi);
1037 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1039 DEFINE_WAIT(wait);
1041 for (;;) {
1042 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1044 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1045 break;
1047 io_schedule_timeout(5*HZ);
1049 finish_wait(&sbi->cp_wait, &wait);
1052 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1054 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1055 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1056 unsigned long flags;
1058 spin_lock_irqsave(&sbi->cp_lock, flags);
1060 if ((cpc->reason & CP_UMOUNT) &&
1061 le32_to_cpu(ckpt->cp_pack_total_block_count) >
1062 sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1063 disable_nat_bits(sbi, false);
1065 if (cpc->reason & CP_TRIMMED)
1066 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1068 if (cpc->reason & CP_UMOUNT)
1069 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1070 else
1071 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1073 if (cpc->reason & CP_FASTBOOT)
1074 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1075 else
1076 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1078 if (orphan_num)
1079 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1080 else
1081 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1083 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1084 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1086 /* set this flag to activate crc|cp_ver for recovery */
1087 __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1089 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1092 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1094 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1095 struct f2fs_nm_info *nm_i = NM_I(sbi);
1096 unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1097 block_t start_blk;
1098 unsigned int data_sum_blocks, orphan_blocks;
1099 __u32 crc32 = 0;
1100 int i;
1101 int cp_payload_blks = __cp_payload(sbi);
1102 struct super_block *sb = sbi->sb;
1103 struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1104 u64 kbytes_written;
1106 /* Flush all the NAT/SIT pages */
1107 while (get_pages(sbi, F2FS_DIRTY_META)) {
1108 sync_meta_pages(sbi, META, LONG_MAX);
1109 if (unlikely(f2fs_cp_error(sbi)))
1110 return -EIO;
1114 * modify checkpoint
1115 * version number is already updated
1117 ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
1118 ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1119 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1120 ckpt->cur_node_segno[i] =
1121 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1122 ckpt->cur_node_blkoff[i] =
1123 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1124 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1125 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1127 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1128 ckpt->cur_data_segno[i] =
1129 cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1130 ckpt->cur_data_blkoff[i] =
1131 cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1132 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1133 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1136 /* 2 cp + n data seg summary + orphan inode blocks */
1137 data_sum_blocks = npages_for_summary_flush(sbi, false);
1138 spin_lock_irqsave(&sbi->cp_lock, flags);
1139 if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1140 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1141 else
1142 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1143 spin_unlock_irqrestore(&sbi->cp_lock, flags);
1145 orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1146 ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1147 orphan_blocks);
1149 if (__remain_node_summaries(cpc->reason))
1150 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1151 cp_payload_blks + data_sum_blocks +
1152 orphan_blocks + NR_CURSEG_NODE_TYPE);
1153 else
1154 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1155 cp_payload_blks + data_sum_blocks +
1156 orphan_blocks);
1158 /* update ckpt flag for checkpoint */
1159 update_ckpt_flags(sbi, cpc);
1161 /* update SIT/NAT bitmap */
1162 get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1163 get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1165 crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1166 *((__le32 *)((unsigned char *)ckpt +
1167 le32_to_cpu(ckpt->checksum_offset)))
1168 = cpu_to_le32(crc32);
1170 start_blk = __start_cp_next_addr(sbi);
1172 /* write nat bits */
1173 if (enabled_nat_bits(sbi, cpc)) {
1174 __u64 cp_ver = cur_cp_version(ckpt);
1175 block_t blk;
1177 cp_ver |= ((__u64)crc32 << 32);
1178 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1180 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1181 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1182 update_meta_page(sbi, nm_i->nat_bits +
1183 (i << F2FS_BLKSIZE_BITS), blk + i);
1185 /* Flush all the NAT BITS pages */
1186 while (get_pages(sbi, F2FS_DIRTY_META)) {
1187 sync_meta_pages(sbi, META, LONG_MAX);
1188 if (unlikely(f2fs_cp_error(sbi)))
1189 return -EIO;
1193 /* need to wait for end_io results */
1194 wait_on_all_pages_writeback(sbi);
1195 if (unlikely(f2fs_cp_error(sbi)))
1196 return -EIO;
1198 /* write out checkpoint buffer at block 0 */
1199 update_meta_page(sbi, ckpt, start_blk++);
1201 for (i = 1; i < 1 + cp_payload_blks; i++)
1202 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1203 start_blk++);
1205 if (orphan_num) {
1206 write_orphan_inodes(sbi, start_blk);
1207 start_blk += orphan_blocks;
1210 write_data_summaries(sbi, start_blk);
1211 start_blk += data_sum_blocks;
1213 /* Record write statistics in the hot node summary */
1214 kbytes_written = sbi->kbytes_written;
1215 if (sb->s_bdev->bd_part)
1216 kbytes_written += BD_PART_WRITTEN(sbi);
1218 seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1220 if (__remain_node_summaries(cpc->reason)) {
1221 write_node_summaries(sbi, start_blk);
1222 start_blk += NR_CURSEG_NODE_TYPE;
1225 /* writeout checkpoint block */
1226 update_meta_page(sbi, ckpt, start_blk);
1228 /* wait for previous submitted node/meta pages writeback */
1229 wait_on_all_pages_writeback(sbi);
1231 if (unlikely(f2fs_cp_error(sbi)))
1232 return -EIO;
1234 filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LLONG_MAX);
1235 filemap_fdatawait_range(META_MAPPING(sbi), 0, LLONG_MAX);
1237 /* update user_block_counts */
1238 sbi->last_valid_block_count = sbi->total_valid_block_count;
1239 percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1241 /* Here, we only have one bio having CP pack */
1242 sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1244 /* wait for previous submitted meta pages writeback */
1245 wait_on_all_pages_writeback(sbi);
1247 release_ino_entry(sbi, false);
1249 if (unlikely(f2fs_cp_error(sbi)))
1250 return -EIO;
1252 clear_sbi_flag(sbi, SBI_IS_DIRTY);
1253 clear_sbi_flag(sbi, SBI_NEED_CP);
1254 __set_cp_next_pack(sbi);
1257 * redirty superblock if metadata like node page or inode cache is
1258 * updated during writing checkpoint.
1260 if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1261 get_pages(sbi, F2FS_DIRTY_IMETA))
1262 set_sbi_flag(sbi, SBI_IS_DIRTY);
1264 f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1266 return 0;
1270 * We guarantee that this checkpoint procedure will not fail.
1272 int write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1274 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1275 unsigned long long ckpt_ver;
1276 int err = 0;
1278 mutex_lock(&sbi->cp_mutex);
1280 if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1281 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1282 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1283 goto out;
1284 if (unlikely(f2fs_cp_error(sbi))) {
1285 err = -EIO;
1286 goto out;
1288 if (f2fs_readonly(sbi->sb)) {
1289 err = -EROFS;
1290 goto out;
1293 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1295 err = block_operations(sbi);
1296 if (err)
1297 goto out;
1299 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1301 f2fs_flush_merged_writes(sbi);
1303 /* this is the case of multiple fstrims without any changes */
1304 if (cpc->reason & CP_DISCARD) {
1305 if (!exist_trim_candidates(sbi, cpc)) {
1306 unblock_operations(sbi);
1307 goto out;
1310 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1311 SIT_I(sbi)->dirty_sentries == 0 &&
1312 prefree_segments(sbi) == 0) {
1313 flush_sit_entries(sbi, cpc);
1314 clear_prefree_segments(sbi, cpc);
1315 unblock_operations(sbi);
1316 goto out;
1321 * update checkpoint pack index
1322 * Increase the version number so that
1323 * SIT entries and seg summaries are written at correct place
1325 ckpt_ver = cur_cp_version(ckpt);
1326 ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1328 /* write cached NAT/SIT entries to NAT/SIT area */
1329 flush_nat_entries(sbi, cpc);
1330 flush_sit_entries(sbi, cpc);
1332 /* unlock all the fs_lock[] in do_checkpoint() */
1333 err = do_checkpoint(sbi, cpc);
1334 if (err)
1335 release_discard_addrs(sbi);
1336 else
1337 clear_prefree_segments(sbi, cpc);
1339 unblock_operations(sbi);
1340 stat_inc_cp_count(sbi->stat_info);
1342 if (cpc->reason & CP_RECOVERY)
1343 f2fs_msg(sbi->sb, KERN_NOTICE,
1344 "checkpoint: version = %llx", ckpt_ver);
1346 /* do checkpoint periodically */
1347 f2fs_update_time(sbi, CP_TIME);
1348 trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1349 out:
1350 mutex_unlock(&sbi->cp_mutex);
1351 return err;
1354 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1356 int i;
1358 for (i = 0; i < MAX_INO_ENTRY; i++) {
1359 struct inode_management *im = &sbi->im[i];
1361 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1362 spin_lock_init(&im->ino_lock);
1363 INIT_LIST_HEAD(&im->ino_list);
1364 im->ino_num = 0;
1367 sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1368 NR_CURSEG_TYPE - __cp_payload(sbi)) *
1369 F2FS_ORPHANS_PER_BLOCK;
1372 int __init create_checkpoint_caches(void)
1374 ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1375 sizeof(struct ino_entry));
1376 if (!ino_entry_slab)
1377 return -ENOMEM;
1378 inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1379 sizeof(struct inode_entry));
1380 if (!inode_entry_slab) {
1381 kmem_cache_destroy(ino_entry_slab);
1382 return -ENOMEM;
1384 return 0;
1387 void destroy_checkpoint_caches(void)
1389 kmem_cache_destroy(ino_entry_slab);
1390 kmem_cache_destroy(inode_entry_slab);