4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
24 #include <trace/events/f2fs.h>
26 static struct kmem_cache
*ino_entry_slab
;
27 struct kmem_cache
*inode_entry_slab
;
29 void f2fs_stop_checkpoint(struct f2fs_sb_info
*sbi
, bool end_io
)
31 set_ckpt_flags(sbi
, CP_ERROR_FLAG
);
32 sbi
->sb
->s_flags
|= MS_RDONLY
;
34 f2fs_flush_merged_writes(sbi
);
38 * We guarantee no failure on the returned page.
40 struct page
*grab_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
42 struct address_space
*mapping
= META_MAPPING(sbi
);
43 struct page
*page
= NULL
;
45 page
= f2fs_grab_cache_page(mapping
, index
, false);
50 f2fs_wait_on_page_writeback(page
, META
, true);
51 if (!PageUptodate(page
))
52 SetPageUptodate(page
);
57 * We guarantee no failure on the returned page.
59 static struct page
*__get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
,
62 struct address_space
*mapping
= META_MAPPING(sbi
);
64 struct f2fs_io_info fio
= {
68 .op_flags
= REQ_META
| REQ_PRIO
,
71 .encrypted_page
= NULL
,
74 if (unlikely(!is_meta
))
75 fio
.op_flags
&= ~REQ_META
;
77 page
= f2fs_grab_cache_page(mapping
, index
, false);
82 if (PageUptodate(page
))
87 if (f2fs_submit_page_bio(&fio
)) {
88 f2fs_put_page(page
, 1);
93 if (unlikely(page
->mapping
!= mapping
)) {
94 f2fs_put_page(page
, 1);
99 * if there is any IO error when accessing device, make our filesystem
100 * readonly and make sure do not write checkpoint with non-uptodate
103 if (unlikely(!PageUptodate(page
)))
104 f2fs_stop_checkpoint(sbi
, false);
109 struct page
*get_meta_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
111 return __get_meta_page(sbi
, index
, true);
115 struct page
*get_tmp_page(struct f2fs_sb_info
*sbi
, pgoff_t index
)
117 return __get_meta_page(sbi
, index
, false);
120 bool is_valid_blkaddr(struct f2fs_sb_info
*sbi
, block_t blkaddr
, int type
)
126 if (unlikely(blkaddr
>= SIT_BLK_CNT(sbi
)))
130 if (unlikely(blkaddr
>= MAIN_BLKADDR(sbi
) ||
131 blkaddr
< SM_I(sbi
)->ssa_blkaddr
))
135 if (unlikely(blkaddr
>= SIT_I(sbi
)->sit_base_addr
||
136 blkaddr
< __start_cp_addr(sbi
)))
140 if (unlikely(blkaddr
>= MAX_BLKADDR(sbi
) ||
141 blkaddr
< MAIN_BLKADDR(sbi
)))
152 * Readahead CP/NAT/SIT/SSA pages
154 int ra_meta_pages(struct f2fs_sb_info
*sbi
, block_t start
, int nrpages
,
158 block_t blkno
= start
;
159 struct f2fs_io_info fio
= {
163 .op_flags
= sync
? (REQ_META
| REQ_PRIO
) : REQ_RAHEAD
,
164 .encrypted_page
= NULL
,
167 struct blk_plug plug
;
169 if (unlikely(type
== META_POR
))
170 fio
.op_flags
&= ~REQ_META
;
172 blk_start_plug(&plug
);
173 for (; nrpages
-- > 0; blkno
++) {
175 if (!is_valid_blkaddr(sbi
, blkno
, type
))
180 if (unlikely(blkno
>=
181 NAT_BLOCK_OFFSET(NM_I(sbi
)->max_nid
)))
183 /* get nat block addr */
184 fio
.new_blkaddr
= current_nat_addr(sbi
,
185 blkno
* NAT_ENTRY_PER_BLOCK
);
188 /* get sit block addr */
189 fio
.new_blkaddr
= current_sit_addr(sbi
,
190 blkno
* SIT_ENTRY_PER_BLOCK
);
195 fio
.new_blkaddr
= blkno
;
201 page
= f2fs_grab_cache_page(META_MAPPING(sbi
),
202 fio
.new_blkaddr
, false);
205 if (PageUptodate(page
)) {
206 f2fs_put_page(page
, 1);
211 f2fs_submit_page_bio(&fio
);
212 f2fs_put_page(page
, 0);
215 blk_finish_plug(&plug
);
216 return blkno
- start
;
219 void ra_meta_pages_cond(struct f2fs_sb_info
*sbi
, pgoff_t index
)
222 bool readahead
= false;
224 page
= find_get_page(META_MAPPING(sbi
), index
);
225 if (!page
|| !PageUptodate(page
))
227 f2fs_put_page(page
, 0);
230 ra_meta_pages(sbi
, index
, BIO_MAX_PAGES
, META_POR
, true);
233 static int f2fs_write_meta_page(struct page
*page
,
234 struct writeback_control
*wbc
)
236 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
238 trace_f2fs_writepage(page
, META
);
240 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
242 if (wbc
->for_reclaim
&& page
->index
< GET_SUM_BLOCK(sbi
, 0))
244 if (unlikely(f2fs_cp_error(sbi
)))
247 write_meta_page(sbi
, page
);
248 dec_page_count(sbi
, F2FS_DIRTY_META
);
250 if (wbc
->for_reclaim
)
251 f2fs_submit_merged_write_cond(sbi
, page
->mapping
->host
,
252 0, page
->index
, META
);
256 if (unlikely(f2fs_cp_error(sbi
)))
257 f2fs_submit_merged_write(sbi
, META
);
262 redirty_page_for_writepage(wbc
, page
);
263 return AOP_WRITEPAGE_ACTIVATE
;
266 static int f2fs_write_meta_pages(struct address_space
*mapping
,
267 struct writeback_control
*wbc
)
269 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
272 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
275 /* collect a number of dirty meta pages and write together */
276 if (wbc
->for_kupdate
||
277 get_pages(sbi
, F2FS_DIRTY_META
) < nr_pages_to_skip(sbi
, META
))
280 /* if locked failed, cp will flush dirty pages instead */
281 if (!mutex_trylock(&sbi
->cp_mutex
))
284 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
285 diff
= nr_pages_to_write(sbi
, META
, wbc
);
286 written
= sync_meta_pages(sbi
, META
, wbc
->nr_to_write
);
287 mutex_unlock(&sbi
->cp_mutex
);
288 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- written
- diff
);
292 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_META
);
293 trace_f2fs_writepages(mapping
->host
, wbc
, META
);
297 long sync_meta_pages(struct f2fs_sb_info
*sbi
, enum page_type type
,
300 struct address_space
*mapping
= META_MAPPING(sbi
);
301 pgoff_t index
= 0, end
= ULONG_MAX
, prev
= ULONG_MAX
;
304 struct writeback_control wbc
= {
307 struct blk_plug plug
;
309 pagevec_init(&pvec
, 0);
311 blk_start_plug(&plug
);
313 while (index
<= end
) {
315 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
317 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
318 if (unlikely(nr_pages
== 0))
321 for (i
= 0; i
< nr_pages
; i
++) {
322 struct page
*page
= pvec
.pages
[i
];
324 if (prev
== ULONG_MAX
)
325 prev
= page
->index
- 1;
326 if (nr_to_write
!= LONG_MAX
&& page
->index
!= prev
+ 1) {
327 pagevec_release(&pvec
);
333 if (unlikely(page
->mapping
!= mapping
)) {
338 if (!PageDirty(page
)) {
339 /* someone wrote it for us */
340 goto continue_unlock
;
343 f2fs_wait_on_page_writeback(page
, META
, true);
345 BUG_ON(PageWriteback(page
));
346 if (!clear_page_dirty_for_io(page
))
347 goto continue_unlock
;
349 if (mapping
->a_ops
->writepage(page
, &wbc
)) {
355 if (unlikely(nwritten
>= nr_to_write
))
358 pagevec_release(&pvec
);
363 f2fs_submit_merged_write(sbi
, type
);
365 blk_finish_plug(&plug
);
370 static int f2fs_set_meta_page_dirty(struct page
*page
)
372 trace_f2fs_set_page_dirty(page
, META
);
374 if (!PageUptodate(page
))
375 SetPageUptodate(page
);
376 if (!PageDirty(page
)) {
377 f2fs_set_page_dirty_nobuffers(page
);
378 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_META
);
379 SetPagePrivate(page
);
380 f2fs_trace_pid(page
);
386 const struct address_space_operations f2fs_meta_aops
= {
387 .writepage
= f2fs_write_meta_page
,
388 .writepages
= f2fs_write_meta_pages
,
389 .set_page_dirty
= f2fs_set_meta_page_dirty
,
390 .invalidatepage
= f2fs_invalidate_page
,
391 .releasepage
= f2fs_release_page
,
392 #ifdef CONFIG_MIGRATION
393 .migratepage
= f2fs_migrate_page
,
397 static void __add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
399 struct inode_management
*im
= &sbi
->im
[type
];
400 struct ino_entry
*e
, *tmp
;
402 tmp
= f2fs_kmem_cache_alloc(ino_entry_slab
, GFP_NOFS
);
404 radix_tree_preload(GFP_NOFS
| __GFP_NOFAIL
);
406 spin_lock(&im
->ino_lock
);
407 e
= radix_tree_lookup(&im
->ino_root
, ino
);
410 if (radix_tree_insert(&im
->ino_root
, ino
, e
)) {
411 spin_unlock(&im
->ino_lock
);
412 radix_tree_preload_end();
415 memset(e
, 0, sizeof(struct ino_entry
));
418 list_add_tail(&e
->list
, &im
->ino_list
);
419 if (type
!= ORPHAN_INO
)
422 spin_unlock(&im
->ino_lock
);
423 radix_tree_preload_end();
426 kmem_cache_free(ino_entry_slab
, tmp
);
429 static void __remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
431 struct inode_management
*im
= &sbi
->im
[type
];
434 spin_lock(&im
->ino_lock
);
435 e
= radix_tree_lookup(&im
->ino_root
, ino
);
438 radix_tree_delete(&im
->ino_root
, ino
);
440 spin_unlock(&im
->ino_lock
);
441 kmem_cache_free(ino_entry_slab
, e
);
444 spin_unlock(&im
->ino_lock
);
447 void add_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
449 /* add new dirty ino entry into list */
450 __add_ino_entry(sbi
, ino
, type
);
453 void remove_ino_entry(struct f2fs_sb_info
*sbi
, nid_t ino
, int type
)
455 /* remove dirty ino entry from list */
456 __remove_ino_entry(sbi
, ino
, type
);
459 /* mode should be APPEND_INO or UPDATE_INO */
460 bool exist_written_data(struct f2fs_sb_info
*sbi
, nid_t ino
, int mode
)
462 struct inode_management
*im
= &sbi
->im
[mode
];
465 spin_lock(&im
->ino_lock
);
466 e
= radix_tree_lookup(&im
->ino_root
, ino
);
467 spin_unlock(&im
->ino_lock
);
468 return e
? true : false;
471 void release_ino_entry(struct f2fs_sb_info
*sbi
, bool all
)
473 struct ino_entry
*e
, *tmp
;
476 for (i
= all
? ORPHAN_INO
: APPEND_INO
; i
<= UPDATE_INO
; i
++) {
477 struct inode_management
*im
= &sbi
->im
[i
];
479 spin_lock(&im
->ino_lock
);
480 list_for_each_entry_safe(e
, tmp
, &im
->ino_list
, list
) {
482 radix_tree_delete(&im
->ino_root
, e
->ino
);
483 kmem_cache_free(ino_entry_slab
, e
);
486 spin_unlock(&im
->ino_lock
);
490 int acquire_orphan_inode(struct f2fs_sb_info
*sbi
)
492 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
495 spin_lock(&im
->ino_lock
);
497 #ifdef CONFIG_F2FS_FAULT_INJECTION
498 if (time_to_inject(sbi
, FAULT_ORPHAN
)) {
499 spin_unlock(&im
->ino_lock
);
500 f2fs_show_injection_info(FAULT_ORPHAN
);
504 if (unlikely(im
->ino_num
>= sbi
->max_orphans
))
508 spin_unlock(&im
->ino_lock
);
513 void release_orphan_inode(struct f2fs_sb_info
*sbi
)
515 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
517 spin_lock(&im
->ino_lock
);
518 f2fs_bug_on(sbi
, im
->ino_num
== 0);
520 spin_unlock(&im
->ino_lock
);
523 void add_orphan_inode(struct inode
*inode
)
525 /* add new orphan ino entry into list */
526 __add_ino_entry(F2FS_I_SB(inode
), inode
->i_ino
, ORPHAN_INO
);
527 update_inode_page(inode
);
530 void remove_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
532 /* remove orphan entry from orphan list */
533 __remove_ino_entry(sbi
, ino
, ORPHAN_INO
);
536 static int recover_orphan_inode(struct f2fs_sb_info
*sbi
, nid_t ino
)
540 int err
= acquire_orphan_inode(sbi
);
543 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
544 f2fs_msg(sbi
->sb
, KERN_WARNING
,
545 "%s: orphan failed (ino=%x), run fsck to fix.",
550 __add_ino_entry(sbi
, ino
, ORPHAN_INO
);
552 inode
= f2fs_iget_retry(sbi
->sb
, ino
);
555 * there should be a bug that we can't find the entry
558 f2fs_bug_on(sbi
, PTR_ERR(inode
) == -ENOENT
);
559 return PTR_ERR(inode
);
564 /* truncate all the data during iput */
567 get_node_info(sbi
, ino
, &ni
);
569 /* ENOMEM was fully retried in f2fs_evict_inode. */
570 if (ni
.blk_addr
!= NULL_ADDR
) {
571 set_sbi_flag(sbi
, SBI_NEED_FSCK
);
572 f2fs_msg(sbi
->sb
, KERN_WARNING
,
573 "%s: orphan failed (ino=%x) by kernel, retry mount.",
577 __remove_ino_entry(sbi
, ino
, ORPHAN_INO
);
581 int recover_orphan_inodes(struct f2fs_sb_info
*sbi
)
583 block_t start_blk
, orphan_blocks
, i
, j
;
586 if (!is_set_ckpt_flags(sbi
, CP_ORPHAN_PRESENT_FLAG
))
589 start_blk
= __start_cp_addr(sbi
) + 1 + __cp_payload(sbi
);
590 orphan_blocks
= __start_sum_addr(sbi
) - 1 - __cp_payload(sbi
);
592 ra_meta_pages(sbi
, start_blk
, orphan_blocks
, META_CP
, true);
594 for (i
= 0; i
< orphan_blocks
; i
++) {
595 struct page
*page
= get_meta_page(sbi
, start_blk
+ i
);
596 struct f2fs_orphan_block
*orphan_blk
;
598 orphan_blk
= (struct f2fs_orphan_block
*)page_address(page
);
599 for (j
= 0; j
< le32_to_cpu(orphan_blk
->entry_count
); j
++) {
600 nid_t ino
= le32_to_cpu(orphan_blk
->ino
[j
]);
601 err
= recover_orphan_inode(sbi
, ino
);
603 f2fs_put_page(page
, 1);
607 f2fs_put_page(page
, 1);
609 /* clear Orphan Flag */
610 clear_ckpt_flags(sbi
, CP_ORPHAN_PRESENT_FLAG
);
614 static void write_orphan_inodes(struct f2fs_sb_info
*sbi
, block_t start_blk
)
616 struct list_head
*head
;
617 struct f2fs_orphan_block
*orphan_blk
= NULL
;
618 unsigned int nentries
= 0;
619 unsigned short index
= 1;
620 unsigned short orphan_blocks
;
621 struct page
*page
= NULL
;
622 struct ino_entry
*orphan
= NULL
;
623 struct inode_management
*im
= &sbi
->im
[ORPHAN_INO
];
625 orphan_blocks
= GET_ORPHAN_BLOCKS(im
->ino_num
);
628 * we don't need to do spin_lock(&im->ino_lock) here, since all the
629 * orphan inode operations are covered under f2fs_lock_op().
630 * And, spin_lock should be avoided due to page operations below.
632 head
= &im
->ino_list
;
634 /* loop for each orphan inode entry and write them in Jornal block */
635 list_for_each_entry(orphan
, head
, list
) {
637 page
= grab_meta_page(sbi
, start_blk
++);
639 (struct f2fs_orphan_block
*)page_address(page
);
640 memset(orphan_blk
, 0, sizeof(*orphan_blk
));
643 orphan_blk
->ino
[nentries
++] = cpu_to_le32(orphan
->ino
);
645 if (nentries
== F2FS_ORPHANS_PER_BLOCK
) {
647 * an orphan block is full of 1020 entries,
648 * then we need to flush current orphan blocks
649 * and bring another one in memory
651 orphan_blk
->blk_addr
= cpu_to_le16(index
);
652 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
653 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
654 set_page_dirty(page
);
655 f2fs_put_page(page
, 1);
663 orphan_blk
->blk_addr
= cpu_to_le16(index
);
664 orphan_blk
->blk_count
= cpu_to_le16(orphan_blocks
);
665 orphan_blk
->entry_count
= cpu_to_le32(nentries
);
666 set_page_dirty(page
);
667 f2fs_put_page(page
, 1);
671 static int get_checkpoint_version(struct f2fs_sb_info
*sbi
, block_t cp_addr
,
672 struct f2fs_checkpoint
**cp_block
, struct page
**cp_page
,
673 unsigned long long *version
)
675 unsigned long blk_size
= sbi
->blocksize
;
676 size_t crc_offset
= 0;
679 *cp_page
= get_meta_page(sbi
, cp_addr
);
680 *cp_block
= (struct f2fs_checkpoint
*)page_address(*cp_page
);
682 crc_offset
= le32_to_cpu((*cp_block
)->checksum_offset
);
683 if (crc_offset
> (blk_size
- sizeof(__le32
))) {
684 f2fs_msg(sbi
->sb
, KERN_WARNING
,
685 "invalid crc_offset: %zu", crc_offset
);
689 crc
= cur_cp_crc(*cp_block
);
690 if (!f2fs_crc_valid(sbi
, crc
, *cp_block
, crc_offset
)) {
691 f2fs_msg(sbi
->sb
, KERN_WARNING
, "invalid crc value");
695 *version
= cur_cp_version(*cp_block
);
699 static struct page
*validate_checkpoint(struct f2fs_sb_info
*sbi
,
700 block_t cp_addr
, unsigned long long *version
)
702 struct page
*cp_page_1
= NULL
, *cp_page_2
= NULL
;
703 struct f2fs_checkpoint
*cp_block
= NULL
;
704 unsigned long long cur_version
= 0, pre_version
= 0;
707 err
= get_checkpoint_version(sbi
, cp_addr
, &cp_block
,
708 &cp_page_1
, version
);
711 pre_version
= *version
;
713 cp_addr
+= le32_to_cpu(cp_block
->cp_pack_total_block_count
) - 1;
714 err
= get_checkpoint_version(sbi
, cp_addr
, &cp_block
,
715 &cp_page_2
, version
);
718 cur_version
= *version
;
720 if (cur_version
== pre_version
) {
721 *version
= cur_version
;
722 f2fs_put_page(cp_page_2
, 1);
726 f2fs_put_page(cp_page_2
, 1);
728 f2fs_put_page(cp_page_1
, 1);
732 int get_valid_checkpoint(struct f2fs_sb_info
*sbi
)
734 struct f2fs_checkpoint
*cp_block
;
735 struct f2fs_super_block
*fsb
= sbi
->raw_super
;
736 struct page
*cp1
, *cp2
, *cur_page
;
737 unsigned long blk_size
= sbi
->blocksize
;
738 unsigned long long cp1_version
= 0, cp2_version
= 0;
739 unsigned long long cp_start_blk_no
;
740 unsigned int cp_blks
= 1 + __cp_payload(sbi
);
744 sbi
->ckpt
= kzalloc(cp_blks
* blk_size
, GFP_KERNEL
);
748 * Finding out valid cp block involves read both
749 * sets( cp pack1 and cp pack 2)
751 cp_start_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
752 cp1
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp1_version
);
754 /* The second checkpoint pack should start at the next segment */
755 cp_start_blk_no
+= ((unsigned long long)1) <<
756 le32_to_cpu(fsb
->log_blocks_per_seg
);
757 cp2
= validate_checkpoint(sbi
, cp_start_blk_no
, &cp2_version
);
760 if (ver_after(cp2_version
, cp1_version
))
772 cp_block
= (struct f2fs_checkpoint
*)page_address(cur_page
);
773 memcpy(sbi
->ckpt
, cp_block
, blk_size
);
775 /* Sanity checking of checkpoint */
776 if (sanity_check_ckpt(sbi
))
777 goto free_fail_no_cp
;
780 sbi
->cur_cp_pack
= 1;
782 sbi
->cur_cp_pack
= 2;
787 cp_blk_no
= le32_to_cpu(fsb
->cp_blkaddr
);
789 cp_blk_no
+= 1 << le32_to_cpu(fsb
->log_blocks_per_seg
);
791 for (i
= 1; i
< cp_blks
; i
++) {
792 void *sit_bitmap_ptr
;
793 unsigned char *ckpt
= (unsigned char *)sbi
->ckpt
;
795 cur_page
= get_meta_page(sbi
, cp_blk_no
+ i
);
796 sit_bitmap_ptr
= page_address(cur_page
);
797 memcpy(ckpt
+ i
* blk_size
, sit_bitmap_ptr
, blk_size
);
798 f2fs_put_page(cur_page
, 1);
801 f2fs_put_page(cp1
, 1);
802 f2fs_put_page(cp2
, 1);
806 f2fs_put_page(cp1
, 1);
807 f2fs_put_page(cp2
, 1);
813 static void __add_dirty_inode(struct inode
*inode
, enum inode_type type
)
815 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
816 int flag
= (type
== DIR_INODE
) ? FI_DIRTY_DIR
: FI_DIRTY_FILE
;
818 if (is_inode_flag_set(inode
, flag
))
821 set_inode_flag(inode
, flag
);
822 if (!f2fs_is_volatile_file(inode
))
823 list_add_tail(&F2FS_I(inode
)->dirty_list
,
824 &sbi
->inode_list
[type
]);
825 stat_inc_dirty_inode(sbi
, type
);
828 static void __remove_dirty_inode(struct inode
*inode
, enum inode_type type
)
830 int flag
= (type
== DIR_INODE
) ? FI_DIRTY_DIR
: FI_DIRTY_FILE
;
832 if (get_dirty_pages(inode
) || !is_inode_flag_set(inode
, flag
))
835 list_del_init(&F2FS_I(inode
)->dirty_list
);
836 clear_inode_flag(inode
, flag
);
837 stat_dec_dirty_inode(F2FS_I_SB(inode
), type
);
840 void update_dirty_page(struct inode
*inode
, struct page
*page
)
842 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
843 enum inode_type type
= S_ISDIR(inode
->i_mode
) ? DIR_INODE
: FILE_INODE
;
845 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
846 !S_ISLNK(inode
->i_mode
))
849 spin_lock(&sbi
->inode_lock
[type
]);
850 if (type
!= FILE_INODE
|| test_opt(sbi
, DATA_FLUSH
))
851 __add_dirty_inode(inode
, type
);
852 inode_inc_dirty_pages(inode
);
853 spin_unlock(&sbi
->inode_lock
[type
]);
855 SetPagePrivate(page
);
856 f2fs_trace_pid(page
);
859 void remove_dirty_inode(struct inode
*inode
)
861 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
862 enum inode_type type
= S_ISDIR(inode
->i_mode
) ? DIR_INODE
: FILE_INODE
;
864 if (!S_ISDIR(inode
->i_mode
) && !S_ISREG(inode
->i_mode
) &&
865 !S_ISLNK(inode
->i_mode
))
868 if (type
== FILE_INODE
&& !test_opt(sbi
, DATA_FLUSH
))
871 spin_lock(&sbi
->inode_lock
[type
]);
872 __remove_dirty_inode(inode
, type
);
873 spin_unlock(&sbi
->inode_lock
[type
]);
876 int sync_dirty_inodes(struct f2fs_sb_info
*sbi
, enum inode_type type
)
878 struct list_head
*head
;
880 struct f2fs_inode_info
*fi
;
881 bool is_dir
= (type
== DIR_INODE
);
883 trace_f2fs_sync_dirty_inodes_enter(sbi
->sb
, is_dir
,
884 get_pages(sbi
, is_dir
?
885 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
887 if (unlikely(f2fs_cp_error(sbi
)))
890 spin_lock(&sbi
->inode_lock
[type
]);
892 head
= &sbi
->inode_list
[type
];
893 if (list_empty(head
)) {
894 spin_unlock(&sbi
->inode_lock
[type
]);
895 trace_f2fs_sync_dirty_inodes_exit(sbi
->sb
, is_dir
,
896 get_pages(sbi
, is_dir
?
897 F2FS_DIRTY_DENTS
: F2FS_DIRTY_DATA
));
900 fi
= list_first_entry(head
, struct f2fs_inode_info
, dirty_list
);
901 inode
= igrab(&fi
->vfs_inode
);
902 spin_unlock(&sbi
->inode_lock
[type
]);
904 filemap_fdatawrite(inode
->i_mapping
);
908 * We should submit bio, since it exists several
909 * wribacking dentry pages in the freeing inode.
911 f2fs_submit_merged_write(sbi
, DATA
);
917 int f2fs_sync_inode_meta(struct f2fs_sb_info
*sbi
)
919 struct list_head
*head
= &sbi
->inode_list
[DIRTY_META
];
921 struct f2fs_inode_info
*fi
;
922 s64 total
= get_pages(sbi
, F2FS_DIRTY_IMETA
);
925 if (unlikely(f2fs_cp_error(sbi
)))
928 spin_lock(&sbi
->inode_lock
[DIRTY_META
]);
929 if (list_empty(head
)) {
930 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
933 fi
= list_first_entry(head
, struct f2fs_inode_info
,
935 inode
= igrab(&fi
->vfs_inode
);
936 spin_unlock(&sbi
->inode_lock
[DIRTY_META
]);
938 sync_inode_metadata(inode
, 0);
940 /* it's on eviction */
941 if (is_inode_flag_set(inode
, FI_DIRTY_INODE
))
942 update_inode_page(inode
);
949 static void __prepare_cp_block(struct f2fs_sb_info
*sbi
)
951 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
952 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
953 nid_t last_nid
= nm_i
->next_scan_nid
;
955 next_free_nid(sbi
, &last_nid
);
956 ckpt
->valid_block_count
= cpu_to_le64(valid_user_blocks(sbi
));
957 ckpt
->valid_node_count
= cpu_to_le32(valid_node_count(sbi
));
958 ckpt
->valid_inode_count
= cpu_to_le32(valid_inode_count(sbi
));
959 ckpt
->next_free_nid
= cpu_to_le32(last_nid
);
963 * Freeze all the FS-operations for checkpoint.
965 static int block_operations(struct f2fs_sb_info
*sbi
)
967 struct writeback_control wbc
= {
968 .sync_mode
= WB_SYNC_ALL
,
969 .nr_to_write
= LONG_MAX
,
972 struct blk_plug plug
;
975 blk_start_plug(&plug
);
979 /* write all the dirty dentry pages */
980 if (get_pages(sbi
, F2FS_DIRTY_DENTS
)) {
981 f2fs_unlock_all(sbi
);
982 err
= sync_dirty_inodes(sbi
, DIR_INODE
);
986 goto retry_flush_dents
;
990 * POR: we should ensure that there are no dirty node pages
991 * until finishing nat/sit flush. inode->i_blocks can be updated.
993 down_write(&sbi
->node_change
);
995 if (get_pages(sbi
, F2FS_DIRTY_IMETA
)) {
996 up_write(&sbi
->node_change
);
997 f2fs_unlock_all(sbi
);
998 err
= f2fs_sync_inode_meta(sbi
);
1002 goto retry_flush_dents
;
1006 down_write(&sbi
->node_write
);
1008 if (get_pages(sbi
, F2FS_DIRTY_NODES
)) {
1009 up_write(&sbi
->node_write
);
1010 err
= sync_node_pages(sbi
, &wbc
);
1012 up_write(&sbi
->node_change
);
1013 f2fs_unlock_all(sbi
);
1017 goto retry_flush_nodes
;
1021 * sbi->node_change is used only for AIO write_begin path which produces
1022 * dirty node blocks and some checkpoint values by block allocation.
1024 __prepare_cp_block(sbi
);
1025 up_write(&sbi
->node_change
);
1027 blk_finish_plug(&plug
);
1031 static void unblock_operations(struct f2fs_sb_info
*sbi
)
1033 up_write(&sbi
->node_write
);
1034 f2fs_unlock_all(sbi
);
1037 static void wait_on_all_pages_writeback(struct f2fs_sb_info
*sbi
)
1042 prepare_to_wait(&sbi
->cp_wait
, &wait
, TASK_UNINTERRUPTIBLE
);
1044 if (!get_pages(sbi
, F2FS_WB_CP_DATA
))
1047 io_schedule_timeout(5*HZ
);
1049 finish_wait(&sbi
->cp_wait
, &wait
);
1052 static void update_ckpt_flags(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1054 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
;
1055 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1056 unsigned long flags
;
1058 spin_lock_irqsave(&sbi
->cp_lock
, flags
);
1060 if ((cpc
->reason
& CP_UMOUNT
) &&
1061 le32_to_cpu(ckpt
->cp_pack_total_block_count
) >
1062 sbi
->blocks_per_seg
- NM_I(sbi
)->nat_bits_blocks
)
1063 disable_nat_bits(sbi
, false);
1065 if (cpc
->reason
& CP_TRIMMED
)
1066 __set_ckpt_flags(ckpt
, CP_TRIMMED_FLAG
);
1068 if (cpc
->reason
& CP_UMOUNT
)
1069 __set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1071 __clear_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
);
1073 if (cpc
->reason
& CP_FASTBOOT
)
1074 __set_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1076 __clear_ckpt_flags(ckpt
, CP_FASTBOOT_FLAG
);
1079 __set_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1081 __clear_ckpt_flags(ckpt
, CP_ORPHAN_PRESENT_FLAG
);
1083 if (is_sbi_flag_set(sbi
, SBI_NEED_FSCK
))
1084 __set_ckpt_flags(ckpt
, CP_FSCK_FLAG
);
1086 /* set this flag to activate crc|cp_ver for recovery */
1087 __set_ckpt_flags(ckpt
, CP_CRC_RECOVERY_FLAG
);
1089 spin_unlock_irqrestore(&sbi
->cp_lock
, flags
);
1092 static int do_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1094 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1095 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1096 unsigned long orphan_num
= sbi
->im
[ORPHAN_INO
].ino_num
, flags
;
1098 unsigned int data_sum_blocks
, orphan_blocks
;
1101 int cp_payload_blks
= __cp_payload(sbi
);
1102 struct super_block
*sb
= sbi
->sb
;
1103 struct curseg_info
*seg_i
= CURSEG_I(sbi
, CURSEG_HOT_NODE
);
1106 /* Flush all the NAT/SIT pages */
1107 while (get_pages(sbi
, F2FS_DIRTY_META
)) {
1108 sync_meta_pages(sbi
, META
, LONG_MAX
);
1109 if (unlikely(f2fs_cp_error(sbi
)))
1115 * version number is already updated
1117 ckpt
->elapsed_time
= cpu_to_le64(get_mtime(sbi
));
1118 ckpt
->free_segment_count
= cpu_to_le32(free_segments(sbi
));
1119 for (i
= 0; i
< NR_CURSEG_NODE_TYPE
; i
++) {
1120 ckpt
->cur_node_segno
[i
] =
1121 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_NODE
));
1122 ckpt
->cur_node_blkoff
[i
] =
1123 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_NODE
));
1124 ckpt
->alloc_type
[i
+ CURSEG_HOT_NODE
] =
1125 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_NODE
);
1127 for (i
= 0; i
< NR_CURSEG_DATA_TYPE
; i
++) {
1128 ckpt
->cur_data_segno
[i
] =
1129 cpu_to_le32(curseg_segno(sbi
, i
+ CURSEG_HOT_DATA
));
1130 ckpt
->cur_data_blkoff
[i
] =
1131 cpu_to_le16(curseg_blkoff(sbi
, i
+ CURSEG_HOT_DATA
));
1132 ckpt
->alloc_type
[i
+ CURSEG_HOT_DATA
] =
1133 curseg_alloc_type(sbi
, i
+ CURSEG_HOT_DATA
);
1136 /* 2 cp + n data seg summary + orphan inode blocks */
1137 data_sum_blocks
= npages_for_summary_flush(sbi
, false);
1138 spin_lock_irqsave(&sbi
->cp_lock
, flags
);
1139 if (data_sum_blocks
< NR_CURSEG_DATA_TYPE
)
1140 __set_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
1142 __clear_ckpt_flags(ckpt
, CP_COMPACT_SUM_FLAG
);
1143 spin_unlock_irqrestore(&sbi
->cp_lock
, flags
);
1145 orphan_blocks
= GET_ORPHAN_BLOCKS(orphan_num
);
1146 ckpt
->cp_pack_start_sum
= cpu_to_le32(1 + cp_payload_blks
+
1149 if (__remain_node_summaries(cpc
->reason
))
1150 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
1151 cp_payload_blks
+ data_sum_blocks
+
1152 orphan_blocks
+ NR_CURSEG_NODE_TYPE
);
1154 ckpt
->cp_pack_total_block_count
= cpu_to_le32(F2FS_CP_PACKS
+
1155 cp_payload_blks
+ data_sum_blocks
+
1158 /* update ckpt flag for checkpoint */
1159 update_ckpt_flags(sbi
, cpc
);
1161 /* update SIT/NAT bitmap */
1162 get_sit_bitmap(sbi
, __bitmap_ptr(sbi
, SIT_BITMAP
));
1163 get_nat_bitmap(sbi
, __bitmap_ptr(sbi
, NAT_BITMAP
));
1165 crc32
= f2fs_crc32(sbi
, ckpt
, le32_to_cpu(ckpt
->checksum_offset
));
1166 *((__le32
*)((unsigned char *)ckpt
+
1167 le32_to_cpu(ckpt
->checksum_offset
)))
1168 = cpu_to_le32(crc32
);
1170 start_blk
= __start_cp_next_addr(sbi
);
1172 /* write nat bits */
1173 if (enabled_nat_bits(sbi
, cpc
)) {
1174 __u64 cp_ver
= cur_cp_version(ckpt
);
1177 cp_ver
|= ((__u64
)crc32
<< 32);
1178 *(__le64
*)nm_i
->nat_bits
= cpu_to_le64(cp_ver
);
1180 blk
= start_blk
+ sbi
->blocks_per_seg
- nm_i
->nat_bits_blocks
;
1181 for (i
= 0; i
< nm_i
->nat_bits_blocks
; i
++)
1182 update_meta_page(sbi
, nm_i
->nat_bits
+
1183 (i
<< F2FS_BLKSIZE_BITS
), blk
+ i
);
1185 /* Flush all the NAT BITS pages */
1186 while (get_pages(sbi
, F2FS_DIRTY_META
)) {
1187 sync_meta_pages(sbi
, META
, LONG_MAX
);
1188 if (unlikely(f2fs_cp_error(sbi
)))
1193 /* need to wait for end_io results */
1194 wait_on_all_pages_writeback(sbi
);
1195 if (unlikely(f2fs_cp_error(sbi
)))
1198 /* write out checkpoint buffer at block 0 */
1199 update_meta_page(sbi
, ckpt
, start_blk
++);
1201 for (i
= 1; i
< 1 + cp_payload_blks
; i
++)
1202 update_meta_page(sbi
, (char *)ckpt
+ i
* F2FS_BLKSIZE
,
1206 write_orphan_inodes(sbi
, start_blk
);
1207 start_blk
+= orphan_blocks
;
1210 write_data_summaries(sbi
, start_blk
);
1211 start_blk
+= data_sum_blocks
;
1213 /* Record write statistics in the hot node summary */
1214 kbytes_written
= sbi
->kbytes_written
;
1215 if (sb
->s_bdev
->bd_part
)
1216 kbytes_written
+= BD_PART_WRITTEN(sbi
);
1218 seg_i
->journal
->info
.kbytes_written
= cpu_to_le64(kbytes_written
);
1220 if (__remain_node_summaries(cpc
->reason
)) {
1221 write_node_summaries(sbi
, start_blk
);
1222 start_blk
+= NR_CURSEG_NODE_TYPE
;
1225 /* writeout checkpoint block */
1226 update_meta_page(sbi
, ckpt
, start_blk
);
1228 /* wait for previous submitted node/meta pages writeback */
1229 wait_on_all_pages_writeback(sbi
);
1231 if (unlikely(f2fs_cp_error(sbi
)))
1234 filemap_fdatawait_range(NODE_MAPPING(sbi
), 0, LLONG_MAX
);
1235 filemap_fdatawait_range(META_MAPPING(sbi
), 0, LLONG_MAX
);
1237 /* update user_block_counts */
1238 sbi
->last_valid_block_count
= sbi
->total_valid_block_count
;
1239 percpu_counter_set(&sbi
->alloc_valid_block_count
, 0);
1241 /* Here, we only have one bio having CP pack */
1242 sync_meta_pages(sbi
, META_FLUSH
, LONG_MAX
);
1244 /* wait for previous submitted meta pages writeback */
1245 wait_on_all_pages_writeback(sbi
);
1247 release_ino_entry(sbi
, false);
1249 if (unlikely(f2fs_cp_error(sbi
)))
1252 clear_sbi_flag(sbi
, SBI_IS_DIRTY
);
1253 clear_sbi_flag(sbi
, SBI_NEED_CP
);
1254 __set_cp_next_pack(sbi
);
1257 * redirty superblock if metadata like node page or inode cache is
1258 * updated during writing checkpoint.
1260 if (get_pages(sbi
, F2FS_DIRTY_NODES
) ||
1261 get_pages(sbi
, F2FS_DIRTY_IMETA
))
1262 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
1264 f2fs_bug_on(sbi
, get_pages(sbi
, F2FS_DIRTY_DENTS
));
1270 * We guarantee that this checkpoint procedure will not fail.
1272 int write_checkpoint(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
1274 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1275 unsigned long long ckpt_ver
;
1278 mutex_lock(&sbi
->cp_mutex
);
1280 if (!is_sbi_flag_set(sbi
, SBI_IS_DIRTY
) &&
1281 ((cpc
->reason
& CP_FASTBOOT
) || (cpc
->reason
& CP_SYNC
) ||
1282 ((cpc
->reason
& CP_DISCARD
) && !sbi
->discard_blks
)))
1284 if (unlikely(f2fs_cp_error(sbi
))) {
1288 if (f2fs_readonly(sbi
->sb
)) {
1293 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "start block_ops");
1295 err
= block_operations(sbi
);
1299 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish block_ops");
1301 f2fs_flush_merged_writes(sbi
);
1303 /* this is the case of multiple fstrims without any changes */
1304 if (cpc
->reason
& CP_DISCARD
) {
1305 if (!exist_trim_candidates(sbi
, cpc
)) {
1306 unblock_operations(sbi
);
1310 if (NM_I(sbi
)->dirty_nat_cnt
== 0 &&
1311 SIT_I(sbi
)->dirty_sentries
== 0 &&
1312 prefree_segments(sbi
) == 0) {
1313 flush_sit_entries(sbi
, cpc
);
1314 clear_prefree_segments(sbi
, cpc
);
1315 unblock_operations(sbi
);
1321 * update checkpoint pack index
1322 * Increase the version number so that
1323 * SIT entries and seg summaries are written at correct place
1325 ckpt_ver
= cur_cp_version(ckpt
);
1326 ckpt
->checkpoint_ver
= cpu_to_le64(++ckpt_ver
);
1328 /* write cached NAT/SIT entries to NAT/SIT area */
1329 flush_nat_entries(sbi
, cpc
);
1330 flush_sit_entries(sbi
, cpc
);
1332 /* unlock all the fs_lock[] in do_checkpoint() */
1333 err
= do_checkpoint(sbi
, cpc
);
1335 release_discard_addrs(sbi
);
1337 clear_prefree_segments(sbi
, cpc
);
1339 unblock_operations(sbi
);
1340 stat_inc_cp_count(sbi
->stat_info
);
1342 if (cpc
->reason
& CP_RECOVERY
)
1343 f2fs_msg(sbi
->sb
, KERN_NOTICE
,
1344 "checkpoint: version = %llx", ckpt_ver
);
1346 /* do checkpoint periodically */
1347 f2fs_update_time(sbi
, CP_TIME
);
1348 trace_f2fs_write_checkpoint(sbi
->sb
, cpc
->reason
, "finish checkpoint");
1350 mutex_unlock(&sbi
->cp_mutex
);
1354 void init_ino_entry_info(struct f2fs_sb_info
*sbi
)
1358 for (i
= 0; i
< MAX_INO_ENTRY
; i
++) {
1359 struct inode_management
*im
= &sbi
->im
[i
];
1361 INIT_RADIX_TREE(&im
->ino_root
, GFP_ATOMIC
);
1362 spin_lock_init(&im
->ino_lock
);
1363 INIT_LIST_HEAD(&im
->ino_list
);
1367 sbi
->max_orphans
= (sbi
->blocks_per_seg
- F2FS_CP_PACKS
-
1368 NR_CURSEG_TYPE
- __cp_payload(sbi
)) *
1369 F2FS_ORPHANS_PER_BLOCK
;
1372 int __init
create_checkpoint_caches(void)
1374 ino_entry_slab
= f2fs_kmem_cache_create("f2fs_ino_entry",
1375 sizeof(struct ino_entry
));
1376 if (!ino_entry_slab
)
1378 inode_entry_slab
= f2fs_kmem_cache_create("f2fs_inode_entry",
1379 sizeof(struct inode_entry
));
1380 if (!inode_entry_slab
) {
1381 kmem_cache_destroy(ino_entry_slab
);
1387 void destroy_checkpoint_caches(void)
1389 kmem_cache_destroy(ino_entry_slab
);
1390 kmem_cache_destroy(inode_entry_slab
);