4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
23 #include <trace/events/f2fs.h>
25 #define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
27 static struct kmem_cache
*nat_entry_slab
;
28 static struct kmem_cache
*free_nid_slab
;
29 static struct kmem_cache
*nat_entry_set_slab
;
31 bool available_free_memory(struct f2fs_sb_info
*sbi
, int type
)
33 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
35 unsigned long avail_ram
;
36 unsigned long mem_size
= 0;
41 /* only uses low memory */
42 avail_ram
= val
.totalram
- val
.totalhigh
;
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47 if (type
== FREE_NIDS
) {
48 mem_size
= (nm_i
->nid_cnt
[FREE_NID_LIST
] *
49 sizeof(struct free_nid
)) >> PAGE_SHIFT
;
50 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
51 } else if (type
== NAT_ENTRIES
) {
52 mem_size
= (nm_i
->nat_cnt
* sizeof(struct nat_entry
)) >>
54 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 2);
55 if (excess_cached_nats(sbi
))
57 } else if (type
== DIRTY_DENTS
) {
58 if (sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
60 mem_size
= get_pages(sbi
, F2FS_DIRTY_DENTS
);
61 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
62 } else if (type
== INO_ENTRIES
) {
65 for (i
= 0; i
<= UPDATE_INO
; i
++)
66 mem_size
+= sbi
->im
[i
].ino_num
*
67 sizeof(struct ino_entry
);
68 mem_size
>>= PAGE_SHIFT
;
69 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
70 } else if (type
== EXTENT_CACHE
) {
71 mem_size
= (atomic_read(&sbi
->total_ext_tree
) *
72 sizeof(struct extent_tree
) +
73 atomic_read(&sbi
->total_ext_node
) *
74 sizeof(struct extent_node
)) >> PAGE_SHIFT
;
75 res
= mem_size
< ((avail_ram
* nm_i
->ram_thresh
/ 100) >> 1);
77 if (!sbi
->sb
->s_bdi
->wb
.dirty_exceeded
)
83 static void clear_node_page_dirty(struct page
*page
)
85 struct address_space
*mapping
= page
->mapping
;
86 unsigned int long flags
;
88 if (PageDirty(page
)) {
89 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
90 radix_tree_tag_clear(&mapping
->page_tree
,
93 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
95 clear_page_dirty_for_io(page
);
96 dec_page_count(F2FS_M_SB(mapping
), F2FS_DIRTY_NODES
);
98 ClearPageUptodate(page
);
101 static struct page
*get_current_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
103 pgoff_t index
= current_nat_addr(sbi
, nid
);
104 return get_meta_page(sbi
, index
);
107 static struct page
*get_next_nat_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
109 struct page
*src_page
;
110 struct page
*dst_page
;
115 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
117 src_off
= current_nat_addr(sbi
, nid
);
118 dst_off
= next_nat_addr(sbi
, src_off
);
120 /* get current nat block page with lock */
121 src_page
= get_meta_page(sbi
, src_off
);
122 dst_page
= grab_meta_page(sbi
, dst_off
);
123 f2fs_bug_on(sbi
, PageDirty(src_page
));
125 src_addr
= page_address(src_page
);
126 dst_addr
= page_address(dst_page
);
127 memcpy(dst_addr
, src_addr
, PAGE_SIZE
);
128 set_page_dirty(dst_page
);
129 f2fs_put_page(src_page
, 1);
131 set_to_next_nat(nm_i
, nid
);
136 static struct nat_entry
*__lookup_nat_cache(struct f2fs_nm_info
*nm_i
, nid_t n
)
138 return radix_tree_lookup(&nm_i
->nat_root
, n
);
141 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info
*nm_i
,
142 nid_t start
, unsigned int nr
, struct nat_entry
**ep
)
144 return radix_tree_gang_lookup(&nm_i
->nat_root
, (void **)ep
, start
, nr
);
147 static void __del_from_nat_cache(struct f2fs_nm_info
*nm_i
, struct nat_entry
*e
)
150 radix_tree_delete(&nm_i
->nat_root
, nat_get_nid(e
));
152 kmem_cache_free(nat_entry_slab
, e
);
155 static void __set_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
156 struct nat_entry
*ne
)
158 nid_t set
= NAT_BLOCK_OFFSET(ne
->ni
.nid
);
159 struct nat_entry_set
*head
;
161 head
= radix_tree_lookup(&nm_i
->nat_set_root
, set
);
163 head
= f2fs_kmem_cache_alloc(nat_entry_set_slab
, GFP_NOFS
);
165 INIT_LIST_HEAD(&head
->entry_list
);
166 INIT_LIST_HEAD(&head
->set_list
);
169 f2fs_radix_tree_insert(&nm_i
->nat_set_root
, set
, head
);
172 if (get_nat_flag(ne
, IS_DIRTY
))
175 nm_i
->dirty_nat_cnt
++;
177 set_nat_flag(ne
, IS_DIRTY
, true);
179 if (nat_get_blkaddr(ne
) == NEW_ADDR
)
180 list_del_init(&ne
->list
);
182 list_move_tail(&ne
->list
, &head
->entry_list
);
185 static void __clear_nat_cache_dirty(struct f2fs_nm_info
*nm_i
,
186 struct nat_entry_set
*set
, struct nat_entry
*ne
)
188 list_move_tail(&ne
->list
, &nm_i
->nat_entries
);
189 set_nat_flag(ne
, IS_DIRTY
, false);
191 nm_i
->dirty_nat_cnt
--;
194 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info
*nm_i
,
195 nid_t start
, unsigned int nr
, struct nat_entry_set
**ep
)
197 return radix_tree_gang_lookup(&nm_i
->nat_set_root
, (void **)ep
,
201 int need_dentry_mark(struct f2fs_sb_info
*sbi
, nid_t nid
)
203 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
207 down_read(&nm_i
->nat_tree_lock
);
208 e
= __lookup_nat_cache(nm_i
, nid
);
210 if (!get_nat_flag(e
, IS_CHECKPOINTED
) &&
211 !get_nat_flag(e
, HAS_FSYNCED_INODE
))
214 up_read(&nm_i
->nat_tree_lock
);
218 bool is_checkpointed_node(struct f2fs_sb_info
*sbi
, nid_t nid
)
220 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
224 down_read(&nm_i
->nat_tree_lock
);
225 e
= __lookup_nat_cache(nm_i
, nid
);
226 if (e
&& !get_nat_flag(e
, IS_CHECKPOINTED
))
228 up_read(&nm_i
->nat_tree_lock
);
232 bool need_inode_block_update(struct f2fs_sb_info
*sbi
, nid_t ino
)
234 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
236 bool need_update
= true;
238 down_read(&nm_i
->nat_tree_lock
);
239 e
= __lookup_nat_cache(nm_i
, ino
);
240 if (e
&& get_nat_flag(e
, HAS_LAST_FSYNC
) &&
241 (get_nat_flag(e
, IS_CHECKPOINTED
) ||
242 get_nat_flag(e
, HAS_FSYNCED_INODE
)))
244 up_read(&nm_i
->nat_tree_lock
);
248 static struct nat_entry
*grab_nat_entry(struct f2fs_nm_info
*nm_i
, nid_t nid
,
251 struct nat_entry
*new;
254 new = f2fs_kmem_cache_alloc(nat_entry_slab
, GFP_NOFS
);
255 f2fs_radix_tree_insert(&nm_i
->nat_root
, nid
, new);
257 new = kmem_cache_alloc(nat_entry_slab
, GFP_NOFS
);
260 if (radix_tree_insert(&nm_i
->nat_root
, nid
, new)) {
261 kmem_cache_free(nat_entry_slab
, new);
266 memset(new, 0, sizeof(struct nat_entry
));
267 nat_set_nid(new, nid
);
269 list_add_tail(&new->list
, &nm_i
->nat_entries
);
274 static void cache_nat_entry(struct f2fs_sb_info
*sbi
, nid_t nid
,
275 struct f2fs_nat_entry
*ne
)
277 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
280 e
= __lookup_nat_cache(nm_i
, nid
);
282 e
= grab_nat_entry(nm_i
, nid
, false);
284 node_info_from_raw_nat(&e
->ni
, ne
);
286 f2fs_bug_on(sbi
, nat_get_ino(e
) != le32_to_cpu(ne
->ino
) ||
287 nat_get_blkaddr(e
) !=
288 le32_to_cpu(ne
->block_addr
) ||
289 nat_get_version(e
) != ne
->version
);
293 static void set_node_addr(struct f2fs_sb_info
*sbi
, struct node_info
*ni
,
294 block_t new_blkaddr
, bool fsync_done
)
296 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
299 down_write(&nm_i
->nat_tree_lock
);
300 e
= __lookup_nat_cache(nm_i
, ni
->nid
);
302 e
= grab_nat_entry(nm_i
, ni
->nid
, true);
303 copy_node_info(&e
->ni
, ni
);
304 f2fs_bug_on(sbi
, ni
->blk_addr
== NEW_ADDR
);
305 } else if (new_blkaddr
== NEW_ADDR
) {
307 * when nid is reallocated,
308 * previous nat entry can be remained in nat cache.
309 * So, reinitialize it with new information.
311 copy_node_info(&e
->ni
, ni
);
312 f2fs_bug_on(sbi
, ni
->blk_addr
!= NULL_ADDR
);
316 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) != ni
->blk_addr
);
317 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NULL_ADDR
&&
318 new_blkaddr
== NULL_ADDR
);
319 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) == NEW_ADDR
&&
320 new_blkaddr
== NEW_ADDR
);
321 f2fs_bug_on(sbi
, nat_get_blkaddr(e
) != NEW_ADDR
&&
322 nat_get_blkaddr(e
) != NULL_ADDR
&&
323 new_blkaddr
== NEW_ADDR
);
325 /* increment version no as node is removed */
326 if (nat_get_blkaddr(e
) != NEW_ADDR
&& new_blkaddr
== NULL_ADDR
) {
327 unsigned char version
= nat_get_version(e
);
328 nat_set_version(e
, inc_node_version(version
));
330 /* in order to reuse the nid */
331 if (nm_i
->next_scan_nid
> ni
->nid
)
332 nm_i
->next_scan_nid
= ni
->nid
;
336 nat_set_blkaddr(e
, new_blkaddr
);
337 if (new_blkaddr
== NEW_ADDR
|| new_blkaddr
== NULL_ADDR
)
338 set_nat_flag(e
, IS_CHECKPOINTED
, false);
339 __set_nat_cache_dirty(nm_i
, e
);
341 /* update fsync_mark if its inode nat entry is still alive */
342 if (ni
->nid
!= ni
->ino
)
343 e
= __lookup_nat_cache(nm_i
, ni
->ino
);
345 if (fsync_done
&& ni
->nid
== ni
->ino
)
346 set_nat_flag(e
, HAS_FSYNCED_INODE
, true);
347 set_nat_flag(e
, HAS_LAST_FSYNC
, fsync_done
);
349 up_write(&nm_i
->nat_tree_lock
);
352 int try_to_free_nats(struct f2fs_sb_info
*sbi
, int nr_shrink
)
354 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
357 if (!down_write_trylock(&nm_i
->nat_tree_lock
))
360 while (nr_shrink
&& !list_empty(&nm_i
->nat_entries
)) {
361 struct nat_entry
*ne
;
362 ne
= list_first_entry(&nm_i
->nat_entries
,
363 struct nat_entry
, list
);
364 __del_from_nat_cache(nm_i
, ne
);
367 up_write(&nm_i
->nat_tree_lock
);
368 return nr
- nr_shrink
;
372 * This function always returns success
374 void get_node_info(struct f2fs_sb_info
*sbi
, nid_t nid
, struct node_info
*ni
)
376 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
377 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
378 struct f2fs_journal
*journal
= curseg
->journal
;
379 nid_t start_nid
= START_NID(nid
);
380 struct f2fs_nat_block
*nat_blk
;
381 struct page
*page
= NULL
;
382 struct f2fs_nat_entry ne
;
389 /* Check nat cache */
390 down_read(&nm_i
->nat_tree_lock
);
391 e
= __lookup_nat_cache(nm_i
, nid
);
393 ni
->ino
= nat_get_ino(e
);
394 ni
->blk_addr
= nat_get_blkaddr(e
);
395 ni
->version
= nat_get_version(e
);
396 up_read(&nm_i
->nat_tree_lock
);
400 memset(&ne
, 0, sizeof(struct f2fs_nat_entry
));
402 /* Check current segment summary */
403 down_read(&curseg
->journal_rwsem
);
404 i
= lookup_journal_in_cursum(journal
, NAT_JOURNAL
, nid
, 0);
406 ne
= nat_in_journal(journal
, i
);
407 node_info_from_raw_nat(ni
, &ne
);
409 up_read(&curseg
->journal_rwsem
);
411 up_read(&nm_i
->nat_tree_lock
);
415 /* Fill node_info from nat page */
416 index
= current_nat_addr(sbi
, nid
);
417 up_read(&nm_i
->nat_tree_lock
);
419 page
= get_meta_page(sbi
, index
);
420 nat_blk
= (struct f2fs_nat_block
*)page_address(page
);
421 ne
= nat_blk
->entries
[nid
- start_nid
];
422 node_info_from_raw_nat(ni
, &ne
);
423 f2fs_put_page(page
, 1);
425 /* cache nat entry */
426 down_write(&nm_i
->nat_tree_lock
);
427 cache_nat_entry(sbi
, nid
, &ne
);
428 up_write(&nm_i
->nat_tree_lock
);
432 * readahead MAX_RA_NODE number of node pages.
434 static void ra_node_pages(struct page
*parent
, int start
, int n
)
436 struct f2fs_sb_info
*sbi
= F2FS_P_SB(parent
);
437 struct blk_plug plug
;
441 blk_start_plug(&plug
);
443 /* Then, try readahead for siblings of the desired node */
445 end
= min(end
, NIDS_PER_BLOCK
);
446 for (i
= start
; i
< end
; i
++) {
447 nid
= get_nid(parent
, i
, false);
448 ra_node_page(sbi
, nid
);
451 blk_finish_plug(&plug
);
454 pgoff_t
get_next_page_offset(struct dnode_of_data
*dn
, pgoff_t pgofs
)
456 const long direct_index
= ADDRS_PER_INODE(dn
->inode
);
457 const long direct_blks
= ADDRS_PER_BLOCK
;
458 const long indirect_blks
= ADDRS_PER_BLOCK
* NIDS_PER_BLOCK
;
459 unsigned int skipped_unit
= ADDRS_PER_BLOCK
;
460 int cur_level
= dn
->cur_level
;
461 int max_level
= dn
->max_level
;
467 while (max_level
-- > cur_level
)
468 skipped_unit
*= NIDS_PER_BLOCK
;
470 switch (dn
->max_level
) {
472 base
+= 2 * indirect_blks
;
474 base
+= 2 * direct_blks
;
476 base
+= direct_index
;
479 f2fs_bug_on(F2FS_I_SB(dn
->inode
), 1);
482 return ((pgofs
- base
) / skipped_unit
+ 1) * skipped_unit
+ base
;
486 * The maximum depth is four.
487 * Offset[0] will have raw inode offset.
489 static int get_node_path(struct inode
*inode
, long block
,
490 int offset
[4], unsigned int noffset
[4])
492 const long direct_index
= ADDRS_PER_INODE(inode
);
493 const long direct_blks
= ADDRS_PER_BLOCK
;
494 const long dptrs_per_blk
= NIDS_PER_BLOCK
;
495 const long indirect_blks
= ADDRS_PER_BLOCK
* NIDS_PER_BLOCK
;
496 const long dindirect_blks
= indirect_blks
* NIDS_PER_BLOCK
;
502 if (block
< direct_index
) {
506 block
-= direct_index
;
507 if (block
< direct_blks
) {
508 offset
[n
++] = NODE_DIR1_BLOCK
;
514 block
-= direct_blks
;
515 if (block
< direct_blks
) {
516 offset
[n
++] = NODE_DIR2_BLOCK
;
522 block
-= direct_blks
;
523 if (block
< indirect_blks
) {
524 offset
[n
++] = NODE_IND1_BLOCK
;
526 offset
[n
++] = block
/ direct_blks
;
527 noffset
[n
] = 4 + offset
[n
- 1];
528 offset
[n
] = block
% direct_blks
;
532 block
-= indirect_blks
;
533 if (block
< indirect_blks
) {
534 offset
[n
++] = NODE_IND2_BLOCK
;
535 noffset
[n
] = 4 + dptrs_per_blk
;
536 offset
[n
++] = block
/ direct_blks
;
537 noffset
[n
] = 5 + dptrs_per_blk
+ offset
[n
- 1];
538 offset
[n
] = block
% direct_blks
;
542 block
-= indirect_blks
;
543 if (block
< dindirect_blks
) {
544 offset
[n
++] = NODE_DIND_BLOCK
;
545 noffset
[n
] = 5 + (dptrs_per_blk
* 2);
546 offset
[n
++] = block
/ indirect_blks
;
547 noffset
[n
] = 6 + (dptrs_per_blk
* 2) +
548 offset
[n
- 1] * (dptrs_per_blk
+ 1);
549 offset
[n
++] = (block
/ direct_blks
) % dptrs_per_blk
;
550 noffset
[n
] = 7 + (dptrs_per_blk
* 2) +
551 offset
[n
- 2] * (dptrs_per_blk
+ 1) +
553 offset
[n
] = block
% direct_blks
;
564 * Caller should call f2fs_put_dnode(dn).
565 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
566 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
567 * In the case of RDONLY_NODE, we don't need to care about mutex.
569 int get_dnode_of_data(struct dnode_of_data
*dn
, pgoff_t index
, int mode
)
571 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
572 struct page
*npage
[4];
573 struct page
*parent
= NULL
;
575 unsigned int noffset
[4];
580 level
= get_node_path(dn
->inode
, index
, offset
, noffset
);
582 nids
[0] = dn
->inode
->i_ino
;
583 npage
[0] = dn
->inode_page
;
586 npage
[0] = get_node_page(sbi
, nids
[0]);
587 if (IS_ERR(npage
[0]))
588 return PTR_ERR(npage
[0]);
591 /* if inline_data is set, should not report any block indices */
592 if (f2fs_has_inline_data(dn
->inode
) && index
) {
594 f2fs_put_page(npage
[0], 1);
600 nids
[1] = get_nid(parent
, offset
[0], true);
601 dn
->inode_page
= npage
[0];
602 dn
->inode_page_locked
= true;
604 /* get indirect or direct nodes */
605 for (i
= 1; i
<= level
; i
++) {
608 if (!nids
[i
] && mode
== ALLOC_NODE
) {
610 if (!alloc_nid(sbi
, &(nids
[i
]))) {
616 npage
[i
] = new_node_page(dn
, noffset
[i
], NULL
);
617 if (IS_ERR(npage
[i
])) {
618 alloc_nid_failed(sbi
, nids
[i
]);
619 err
= PTR_ERR(npage
[i
]);
623 set_nid(parent
, offset
[i
- 1], nids
[i
], i
== 1);
624 alloc_nid_done(sbi
, nids
[i
]);
626 } else if (mode
== LOOKUP_NODE_RA
&& i
== level
&& level
> 1) {
627 npage
[i
] = get_node_page_ra(parent
, offset
[i
- 1]);
628 if (IS_ERR(npage
[i
])) {
629 err
= PTR_ERR(npage
[i
]);
635 dn
->inode_page_locked
= false;
638 f2fs_put_page(parent
, 1);
642 npage
[i
] = get_node_page(sbi
, nids
[i
]);
643 if (IS_ERR(npage
[i
])) {
644 err
= PTR_ERR(npage
[i
]);
645 f2fs_put_page(npage
[0], 0);
651 nids
[i
+ 1] = get_nid(parent
, offset
[i
], false);
654 dn
->nid
= nids
[level
];
655 dn
->ofs_in_node
= offset
[level
];
656 dn
->node_page
= npage
[level
];
657 dn
->data_blkaddr
= datablock_addr(dn
->node_page
, dn
->ofs_in_node
);
661 f2fs_put_page(parent
, 1);
663 f2fs_put_page(npage
[0], 0);
665 dn
->inode_page
= NULL
;
666 dn
->node_page
= NULL
;
667 if (err
== -ENOENT
) {
669 dn
->max_level
= level
;
670 dn
->ofs_in_node
= offset
[level
];
675 static void truncate_node(struct dnode_of_data
*dn
)
677 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
680 get_node_info(sbi
, dn
->nid
, &ni
);
681 f2fs_bug_on(sbi
, ni
.blk_addr
== NULL_ADDR
);
683 /* Deallocate node address */
684 invalidate_blocks(sbi
, ni
.blk_addr
);
685 dec_valid_node_count(sbi
, dn
->inode
, dn
->nid
== dn
->inode
->i_ino
);
686 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
688 if (dn
->nid
== dn
->inode
->i_ino
) {
689 remove_orphan_inode(sbi
, dn
->nid
);
690 dec_valid_inode_count(sbi
);
691 f2fs_inode_synced(dn
->inode
);
694 clear_node_page_dirty(dn
->node_page
);
695 set_sbi_flag(sbi
, SBI_IS_DIRTY
);
697 f2fs_put_page(dn
->node_page
, 1);
699 invalidate_mapping_pages(NODE_MAPPING(sbi
),
700 dn
->node_page
->index
, dn
->node_page
->index
);
702 dn
->node_page
= NULL
;
703 trace_f2fs_truncate_node(dn
->inode
, dn
->nid
, ni
.blk_addr
);
706 static int truncate_dnode(struct dnode_of_data
*dn
)
713 /* get direct node */
714 page
= get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
715 if (IS_ERR(page
) && PTR_ERR(page
) == -ENOENT
)
717 else if (IS_ERR(page
))
718 return PTR_ERR(page
);
720 /* Make dnode_of_data for parameter */
721 dn
->node_page
= page
;
723 truncate_data_blocks(dn
);
728 static int truncate_nodes(struct dnode_of_data
*dn
, unsigned int nofs
,
731 struct dnode_of_data rdn
= *dn
;
733 struct f2fs_node
*rn
;
735 unsigned int child_nofs
;
740 return NIDS_PER_BLOCK
+ 1;
742 trace_f2fs_truncate_nodes_enter(dn
->inode
, dn
->nid
, dn
->data_blkaddr
);
744 page
= get_node_page(F2FS_I_SB(dn
->inode
), dn
->nid
);
746 trace_f2fs_truncate_nodes_exit(dn
->inode
, PTR_ERR(page
));
747 return PTR_ERR(page
);
750 ra_node_pages(page
, ofs
, NIDS_PER_BLOCK
);
752 rn
= F2FS_NODE(page
);
754 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++, freed
++) {
755 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
759 ret
= truncate_dnode(&rdn
);
762 if (set_nid(page
, i
, 0, false))
763 dn
->node_changed
= true;
766 child_nofs
= nofs
+ ofs
* (NIDS_PER_BLOCK
+ 1) + 1;
767 for (i
= ofs
; i
< NIDS_PER_BLOCK
; i
++) {
768 child_nid
= le32_to_cpu(rn
->in
.nid
[i
]);
769 if (child_nid
== 0) {
770 child_nofs
+= NIDS_PER_BLOCK
+ 1;
774 ret
= truncate_nodes(&rdn
, child_nofs
, 0, depth
- 1);
775 if (ret
== (NIDS_PER_BLOCK
+ 1)) {
776 if (set_nid(page
, i
, 0, false))
777 dn
->node_changed
= true;
779 } else if (ret
< 0 && ret
!= -ENOENT
) {
787 /* remove current indirect node */
788 dn
->node_page
= page
;
792 f2fs_put_page(page
, 1);
794 trace_f2fs_truncate_nodes_exit(dn
->inode
, freed
);
798 f2fs_put_page(page
, 1);
799 trace_f2fs_truncate_nodes_exit(dn
->inode
, ret
);
803 static int truncate_partial_nodes(struct dnode_of_data
*dn
,
804 struct f2fs_inode
*ri
, int *offset
, int depth
)
806 struct page
*pages
[2];
813 nid
[0] = le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
817 /* get indirect nodes in the path */
818 for (i
= 0; i
< idx
+ 1; i
++) {
819 /* reference count'll be increased */
820 pages
[i
] = get_node_page(F2FS_I_SB(dn
->inode
), nid
[i
]);
821 if (IS_ERR(pages
[i
])) {
822 err
= PTR_ERR(pages
[i
]);
826 nid
[i
+ 1] = get_nid(pages
[i
], offset
[i
+ 1], false);
829 ra_node_pages(pages
[idx
], offset
[idx
+ 1], NIDS_PER_BLOCK
);
831 /* free direct nodes linked to a partial indirect node */
832 for (i
= offset
[idx
+ 1]; i
< NIDS_PER_BLOCK
; i
++) {
833 child_nid
= get_nid(pages
[idx
], i
, false);
837 err
= truncate_dnode(dn
);
840 if (set_nid(pages
[idx
], i
, 0, false))
841 dn
->node_changed
= true;
844 if (offset
[idx
+ 1] == 0) {
845 dn
->node_page
= pages
[idx
];
849 f2fs_put_page(pages
[idx
], 1);
855 for (i
= idx
; i
>= 0; i
--)
856 f2fs_put_page(pages
[i
], 1);
858 trace_f2fs_truncate_partial_nodes(dn
->inode
, nid
, depth
, err
);
864 * All the block addresses of data and nodes should be nullified.
866 int truncate_inode_blocks(struct inode
*inode
, pgoff_t from
)
868 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
869 int err
= 0, cont
= 1;
870 int level
, offset
[4], noffset
[4];
871 unsigned int nofs
= 0;
872 struct f2fs_inode
*ri
;
873 struct dnode_of_data dn
;
876 trace_f2fs_truncate_inode_blocks_enter(inode
, from
);
878 level
= get_node_path(inode
, from
, offset
, noffset
);
880 page
= get_node_page(sbi
, inode
->i_ino
);
882 trace_f2fs_truncate_inode_blocks_exit(inode
, PTR_ERR(page
));
883 return PTR_ERR(page
);
886 set_new_dnode(&dn
, inode
, page
, NULL
, 0);
889 ri
= F2FS_INODE(page
);
897 if (!offset
[level
- 1])
899 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
900 if (err
< 0 && err
!= -ENOENT
)
902 nofs
+= 1 + NIDS_PER_BLOCK
;
905 nofs
= 5 + 2 * NIDS_PER_BLOCK
;
906 if (!offset
[level
- 1])
908 err
= truncate_partial_nodes(&dn
, ri
, offset
, level
);
909 if (err
< 0 && err
!= -ENOENT
)
918 dn
.nid
= le32_to_cpu(ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]);
920 case NODE_DIR1_BLOCK
:
921 case NODE_DIR2_BLOCK
:
922 err
= truncate_dnode(&dn
);
925 case NODE_IND1_BLOCK
:
926 case NODE_IND2_BLOCK
:
927 err
= truncate_nodes(&dn
, nofs
, offset
[1], 2);
930 case NODE_DIND_BLOCK
:
931 err
= truncate_nodes(&dn
, nofs
, offset
[1], 3);
938 if (err
< 0 && err
!= -ENOENT
)
940 if (offset
[1] == 0 &&
941 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
]) {
943 BUG_ON(page
->mapping
!= NODE_MAPPING(sbi
));
944 f2fs_wait_on_page_writeback(page
, NODE
, true);
945 ri
->i_nid
[offset
[0] - NODE_DIR1_BLOCK
] = 0;
946 set_page_dirty(page
);
954 f2fs_put_page(page
, 0);
955 trace_f2fs_truncate_inode_blocks_exit(inode
, err
);
956 return err
> 0 ? 0 : err
;
959 int truncate_xattr_node(struct inode
*inode
, struct page
*page
)
961 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
962 nid_t nid
= F2FS_I(inode
)->i_xattr_nid
;
963 struct dnode_of_data dn
;
969 npage
= get_node_page(sbi
, nid
);
971 return PTR_ERR(npage
);
973 f2fs_i_xnid_write(inode
, 0);
975 set_new_dnode(&dn
, inode
, page
, npage
, nid
);
978 dn
.inode_page_locked
= true;
984 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
987 int remove_inode_page(struct inode
*inode
)
989 struct dnode_of_data dn
;
992 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
993 err
= get_dnode_of_data(&dn
, 0, LOOKUP_NODE
);
997 err
= truncate_xattr_node(inode
, dn
.inode_page
);
1003 /* remove potential inline_data blocks */
1004 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
1005 S_ISLNK(inode
->i_mode
))
1006 truncate_data_blocks_range(&dn
, 1);
1008 /* 0 is possible, after f2fs_new_inode() has failed */
1009 f2fs_bug_on(F2FS_I_SB(inode
),
1010 inode
->i_blocks
!= 0 && inode
->i_blocks
!= 8);
1012 /* will put inode & node pages */
1017 struct page
*new_inode_page(struct inode
*inode
)
1019 struct dnode_of_data dn
;
1021 /* allocate inode page for new inode */
1022 set_new_dnode(&dn
, inode
, NULL
, NULL
, inode
->i_ino
);
1024 /* caller should f2fs_put_page(page, 1); */
1025 return new_node_page(&dn
, 0, NULL
);
1028 struct page
*new_node_page(struct dnode_of_data
*dn
,
1029 unsigned int ofs
, struct page
*ipage
)
1031 struct f2fs_sb_info
*sbi
= F2FS_I_SB(dn
->inode
);
1032 struct node_info new_ni
;
1036 if (unlikely(is_inode_flag_set(dn
->inode
, FI_NO_ALLOC
)))
1037 return ERR_PTR(-EPERM
);
1039 page
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), dn
->nid
, false);
1041 return ERR_PTR(-ENOMEM
);
1043 if (unlikely((err
= inc_valid_node_count(sbi
, dn
->inode
, !ofs
))))
1046 #ifdef CONFIG_F2FS_CHECK_FS
1047 get_node_info(sbi
, dn
->nid
, &new_ni
);
1048 f2fs_bug_on(sbi
, new_ni
.blk_addr
!= NULL_ADDR
);
1050 new_ni
.nid
= dn
->nid
;
1051 new_ni
.ino
= dn
->inode
->i_ino
;
1052 new_ni
.blk_addr
= NULL_ADDR
;
1055 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
1057 f2fs_wait_on_page_writeback(page
, NODE
, true);
1058 fill_node_footer(page
, dn
->nid
, dn
->inode
->i_ino
, ofs
, true);
1059 set_cold_node(dn
->inode
, page
);
1060 if (!PageUptodate(page
))
1061 SetPageUptodate(page
);
1062 if (set_page_dirty(page
))
1063 dn
->node_changed
= true;
1065 if (f2fs_has_xattr_block(ofs
))
1066 f2fs_i_xnid_write(dn
->inode
, dn
->nid
);
1069 inc_valid_inode_count(sbi
);
1073 clear_node_page_dirty(page
);
1074 f2fs_put_page(page
, 1);
1075 return ERR_PTR(err
);
1079 * Caller should do after getting the following values.
1080 * 0: f2fs_put_page(page, 0)
1081 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1083 static int read_node_page(struct page
*page
, int op_flags
)
1085 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1086 struct node_info ni
;
1087 struct f2fs_io_info fio
= {
1091 .op_flags
= op_flags
,
1093 .encrypted_page
= NULL
,
1096 if (PageUptodate(page
))
1099 get_node_info(sbi
, page
->index
, &ni
);
1101 if (unlikely(ni
.blk_addr
== NULL_ADDR
)) {
1102 ClearPageUptodate(page
);
1106 fio
.new_blkaddr
= fio
.old_blkaddr
= ni
.blk_addr
;
1107 return f2fs_submit_page_bio(&fio
);
1111 * Readahead a node page
1113 void ra_node_page(struct f2fs_sb_info
*sbi
, nid_t nid
)
1120 f2fs_bug_on(sbi
, check_nid_range(sbi
, nid
));
1123 apage
= radix_tree_lookup(&NODE_MAPPING(sbi
)->page_tree
, nid
);
1128 apage
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), nid
, false);
1132 err
= read_node_page(apage
, REQ_RAHEAD
);
1133 f2fs_put_page(apage
, err
? 1 : 0);
1136 static struct page
*__get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
,
1137 struct page
*parent
, int start
)
1143 return ERR_PTR(-ENOENT
);
1144 f2fs_bug_on(sbi
, check_nid_range(sbi
, nid
));
1146 page
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), nid
, false);
1148 return ERR_PTR(-ENOMEM
);
1150 err
= read_node_page(page
, 0);
1152 f2fs_put_page(page
, 1);
1153 return ERR_PTR(err
);
1154 } else if (err
== LOCKED_PAGE
) {
1160 ra_node_pages(parent
, start
+ 1, MAX_RA_NODE
);
1164 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1165 f2fs_put_page(page
, 1);
1169 if (unlikely(!PageUptodate(page
))) {
1174 if(unlikely(nid
!= nid_of_node(page
))) {
1175 f2fs_msg(sbi
->sb
, KERN_WARNING
, "inconsistent node block, "
1176 "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1177 nid
, nid_of_node(page
), ino_of_node(page
),
1178 ofs_of_node(page
), cpver_of_node(page
),
1179 next_blkaddr_of_node(page
));
1180 ClearPageUptodate(page
);
1183 f2fs_put_page(page
, 1);
1184 return ERR_PTR(err
);
1189 struct page
*get_node_page(struct f2fs_sb_info
*sbi
, pgoff_t nid
)
1191 return __get_node_page(sbi
, nid
, NULL
, 0);
1194 struct page
*get_node_page_ra(struct page
*parent
, int start
)
1196 struct f2fs_sb_info
*sbi
= F2FS_P_SB(parent
);
1197 nid_t nid
= get_nid(parent
, start
, false);
1199 return __get_node_page(sbi
, nid
, parent
, start
);
1202 static void flush_inline_data(struct f2fs_sb_info
*sbi
, nid_t ino
)
1204 struct inode
*inode
;
1208 /* should flush inline_data before evict_inode */
1209 inode
= ilookup(sbi
->sb
, ino
);
1213 page
= pagecache_get_page(inode
->i_mapping
, 0, FGP_LOCK
|FGP_NOWAIT
, 0);
1217 if (!PageUptodate(page
))
1220 if (!PageDirty(page
))
1223 if (!clear_page_dirty_for_io(page
))
1226 ret
= f2fs_write_inline_data(inode
, page
);
1227 inode_dec_dirty_pages(inode
);
1228 remove_dirty_inode(inode
);
1230 set_page_dirty(page
);
1232 f2fs_put_page(page
, 1);
1237 void move_node_page(struct page
*node_page
, int gc_type
)
1239 if (gc_type
== FG_GC
) {
1240 struct f2fs_sb_info
*sbi
= F2FS_P_SB(node_page
);
1241 struct writeback_control wbc
= {
1242 .sync_mode
= WB_SYNC_ALL
,
1247 set_page_dirty(node_page
);
1248 f2fs_wait_on_page_writeback(node_page
, NODE
, true);
1250 f2fs_bug_on(sbi
, PageWriteback(node_page
));
1251 if (!clear_page_dirty_for_io(node_page
))
1254 if (NODE_MAPPING(sbi
)->a_ops
->writepage(node_page
, &wbc
))
1255 unlock_page(node_page
);
1258 /* set page dirty and write it */
1259 if (!PageWriteback(node_page
))
1260 set_page_dirty(node_page
);
1263 unlock_page(node_page
);
1265 f2fs_put_page(node_page
, 0);
1268 static struct page
*last_fsync_dnode(struct f2fs_sb_info
*sbi
, nid_t ino
)
1271 struct pagevec pvec
;
1272 struct page
*last_page
= NULL
;
1274 pagevec_init(&pvec
, 0);
1278 while (index
<= end
) {
1280 nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1281 PAGECACHE_TAG_DIRTY
,
1282 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1286 for (i
= 0; i
< nr_pages
; i
++) {
1287 struct page
*page
= pvec
.pages
[i
];
1289 if (unlikely(f2fs_cp_error(sbi
))) {
1290 f2fs_put_page(last_page
, 0);
1291 pagevec_release(&pvec
);
1292 return ERR_PTR(-EIO
);
1295 if (!IS_DNODE(page
) || !is_cold_node(page
))
1297 if (ino_of_node(page
) != ino
)
1302 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1307 if (ino_of_node(page
) != ino
)
1308 goto continue_unlock
;
1310 if (!PageDirty(page
)) {
1311 /* someone wrote it for us */
1312 goto continue_unlock
;
1316 f2fs_put_page(last_page
, 0);
1322 pagevec_release(&pvec
);
1328 static int __write_node_page(struct page
*page
, bool atomic
, bool *submitted
,
1329 struct writeback_control
*wbc
)
1331 struct f2fs_sb_info
*sbi
= F2FS_P_SB(page
);
1333 struct node_info ni
;
1334 struct f2fs_io_info fio
= {
1338 .op_flags
= wbc_to_write_flags(wbc
),
1340 .encrypted_page
= NULL
,
1344 trace_f2fs_writepage(page
, NODE
);
1346 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1348 if (unlikely(f2fs_cp_error(sbi
)))
1351 /* get old block addr of this node page */
1352 nid
= nid_of_node(page
);
1353 f2fs_bug_on(sbi
, page
->index
!= nid
);
1355 if (wbc
->for_reclaim
) {
1356 if (!down_read_trylock(&sbi
->node_write
))
1359 down_read(&sbi
->node_write
);
1362 get_node_info(sbi
, nid
, &ni
);
1364 /* This page is already truncated */
1365 if (unlikely(ni
.blk_addr
== NULL_ADDR
)) {
1366 ClearPageUptodate(page
);
1367 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1368 up_read(&sbi
->node_write
);
1373 if (atomic
&& !test_opt(sbi
, NOBARRIER
))
1374 fio
.op_flags
|= REQ_PREFLUSH
| REQ_FUA
;
1376 set_page_writeback(page
);
1377 fio
.old_blkaddr
= ni
.blk_addr
;
1378 write_node_page(nid
, &fio
);
1379 set_node_addr(sbi
, &ni
, fio
.new_blkaddr
, is_fsync_dnode(page
));
1380 dec_page_count(sbi
, F2FS_DIRTY_NODES
);
1381 up_read(&sbi
->node_write
);
1383 if (wbc
->for_reclaim
) {
1384 f2fs_submit_merged_write_cond(sbi
, page
->mapping
->host
, 0,
1391 if (unlikely(f2fs_cp_error(sbi
))) {
1392 f2fs_submit_merged_write(sbi
, NODE
);
1396 *submitted
= fio
.submitted
;
1401 redirty_page_for_writepage(wbc
, page
);
1402 return AOP_WRITEPAGE_ACTIVATE
;
1405 static int f2fs_write_node_page(struct page
*page
,
1406 struct writeback_control
*wbc
)
1408 return __write_node_page(page
, false, NULL
, wbc
);
1411 int fsync_node_pages(struct f2fs_sb_info
*sbi
, struct inode
*inode
,
1412 struct writeback_control
*wbc
, bool atomic
)
1415 pgoff_t last_idx
= ULONG_MAX
;
1416 struct pagevec pvec
;
1418 struct page
*last_page
= NULL
;
1419 bool marked
= false;
1420 nid_t ino
= inode
->i_ino
;
1423 last_page
= last_fsync_dnode(sbi
, ino
);
1424 if (IS_ERR_OR_NULL(last_page
))
1425 return PTR_ERR_OR_ZERO(last_page
);
1428 pagevec_init(&pvec
, 0);
1432 while (index
<= end
) {
1434 nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1435 PAGECACHE_TAG_DIRTY
,
1436 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1440 for (i
= 0; i
< nr_pages
; i
++) {
1441 struct page
*page
= pvec
.pages
[i
];
1442 bool submitted
= false;
1444 if (unlikely(f2fs_cp_error(sbi
))) {
1445 f2fs_put_page(last_page
, 0);
1446 pagevec_release(&pvec
);
1451 if (!IS_DNODE(page
) || !is_cold_node(page
))
1453 if (ino_of_node(page
) != ino
)
1458 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1463 if (ino_of_node(page
) != ino
)
1464 goto continue_unlock
;
1466 if (!PageDirty(page
) && page
!= last_page
) {
1467 /* someone wrote it for us */
1468 goto continue_unlock
;
1471 f2fs_wait_on_page_writeback(page
, NODE
, true);
1472 BUG_ON(PageWriteback(page
));
1474 set_fsync_mark(page
, 0);
1475 set_dentry_mark(page
, 0);
1477 if (!atomic
|| page
== last_page
) {
1478 set_fsync_mark(page
, 1);
1479 if (IS_INODE(page
)) {
1480 if (is_inode_flag_set(inode
,
1482 update_inode(inode
, page
);
1483 set_dentry_mark(page
,
1484 need_dentry_mark(sbi
, ino
));
1486 /* may be written by other thread */
1487 if (!PageDirty(page
))
1488 set_page_dirty(page
);
1491 if (!clear_page_dirty_for_io(page
))
1492 goto continue_unlock
;
1494 ret
= __write_node_page(page
, atomic
&&
1499 f2fs_put_page(last_page
, 0);
1501 } else if (submitted
) {
1502 last_idx
= page
->index
;
1505 if (page
== last_page
) {
1506 f2fs_put_page(page
, 0);
1511 pagevec_release(&pvec
);
1517 if (!ret
&& atomic
&& !marked
) {
1518 f2fs_msg(sbi
->sb
, KERN_DEBUG
,
1519 "Retry to write fsync mark: ino=%u, idx=%lx",
1520 ino
, last_page
->index
);
1521 lock_page(last_page
);
1522 f2fs_wait_on_page_writeback(last_page
, NODE
, true);
1523 set_page_dirty(last_page
);
1524 unlock_page(last_page
);
1528 if (last_idx
!= ULONG_MAX
)
1529 f2fs_submit_merged_write_cond(sbi
, NULL
, ino
, last_idx
, NODE
);
1530 return ret
? -EIO
: 0;
1533 int sync_node_pages(struct f2fs_sb_info
*sbi
, struct writeback_control
*wbc
)
1536 struct pagevec pvec
;
1541 pagevec_init(&pvec
, 0);
1547 while (index
<= end
) {
1549 nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1550 PAGECACHE_TAG_DIRTY
,
1551 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1555 for (i
= 0; i
< nr_pages
; i
++) {
1556 struct page
*page
= pvec
.pages
[i
];
1557 bool submitted
= false;
1559 if (unlikely(f2fs_cp_error(sbi
))) {
1560 pagevec_release(&pvec
);
1566 * flushing sequence with step:
1571 if (step
== 0 && IS_DNODE(page
))
1573 if (step
== 1 && (!IS_DNODE(page
) ||
1574 is_cold_node(page
)))
1576 if (step
== 2 && (!IS_DNODE(page
) ||
1577 !is_cold_node(page
)))
1580 if (!trylock_page(page
))
1583 if (unlikely(page
->mapping
!= NODE_MAPPING(sbi
))) {
1589 if (!PageDirty(page
)) {
1590 /* someone wrote it for us */
1591 goto continue_unlock
;
1594 /* flush inline_data */
1595 if (is_inline_node(page
)) {
1596 clear_inline_node(page
);
1598 flush_inline_data(sbi
, ino_of_node(page
));
1602 f2fs_wait_on_page_writeback(page
, NODE
, true);
1604 BUG_ON(PageWriteback(page
));
1605 if (!clear_page_dirty_for_io(page
))
1606 goto continue_unlock
;
1608 set_fsync_mark(page
, 0);
1609 set_dentry_mark(page
, 0);
1611 ret
= __write_node_page(page
, false, &submitted
, wbc
);
1617 if (--wbc
->nr_to_write
== 0)
1620 pagevec_release(&pvec
);
1623 if (wbc
->nr_to_write
== 0) {
1635 f2fs_submit_merged_write(sbi
, NODE
);
1639 int wait_on_node_pages_writeback(struct f2fs_sb_info
*sbi
, nid_t ino
)
1641 pgoff_t index
= 0, end
= ULONG_MAX
;
1642 struct pagevec pvec
;
1645 pagevec_init(&pvec
, 0);
1647 while (index
<= end
) {
1649 nr_pages
= pagevec_lookup_tag(&pvec
, NODE_MAPPING(sbi
), &index
,
1650 PAGECACHE_TAG_WRITEBACK
,
1651 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
1655 for (i
= 0; i
< nr_pages
; i
++) {
1656 struct page
*page
= pvec
.pages
[i
];
1658 /* until radix tree lookup accepts end_index */
1659 if (unlikely(page
->index
> end
))
1662 if (ino
&& ino_of_node(page
) == ino
) {
1663 f2fs_wait_on_page_writeback(page
, NODE
, true);
1664 if (TestClearPageError(page
))
1668 pagevec_release(&pvec
);
1672 ret2
= filemap_check_errors(NODE_MAPPING(sbi
));
1678 static int f2fs_write_node_pages(struct address_space
*mapping
,
1679 struct writeback_control
*wbc
)
1681 struct f2fs_sb_info
*sbi
= F2FS_M_SB(mapping
);
1682 struct blk_plug plug
;
1685 if (unlikely(is_sbi_flag_set(sbi
, SBI_POR_DOING
)))
1688 /* balancing f2fs's metadata in background */
1689 f2fs_balance_fs_bg(sbi
);
1691 /* collect a number of dirty node pages and write together */
1692 if (get_pages(sbi
, F2FS_DIRTY_NODES
) < nr_pages_to_skip(sbi
, NODE
))
1695 trace_f2fs_writepages(mapping
->host
, wbc
, NODE
);
1697 diff
= nr_pages_to_write(sbi
, NODE
, wbc
);
1698 wbc
->sync_mode
= WB_SYNC_NONE
;
1699 blk_start_plug(&plug
);
1700 sync_node_pages(sbi
, wbc
);
1701 blk_finish_plug(&plug
);
1702 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- diff
);
1706 wbc
->pages_skipped
+= get_pages(sbi
, F2FS_DIRTY_NODES
);
1707 trace_f2fs_writepages(mapping
->host
, wbc
, NODE
);
1711 static int f2fs_set_node_page_dirty(struct page
*page
)
1713 trace_f2fs_set_page_dirty(page
, NODE
);
1715 if (!PageUptodate(page
))
1716 SetPageUptodate(page
);
1717 if (!PageDirty(page
)) {
1718 f2fs_set_page_dirty_nobuffers(page
);
1719 inc_page_count(F2FS_P_SB(page
), F2FS_DIRTY_NODES
);
1720 SetPagePrivate(page
);
1721 f2fs_trace_pid(page
);
1728 * Structure of the f2fs node operations
1730 const struct address_space_operations f2fs_node_aops
= {
1731 .writepage
= f2fs_write_node_page
,
1732 .writepages
= f2fs_write_node_pages
,
1733 .set_page_dirty
= f2fs_set_node_page_dirty
,
1734 .invalidatepage
= f2fs_invalidate_page
,
1735 .releasepage
= f2fs_release_page
,
1736 #ifdef CONFIG_MIGRATION
1737 .migratepage
= f2fs_migrate_page
,
1741 static struct free_nid
*__lookup_free_nid_list(struct f2fs_nm_info
*nm_i
,
1744 return radix_tree_lookup(&nm_i
->free_nid_root
, n
);
1747 static int __insert_nid_to_list(struct f2fs_sb_info
*sbi
,
1748 struct free_nid
*i
, enum nid_list list
, bool new)
1750 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1753 int err
= radix_tree_insert(&nm_i
->free_nid_root
, i
->nid
, i
);
1758 f2fs_bug_on(sbi
, list
== FREE_NID_LIST
? i
->state
!= NID_NEW
:
1759 i
->state
!= NID_ALLOC
);
1760 nm_i
->nid_cnt
[list
]++;
1761 list_add_tail(&i
->list
, &nm_i
->nid_list
[list
]);
1765 static void __remove_nid_from_list(struct f2fs_sb_info
*sbi
,
1766 struct free_nid
*i
, enum nid_list list
, bool reuse
)
1768 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1770 f2fs_bug_on(sbi
, list
== FREE_NID_LIST
? i
->state
!= NID_NEW
:
1771 i
->state
!= NID_ALLOC
);
1772 nm_i
->nid_cnt
[list
]--;
1775 radix_tree_delete(&nm_i
->free_nid_root
, i
->nid
);
1778 /* return if the nid is recognized as free */
1779 static bool add_free_nid(struct f2fs_sb_info
*sbi
, nid_t nid
, bool build
)
1781 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1782 struct free_nid
*i
, *e
;
1783 struct nat_entry
*ne
;
1787 /* 0 nid should not be used */
1788 if (unlikely(nid
== 0))
1791 i
= f2fs_kmem_cache_alloc(free_nid_slab
, GFP_NOFS
);
1795 if (radix_tree_preload(GFP_NOFS
))
1798 spin_lock(&nm_i
->nid_list_lock
);
1806 * - __insert_nid_to_list(ALLOC_NID_LIST)
1807 * - f2fs_balance_fs_bg
1809 * - __build_free_nids
1812 * - __lookup_nat_cache
1814 * - init_inode_metadata
1819 * - __remove_nid_from_list(ALLOC_NID_LIST)
1820 * - __insert_nid_to_list(FREE_NID_LIST)
1822 ne
= __lookup_nat_cache(nm_i
, nid
);
1823 if (ne
&& (!get_nat_flag(ne
, IS_CHECKPOINTED
) ||
1824 nat_get_blkaddr(ne
) != NULL_ADDR
))
1827 e
= __lookup_free_nid_list(nm_i
, nid
);
1829 if (e
->state
== NID_NEW
)
1835 err
= __insert_nid_to_list(sbi
, i
, FREE_NID_LIST
, true);
1837 spin_unlock(&nm_i
->nid_list_lock
);
1838 radix_tree_preload_end();
1841 kmem_cache_free(free_nid_slab
, i
);
1845 static void remove_free_nid(struct f2fs_sb_info
*sbi
, nid_t nid
)
1847 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1849 bool need_free
= false;
1851 spin_lock(&nm_i
->nid_list_lock
);
1852 i
= __lookup_free_nid_list(nm_i
, nid
);
1853 if (i
&& i
->state
== NID_NEW
) {
1854 __remove_nid_from_list(sbi
, i
, FREE_NID_LIST
, false);
1857 spin_unlock(&nm_i
->nid_list_lock
);
1860 kmem_cache_free(free_nid_slab
, i
);
1863 static void update_free_nid_bitmap(struct f2fs_sb_info
*sbi
, nid_t nid
,
1864 bool set
, bool build
)
1866 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1867 unsigned int nat_ofs
= NAT_BLOCK_OFFSET(nid
);
1868 unsigned int nid_ofs
= nid
- START_NID(nid
);
1870 if (!test_bit_le(nat_ofs
, nm_i
->nat_block_bitmap
))
1874 __set_bit_le(nid_ofs
, nm_i
->free_nid_bitmap
[nat_ofs
]);
1876 __clear_bit_le(nid_ofs
, nm_i
->free_nid_bitmap
[nat_ofs
]);
1879 nm_i
->free_nid_count
[nat_ofs
]++;
1881 nm_i
->free_nid_count
[nat_ofs
]--;
1884 static void scan_nat_page(struct f2fs_sb_info
*sbi
,
1885 struct page
*nat_page
, nid_t start_nid
)
1887 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1888 struct f2fs_nat_block
*nat_blk
= page_address(nat_page
);
1890 unsigned int nat_ofs
= NAT_BLOCK_OFFSET(start_nid
);
1893 if (test_bit_le(nat_ofs
, nm_i
->nat_block_bitmap
))
1896 __set_bit_le(nat_ofs
, nm_i
->nat_block_bitmap
);
1898 i
= start_nid
% NAT_ENTRY_PER_BLOCK
;
1900 for (; i
< NAT_ENTRY_PER_BLOCK
; i
++, start_nid
++) {
1903 if (unlikely(start_nid
>= nm_i
->max_nid
))
1906 blk_addr
= le32_to_cpu(nat_blk
->entries
[i
].block_addr
);
1907 f2fs_bug_on(sbi
, blk_addr
== NEW_ADDR
);
1908 if (blk_addr
== NULL_ADDR
)
1909 freed
= add_free_nid(sbi
, start_nid
, true);
1910 spin_lock(&NM_I(sbi
)->nid_list_lock
);
1911 update_free_nid_bitmap(sbi
, start_nid
, freed
, true);
1912 spin_unlock(&NM_I(sbi
)->nid_list_lock
);
1916 static void scan_free_nid_bits(struct f2fs_sb_info
*sbi
)
1918 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1919 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1920 struct f2fs_journal
*journal
= curseg
->journal
;
1921 unsigned int i
, idx
;
1923 down_read(&nm_i
->nat_tree_lock
);
1925 for (i
= 0; i
< nm_i
->nat_blocks
; i
++) {
1926 if (!test_bit_le(i
, nm_i
->nat_block_bitmap
))
1928 if (!nm_i
->free_nid_count
[i
])
1930 for (idx
= 0; idx
< NAT_ENTRY_PER_BLOCK
; idx
++) {
1933 if (!test_bit_le(idx
, nm_i
->free_nid_bitmap
[i
]))
1936 nid
= i
* NAT_ENTRY_PER_BLOCK
+ idx
;
1937 add_free_nid(sbi
, nid
, true);
1939 if (nm_i
->nid_cnt
[FREE_NID_LIST
] >= MAX_FREE_NIDS
)
1944 down_read(&curseg
->journal_rwsem
);
1945 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
1949 addr
= le32_to_cpu(nat_in_journal(journal
, i
).block_addr
);
1950 nid
= le32_to_cpu(nid_in_journal(journal
, i
));
1951 if (addr
== NULL_ADDR
)
1952 add_free_nid(sbi
, nid
, true);
1954 remove_free_nid(sbi
, nid
);
1956 up_read(&curseg
->journal_rwsem
);
1957 up_read(&nm_i
->nat_tree_lock
);
1960 static void __build_free_nids(struct f2fs_sb_info
*sbi
, bool sync
, bool mount
)
1962 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
1963 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1964 struct f2fs_journal
*journal
= curseg
->journal
;
1966 nid_t nid
= nm_i
->next_scan_nid
;
1968 if (unlikely(nid
>= nm_i
->max_nid
))
1971 /* Enough entries */
1972 if (nm_i
->nid_cnt
[FREE_NID_LIST
] >= NAT_ENTRY_PER_BLOCK
)
1975 if (!sync
&& !available_free_memory(sbi
, FREE_NIDS
))
1979 /* try to find free nids in free_nid_bitmap */
1980 scan_free_nid_bits(sbi
);
1982 if (nm_i
->nid_cnt
[FREE_NID_LIST
])
1986 /* readahead nat pages to be scanned */
1987 ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nid
), FREE_NID_PAGES
,
1990 down_read(&nm_i
->nat_tree_lock
);
1993 struct page
*page
= get_current_nat_page(sbi
, nid
);
1995 scan_nat_page(sbi
, page
, nid
);
1996 f2fs_put_page(page
, 1);
1998 nid
+= (NAT_ENTRY_PER_BLOCK
- (nid
% NAT_ENTRY_PER_BLOCK
));
1999 if (unlikely(nid
>= nm_i
->max_nid
))
2002 if (++i
>= FREE_NID_PAGES
)
2006 /* go to the next free nat pages to find free nids abundantly */
2007 nm_i
->next_scan_nid
= nid
;
2009 /* find free nids from current sum_pages */
2010 down_read(&curseg
->journal_rwsem
);
2011 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
2014 addr
= le32_to_cpu(nat_in_journal(journal
, i
).block_addr
);
2015 nid
= le32_to_cpu(nid_in_journal(journal
, i
));
2016 if (addr
== NULL_ADDR
)
2017 add_free_nid(sbi
, nid
, true);
2019 remove_free_nid(sbi
, nid
);
2021 up_read(&curseg
->journal_rwsem
);
2022 up_read(&nm_i
->nat_tree_lock
);
2024 ra_meta_pages(sbi
, NAT_BLOCK_OFFSET(nm_i
->next_scan_nid
),
2025 nm_i
->ra_nid_pages
, META_NAT
, false);
2028 void build_free_nids(struct f2fs_sb_info
*sbi
, bool sync
, bool mount
)
2030 mutex_lock(&NM_I(sbi
)->build_lock
);
2031 __build_free_nids(sbi
, sync
, mount
);
2032 mutex_unlock(&NM_I(sbi
)->build_lock
);
2036 * If this function returns success, caller can obtain a new nid
2037 * from second parameter of this function.
2038 * The returned nid could be used ino as well as nid when inode is created.
2040 bool alloc_nid(struct f2fs_sb_info
*sbi
, nid_t
*nid
)
2042 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2043 struct free_nid
*i
= NULL
;
2045 #ifdef CONFIG_F2FS_FAULT_INJECTION
2046 if (time_to_inject(sbi
, FAULT_ALLOC_NID
)) {
2047 f2fs_show_injection_info(FAULT_ALLOC_NID
);
2051 spin_lock(&nm_i
->nid_list_lock
);
2053 if (unlikely(nm_i
->available_nids
== 0)) {
2054 spin_unlock(&nm_i
->nid_list_lock
);
2058 /* We should not use stale free nids created by build_free_nids */
2059 if (nm_i
->nid_cnt
[FREE_NID_LIST
] && !on_build_free_nids(nm_i
)) {
2060 f2fs_bug_on(sbi
, list_empty(&nm_i
->nid_list
[FREE_NID_LIST
]));
2061 i
= list_first_entry(&nm_i
->nid_list
[FREE_NID_LIST
],
2062 struct free_nid
, list
);
2065 __remove_nid_from_list(sbi
, i
, FREE_NID_LIST
, true);
2066 i
->state
= NID_ALLOC
;
2067 __insert_nid_to_list(sbi
, i
, ALLOC_NID_LIST
, false);
2068 nm_i
->available_nids
--;
2070 update_free_nid_bitmap(sbi
, *nid
, false, false);
2072 spin_unlock(&nm_i
->nid_list_lock
);
2075 spin_unlock(&nm_i
->nid_list_lock
);
2077 /* Let's scan nat pages and its caches to get free nids */
2078 build_free_nids(sbi
, true, false);
2083 * alloc_nid() should be called prior to this function.
2085 void alloc_nid_done(struct f2fs_sb_info
*sbi
, nid_t nid
)
2087 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2090 spin_lock(&nm_i
->nid_list_lock
);
2091 i
= __lookup_free_nid_list(nm_i
, nid
);
2092 f2fs_bug_on(sbi
, !i
);
2093 __remove_nid_from_list(sbi
, i
, ALLOC_NID_LIST
, false);
2094 spin_unlock(&nm_i
->nid_list_lock
);
2096 kmem_cache_free(free_nid_slab
, i
);
2100 * alloc_nid() should be called prior to this function.
2102 void alloc_nid_failed(struct f2fs_sb_info
*sbi
, nid_t nid
)
2104 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2106 bool need_free
= false;
2111 spin_lock(&nm_i
->nid_list_lock
);
2112 i
= __lookup_free_nid_list(nm_i
, nid
);
2113 f2fs_bug_on(sbi
, !i
);
2115 if (!available_free_memory(sbi
, FREE_NIDS
)) {
2116 __remove_nid_from_list(sbi
, i
, ALLOC_NID_LIST
, false);
2119 __remove_nid_from_list(sbi
, i
, ALLOC_NID_LIST
, true);
2121 __insert_nid_to_list(sbi
, i
, FREE_NID_LIST
, false);
2124 nm_i
->available_nids
++;
2126 update_free_nid_bitmap(sbi
, nid
, true, false);
2128 spin_unlock(&nm_i
->nid_list_lock
);
2131 kmem_cache_free(free_nid_slab
, i
);
2134 int try_to_free_nids(struct f2fs_sb_info
*sbi
, int nr_shrink
)
2136 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2137 struct free_nid
*i
, *next
;
2140 if (nm_i
->nid_cnt
[FREE_NID_LIST
] <= MAX_FREE_NIDS
)
2143 if (!mutex_trylock(&nm_i
->build_lock
))
2146 spin_lock(&nm_i
->nid_list_lock
);
2147 list_for_each_entry_safe(i
, next
, &nm_i
->nid_list
[FREE_NID_LIST
],
2149 if (nr_shrink
<= 0 ||
2150 nm_i
->nid_cnt
[FREE_NID_LIST
] <= MAX_FREE_NIDS
)
2153 __remove_nid_from_list(sbi
, i
, FREE_NID_LIST
, false);
2154 kmem_cache_free(free_nid_slab
, i
);
2157 spin_unlock(&nm_i
->nid_list_lock
);
2158 mutex_unlock(&nm_i
->build_lock
);
2160 return nr
- nr_shrink
;
2163 void recover_inline_xattr(struct inode
*inode
, struct page
*page
)
2165 void *src_addr
, *dst_addr
;
2168 struct f2fs_inode
*ri
;
2170 ipage
= get_node_page(F2FS_I_SB(inode
), inode
->i_ino
);
2171 f2fs_bug_on(F2FS_I_SB(inode
), IS_ERR(ipage
));
2173 ri
= F2FS_INODE(page
);
2174 if (!(ri
->i_inline
& F2FS_INLINE_XATTR
)) {
2175 clear_inode_flag(inode
, FI_INLINE_XATTR
);
2179 dst_addr
= inline_xattr_addr(ipage
);
2180 src_addr
= inline_xattr_addr(page
);
2181 inline_size
= inline_xattr_size(inode
);
2183 f2fs_wait_on_page_writeback(ipage
, NODE
, true);
2184 memcpy(dst_addr
, src_addr
, inline_size
);
2186 update_inode(inode
, ipage
);
2187 f2fs_put_page(ipage
, 1);
2190 int recover_xattr_data(struct inode
*inode
, struct page
*page
, block_t blkaddr
)
2192 struct f2fs_sb_info
*sbi
= F2FS_I_SB(inode
);
2193 nid_t prev_xnid
= F2FS_I(inode
)->i_xattr_nid
;
2194 nid_t new_xnid
= nid_of_node(page
);
2195 struct node_info ni
;
2201 /* 1: invalidate the previous xattr nid */
2202 get_node_info(sbi
, prev_xnid
, &ni
);
2203 f2fs_bug_on(sbi
, ni
.blk_addr
== NULL_ADDR
);
2204 invalidate_blocks(sbi
, ni
.blk_addr
);
2205 dec_valid_node_count(sbi
, inode
, false);
2206 set_node_addr(sbi
, &ni
, NULL_ADDR
, false);
2209 /* 2: update xattr nid in inode */
2210 remove_free_nid(sbi
, new_xnid
);
2211 f2fs_i_xnid_write(inode
, new_xnid
);
2212 if (unlikely(inc_valid_node_count(sbi
, inode
, false)))
2213 f2fs_bug_on(sbi
, 1);
2214 update_inode_page(inode
);
2216 /* 3: update and set xattr node page dirty */
2217 xpage
= grab_cache_page(NODE_MAPPING(sbi
), new_xnid
);
2221 memcpy(F2FS_NODE(xpage
), F2FS_NODE(page
), PAGE_SIZE
);
2223 get_node_info(sbi
, new_xnid
, &ni
);
2224 ni
.ino
= inode
->i_ino
;
2225 set_node_addr(sbi
, &ni
, NEW_ADDR
, false);
2226 set_page_dirty(xpage
);
2227 f2fs_put_page(xpage
, 1);
2232 int recover_inode_page(struct f2fs_sb_info
*sbi
, struct page
*page
)
2234 struct f2fs_inode
*src
, *dst
;
2235 nid_t ino
= ino_of_node(page
);
2236 struct node_info old_ni
, new_ni
;
2239 get_node_info(sbi
, ino
, &old_ni
);
2241 if (unlikely(old_ni
.blk_addr
!= NULL_ADDR
))
2244 ipage
= f2fs_grab_cache_page(NODE_MAPPING(sbi
), ino
, false);
2246 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
2250 /* Should not use this inode from free nid list */
2251 remove_free_nid(sbi
, ino
);
2253 if (!PageUptodate(ipage
))
2254 SetPageUptodate(ipage
);
2255 fill_node_footer(ipage
, ino
, ino
, 0, true);
2257 src
= F2FS_INODE(page
);
2258 dst
= F2FS_INODE(ipage
);
2260 memcpy(dst
, src
, (unsigned long)&src
->i_ext
- (unsigned long)src
);
2262 dst
->i_blocks
= cpu_to_le64(1);
2263 dst
->i_links
= cpu_to_le32(1);
2264 dst
->i_xattr_nid
= 0;
2265 dst
->i_inline
= src
->i_inline
& F2FS_INLINE_XATTR
;
2270 if (unlikely(inc_valid_node_count(sbi
, NULL
, true)))
2272 set_node_addr(sbi
, &new_ni
, NEW_ADDR
, false);
2273 inc_valid_inode_count(sbi
);
2274 set_page_dirty(ipage
);
2275 f2fs_put_page(ipage
, 1);
2279 int restore_node_summary(struct f2fs_sb_info
*sbi
,
2280 unsigned int segno
, struct f2fs_summary_block
*sum
)
2282 struct f2fs_node
*rn
;
2283 struct f2fs_summary
*sum_entry
;
2285 int i
, idx
, last_offset
, nrpages
;
2287 /* scan the node segment */
2288 last_offset
= sbi
->blocks_per_seg
;
2289 addr
= START_BLOCK(sbi
, segno
);
2290 sum_entry
= &sum
->entries
[0];
2292 for (i
= 0; i
< last_offset
; i
+= nrpages
, addr
+= nrpages
) {
2293 nrpages
= min(last_offset
- i
, BIO_MAX_PAGES
);
2295 /* readahead node pages */
2296 ra_meta_pages(sbi
, addr
, nrpages
, META_POR
, true);
2298 for (idx
= addr
; idx
< addr
+ nrpages
; idx
++) {
2299 struct page
*page
= get_tmp_page(sbi
, idx
);
2301 rn
= F2FS_NODE(page
);
2302 sum_entry
->nid
= rn
->footer
.nid
;
2303 sum_entry
->version
= 0;
2304 sum_entry
->ofs_in_node
= 0;
2306 f2fs_put_page(page
, 1);
2309 invalidate_mapping_pages(META_MAPPING(sbi
), addr
,
2315 static void remove_nats_in_journal(struct f2fs_sb_info
*sbi
)
2317 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2318 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2319 struct f2fs_journal
*journal
= curseg
->journal
;
2322 down_write(&curseg
->journal_rwsem
);
2323 for (i
= 0; i
< nats_in_cursum(journal
); i
++) {
2324 struct nat_entry
*ne
;
2325 struct f2fs_nat_entry raw_ne
;
2326 nid_t nid
= le32_to_cpu(nid_in_journal(journal
, i
));
2328 raw_ne
= nat_in_journal(journal
, i
);
2330 ne
= __lookup_nat_cache(nm_i
, nid
);
2332 ne
= grab_nat_entry(nm_i
, nid
, true);
2333 node_info_from_raw_nat(&ne
->ni
, &raw_ne
);
2337 * if a free nat in journal has not been used after last
2338 * checkpoint, we should remove it from available nids,
2339 * since later we will add it again.
2341 if (!get_nat_flag(ne
, IS_DIRTY
) &&
2342 le32_to_cpu(raw_ne
.block_addr
) == NULL_ADDR
) {
2343 spin_lock(&nm_i
->nid_list_lock
);
2344 nm_i
->available_nids
--;
2345 spin_unlock(&nm_i
->nid_list_lock
);
2348 __set_nat_cache_dirty(nm_i
, ne
);
2350 update_nats_in_cursum(journal
, -i
);
2351 up_write(&curseg
->journal_rwsem
);
2354 static void __adjust_nat_entry_set(struct nat_entry_set
*nes
,
2355 struct list_head
*head
, int max
)
2357 struct nat_entry_set
*cur
;
2359 if (nes
->entry_cnt
>= max
)
2362 list_for_each_entry(cur
, head
, set_list
) {
2363 if (cur
->entry_cnt
>= nes
->entry_cnt
) {
2364 list_add(&nes
->set_list
, cur
->set_list
.prev
);
2369 list_add_tail(&nes
->set_list
, head
);
2372 static void __update_nat_bits(struct f2fs_sb_info
*sbi
, nid_t start_nid
,
2375 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2376 unsigned int nat_index
= start_nid
/ NAT_ENTRY_PER_BLOCK
;
2377 struct f2fs_nat_block
*nat_blk
= page_address(page
);
2381 if (!enabled_nat_bits(sbi
, NULL
))
2384 for (i
= 0; i
< NAT_ENTRY_PER_BLOCK
; i
++) {
2385 if (start_nid
== 0 && i
== 0)
2387 if (nat_blk
->entries
[i
].block_addr
)
2391 __set_bit_le(nat_index
, nm_i
->empty_nat_bits
);
2392 __clear_bit_le(nat_index
, nm_i
->full_nat_bits
);
2396 __clear_bit_le(nat_index
, nm_i
->empty_nat_bits
);
2397 if (valid
== NAT_ENTRY_PER_BLOCK
)
2398 __set_bit_le(nat_index
, nm_i
->full_nat_bits
);
2400 __clear_bit_le(nat_index
, nm_i
->full_nat_bits
);
2403 static void __flush_nat_entry_set(struct f2fs_sb_info
*sbi
,
2404 struct nat_entry_set
*set
, struct cp_control
*cpc
)
2406 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2407 struct f2fs_journal
*journal
= curseg
->journal
;
2408 nid_t start_nid
= set
->set
* NAT_ENTRY_PER_BLOCK
;
2409 bool to_journal
= true;
2410 struct f2fs_nat_block
*nat_blk
;
2411 struct nat_entry
*ne
, *cur
;
2412 struct page
*page
= NULL
;
2415 * there are two steps to flush nat entries:
2416 * #1, flush nat entries to journal in current hot data summary block.
2417 * #2, flush nat entries to nat page.
2419 if (enabled_nat_bits(sbi
, cpc
) ||
2420 !__has_cursum_space(journal
, set
->entry_cnt
, NAT_JOURNAL
))
2424 down_write(&curseg
->journal_rwsem
);
2426 page
= get_next_nat_page(sbi
, start_nid
);
2427 nat_blk
= page_address(page
);
2428 f2fs_bug_on(sbi
, !nat_blk
);
2431 /* flush dirty nats in nat entry set */
2432 list_for_each_entry_safe(ne
, cur
, &set
->entry_list
, list
) {
2433 struct f2fs_nat_entry
*raw_ne
;
2434 nid_t nid
= nat_get_nid(ne
);
2437 f2fs_bug_on(sbi
, nat_get_blkaddr(ne
) == NEW_ADDR
);
2440 offset
= lookup_journal_in_cursum(journal
,
2441 NAT_JOURNAL
, nid
, 1);
2442 f2fs_bug_on(sbi
, offset
< 0);
2443 raw_ne
= &nat_in_journal(journal
, offset
);
2444 nid_in_journal(journal
, offset
) = cpu_to_le32(nid
);
2446 raw_ne
= &nat_blk
->entries
[nid
- start_nid
];
2448 raw_nat_from_node_info(raw_ne
, &ne
->ni
);
2450 __clear_nat_cache_dirty(NM_I(sbi
), set
, ne
);
2451 if (nat_get_blkaddr(ne
) == NULL_ADDR
) {
2452 add_free_nid(sbi
, nid
, false);
2453 spin_lock(&NM_I(sbi
)->nid_list_lock
);
2454 NM_I(sbi
)->available_nids
++;
2455 update_free_nid_bitmap(sbi
, nid
, true, false);
2456 spin_unlock(&NM_I(sbi
)->nid_list_lock
);
2458 spin_lock(&NM_I(sbi
)->nid_list_lock
);
2459 update_free_nid_bitmap(sbi
, nid
, false, false);
2460 spin_unlock(&NM_I(sbi
)->nid_list_lock
);
2465 up_write(&curseg
->journal_rwsem
);
2467 __update_nat_bits(sbi
, start_nid
, page
);
2468 f2fs_put_page(page
, 1);
2471 /* Allow dirty nats by node block allocation in write_begin */
2472 if (!set
->entry_cnt
) {
2473 radix_tree_delete(&NM_I(sbi
)->nat_set_root
, set
->set
);
2474 kmem_cache_free(nat_entry_set_slab
, set
);
2479 * This function is called during the checkpointing process.
2481 void flush_nat_entries(struct f2fs_sb_info
*sbi
, struct cp_control
*cpc
)
2483 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2484 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
2485 struct f2fs_journal
*journal
= curseg
->journal
;
2486 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
2487 struct nat_entry_set
*set
, *tmp
;
2492 if (!nm_i
->dirty_nat_cnt
)
2495 down_write(&nm_i
->nat_tree_lock
);
2498 * if there are no enough space in journal to store dirty nat
2499 * entries, remove all entries from journal and merge them
2500 * into nat entry set.
2502 if (enabled_nat_bits(sbi
, cpc
) ||
2503 !__has_cursum_space(journal
, nm_i
->dirty_nat_cnt
, NAT_JOURNAL
))
2504 remove_nats_in_journal(sbi
);
2506 while ((found
= __gang_lookup_nat_set(nm_i
,
2507 set_idx
, SETVEC_SIZE
, setvec
))) {
2509 set_idx
= setvec
[found
- 1]->set
+ 1;
2510 for (idx
= 0; idx
< found
; idx
++)
2511 __adjust_nat_entry_set(setvec
[idx
], &sets
,
2512 MAX_NAT_JENTRIES(journal
));
2515 /* flush dirty nats in nat entry set */
2516 list_for_each_entry_safe(set
, tmp
, &sets
, set_list
)
2517 __flush_nat_entry_set(sbi
, set
, cpc
);
2519 up_write(&nm_i
->nat_tree_lock
);
2520 /* Allow dirty nats by node block allocation in write_begin */
2523 static int __get_nat_bitmaps(struct f2fs_sb_info
*sbi
)
2525 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
2526 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2527 unsigned int nat_bits_bytes
= nm_i
->nat_blocks
/ BITS_PER_BYTE
;
2529 __u64 cp_ver
= cur_cp_version(ckpt
);
2530 block_t nat_bits_addr
;
2532 if (!enabled_nat_bits(sbi
, NULL
))
2535 nm_i
->nat_bits_blocks
= F2FS_BYTES_TO_BLK((nat_bits_bytes
<< 1) + 8 +
2537 nm_i
->nat_bits
= kzalloc(nm_i
->nat_bits_blocks
<< F2FS_BLKSIZE_BITS
,
2539 if (!nm_i
->nat_bits
)
2542 nat_bits_addr
= __start_cp_addr(sbi
) + sbi
->blocks_per_seg
-
2543 nm_i
->nat_bits_blocks
;
2544 for (i
= 0; i
< nm_i
->nat_bits_blocks
; i
++) {
2545 struct page
*page
= get_meta_page(sbi
, nat_bits_addr
++);
2547 memcpy(nm_i
->nat_bits
+ (i
<< F2FS_BLKSIZE_BITS
),
2548 page_address(page
), F2FS_BLKSIZE
);
2549 f2fs_put_page(page
, 1);
2552 cp_ver
|= (cur_cp_crc(ckpt
) << 32);
2553 if (cpu_to_le64(cp_ver
) != *(__le64
*)nm_i
->nat_bits
) {
2554 disable_nat_bits(sbi
, true);
2558 nm_i
->full_nat_bits
= nm_i
->nat_bits
+ 8;
2559 nm_i
->empty_nat_bits
= nm_i
->full_nat_bits
+ nat_bits_bytes
;
2561 f2fs_msg(sbi
->sb
, KERN_NOTICE
, "Found nat_bits in checkpoint");
2565 static inline void load_free_nid_bitmap(struct f2fs_sb_info
*sbi
)
2567 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2569 nid_t nid
, last_nid
;
2571 if (!enabled_nat_bits(sbi
, NULL
))
2574 for (i
= 0; i
< nm_i
->nat_blocks
; i
++) {
2575 i
= find_next_bit_le(nm_i
->empty_nat_bits
, nm_i
->nat_blocks
, i
);
2576 if (i
>= nm_i
->nat_blocks
)
2579 __set_bit_le(i
, nm_i
->nat_block_bitmap
);
2581 nid
= i
* NAT_ENTRY_PER_BLOCK
;
2582 last_nid
= (i
+ 1) * NAT_ENTRY_PER_BLOCK
;
2584 spin_lock(&NM_I(sbi
)->nid_list_lock
);
2585 for (; nid
< last_nid
; nid
++)
2586 update_free_nid_bitmap(sbi
, nid
, true, true);
2587 spin_unlock(&NM_I(sbi
)->nid_list_lock
);
2590 for (i
= 0; i
< nm_i
->nat_blocks
; i
++) {
2591 i
= find_next_bit_le(nm_i
->full_nat_bits
, nm_i
->nat_blocks
, i
);
2592 if (i
>= nm_i
->nat_blocks
)
2595 __set_bit_le(i
, nm_i
->nat_block_bitmap
);
2599 static int init_node_manager(struct f2fs_sb_info
*sbi
)
2601 struct f2fs_super_block
*sb_raw
= F2FS_RAW_SUPER(sbi
);
2602 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2603 unsigned char *version_bitmap
;
2604 unsigned int nat_segs
;
2607 nm_i
->nat_blkaddr
= le32_to_cpu(sb_raw
->nat_blkaddr
);
2609 /* segment_count_nat includes pair segment so divide to 2. */
2610 nat_segs
= le32_to_cpu(sb_raw
->segment_count_nat
) >> 1;
2611 nm_i
->nat_blocks
= nat_segs
<< le32_to_cpu(sb_raw
->log_blocks_per_seg
);
2612 nm_i
->max_nid
= NAT_ENTRY_PER_BLOCK
* nm_i
->nat_blocks
;
2614 /* not used nids: 0, node, meta, (and root counted as valid node) */
2615 nm_i
->available_nids
= nm_i
->max_nid
- sbi
->total_valid_node_count
-
2616 F2FS_RESERVED_NODE_NUM
;
2617 nm_i
->nid_cnt
[FREE_NID_LIST
] = 0;
2618 nm_i
->nid_cnt
[ALLOC_NID_LIST
] = 0;
2620 nm_i
->ram_thresh
= DEF_RAM_THRESHOLD
;
2621 nm_i
->ra_nid_pages
= DEF_RA_NID_PAGES
;
2622 nm_i
->dirty_nats_ratio
= DEF_DIRTY_NAT_RATIO_THRESHOLD
;
2624 INIT_RADIX_TREE(&nm_i
->free_nid_root
, GFP_ATOMIC
);
2625 INIT_LIST_HEAD(&nm_i
->nid_list
[FREE_NID_LIST
]);
2626 INIT_LIST_HEAD(&nm_i
->nid_list
[ALLOC_NID_LIST
]);
2627 INIT_RADIX_TREE(&nm_i
->nat_root
, GFP_NOIO
);
2628 INIT_RADIX_TREE(&nm_i
->nat_set_root
, GFP_NOIO
);
2629 INIT_LIST_HEAD(&nm_i
->nat_entries
);
2631 mutex_init(&nm_i
->build_lock
);
2632 spin_lock_init(&nm_i
->nid_list_lock
);
2633 init_rwsem(&nm_i
->nat_tree_lock
);
2635 nm_i
->next_scan_nid
= le32_to_cpu(sbi
->ckpt
->next_free_nid
);
2636 nm_i
->bitmap_size
= __bitmap_size(sbi
, NAT_BITMAP
);
2637 version_bitmap
= __bitmap_ptr(sbi
, NAT_BITMAP
);
2638 if (!version_bitmap
)
2641 nm_i
->nat_bitmap
= kmemdup(version_bitmap
, nm_i
->bitmap_size
,
2643 if (!nm_i
->nat_bitmap
)
2646 err
= __get_nat_bitmaps(sbi
);
2650 #ifdef CONFIG_F2FS_CHECK_FS
2651 nm_i
->nat_bitmap_mir
= kmemdup(version_bitmap
, nm_i
->bitmap_size
,
2653 if (!nm_i
->nat_bitmap_mir
)
2660 static int init_free_nid_cache(struct f2fs_sb_info
*sbi
)
2662 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2664 nm_i
->free_nid_bitmap
= kvzalloc(nm_i
->nat_blocks
*
2665 NAT_ENTRY_BITMAP_SIZE
, GFP_KERNEL
);
2666 if (!nm_i
->free_nid_bitmap
)
2669 nm_i
->nat_block_bitmap
= kvzalloc(nm_i
->nat_blocks
/ 8,
2671 if (!nm_i
->nat_block_bitmap
)
2674 nm_i
->free_nid_count
= kvzalloc(nm_i
->nat_blocks
*
2675 sizeof(unsigned short), GFP_KERNEL
);
2676 if (!nm_i
->free_nid_count
)
2681 int build_node_manager(struct f2fs_sb_info
*sbi
)
2685 sbi
->nm_info
= kzalloc(sizeof(struct f2fs_nm_info
), GFP_KERNEL
);
2689 err
= init_node_manager(sbi
);
2693 err
= init_free_nid_cache(sbi
);
2697 /* load free nid status from nat_bits table */
2698 load_free_nid_bitmap(sbi
);
2700 build_free_nids(sbi
, true, true);
2704 void destroy_node_manager(struct f2fs_sb_info
*sbi
)
2706 struct f2fs_nm_info
*nm_i
= NM_I(sbi
);
2707 struct free_nid
*i
, *next_i
;
2708 struct nat_entry
*natvec
[NATVEC_SIZE
];
2709 struct nat_entry_set
*setvec
[SETVEC_SIZE
];
2716 /* destroy free nid list */
2717 spin_lock(&nm_i
->nid_list_lock
);
2718 list_for_each_entry_safe(i
, next_i
, &nm_i
->nid_list
[FREE_NID_LIST
],
2720 __remove_nid_from_list(sbi
, i
, FREE_NID_LIST
, false);
2721 spin_unlock(&nm_i
->nid_list_lock
);
2722 kmem_cache_free(free_nid_slab
, i
);
2723 spin_lock(&nm_i
->nid_list_lock
);
2725 f2fs_bug_on(sbi
, nm_i
->nid_cnt
[FREE_NID_LIST
]);
2726 f2fs_bug_on(sbi
, nm_i
->nid_cnt
[ALLOC_NID_LIST
]);
2727 f2fs_bug_on(sbi
, !list_empty(&nm_i
->nid_list
[ALLOC_NID_LIST
]));
2728 spin_unlock(&nm_i
->nid_list_lock
);
2730 /* destroy nat cache */
2731 down_write(&nm_i
->nat_tree_lock
);
2732 while ((found
= __gang_lookup_nat_cache(nm_i
,
2733 nid
, NATVEC_SIZE
, natvec
))) {
2736 nid
= nat_get_nid(natvec
[found
- 1]) + 1;
2737 for (idx
= 0; idx
< found
; idx
++)
2738 __del_from_nat_cache(nm_i
, natvec
[idx
]);
2740 f2fs_bug_on(sbi
, nm_i
->nat_cnt
);
2742 /* destroy nat set cache */
2744 while ((found
= __gang_lookup_nat_set(nm_i
,
2745 nid
, SETVEC_SIZE
, setvec
))) {
2748 nid
= setvec
[found
- 1]->set
+ 1;
2749 for (idx
= 0; idx
< found
; idx
++) {
2750 /* entry_cnt is not zero, when cp_error was occurred */
2751 f2fs_bug_on(sbi
, !list_empty(&setvec
[idx
]->entry_list
));
2752 radix_tree_delete(&nm_i
->nat_set_root
, setvec
[idx
]->set
);
2753 kmem_cache_free(nat_entry_set_slab
, setvec
[idx
]);
2756 up_write(&nm_i
->nat_tree_lock
);
2758 kvfree(nm_i
->nat_block_bitmap
);
2759 kvfree(nm_i
->free_nid_bitmap
);
2760 kvfree(nm_i
->free_nid_count
);
2762 kfree(nm_i
->nat_bitmap
);
2763 kfree(nm_i
->nat_bits
);
2764 #ifdef CONFIG_F2FS_CHECK_FS
2765 kfree(nm_i
->nat_bitmap_mir
);
2767 sbi
->nm_info
= NULL
;
2771 int __init
create_node_manager_caches(void)
2773 nat_entry_slab
= f2fs_kmem_cache_create("nat_entry",
2774 sizeof(struct nat_entry
));
2775 if (!nat_entry_slab
)
2778 free_nid_slab
= f2fs_kmem_cache_create("free_nid",
2779 sizeof(struct free_nid
));
2781 goto destroy_nat_entry
;
2783 nat_entry_set_slab
= f2fs_kmem_cache_create("nat_entry_set",
2784 sizeof(struct nat_entry_set
));
2785 if (!nat_entry_set_slab
)
2786 goto destroy_free_nid
;
2790 kmem_cache_destroy(free_nid_slab
);
2792 kmem_cache_destroy(nat_entry_slab
);
2797 void destroy_node_manager_caches(void)
2799 kmem_cache_destroy(nat_entry_set_slab
);
2800 kmem_cache_destroy(free_nid_slab
);
2801 kmem_cache_destroy(nat_entry_slab
);