h8300: Add missing closing parenthesis in flat_get_addr_from_rp()
[linux/fpc-iii.git] / fs / f2fs / node.c
blobd53fe620939ee15f370099956b32984198e93b94
1 /*
2 * fs/f2fs/node.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/mpage.h>
14 #include <linux/backing-dev.h>
15 #include <linux/blkdev.h>
16 #include <linux/pagevec.h>
17 #include <linux/swap.h>
19 #include "f2fs.h"
20 #include "node.h"
21 #include "segment.h"
22 #include "trace.h"
23 #include <trace/events/f2fs.h>
25 #define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
27 static struct kmem_cache *nat_entry_slab;
28 static struct kmem_cache *free_nid_slab;
29 static struct kmem_cache *nat_entry_set_slab;
31 bool available_free_memory(struct f2fs_sb_info *sbi, int type)
33 struct f2fs_nm_info *nm_i = NM_I(sbi);
34 struct sysinfo val;
35 unsigned long avail_ram;
36 unsigned long mem_size = 0;
37 bool res = false;
39 si_meminfo(&val);
41 /* only uses low memory */
42 avail_ram = val.totalram - val.totalhigh;
45 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47 if (type == FREE_NIDS) {
48 mem_size = (nm_i->nid_cnt[FREE_NID_LIST] *
49 sizeof(struct free_nid)) >> PAGE_SHIFT;
50 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
51 } else if (type == NAT_ENTRIES) {
52 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
53 PAGE_SHIFT;
54 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
55 if (excess_cached_nats(sbi))
56 res = false;
57 } else if (type == DIRTY_DENTS) {
58 if (sbi->sb->s_bdi->wb.dirty_exceeded)
59 return false;
60 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
61 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
62 } else if (type == INO_ENTRIES) {
63 int i;
65 for (i = 0; i <= UPDATE_INO; i++)
66 mem_size += sbi->im[i].ino_num *
67 sizeof(struct ino_entry);
68 mem_size >>= PAGE_SHIFT;
69 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
70 } else if (type == EXTENT_CACHE) {
71 mem_size = (atomic_read(&sbi->total_ext_tree) *
72 sizeof(struct extent_tree) +
73 atomic_read(&sbi->total_ext_node) *
74 sizeof(struct extent_node)) >> PAGE_SHIFT;
75 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
76 } else {
77 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
78 return true;
80 return res;
83 static void clear_node_page_dirty(struct page *page)
85 struct address_space *mapping = page->mapping;
86 unsigned int long flags;
88 if (PageDirty(page)) {
89 spin_lock_irqsave(&mapping->tree_lock, flags);
90 radix_tree_tag_clear(&mapping->page_tree,
91 page_index(page),
92 PAGECACHE_TAG_DIRTY);
93 spin_unlock_irqrestore(&mapping->tree_lock, flags);
95 clear_page_dirty_for_io(page);
96 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
98 ClearPageUptodate(page);
101 static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
103 pgoff_t index = current_nat_addr(sbi, nid);
104 return get_meta_page(sbi, index);
107 static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
109 struct page *src_page;
110 struct page *dst_page;
111 pgoff_t src_off;
112 pgoff_t dst_off;
113 void *src_addr;
114 void *dst_addr;
115 struct f2fs_nm_info *nm_i = NM_I(sbi);
117 src_off = current_nat_addr(sbi, nid);
118 dst_off = next_nat_addr(sbi, src_off);
120 /* get current nat block page with lock */
121 src_page = get_meta_page(sbi, src_off);
122 dst_page = grab_meta_page(sbi, dst_off);
123 f2fs_bug_on(sbi, PageDirty(src_page));
125 src_addr = page_address(src_page);
126 dst_addr = page_address(dst_page);
127 memcpy(dst_addr, src_addr, PAGE_SIZE);
128 set_page_dirty(dst_page);
129 f2fs_put_page(src_page, 1);
131 set_to_next_nat(nm_i, nid);
133 return dst_page;
136 static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
138 return radix_tree_lookup(&nm_i->nat_root, n);
141 static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
142 nid_t start, unsigned int nr, struct nat_entry **ep)
144 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
147 static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
149 list_del(&e->list);
150 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
151 nm_i->nat_cnt--;
152 kmem_cache_free(nat_entry_slab, e);
155 static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
156 struct nat_entry *ne)
158 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
159 struct nat_entry_set *head;
161 head = radix_tree_lookup(&nm_i->nat_set_root, set);
162 if (!head) {
163 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
165 INIT_LIST_HEAD(&head->entry_list);
166 INIT_LIST_HEAD(&head->set_list);
167 head->set = set;
168 head->entry_cnt = 0;
169 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
172 if (get_nat_flag(ne, IS_DIRTY))
173 goto refresh_list;
175 nm_i->dirty_nat_cnt++;
176 head->entry_cnt++;
177 set_nat_flag(ne, IS_DIRTY, true);
178 refresh_list:
179 if (nat_get_blkaddr(ne) == NEW_ADDR)
180 list_del_init(&ne->list);
181 else
182 list_move_tail(&ne->list, &head->entry_list);
185 static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
186 struct nat_entry_set *set, struct nat_entry *ne)
188 list_move_tail(&ne->list, &nm_i->nat_entries);
189 set_nat_flag(ne, IS_DIRTY, false);
190 set->entry_cnt--;
191 nm_i->dirty_nat_cnt--;
194 static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
195 nid_t start, unsigned int nr, struct nat_entry_set **ep)
197 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
198 start, nr);
201 int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
203 struct f2fs_nm_info *nm_i = NM_I(sbi);
204 struct nat_entry *e;
205 bool need = false;
207 down_read(&nm_i->nat_tree_lock);
208 e = __lookup_nat_cache(nm_i, nid);
209 if (e) {
210 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
211 !get_nat_flag(e, HAS_FSYNCED_INODE))
212 need = true;
214 up_read(&nm_i->nat_tree_lock);
215 return need;
218 bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
220 struct f2fs_nm_info *nm_i = NM_I(sbi);
221 struct nat_entry *e;
222 bool is_cp = true;
224 down_read(&nm_i->nat_tree_lock);
225 e = __lookup_nat_cache(nm_i, nid);
226 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
227 is_cp = false;
228 up_read(&nm_i->nat_tree_lock);
229 return is_cp;
232 bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
234 struct f2fs_nm_info *nm_i = NM_I(sbi);
235 struct nat_entry *e;
236 bool need_update = true;
238 down_read(&nm_i->nat_tree_lock);
239 e = __lookup_nat_cache(nm_i, ino);
240 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
241 (get_nat_flag(e, IS_CHECKPOINTED) ||
242 get_nat_flag(e, HAS_FSYNCED_INODE)))
243 need_update = false;
244 up_read(&nm_i->nat_tree_lock);
245 return need_update;
248 static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
249 bool no_fail)
251 struct nat_entry *new;
253 if (no_fail) {
254 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
255 f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
256 } else {
257 new = kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
258 if (!new)
259 return NULL;
260 if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
261 kmem_cache_free(nat_entry_slab, new);
262 return NULL;
266 memset(new, 0, sizeof(struct nat_entry));
267 nat_set_nid(new, nid);
268 nat_reset_flag(new);
269 list_add_tail(&new->list, &nm_i->nat_entries);
270 nm_i->nat_cnt++;
271 return new;
274 static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
275 struct f2fs_nat_entry *ne)
277 struct f2fs_nm_info *nm_i = NM_I(sbi);
278 struct nat_entry *e;
280 e = __lookup_nat_cache(nm_i, nid);
281 if (!e) {
282 e = grab_nat_entry(nm_i, nid, false);
283 if (e)
284 node_info_from_raw_nat(&e->ni, ne);
285 } else {
286 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
287 nat_get_blkaddr(e) !=
288 le32_to_cpu(ne->block_addr) ||
289 nat_get_version(e) != ne->version);
293 static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
294 block_t new_blkaddr, bool fsync_done)
296 struct f2fs_nm_info *nm_i = NM_I(sbi);
297 struct nat_entry *e;
299 down_write(&nm_i->nat_tree_lock);
300 e = __lookup_nat_cache(nm_i, ni->nid);
301 if (!e) {
302 e = grab_nat_entry(nm_i, ni->nid, true);
303 copy_node_info(&e->ni, ni);
304 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
305 } else if (new_blkaddr == NEW_ADDR) {
307 * when nid is reallocated,
308 * previous nat entry can be remained in nat cache.
309 * So, reinitialize it with new information.
311 copy_node_info(&e->ni, ni);
312 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
315 /* sanity check */
316 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
317 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
318 new_blkaddr == NULL_ADDR);
319 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
320 new_blkaddr == NEW_ADDR);
321 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
322 nat_get_blkaddr(e) != NULL_ADDR &&
323 new_blkaddr == NEW_ADDR);
325 /* increment version no as node is removed */
326 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
327 unsigned char version = nat_get_version(e);
328 nat_set_version(e, inc_node_version(version));
330 /* in order to reuse the nid */
331 if (nm_i->next_scan_nid > ni->nid)
332 nm_i->next_scan_nid = ni->nid;
335 /* change address */
336 nat_set_blkaddr(e, new_blkaddr);
337 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
338 set_nat_flag(e, IS_CHECKPOINTED, false);
339 __set_nat_cache_dirty(nm_i, e);
341 /* update fsync_mark if its inode nat entry is still alive */
342 if (ni->nid != ni->ino)
343 e = __lookup_nat_cache(nm_i, ni->ino);
344 if (e) {
345 if (fsync_done && ni->nid == ni->ino)
346 set_nat_flag(e, HAS_FSYNCED_INODE, true);
347 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
349 up_write(&nm_i->nat_tree_lock);
352 int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
354 struct f2fs_nm_info *nm_i = NM_I(sbi);
355 int nr = nr_shrink;
357 if (!down_write_trylock(&nm_i->nat_tree_lock))
358 return 0;
360 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
361 struct nat_entry *ne;
362 ne = list_first_entry(&nm_i->nat_entries,
363 struct nat_entry, list);
364 __del_from_nat_cache(nm_i, ne);
365 nr_shrink--;
367 up_write(&nm_i->nat_tree_lock);
368 return nr - nr_shrink;
372 * This function always returns success
374 void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
376 struct f2fs_nm_info *nm_i = NM_I(sbi);
377 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
378 struct f2fs_journal *journal = curseg->journal;
379 nid_t start_nid = START_NID(nid);
380 struct f2fs_nat_block *nat_blk;
381 struct page *page = NULL;
382 struct f2fs_nat_entry ne;
383 struct nat_entry *e;
384 pgoff_t index;
385 int i;
387 ni->nid = nid;
389 /* Check nat cache */
390 down_read(&nm_i->nat_tree_lock);
391 e = __lookup_nat_cache(nm_i, nid);
392 if (e) {
393 ni->ino = nat_get_ino(e);
394 ni->blk_addr = nat_get_blkaddr(e);
395 ni->version = nat_get_version(e);
396 up_read(&nm_i->nat_tree_lock);
397 return;
400 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
402 /* Check current segment summary */
403 down_read(&curseg->journal_rwsem);
404 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
405 if (i >= 0) {
406 ne = nat_in_journal(journal, i);
407 node_info_from_raw_nat(ni, &ne);
409 up_read(&curseg->journal_rwsem);
410 if (i >= 0) {
411 up_read(&nm_i->nat_tree_lock);
412 goto cache;
415 /* Fill node_info from nat page */
416 index = current_nat_addr(sbi, nid);
417 up_read(&nm_i->nat_tree_lock);
419 page = get_meta_page(sbi, index);
420 nat_blk = (struct f2fs_nat_block *)page_address(page);
421 ne = nat_blk->entries[nid - start_nid];
422 node_info_from_raw_nat(ni, &ne);
423 f2fs_put_page(page, 1);
424 cache:
425 /* cache nat entry */
426 down_write(&nm_i->nat_tree_lock);
427 cache_nat_entry(sbi, nid, &ne);
428 up_write(&nm_i->nat_tree_lock);
432 * readahead MAX_RA_NODE number of node pages.
434 static void ra_node_pages(struct page *parent, int start, int n)
436 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
437 struct blk_plug plug;
438 int i, end;
439 nid_t nid;
441 blk_start_plug(&plug);
443 /* Then, try readahead for siblings of the desired node */
444 end = start + n;
445 end = min(end, NIDS_PER_BLOCK);
446 for (i = start; i < end; i++) {
447 nid = get_nid(parent, i, false);
448 ra_node_page(sbi, nid);
451 blk_finish_plug(&plug);
454 pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
456 const long direct_index = ADDRS_PER_INODE(dn->inode);
457 const long direct_blks = ADDRS_PER_BLOCK;
458 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
459 unsigned int skipped_unit = ADDRS_PER_BLOCK;
460 int cur_level = dn->cur_level;
461 int max_level = dn->max_level;
462 pgoff_t base = 0;
464 if (!dn->max_level)
465 return pgofs + 1;
467 while (max_level-- > cur_level)
468 skipped_unit *= NIDS_PER_BLOCK;
470 switch (dn->max_level) {
471 case 3:
472 base += 2 * indirect_blks;
473 case 2:
474 base += 2 * direct_blks;
475 case 1:
476 base += direct_index;
477 break;
478 default:
479 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
482 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
486 * The maximum depth is four.
487 * Offset[0] will have raw inode offset.
489 static int get_node_path(struct inode *inode, long block,
490 int offset[4], unsigned int noffset[4])
492 const long direct_index = ADDRS_PER_INODE(inode);
493 const long direct_blks = ADDRS_PER_BLOCK;
494 const long dptrs_per_blk = NIDS_PER_BLOCK;
495 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
496 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
497 int n = 0;
498 int level = 0;
500 noffset[0] = 0;
502 if (block < direct_index) {
503 offset[n] = block;
504 goto got;
506 block -= direct_index;
507 if (block < direct_blks) {
508 offset[n++] = NODE_DIR1_BLOCK;
509 noffset[n] = 1;
510 offset[n] = block;
511 level = 1;
512 goto got;
514 block -= direct_blks;
515 if (block < direct_blks) {
516 offset[n++] = NODE_DIR2_BLOCK;
517 noffset[n] = 2;
518 offset[n] = block;
519 level = 1;
520 goto got;
522 block -= direct_blks;
523 if (block < indirect_blks) {
524 offset[n++] = NODE_IND1_BLOCK;
525 noffset[n] = 3;
526 offset[n++] = block / direct_blks;
527 noffset[n] = 4 + offset[n - 1];
528 offset[n] = block % direct_blks;
529 level = 2;
530 goto got;
532 block -= indirect_blks;
533 if (block < indirect_blks) {
534 offset[n++] = NODE_IND2_BLOCK;
535 noffset[n] = 4 + dptrs_per_blk;
536 offset[n++] = block / direct_blks;
537 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
538 offset[n] = block % direct_blks;
539 level = 2;
540 goto got;
542 block -= indirect_blks;
543 if (block < dindirect_blks) {
544 offset[n++] = NODE_DIND_BLOCK;
545 noffset[n] = 5 + (dptrs_per_blk * 2);
546 offset[n++] = block / indirect_blks;
547 noffset[n] = 6 + (dptrs_per_blk * 2) +
548 offset[n - 1] * (dptrs_per_blk + 1);
549 offset[n++] = (block / direct_blks) % dptrs_per_blk;
550 noffset[n] = 7 + (dptrs_per_blk * 2) +
551 offset[n - 2] * (dptrs_per_blk + 1) +
552 offset[n - 1];
553 offset[n] = block % direct_blks;
554 level = 3;
555 goto got;
556 } else {
557 BUG();
559 got:
560 return level;
564 * Caller should call f2fs_put_dnode(dn).
565 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
566 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
567 * In the case of RDONLY_NODE, we don't need to care about mutex.
569 int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
571 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
572 struct page *npage[4];
573 struct page *parent = NULL;
574 int offset[4];
575 unsigned int noffset[4];
576 nid_t nids[4];
577 int level, i = 0;
578 int err = 0;
580 level = get_node_path(dn->inode, index, offset, noffset);
582 nids[0] = dn->inode->i_ino;
583 npage[0] = dn->inode_page;
585 if (!npage[0]) {
586 npage[0] = get_node_page(sbi, nids[0]);
587 if (IS_ERR(npage[0]))
588 return PTR_ERR(npage[0]);
591 /* if inline_data is set, should not report any block indices */
592 if (f2fs_has_inline_data(dn->inode) && index) {
593 err = -ENOENT;
594 f2fs_put_page(npage[0], 1);
595 goto release_out;
598 parent = npage[0];
599 if (level != 0)
600 nids[1] = get_nid(parent, offset[0], true);
601 dn->inode_page = npage[0];
602 dn->inode_page_locked = true;
604 /* get indirect or direct nodes */
605 for (i = 1; i <= level; i++) {
606 bool done = false;
608 if (!nids[i] && mode == ALLOC_NODE) {
609 /* alloc new node */
610 if (!alloc_nid(sbi, &(nids[i]))) {
611 err = -ENOSPC;
612 goto release_pages;
615 dn->nid = nids[i];
616 npage[i] = new_node_page(dn, noffset[i], NULL);
617 if (IS_ERR(npage[i])) {
618 alloc_nid_failed(sbi, nids[i]);
619 err = PTR_ERR(npage[i]);
620 goto release_pages;
623 set_nid(parent, offset[i - 1], nids[i], i == 1);
624 alloc_nid_done(sbi, nids[i]);
625 done = true;
626 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
627 npage[i] = get_node_page_ra(parent, offset[i - 1]);
628 if (IS_ERR(npage[i])) {
629 err = PTR_ERR(npage[i]);
630 goto release_pages;
632 done = true;
634 if (i == 1) {
635 dn->inode_page_locked = false;
636 unlock_page(parent);
637 } else {
638 f2fs_put_page(parent, 1);
641 if (!done) {
642 npage[i] = get_node_page(sbi, nids[i]);
643 if (IS_ERR(npage[i])) {
644 err = PTR_ERR(npage[i]);
645 f2fs_put_page(npage[0], 0);
646 goto release_out;
649 if (i < level) {
650 parent = npage[i];
651 nids[i + 1] = get_nid(parent, offset[i], false);
654 dn->nid = nids[level];
655 dn->ofs_in_node = offset[level];
656 dn->node_page = npage[level];
657 dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
658 return 0;
660 release_pages:
661 f2fs_put_page(parent, 1);
662 if (i > 1)
663 f2fs_put_page(npage[0], 0);
664 release_out:
665 dn->inode_page = NULL;
666 dn->node_page = NULL;
667 if (err == -ENOENT) {
668 dn->cur_level = i;
669 dn->max_level = level;
670 dn->ofs_in_node = offset[level];
672 return err;
675 static void truncate_node(struct dnode_of_data *dn)
677 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
678 struct node_info ni;
680 get_node_info(sbi, dn->nid, &ni);
681 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
683 /* Deallocate node address */
684 invalidate_blocks(sbi, ni.blk_addr);
685 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
686 set_node_addr(sbi, &ni, NULL_ADDR, false);
688 if (dn->nid == dn->inode->i_ino) {
689 remove_orphan_inode(sbi, dn->nid);
690 dec_valid_inode_count(sbi);
691 f2fs_inode_synced(dn->inode);
694 clear_node_page_dirty(dn->node_page);
695 set_sbi_flag(sbi, SBI_IS_DIRTY);
697 f2fs_put_page(dn->node_page, 1);
699 invalidate_mapping_pages(NODE_MAPPING(sbi),
700 dn->node_page->index, dn->node_page->index);
702 dn->node_page = NULL;
703 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
706 static int truncate_dnode(struct dnode_of_data *dn)
708 struct page *page;
710 if (dn->nid == 0)
711 return 1;
713 /* get direct node */
714 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
715 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
716 return 1;
717 else if (IS_ERR(page))
718 return PTR_ERR(page);
720 /* Make dnode_of_data for parameter */
721 dn->node_page = page;
722 dn->ofs_in_node = 0;
723 truncate_data_blocks(dn);
724 truncate_node(dn);
725 return 1;
728 static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
729 int ofs, int depth)
731 struct dnode_of_data rdn = *dn;
732 struct page *page;
733 struct f2fs_node *rn;
734 nid_t child_nid;
735 unsigned int child_nofs;
736 int freed = 0;
737 int i, ret;
739 if (dn->nid == 0)
740 return NIDS_PER_BLOCK + 1;
742 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
744 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
745 if (IS_ERR(page)) {
746 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
747 return PTR_ERR(page);
750 ra_node_pages(page, ofs, NIDS_PER_BLOCK);
752 rn = F2FS_NODE(page);
753 if (depth < 3) {
754 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
755 child_nid = le32_to_cpu(rn->in.nid[i]);
756 if (child_nid == 0)
757 continue;
758 rdn.nid = child_nid;
759 ret = truncate_dnode(&rdn);
760 if (ret < 0)
761 goto out_err;
762 if (set_nid(page, i, 0, false))
763 dn->node_changed = true;
765 } else {
766 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
767 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
768 child_nid = le32_to_cpu(rn->in.nid[i]);
769 if (child_nid == 0) {
770 child_nofs += NIDS_PER_BLOCK + 1;
771 continue;
773 rdn.nid = child_nid;
774 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
775 if (ret == (NIDS_PER_BLOCK + 1)) {
776 if (set_nid(page, i, 0, false))
777 dn->node_changed = true;
778 child_nofs += ret;
779 } else if (ret < 0 && ret != -ENOENT) {
780 goto out_err;
783 freed = child_nofs;
786 if (!ofs) {
787 /* remove current indirect node */
788 dn->node_page = page;
789 truncate_node(dn);
790 freed++;
791 } else {
792 f2fs_put_page(page, 1);
794 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
795 return freed;
797 out_err:
798 f2fs_put_page(page, 1);
799 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
800 return ret;
803 static int truncate_partial_nodes(struct dnode_of_data *dn,
804 struct f2fs_inode *ri, int *offset, int depth)
806 struct page *pages[2];
807 nid_t nid[3];
808 nid_t child_nid;
809 int err = 0;
810 int i;
811 int idx = depth - 2;
813 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
814 if (!nid[0])
815 return 0;
817 /* get indirect nodes in the path */
818 for (i = 0; i < idx + 1; i++) {
819 /* reference count'll be increased */
820 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
821 if (IS_ERR(pages[i])) {
822 err = PTR_ERR(pages[i]);
823 idx = i - 1;
824 goto fail;
826 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
829 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
831 /* free direct nodes linked to a partial indirect node */
832 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
833 child_nid = get_nid(pages[idx], i, false);
834 if (!child_nid)
835 continue;
836 dn->nid = child_nid;
837 err = truncate_dnode(dn);
838 if (err < 0)
839 goto fail;
840 if (set_nid(pages[idx], i, 0, false))
841 dn->node_changed = true;
844 if (offset[idx + 1] == 0) {
845 dn->node_page = pages[idx];
846 dn->nid = nid[idx];
847 truncate_node(dn);
848 } else {
849 f2fs_put_page(pages[idx], 1);
851 offset[idx]++;
852 offset[idx + 1] = 0;
853 idx--;
854 fail:
855 for (i = idx; i >= 0; i--)
856 f2fs_put_page(pages[i], 1);
858 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
860 return err;
864 * All the block addresses of data and nodes should be nullified.
866 int truncate_inode_blocks(struct inode *inode, pgoff_t from)
868 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
869 int err = 0, cont = 1;
870 int level, offset[4], noffset[4];
871 unsigned int nofs = 0;
872 struct f2fs_inode *ri;
873 struct dnode_of_data dn;
874 struct page *page;
876 trace_f2fs_truncate_inode_blocks_enter(inode, from);
878 level = get_node_path(inode, from, offset, noffset);
880 page = get_node_page(sbi, inode->i_ino);
881 if (IS_ERR(page)) {
882 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
883 return PTR_ERR(page);
886 set_new_dnode(&dn, inode, page, NULL, 0);
887 unlock_page(page);
889 ri = F2FS_INODE(page);
890 switch (level) {
891 case 0:
892 case 1:
893 nofs = noffset[1];
894 break;
895 case 2:
896 nofs = noffset[1];
897 if (!offset[level - 1])
898 goto skip_partial;
899 err = truncate_partial_nodes(&dn, ri, offset, level);
900 if (err < 0 && err != -ENOENT)
901 goto fail;
902 nofs += 1 + NIDS_PER_BLOCK;
903 break;
904 case 3:
905 nofs = 5 + 2 * NIDS_PER_BLOCK;
906 if (!offset[level - 1])
907 goto skip_partial;
908 err = truncate_partial_nodes(&dn, ri, offset, level);
909 if (err < 0 && err != -ENOENT)
910 goto fail;
911 break;
912 default:
913 BUG();
916 skip_partial:
917 while (cont) {
918 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
919 switch (offset[0]) {
920 case NODE_DIR1_BLOCK:
921 case NODE_DIR2_BLOCK:
922 err = truncate_dnode(&dn);
923 break;
925 case NODE_IND1_BLOCK:
926 case NODE_IND2_BLOCK:
927 err = truncate_nodes(&dn, nofs, offset[1], 2);
928 break;
930 case NODE_DIND_BLOCK:
931 err = truncate_nodes(&dn, nofs, offset[1], 3);
932 cont = 0;
933 break;
935 default:
936 BUG();
938 if (err < 0 && err != -ENOENT)
939 goto fail;
940 if (offset[1] == 0 &&
941 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
942 lock_page(page);
943 BUG_ON(page->mapping != NODE_MAPPING(sbi));
944 f2fs_wait_on_page_writeback(page, NODE, true);
945 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
946 set_page_dirty(page);
947 unlock_page(page);
949 offset[1] = 0;
950 offset[0]++;
951 nofs += err;
953 fail:
954 f2fs_put_page(page, 0);
955 trace_f2fs_truncate_inode_blocks_exit(inode, err);
956 return err > 0 ? 0 : err;
959 int truncate_xattr_node(struct inode *inode, struct page *page)
961 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
962 nid_t nid = F2FS_I(inode)->i_xattr_nid;
963 struct dnode_of_data dn;
964 struct page *npage;
966 if (!nid)
967 return 0;
969 npage = get_node_page(sbi, nid);
970 if (IS_ERR(npage))
971 return PTR_ERR(npage);
973 f2fs_i_xnid_write(inode, 0);
975 set_new_dnode(&dn, inode, page, npage, nid);
977 if (page)
978 dn.inode_page_locked = true;
979 truncate_node(&dn);
980 return 0;
984 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
985 * f2fs_unlock_op().
987 int remove_inode_page(struct inode *inode)
989 struct dnode_of_data dn;
990 int err;
992 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
993 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
994 if (err)
995 return err;
997 err = truncate_xattr_node(inode, dn.inode_page);
998 if (err) {
999 f2fs_put_dnode(&dn);
1000 return err;
1003 /* remove potential inline_data blocks */
1004 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1005 S_ISLNK(inode->i_mode))
1006 truncate_data_blocks_range(&dn, 1);
1008 /* 0 is possible, after f2fs_new_inode() has failed */
1009 f2fs_bug_on(F2FS_I_SB(inode),
1010 inode->i_blocks != 0 && inode->i_blocks != 8);
1012 /* will put inode & node pages */
1013 truncate_node(&dn);
1014 return 0;
1017 struct page *new_inode_page(struct inode *inode)
1019 struct dnode_of_data dn;
1021 /* allocate inode page for new inode */
1022 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1024 /* caller should f2fs_put_page(page, 1); */
1025 return new_node_page(&dn, 0, NULL);
1028 struct page *new_node_page(struct dnode_of_data *dn,
1029 unsigned int ofs, struct page *ipage)
1031 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1032 struct node_info new_ni;
1033 struct page *page;
1034 int err;
1036 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1037 return ERR_PTR(-EPERM);
1039 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1040 if (!page)
1041 return ERR_PTR(-ENOMEM);
1043 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1044 goto fail;
1046 #ifdef CONFIG_F2FS_CHECK_FS
1047 get_node_info(sbi, dn->nid, &new_ni);
1048 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1049 #endif
1050 new_ni.nid = dn->nid;
1051 new_ni.ino = dn->inode->i_ino;
1052 new_ni.blk_addr = NULL_ADDR;
1053 new_ni.flag = 0;
1054 new_ni.version = 0;
1055 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1057 f2fs_wait_on_page_writeback(page, NODE, true);
1058 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1059 set_cold_node(dn->inode, page);
1060 if (!PageUptodate(page))
1061 SetPageUptodate(page);
1062 if (set_page_dirty(page))
1063 dn->node_changed = true;
1065 if (f2fs_has_xattr_block(ofs))
1066 f2fs_i_xnid_write(dn->inode, dn->nid);
1068 if (ofs == 0)
1069 inc_valid_inode_count(sbi);
1070 return page;
1072 fail:
1073 clear_node_page_dirty(page);
1074 f2fs_put_page(page, 1);
1075 return ERR_PTR(err);
1079 * Caller should do after getting the following values.
1080 * 0: f2fs_put_page(page, 0)
1081 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1083 static int read_node_page(struct page *page, int op_flags)
1085 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1086 struct node_info ni;
1087 struct f2fs_io_info fio = {
1088 .sbi = sbi,
1089 .type = NODE,
1090 .op = REQ_OP_READ,
1091 .op_flags = op_flags,
1092 .page = page,
1093 .encrypted_page = NULL,
1096 if (PageUptodate(page))
1097 return LOCKED_PAGE;
1099 get_node_info(sbi, page->index, &ni);
1101 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1102 ClearPageUptodate(page);
1103 return -ENOENT;
1106 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1107 return f2fs_submit_page_bio(&fio);
1111 * Readahead a node page
1113 void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1115 struct page *apage;
1116 int err;
1118 if (!nid)
1119 return;
1120 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1122 rcu_read_lock();
1123 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1124 rcu_read_unlock();
1125 if (apage)
1126 return;
1128 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1129 if (!apage)
1130 return;
1132 err = read_node_page(apage, REQ_RAHEAD);
1133 f2fs_put_page(apage, err ? 1 : 0);
1136 static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1137 struct page *parent, int start)
1139 struct page *page;
1140 int err;
1142 if (!nid)
1143 return ERR_PTR(-ENOENT);
1144 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1145 repeat:
1146 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1147 if (!page)
1148 return ERR_PTR(-ENOMEM);
1150 err = read_node_page(page, 0);
1151 if (err < 0) {
1152 f2fs_put_page(page, 1);
1153 return ERR_PTR(err);
1154 } else if (err == LOCKED_PAGE) {
1155 err = 0;
1156 goto page_hit;
1159 if (parent)
1160 ra_node_pages(parent, start + 1, MAX_RA_NODE);
1162 lock_page(page);
1164 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1165 f2fs_put_page(page, 1);
1166 goto repeat;
1169 if (unlikely(!PageUptodate(page))) {
1170 err = -EIO;
1171 goto out_err;
1173 page_hit:
1174 if(unlikely(nid != nid_of_node(page))) {
1175 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1176 "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1177 nid, nid_of_node(page), ino_of_node(page),
1178 ofs_of_node(page), cpver_of_node(page),
1179 next_blkaddr_of_node(page));
1180 ClearPageUptodate(page);
1181 err = -EINVAL;
1182 out_err:
1183 f2fs_put_page(page, 1);
1184 return ERR_PTR(err);
1186 return page;
1189 struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1191 return __get_node_page(sbi, nid, NULL, 0);
1194 struct page *get_node_page_ra(struct page *parent, int start)
1196 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1197 nid_t nid = get_nid(parent, start, false);
1199 return __get_node_page(sbi, nid, parent, start);
1202 static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1204 struct inode *inode;
1205 struct page *page;
1206 int ret;
1208 /* should flush inline_data before evict_inode */
1209 inode = ilookup(sbi->sb, ino);
1210 if (!inode)
1211 return;
1213 page = pagecache_get_page(inode->i_mapping, 0, FGP_LOCK|FGP_NOWAIT, 0);
1214 if (!page)
1215 goto iput_out;
1217 if (!PageUptodate(page))
1218 goto page_out;
1220 if (!PageDirty(page))
1221 goto page_out;
1223 if (!clear_page_dirty_for_io(page))
1224 goto page_out;
1226 ret = f2fs_write_inline_data(inode, page);
1227 inode_dec_dirty_pages(inode);
1228 remove_dirty_inode(inode);
1229 if (ret)
1230 set_page_dirty(page);
1231 page_out:
1232 f2fs_put_page(page, 1);
1233 iput_out:
1234 iput(inode);
1237 void move_node_page(struct page *node_page, int gc_type)
1239 if (gc_type == FG_GC) {
1240 struct f2fs_sb_info *sbi = F2FS_P_SB(node_page);
1241 struct writeback_control wbc = {
1242 .sync_mode = WB_SYNC_ALL,
1243 .nr_to_write = 1,
1244 .for_reclaim = 0,
1247 set_page_dirty(node_page);
1248 f2fs_wait_on_page_writeback(node_page, NODE, true);
1250 f2fs_bug_on(sbi, PageWriteback(node_page));
1251 if (!clear_page_dirty_for_io(node_page))
1252 goto out_page;
1254 if (NODE_MAPPING(sbi)->a_ops->writepage(node_page, &wbc))
1255 unlock_page(node_page);
1256 goto release_page;
1257 } else {
1258 /* set page dirty and write it */
1259 if (!PageWriteback(node_page))
1260 set_page_dirty(node_page);
1262 out_page:
1263 unlock_page(node_page);
1264 release_page:
1265 f2fs_put_page(node_page, 0);
1268 static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1270 pgoff_t index, end;
1271 struct pagevec pvec;
1272 struct page *last_page = NULL;
1274 pagevec_init(&pvec, 0);
1275 index = 0;
1276 end = ULONG_MAX;
1278 while (index <= end) {
1279 int i, nr_pages;
1280 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1281 PAGECACHE_TAG_DIRTY,
1282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1283 if (nr_pages == 0)
1284 break;
1286 for (i = 0; i < nr_pages; i++) {
1287 struct page *page = pvec.pages[i];
1289 if (unlikely(f2fs_cp_error(sbi))) {
1290 f2fs_put_page(last_page, 0);
1291 pagevec_release(&pvec);
1292 return ERR_PTR(-EIO);
1295 if (!IS_DNODE(page) || !is_cold_node(page))
1296 continue;
1297 if (ino_of_node(page) != ino)
1298 continue;
1300 lock_page(page);
1302 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1303 continue_unlock:
1304 unlock_page(page);
1305 continue;
1307 if (ino_of_node(page) != ino)
1308 goto continue_unlock;
1310 if (!PageDirty(page)) {
1311 /* someone wrote it for us */
1312 goto continue_unlock;
1315 if (last_page)
1316 f2fs_put_page(last_page, 0);
1318 get_page(page);
1319 last_page = page;
1320 unlock_page(page);
1322 pagevec_release(&pvec);
1323 cond_resched();
1325 return last_page;
1328 static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1329 struct writeback_control *wbc)
1331 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1332 nid_t nid;
1333 struct node_info ni;
1334 struct f2fs_io_info fio = {
1335 .sbi = sbi,
1336 .type = NODE,
1337 .op = REQ_OP_WRITE,
1338 .op_flags = wbc_to_write_flags(wbc),
1339 .page = page,
1340 .encrypted_page = NULL,
1341 .submitted = false,
1344 trace_f2fs_writepage(page, NODE);
1346 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1347 goto redirty_out;
1348 if (unlikely(f2fs_cp_error(sbi)))
1349 goto redirty_out;
1351 /* get old block addr of this node page */
1352 nid = nid_of_node(page);
1353 f2fs_bug_on(sbi, page->index != nid);
1355 if (wbc->for_reclaim) {
1356 if (!down_read_trylock(&sbi->node_write))
1357 goto redirty_out;
1358 } else {
1359 down_read(&sbi->node_write);
1362 get_node_info(sbi, nid, &ni);
1364 /* This page is already truncated */
1365 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1366 ClearPageUptodate(page);
1367 dec_page_count(sbi, F2FS_DIRTY_NODES);
1368 up_read(&sbi->node_write);
1369 unlock_page(page);
1370 return 0;
1373 if (atomic && !test_opt(sbi, NOBARRIER))
1374 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1376 set_page_writeback(page);
1377 fio.old_blkaddr = ni.blk_addr;
1378 write_node_page(nid, &fio);
1379 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1380 dec_page_count(sbi, F2FS_DIRTY_NODES);
1381 up_read(&sbi->node_write);
1383 if (wbc->for_reclaim) {
1384 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
1385 page->index, NODE);
1386 submitted = NULL;
1389 unlock_page(page);
1391 if (unlikely(f2fs_cp_error(sbi))) {
1392 f2fs_submit_merged_write(sbi, NODE);
1393 submitted = NULL;
1395 if (submitted)
1396 *submitted = fio.submitted;
1398 return 0;
1400 redirty_out:
1401 redirty_page_for_writepage(wbc, page);
1402 return AOP_WRITEPAGE_ACTIVATE;
1405 static int f2fs_write_node_page(struct page *page,
1406 struct writeback_control *wbc)
1408 return __write_node_page(page, false, NULL, wbc);
1411 int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1412 struct writeback_control *wbc, bool atomic)
1414 pgoff_t index, end;
1415 pgoff_t last_idx = ULONG_MAX;
1416 struct pagevec pvec;
1417 int ret = 0;
1418 struct page *last_page = NULL;
1419 bool marked = false;
1420 nid_t ino = inode->i_ino;
1422 if (atomic) {
1423 last_page = last_fsync_dnode(sbi, ino);
1424 if (IS_ERR_OR_NULL(last_page))
1425 return PTR_ERR_OR_ZERO(last_page);
1427 retry:
1428 pagevec_init(&pvec, 0);
1429 index = 0;
1430 end = ULONG_MAX;
1432 while (index <= end) {
1433 int i, nr_pages;
1434 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1435 PAGECACHE_TAG_DIRTY,
1436 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1437 if (nr_pages == 0)
1438 break;
1440 for (i = 0; i < nr_pages; i++) {
1441 struct page *page = pvec.pages[i];
1442 bool submitted = false;
1444 if (unlikely(f2fs_cp_error(sbi))) {
1445 f2fs_put_page(last_page, 0);
1446 pagevec_release(&pvec);
1447 ret = -EIO;
1448 goto out;
1451 if (!IS_DNODE(page) || !is_cold_node(page))
1452 continue;
1453 if (ino_of_node(page) != ino)
1454 continue;
1456 lock_page(page);
1458 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1459 continue_unlock:
1460 unlock_page(page);
1461 continue;
1463 if (ino_of_node(page) != ino)
1464 goto continue_unlock;
1466 if (!PageDirty(page) && page != last_page) {
1467 /* someone wrote it for us */
1468 goto continue_unlock;
1471 f2fs_wait_on_page_writeback(page, NODE, true);
1472 BUG_ON(PageWriteback(page));
1474 set_fsync_mark(page, 0);
1475 set_dentry_mark(page, 0);
1477 if (!atomic || page == last_page) {
1478 set_fsync_mark(page, 1);
1479 if (IS_INODE(page)) {
1480 if (is_inode_flag_set(inode,
1481 FI_DIRTY_INODE))
1482 update_inode(inode, page);
1483 set_dentry_mark(page,
1484 need_dentry_mark(sbi, ino));
1486 /* may be written by other thread */
1487 if (!PageDirty(page))
1488 set_page_dirty(page);
1491 if (!clear_page_dirty_for_io(page))
1492 goto continue_unlock;
1494 ret = __write_node_page(page, atomic &&
1495 page == last_page,
1496 &submitted, wbc);
1497 if (ret) {
1498 unlock_page(page);
1499 f2fs_put_page(last_page, 0);
1500 break;
1501 } else if (submitted) {
1502 last_idx = page->index;
1505 if (page == last_page) {
1506 f2fs_put_page(page, 0);
1507 marked = true;
1508 break;
1511 pagevec_release(&pvec);
1512 cond_resched();
1514 if (ret || marked)
1515 break;
1517 if (!ret && atomic && !marked) {
1518 f2fs_msg(sbi->sb, KERN_DEBUG,
1519 "Retry to write fsync mark: ino=%u, idx=%lx",
1520 ino, last_page->index);
1521 lock_page(last_page);
1522 f2fs_wait_on_page_writeback(last_page, NODE, true);
1523 set_page_dirty(last_page);
1524 unlock_page(last_page);
1525 goto retry;
1527 out:
1528 if (last_idx != ULONG_MAX)
1529 f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
1530 return ret ? -EIO: 0;
1533 int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc)
1535 pgoff_t index, end;
1536 struct pagevec pvec;
1537 int step = 0;
1538 int nwritten = 0;
1539 int ret = 0;
1541 pagevec_init(&pvec, 0);
1543 next_step:
1544 index = 0;
1545 end = ULONG_MAX;
1547 while (index <= end) {
1548 int i, nr_pages;
1549 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1550 PAGECACHE_TAG_DIRTY,
1551 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1552 if (nr_pages == 0)
1553 break;
1555 for (i = 0; i < nr_pages; i++) {
1556 struct page *page = pvec.pages[i];
1557 bool submitted = false;
1559 if (unlikely(f2fs_cp_error(sbi))) {
1560 pagevec_release(&pvec);
1561 ret = -EIO;
1562 goto out;
1566 * flushing sequence with step:
1567 * 0. indirect nodes
1568 * 1. dentry dnodes
1569 * 2. file dnodes
1571 if (step == 0 && IS_DNODE(page))
1572 continue;
1573 if (step == 1 && (!IS_DNODE(page) ||
1574 is_cold_node(page)))
1575 continue;
1576 if (step == 2 && (!IS_DNODE(page) ||
1577 !is_cold_node(page)))
1578 continue;
1579 lock_node:
1580 if (!trylock_page(page))
1581 continue;
1583 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1584 continue_unlock:
1585 unlock_page(page);
1586 continue;
1589 if (!PageDirty(page)) {
1590 /* someone wrote it for us */
1591 goto continue_unlock;
1594 /* flush inline_data */
1595 if (is_inline_node(page)) {
1596 clear_inline_node(page);
1597 unlock_page(page);
1598 flush_inline_data(sbi, ino_of_node(page));
1599 goto lock_node;
1602 f2fs_wait_on_page_writeback(page, NODE, true);
1604 BUG_ON(PageWriteback(page));
1605 if (!clear_page_dirty_for_io(page))
1606 goto continue_unlock;
1608 set_fsync_mark(page, 0);
1609 set_dentry_mark(page, 0);
1611 ret = __write_node_page(page, false, &submitted, wbc);
1612 if (ret)
1613 unlock_page(page);
1614 else if (submitted)
1615 nwritten++;
1617 if (--wbc->nr_to_write == 0)
1618 break;
1620 pagevec_release(&pvec);
1621 cond_resched();
1623 if (wbc->nr_to_write == 0) {
1624 step = 2;
1625 break;
1629 if (step < 2) {
1630 step++;
1631 goto next_step;
1633 out:
1634 if (nwritten)
1635 f2fs_submit_merged_write(sbi, NODE);
1636 return ret;
1639 int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1641 pgoff_t index = 0, end = ULONG_MAX;
1642 struct pagevec pvec;
1643 int ret2, ret = 0;
1645 pagevec_init(&pvec, 0);
1647 while (index <= end) {
1648 int i, nr_pages;
1649 nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1650 PAGECACHE_TAG_WRITEBACK,
1651 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1652 if (nr_pages == 0)
1653 break;
1655 for (i = 0; i < nr_pages; i++) {
1656 struct page *page = pvec.pages[i];
1658 /* until radix tree lookup accepts end_index */
1659 if (unlikely(page->index > end))
1660 continue;
1662 if (ino && ino_of_node(page) == ino) {
1663 f2fs_wait_on_page_writeback(page, NODE, true);
1664 if (TestClearPageError(page))
1665 ret = -EIO;
1668 pagevec_release(&pvec);
1669 cond_resched();
1672 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1673 if (!ret)
1674 ret = ret2;
1675 return ret;
1678 static int f2fs_write_node_pages(struct address_space *mapping,
1679 struct writeback_control *wbc)
1681 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1682 struct blk_plug plug;
1683 long diff;
1685 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1686 goto skip_write;
1688 /* balancing f2fs's metadata in background */
1689 f2fs_balance_fs_bg(sbi);
1691 /* collect a number of dirty node pages and write together */
1692 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1693 goto skip_write;
1695 trace_f2fs_writepages(mapping->host, wbc, NODE);
1697 diff = nr_pages_to_write(sbi, NODE, wbc);
1698 wbc->sync_mode = WB_SYNC_NONE;
1699 blk_start_plug(&plug);
1700 sync_node_pages(sbi, wbc);
1701 blk_finish_plug(&plug);
1702 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1703 return 0;
1705 skip_write:
1706 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1707 trace_f2fs_writepages(mapping->host, wbc, NODE);
1708 return 0;
1711 static int f2fs_set_node_page_dirty(struct page *page)
1713 trace_f2fs_set_page_dirty(page, NODE);
1715 if (!PageUptodate(page))
1716 SetPageUptodate(page);
1717 if (!PageDirty(page)) {
1718 f2fs_set_page_dirty_nobuffers(page);
1719 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1720 SetPagePrivate(page);
1721 f2fs_trace_pid(page);
1722 return 1;
1724 return 0;
1728 * Structure of the f2fs node operations
1730 const struct address_space_operations f2fs_node_aops = {
1731 .writepage = f2fs_write_node_page,
1732 .writepages = f2fs_write_node_pages,
1733 .set_page_dirty = f2fs_set_node_page_dirty,
1734 .invalidatepage = f2fs_invalidate_page,
1735 .releasepage = f2fs_release_page,
1736 #ifdef CONFIG_MIGRATION
1737 .migratepage = f2fs_migrate_page,
1738 #endif
1741 static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1742 nid_t n)
1744 return radix_tree_lookup(&nm_i->free_nid_root, n);
1747 static int __insert_nid_to_list(struct f2fs_sb_info *sbi,
1748 struct free_nid *i, enum nid_list list, bool new)
1750 struct f2fs_nm_info *nm_i = NM_I(sbi);
1752 if (new) {
1753 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1754 if (err)
1755 return err;
1758 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1759 i->state != NID_ALLOC);
1760 nm_i->nid_cnt[list]++;
1761 list_add_tail(&i->list, &nm_i->nid_list[list]);
1762 return 0;
1765 static void __remove_nid_from_list(struct f2fs_sb_info *sbi,
1766 struct free_nid *i, enum nid_list list, bool reuse)
1768 struct f2fs_nm_info *nm_i = NM_I(sbi);
1770 f2fs_bug_on(sbi, list == FREE_NID_LIST ? i->state != NID_NEW :
1771 i->state != NID_ALLOC);
1772 nm_i->nid_cnt[list]--;
1773 list_del(&i->list);
1774 if (!reuse)
1775 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1778 /* return if the nid is recognized as free */
1779 static bool add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
1781 struct f2fs_nm_info *nm_i = NM_I(sbi);
1782 struct free_nid *i, *e;
1783 struct nat_entry *ne;
1784 int err = -EINVAL;
1785 bool ret = false;
1787 /* 0 nid should not be used */
1788 if (unlikely(nid == 0))
1789 return false;
1791 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1792 i->nid = nid;
1793 i->state = NID_NEW;
1795 if (radix_tree_preload(GFP_NOFS))
1796 goto err;
1798 spin_lock(&nm_i->nid_list_lock);
1800 if (build) {
1802 * Thread A Thread B
1803 * - f2fs_create
1804 * - f2fs_new_inode
1805 * - alloc_nid
1806 * - __insert_nid_to_list(ALLOC_NID_LIST)
1807 * - f2fs_balance_fs_bg
1808 * - build_free_nids
1809 * - __build_free_nids
1810 * - scan_nat_page
1811 * - add_free_nid
1812 * - __lookup_nat_cache
1813 * - f2fs_add_link
1814 * - init_inode_metadata
1815 * - new_inode_page
1816 * - new_node_page
1817 * - set_node_addr
1818 * - alloc_nid_done
1819 * - __remove_nid_from_list(ALLOC_NID_LIST)
1820 * - __insert_nid_to_list(FREE_NID_LIST)
1822 ne = __lookup_nat_cache(nm_i, nid);
1823 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1824 nat_get_blkaddr(ne) != NULL_ADDR))
1825 goto err_out;
1827 e = __lookup_free_nid_list(nm_i, nid);
1828 if (e) {
1829 if (e->state == NID_NEW)
1830 ret = true;
1831 goto err_out;
1834 ret = true;
1835 err = __insert_nid_to_list(sbi, i, FREE_NID_LIST, true);
1836 err_out:
1837 spin_unlock(&nm_i->nid_list_lock);
1838 radix_tree_preload_end();
1839 err:
1840 if (err)
1841 kmem_cache_free(free_nid_slab, i);
1842 return ret;
1845 static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1847 struct f2fs_nm_info *nm_i = NM_I(sbi);
1848 struct free_nid *i;
1849 bool need_free = false;
1851 spin_lock(&nm_i->nid_list_lock);
1852 i = __lookup_free_nid_list(nm_i, nid);
1853 if (i && i->state == NID_NEW) {
1854 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
1855 need_free = true;
1857 spin_unlock(&nm_i->nid_list_lock);
1859 if (need_free)
1860 kmem_cache_free(free_nid_slab, i);
1863 static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
1864 bool set, bool build)
1866 struct f2fs_nm_info *nm_i = NM_I(sbi);
1867 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1868 unsigned int nid_ofs = nid - START_NID(nid);
1870 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1871 return;
1873 if (set)
1874 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1875 else
1876 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1878 if (set)
1879 nm_i->free_nid_count[nat_ofs]++;
1880 else if (!build)
1881 nm_i->free_nid_count[nat_ofs]--;
1884 static void scan_nat_page(struct f2fs_sb_info *sbi,
1885 struct page *nat_page, nid_t start_nid)
1887 struct f2fs_nm_info *nm_i = NM_I(sbi);
1888 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1889 block_t blk_addr;
1890 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1891 int i;
1893 if (test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1894 return;
1896 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1898 i = start_nid % NAT_ENTRY_PER_BLOCK;
1900 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1901 bool freed = false;
1903 if (unlikely(start_nid >= nm_i->max_nid))
1904 break;
1906 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1907 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1908 if (blk_addr == NULL_ADDR)
1909 freed = add_free_nid(sbi, start_nid, true);
1910 spin_lock(&NM_I(sbi)->nid_list_lock);
1911 update_free_nid_bitmap(sbi, start_nid, freed, true);
1912 spin_unlock(&NM_I(sbi)->nid_list_lock);
1916 static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
1918 struct f2fs_nm_info *nm_i = NM_I(sbi);
1919 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1920 struct f2fs_journal *journal = curseg->journal;
1921 unsigned int i, idx;
1923 down_read(&nm_i->nat_tree_lock);
1925 for (i = 0; i < nm_i->nat_blocks; i++) {
1926 if (!test_bit_le(i, nm_i->nat_block_bitmap))
1927 continue;
1928 if (!nm_i->free_nid_count[i])
1929 continue;
1930 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
1931 nid_t nid;
1933 if (!test_bit_le(idx, nm_i->free_nid_bitmap[i]))
1934 continue;
1936 nid = i * NAT_ENTRY_PER_BLOCK + idx;
1937 add_free_nid(sbi, nid, true);
1939 if (nm_i->nid_cnt[FREE_NID_LIST] >= MAX_FREE_NIDS)
1940 goto out;
1943 out:
1944 down_read(&curseg->journal_rwsem);
1945 for (i = 0; i < nats_in_cursum(journal); i++) {
1946 block_t addr;
1947 nid_t nid;
1949 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1950 nid = le32_to_cpu(nid_in_journal(journal, i));
1951 if (addr == NULL_ADDR)
1952 add_free_nid(sbi, nid, true);
1953 else
1954 remove_free_nid(sbi, nid);
1956 up_read(&curseg->journal_rwsem);
1957 up_read(&nm_i->nat_tree_lock);
1960 static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
1962 struct f2fs_nm_info *nm_i = NM_I(sbi);
1963 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1964 struct f2fs_journal *journal = curseg->journal;
1965 int i = 0;
1966 nid_t nid = nm_i->next_scan_nid;
1968 if (unlikely(nid >= nm_i->max_nid))
1969 nid = 0;
1971 /* Enough entries */
1972 if (nm_i->nid_cnt[FREE_NID_LIST] >= NAT_ENTRY_PER_BLOCK)
1973 return;
1975 if (!sync && !available_free_memory(sbi, FREE_NIDS))
1976 return;
1978 if (!mount) {
1979 /* try to find free nids in free_nid_bitmap */
1980 scan_free_nid_bits(sbi);
1982 if (nm_i->nid_cnt[FREE_NID_LIST])
1983 return;
1986 /* readahead nat pages to be scanned */
1987 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1988 META_NAT, true);
1990 down_read(&nm_i->nat_tree_lock);
1992 while (1) {
1993 struct page *page = get_current_nat_page(sbi, nid);
1995 scan_nat_page(sbi, page, nid);
1996 f2fs_put_page(page, 1);
1998 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1999 if (unlikely(nid >= nm_i->max_nid))
2000 nid = 0;
2002 if (++i >= FREE_NID_PAGES)
2003 break;
2006 /* go to the next free nat pages to find free nids abundantly */
2007 nm_i->next_scan_nid = nid;
2009 /* find free nids from current sum_pages */
2010 down_read(&curseg->journal_rwsem);
2011 for (i = 0; i < nats_in_cursum(journal); i++) {
2012 block_t addr;
2014 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2015 nid = le32_to_cpu(nid_in_journal(journal, i));
2016 if (addr == NULL_ADDR)
2017 add_free_nid(sbi, nid, true);
2018 else
2019 remove_free_nid(sbi, nid);
2021 up_read(&curseg->journal_rwsem);
2022 up_read(&nm_i->nat_tree_lock);
2024 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2025 nm_i->ra_nid_pages, META_NAT, false);
2028 void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2030 mutex_lock(&NM_I(sbi)->build_lock);
2031 __build_free_nids(sbi, sync, mount);
2032 mutex_unlock(&NM_I(sbi)->build_lock);
2036 * If this function returns success, caller can obtain a new nid
2037 * from second parameter of this function.
2038 * The returned nid could be used ino as well as nid when inode is created.
2040 bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2042 struct f2fs_nm_info *nm_i = NM_I(sbi);
2043 struct free_nid *i = NULL;
2044 retry:
2045 #ifdef CONFIG_F2FS_FAULT_INJECTION
2046 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2047 f2fs_show_injection_info(FAULT_ALLOC_NID);
2048 return false;
2050 #endif
2051 spin_lock(&nm_i->nid_list_lock);
2053 if (unlikely(nm_i->available_nids == 0)) {
2054 spin_unlock(&nm_i->nid_list_lock);
2055 return false;
2058 /* We should not use stale free nids created by build_free_nids */
2059 if (nm_i->nid_cnt[FREE_NID_LIST] && !on_build_free_nids(nm_i)) {
2060 f2fs_bug_on(sbi, list_empty(&nm_i->nid_list[FREE_NID_LIST]));
2061 i = list_first_entry(&nm_i->nid_list[FREE_NID_LIST],
2062 struct free_nid, list);
2063 *nid = i->nid;
2065 __remove_nid_from_list(sbi, i, FREE_NID_LIST, true);
2066 i->state = NID_ALLOC;
2067 __insert_nid_to_list(sbi, i, ALLOC_NID_LIST, false);
2068 nm_i->available_nids--;
2070 update_free_nid_bitmap(sbi, *nid, false, false);
2072 spin_unlock(&nm_i->nid_list_lock);
2073 return true;
2075 spin_unlock(&nm_i->nid_list_lock);
2077 /* Let's scan nat pages and its caches to get free nids */
2078 build_free_nids(sbi, true, false);
2079 goto retry;
2083 * alloc_nid() should be called prior to this function.
2085 void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2087 struct f2fs_nm_info *nm_i = NM_I(sbi);
2088 struct free_nid *i;
2090 spin_lock(&nm_i->nid_list_lock);
2091 i = __lookup_free_nid_list(nm_i, nid);
2092 f2fs_bug_on(sbi, !i);
2093 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
2094 spin_unlock(&nm_i->nid_list_lock);
2096 kmem_cache_free(free_nid_slab, i);
2100 * alloc_nid() should be called prior to this function.
2102 void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2104 struct f2fs_nm_info *nm_i = NM_I(sbi);
2105 struct free_nid *i;
2106 bool need_free = false;
2108 if (!nid)
2109 return;
2111 spin_lock(&nm_i->nid_list_lock);
2112 i = __lookup_free_nid_list(nm_i, nid);
2113 f2fs_bug_on(sbi, !i);
2115 if (!available_free_memory(sbi, FREE_NIDS)) {
2116 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, false);
2117 need_free = true;
2118 } else {
2119 __remove_nid_from_list(sbi, i, ALLOC_NID_LIST, true);
2120 i->state = NID_NEW;
2121 __insert_nid_to_list(sbi, i, FREE_NID_LIST, false);
2124 nm_i->available_nids++;
2126 update_free_nid_bitmap(sbi, nid, true, false);
2128 spin_unlock(&nm_i->nid_list_lock);
2130 if (need_free)
2131 kmem_cache_free(free_nid_slab, i);
2134 int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2136 struct f2fs_nm_info *nm_i = NM_I(sbi);
2137 struct free_nid *i, *next;
2138 int nr = nr_shrink;
2140 if (nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
2141 return 0;
2143 if (!mutex_trylock(&nm_i->build_lock))
2144 return 0;
2146 spin_lock(&nm_i->nid_list_lock);
2147 list_for_each_entry_safe(i, next, &nm_i->nid_list[FREE_NID_LIST],
2148 list) {
2149 if (nr_shrink <= 0 ||
2150 nm_i->nid_cnt[FREE_NID_LIST] <= MAX_FREE_NIDS)
2151 break;
2153 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2154 kmem_cache_free(free_nid_slab, i);
2155 nr_shrink--;
2157 spin_unlock(&nm_i->nid_list_lock);
2158 mutex_unlock(&nm_i->build_lock);
2160 return nr - nr_shrink;
2163 void recover_inline_xattr(struct inode *inode, struct page *page)
2165 void *src_addr, *dst_addr;
2166 size_t inline_size;
2167 struct page *ipage;
2168 struct f2fs_inode *ri;
2170 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2171 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2173 ri = F2FS_INODE(page);
2174 if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
2175 clear_inode_flag(inode, FI_INLINE_XATTR);
2176 goto update_inode;
2179 dst_addr = inline_xattr_addr(ipage);
2180 src_addr = inline_xattr_addr(page);
2181 inline_size = inline_xattr_size(inode);
2183 f2fs_wait_on_page_writeback(ipage, NODE, true);
2184 memcpy(dst_addr, src_addr, inline_size);
2185 update_inode:
2186 update_inode(inode, ipage);
2187 f2fs_put_page(ipage, 1);
2190 int recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
2192 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2193 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2194 nid_t new_xnid = nid_of_node(page);
2195 struct node_info ni;
2196 struct page *xpage;
2198 if (!prev_xnid)
2199 goto recover_xnid;
2201 /* 1: invalidate the previous xattr nid */
2202 get_node_info(sbi, prev_xnid, &ni);
2203 f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
2204 invalidate_blocks(sbi, ni.blk_addr);
2205 dec_valid_node_count(sbi, inode, false);
2206 set_node_addr(sbi, &ni, NULL_ADDR, false);
2208 recover_xnid:
2209 /* 2: update xattr nid in inode */
2210 remove_free_nid(sbi, new_xnid);
2211 f2fs_i_xnid_write(inode, new_xnid);
2212 if (unlikely(inc_valid_node_count(sbi, inode, false)))
2213 f2fs_bug_on(sbi, 1);
2214 update_inode_page(inode);
2216 /* 3: update and set xattr node page dirty */
2217 xpage = grab_cache_page(NODE_MAPPING(sbi), new_xnid);
2218 if (!xpage)
2219 return -ENOMEM;
2221 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), PAGE_SIZE);
2223 get_node_info(sbi, new_xnid, &ni);
2224 ni.ino = inode->i_ino;
2225 set_node_addr(sbi, &ni, NEW_ADDR, false);
2226 set_page_dirty(xpage);
2227 f2fs_put_page(xpage, 1);
2229 return 0;
2232 int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2234 struct f2fs_inode *src, *dst;
2235 nid_t ino = ino_of_node(page);
2236 struct node_info old_ni, new_ni;
2237 struct page *ipage;
2239 get_node_info(sbi, ino, &old_ni);
2241 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2242 return -EINVAL;
2243 retry:
2244 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2245 if (!ipage) {
2246 congestion_wait(BLK_RW_ASYNC, HZ/50);
2247 goto retry;
2250 /* Should not use this inode from free nid list */
2251 remove_free_nid(sbi, ino);
2253 if (!PageUptodate(ipage))
2254 SetPageUptodate(ipage);
2255 fill_node_footer(ipage, ino, ino, 0, true);
2257 src = F2FS_INODE(page);
2258 dst = F2FS_INODE(ipage);
2260 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2261 dst->i_size = 0;
2262 dst->i_blocks = cpu_to_le64(1);
2263 dst->i_links = cpu_to_le32(1);
2264 dst->i_xattr_nid = 0;
2265 dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
2267 new_ni = old_ni;
2268 new_ni.ino = ino;
2270 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2271 WARN_ON(1);
2272 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2273 inc_valid_inode_count(sbi);
2274 set_page_dirty(ipage);
2275 f2fs_put_page(ipage, 1);
2276 return 0;
2279 int restore_node_summary(struct f2fs_sb_info *sbi,
2280 unsigned int segno, struct f2fs_summary_block *sum)
2282 struct f2fs_node *rn;
2283 struct f2fs_summary *sum_entry;
2284 block_t addr;
2285 int i, idx, last_offset, nrpages;
2287 /* scan the node segment */
2288 last_offset = sbi->blocks_per_seg;
2289 addr = START_BLOCK(sbi, segno);
2290 sum_entry = &sum->entries[0];
2292 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2293 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2295 /* readahead node pages */
2296 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2298 for (idx = addr; idx < addr + nrpages; idx++) {
2299 struct page *page = get_tmp_page(sbi, idx);
2301 rn = F2FS_NODE(page);
2302 sum_entry->nid = rn->footer.nid;
2303 sum_entry->version = 0;
2304 sum_entry->ofs_in_node = 0;
2305 sum_entry++;
2306 f2fs_put_page(page, 1);
2309 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2310 addr + nrpages);
2312 return 0;
2315 static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2317 struct f2fs_nm_info *nm_i = NM_I(sbi);
2318 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2319 struct f2fs_journal *journal = curseg->journal;
2320 int i;
2322 down_write(&curseg->journal_rwsem);
2323 for (i = 0; i < nats_in_cursum(journal); i++) {
2324 struct nat_entry *ne;
2325 struct f2fs_nat_entry raw_ne;
2326 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2328 raw_ne = nat_in_journal(journal, i);
2330 ne = __lookup_nat_cache(nm_i, nid);
2331 if (!ne) {
2332 ne = grab_nat_entry(nm_i, nid, true);
2333 node_info_from_raw_nat(&ne->ni, &raw_ne);
2337 * if a free nat in journal has not been used after last
2338 * checkpoint, we should remove it from available nids,
2339 * since later we will add it again.
2341 if (!get_nat_flag(ne, IS_DIRTY) &&
2342 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2343 spin_lock(&nm_i->nid_list_lock);
2344 nm_i->available_nids--;
2345 spin_unlock(&nm_i->nid_list_lock);
2348 __set_nat_cache_dirty(nm_i, ne);
2350 update_nats_in_cursum(journal, -i);
2351 up_write(&curseg->journal_rwsem);
2354 static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2355 struct list_head *head, int max)
2357 struct nat_entry_set *cur;
2359 if (nes->entry_cnt >= max)
2360 goto add_out;
2362 list_for_each_entry(cur, head, set_list) {
2363 if (cur->entry_cnt >= nes->entry_cnt) {
2364 list_add(&nes->set_list, cur->set_list.prev);
2365 return;
2368 add_out:
2369 list_add_tail(&nes->set_list, head);
2372 static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2373 struct page *page)
2375 struct f2fs_nm_info *nm_i = NM_I(sbi);
2376 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2377 struct f2fs_nat_block *nat_blk = page_address(page);
2378 int valid = 0;
2379 int i;
2381 if (!enabled_nat_bits(sbi, NULL))
2382 return;
2384 for (i = 0; i < NAT_ENTRY_PER_BLOCK; i++) {
2385 if (start_nid == 0 && i == 0)
2386 valid++;
2387 if (nat_blk->entries[i].block_addr)
2388 valid++;
2390 if (valid == 0) {
2391 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2392 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2393 return;
2396 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2397 if (valid == NAT_ENTRY_PER_BLOCK)
2398 __set_bit_le(nat_index, nm_i->full_nat_bits);
2399 else
2400 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2403 static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2404 struct nat_entry_set *set, struct cp_control *cpc)
2406 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2407 struct f2fs_journal *journal = curseg->journal;
2408 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2409 bool to_journal = true;
2410 struct f2fs_nat_block *nat_blk;
2411 struct nat_entry *ne, *cur;
2412 struct page *page = NULL;
2415 * there are two steps to flush nat entries:
2416 * #1, flush nat entries to journal in current hot data summary block.
2417 * #2, flush nat entries to nat page.
2419 if (enabled_nat_bits(sbi, cpc) ||
2420 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2421 to_journal = false;
2423 if (to_journal) {
2424 down_write(&curseg->journal_rwsem);
2425 } else {
2426 page = get_next_nat_page(sbi, start_nid);
2427 nat_blk = page_address(page);
2428 f2fs_bug_on(sbi, !nat_blk);
2431 /* flush dirty nats in nat entry set */
2432 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2433 struct f2fs_nat_entry *raw_ne;
2434 nid_t nid = nat_get_nid(ne);
2435 int offset;
2437 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2439 if (to_journal) {
2440 offset = lookup_journal_in_cursum(journal,
2441 NAT_JOURNAL, nid, 1);
2442 f2fs_bug_on(sbi, offset < 0);
2443 raw_ne = &nat_in_journal(journal, offset);
2444 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2445 } else {
2446 raw_ne = &nat_blk->entries[nid - start_nid];
2448 raw_nat_from_node_info(raw_ne, &ne->ni);
2449 nat_reset_flag(ne);
2450 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2451 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2452 add_free_nid(sbi, nid, false);
2453 spin_lock(&NM_I(sbi)->nid_list_lock);
2454 NM_I(sbi)->available_nids++;
2455 update_free_nid_bitmap(sbi, nid, true, false);
2456 spin_unlock(&NM_I(sbi)->nid_list_lock);
2457 } else {
2458 spin_lock(&NM_I(sbi)->nid_list_lock);
2459 update_free_nid_bitmap(sbi, nid, false, false);
2460 spin_unlock(&NM_I(sbi)->nid_list_lock);
2464 if (to_journal) {
2465 up_write(&curseg->journal_rwsem);
2466 } else {
2467 __update_nat_bits(sbi, start_nid, page);
2468 f2fs_put_page(page, 1);
2471 /* Allow dirty nats by node block allocation in write_begin */
2472 if (!set->entry_cnt) {
2473 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2474 kmem_cache_free(nat_entry_set_slab, set);
2479 * This function is called during the checkpointing process.
2481 void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2483 struct f2fs_nm_info *nm_i = NM_I(sbi);
2484 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2485 struct f2fs_journal *journal = curseg->journal;
2486 struct nat_entry_set *setvec[SETVEC_SIZE];
2487 struct nat_entry_set *set, *tmp;
2488 unsigned int found;
2489 nid_t set_idx = 0;
2490 LIST_HEAD(sets);
2492 if (!nm_i->dirty_nat_cnt)
2493 return;
2495 down_write(&nm_i->nat_tree_lock);
2498 * if there are no enough space in journal to store dirty nat
2499 * entries, remove all entries from journal and merge them
2500 * into nat entry set.
2502 if (enabled_nat_bits(sbi, cpc) ||
2503 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2504 remove_nats_in_journal(sbi);
2506 while ((found = __gang_lookup_nat_set(nm_i,
2507 set_idx, SETVEC_SIZE, setvec))) {
2508 unsigned idx;
2509 set_idx = setvec[found - 1]->set + 1;
2510 for (idx = 0; idx < found; idx++)
2511 __adjust_nat_entry_set(setvec[idx], &sets,
2512 MAX_NAT_JENTRIES(journal));
2515 /* flush dirty nats in nat entry set */
2516 list_for_each_entry_safe(set, tmp, &sets, set_list)
2517 __flush_nat_entry_set(sbi, set, cpc);
2519 up_write(&nm_i->nat_tree_lock);
2520 /* Allow dirty nats by node block allocation in write_begin */
2523 static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2525 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2526 struct f2fs_nm_info *nm_i = NM_I(sbi);
2527 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2528 unsigned int i;
2529 __u64 cp_ver = cur_cp_version(ckpt);
2530 block_t nat_bits_addr;
2532 if (!enabled_nat_bits(sbi, NULL))
2533 return 0;
2535 nm_i->nat_bits_blocks = F2FS_BYTES_TO_BLK((nat_bits_bytes << 1) + 8 +
2536 F2FS_BLKSIZE - 1);
2537 nm_i->nat_bits = kzalloc(nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS,
2538 GFP_KERNEL);
2539 if (!nm_i->nat_bits)
2540 return -ENOMEM;
2542 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2543 nm_i->nat_bits_blocks;
2544 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2545 struct page *page = get_meta_page(sbi, nat_bits_addr++);
2547 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2548 page_address(page), F2FS_BLKSIZE);
2549 f2fs_put_page(page, 1);
2552 cp_ver |= (cur_cp_crc(ckpt) << 32);
2553 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2554 disable_nat_bits(sbi, true);
2555 return 0;
2558 nm_i->full_nat_bits = nm_i->nat_bits + 8;
2559 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2561 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2562 return 0;
2565 static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2567 struct f2fs_nm_info *nm_i = NM_I(sbi);
2568 unsigned int i = 0;
2569 nid_t nid, last_nid;
2571 if (!enabled_nat_bits(sbi, NULL))
2572 return;
2574 for (i = 0; i < nm_i->nat_blocks; i++) {
2575 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2576 if (i >= nm_i->nat_blocks)
2577 break;
2579 __set_bit_le(i, nm_i->nat_block_bitmap);
2581 nid = i * NAT_ENTRY_PER_BLOCK;
2582 last_nid = (i + 1) * NAT_ENTRY_PER_BLOCK;
2584 spin_lock(&NM_I(sbi)->nid_list_lock);
2585 for (; nid < last_nid; nid++)
2586 update_free_nid_bitmap(sbi, nid, true, true);
2587 spin_unlock(&NM_I(sbi)->nid_list_lock);
2590 for (i = 0; i < nm_i->nat_blocks; i++) {
2591 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2592 if (i >= nm_i->nat_blocks)
2593 break;
2595 __set_bit_le(i, nm_i->nat_block_bitmap);
2599 static int init_node_manager(struct f2fs_sb_info *sbi)
2601 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2602 struct f2fs_nm_info *nm_i = NM_I(sbi);
2603 unsigned char *version_bitmap;
2604 unsigned int nat_segs;
2605 int err;
2607 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2609 /* segment_count_nat includes pair segment so divide to 2. */
2610 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2611 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2612 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2614 /* not used nids: 0, node, meta, (and root counted as valid node) */
2615 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2616 F2FS_RESERVED_NODE_NUM;
2617 nm_i->nid_cnt[FREE_NID_LIST] = 0;
2618 nm_i->nid_cnt[ALLOC_NID_LIST] = 0;
2619 nm_i->nat_cnt = 0;
2620 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2621 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2622 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2624 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2625 INIT_LIST_HEAD(&nm_i->nid_list[FREE_NID_LIST]);
2626 INIT_LIST_HEAD(&nm_i->nid_list[ALLOC_NID_LIST]);
2627 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2628 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2629 INIT_LIST_HEAD(&nm_i->nat_entries);
2631 mutex_init(&nm_i->build_lock);
2632 spin_lock_init(&nm_i->nid_list_lock);
2633 init_rwsem(&nm_i->nat_tree_lock);
2635 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2636 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2637 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2638 if (!version_bitmap)
2639 return -EFAULT;
2641 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2642 GFP_KERNEL);
2643 if (!nm_i->nat_bitmap)
2644 return -ENOMEM;
2646 err = __get_nat_bitmaps(sbi);
2647 if (err)
2648 return err;
2650 #ifdef CONFIG_F2FS_CHECK_FS
2651 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2652 GFP_KERNEL);
2653 if (!nm_i->nat_bitmap_mir)
2654 return -ENOMEM;
2655 #endif
2657 return 0;
2660 static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2662 struct f2fs_nm_info *nm_i = NM_I(sbi);
2664 nm_i->free_nid_bitmap = kvzalloc(nm_i->nat_blocks *
2665 NAT_ENTRY_BITMAP_SIZE, GFP_KERNEL);
2666 if (!nm_i->free_nid_bitmap)
2667 return -ENOMEM;
2669 nm_i->nat_block_bitmap = kvzalloc(nm_i->nat_blocks / 8,
2670 GFP_KERNEL);
2671 if (!nm_i->nat_block_bitmap)
2672 return -ENOMEM;
2674 nm_i->free_nid_count = kvzalloc(nm_i->nat_blocks *
2675 sizeof(unsigned short), GFP_KERNEL);
2676 if (!nm_i->free_nid_count)
2677 return -ENOMEM;
2678 return 0;
2681 int build_node_manager(struct f2fs_sb_info *sbi)
2683 int err;
2685 sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
2686 if (!sbi->nm_info)
2687 return -ENOMEM;
2689 err = init_node_manager(sbi);
2690 if (err)
2691 return err;
2693 err = init_free_nid_cache(sbi);
2694 if (err)
2695 return err;
2697 /* load free nid status from nat_bits table */
2698 load_free_nid_bitmap(sbi);
2700 build_free_nids(sbi, true, true);
2701 return 0;
2704 void destroy_node_manager(struct f2fs_sb_info *sbi)
2706 struct f2fs_nm_info *nm_i = NM_I(sbi);
2707 struct free_nid *i, *next_i;
2708 struct nat_entry *natvec[NATVEC_SIZE];
2709 struct nat_entry_set *setvec[SETVEC_SIZE];
2710 nid_t nid = 0;
2711 unsigned int found;
2713 if (!nm_i)
2714 return;
2716 /* destroy free nid list */
2717 spin_lock(&nm_i->nid_list_lock);
2718 list_for_each_entry_safe(i, next_i, &nm_i->nid_list[FREE_NID_LIST],
2719 list) {
2720 __remove_nid_from_list(sbi, i, FREE_NID_LIST, false);
2721 spin_unlock(&nm_i->nid_list_lock);
2722 kmem_cache_free(free_nid_slab, i);
2723 spin_lock(&nm_i->nid_list_lock);
2725 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID_LIST]);
2726 f2fs_bug_on(sbi, nm_i->nid_cnt[ALLOC_NID_LIST]);
2727 f2fs_bug_on(sbi, !list_empty(&nm_i->nid_list[ALLOC_NID_LIST]));
2728 spin_unlock(&nm_i->nid_list_lock);
2730 /* destroy nat cache */
2731 down_write(&nm_i->nat_tree_lock);
2732 while ((found = __gang_lookup_nat_cache(nm_i,
2733 nid, NATVEC_SIZE, natvec))) {
2734 unsigned idx;
2736 nid = nat_get_nid(natvec[found - 1]) + 1;
2737 for (idx = 0; idx < found; idx++)
2738 __del_from_nat_cache(nm_i, natvec[idx]);
2740 f2fs_bug_on(sbi, nm_i->nat_cnt);
2742 /* destroy nat set cache */
2743 nid = 0;
2744 while ((found = __gang_lookup_nat_set(nm_i,
2745 nid, SETVEC_SIZE, setvec))) {
2746 unsigned idx;
2748 nid = setvec[found - 1]->set + 1;
2749 for (idx = 0; idx < found; idx++) {
2750 /* entry_cnt is not zero, when cp_error was occurred */
2751 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2752 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2753 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2756 up_write(&nm_i->nat_tree_lock);
2758 kvfree(nm_i->nat_block_bitmap);
2759 kvfree(nm_i->free_nid_bitmap);
2760 kvfree(nm_i->free_nid_count);
2762 kfree(nm_i->nat_bitmap);
2763 kfree(nm_i->nat_bits);
2764 #ifdef CONFIG_F2FS_CHECK_FS
2765 kfree(nm_i->nat_bitmap_mir);
2766 #endif
2767 sbi->nm_info = NULL;
2768 kfree(nm_i);
2771 int __init create_node_manager_caches(void)
2773 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2774 sizeof(struct nat_entry));
2775 if (!nat_entry_slab)
2776 goto fail;
2778 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2779 sizeof(struct free_nid));
2780 if (!free_nid_slab)
2781 goto destroy_nat_entry;
2783 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2784 sizeof(struct nat_entry_set));
2785 if (!nat_entry_set_slab)
2786 goto destroy_free_nid;
2787 return 0;
2789 destroy_free_nid:
2790 kmem_cache_destroy(free_nid_slab);
2791 destroy_nat_entry:
2792 kmem_cache_destroy(nat_entry_slab);
2793 fail:
2794 return -ENOMEM;
2797 void destroy_node_manager_caches(void)
2799 kmem_cache_destroy(nat_entry_set_slab);
2800 kmem_cache_destroy(free_nid_slab);
2801 kmem_cache_destroy(nat_entry_slab);