2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/bitops.h>
17 #include <linux/poison.h>
18 #include <linux/pfn.h>
19 #include <linux/debugfs.h>
20 #include <linux/seq_file.h>
21 #include <linux/memblock.h>
23 #include <asm/sections.h>
28 static struct memblock_region memblock_memory_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
29 static struct memblock_region memblock_reserved_init_regions
[INIT_MEMBLOCK_REGIONS
] __initdata_memblock
;
30 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
31 static struct memblock_region memblock_physmem_init_regions
[INIT_PHYSMEM_REGIONS
] __initdata_memblock
;
34 struct memblock memblock __initdata_memblock
= {
35 .memory
.regions
= memblock_memory_init_regions
,
36 .memory
.cnt
= 1, /* empty dummy entry */
37 .memory
.max
= INIT_MEMBLOCK_REGIONS
,
38 .memory
.name
= "memory",
40 .reserved
.regions
= memblock_reserved_init_regions
,
41 .reserved
.cnt
= 1, /* empty dummy entry */
42 .reserved
.max
= INIT_MEMBLOCK_REGIONS
,
43 .reserved
.name
= "reserved",
45 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
46 .physmem
.regions
= memblock_physmem_init_regions
,
47 .physmem
.cnt
= 1, /* empty dummy entry */
48 .physmem
.max
= INIT_PHYSMEM_REGIONS
,
49 .physmem
.name
= "physmem",
53 .current_limit
= MEMBLOCK_ALLOC_ANYWHERE
,
56 int memblock_debug __initdata_memblock
;
57 static bool system_has_some_mirror __initdata_memblock
= false;
58 static int memblock_can_resize __initdata_memblock
;
59 static int memblock_memory_in_slab __initdata_memblock
= 0;
60 static int memblock_reserved_in_slab __initdata_memblock
= 0;
62 ulong __init_memblock
choose_memblock_flags(void)
64 return system_has_some_mirror
? MEMBLOCK_MIRROR
: MEMBLOCK_NONE
;
67 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
68 static inline phys_addr_t
memblock_cap_size(phys_addr_t base
, phys_addr_t
*size
)
70 return *size
= min(*size
, (phys_addr_t
)ULLONG_MAX
- base
);
74 * Address comparison utilities
76 static unsigned long __init_memblock
memblock_addrs_overlap(phys_addr_t base1
, phys_addr_t size1
,
77 phys_addr_t base2
, phys_addr_t size2
)
79 return ((base1
< (base2
+ size2
)) && (base2
< (base1
+ size1
)));
82 bool __init_memblock
memblock_overlaps_region(struct memblock_type
*type
,
83 phys_addr_t base
, phys_addr_t size
)
87 for (i
= 0; i
< type
->cnt
; i
++)
88 if (memblock_addrs_overlap(base
, size
, type
->regions
[i
].base
,
89 type
->regions
[i
].size
))
95 * __memblock_find_range_bottom_up - find free area utility in bottom-up
96 * @start: start of candidate range
97 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
98 * @size: size of free area to find
99 * @align: alignment of free area to find
100 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
101 * @flags: pick from blocks based on memory attributes
103 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
106 * Found address on success, 0 on failure.
108 static phys_addr_t __init_memblock
109 __memblock_find_range_bottom_up(phys_addr_t start
, phys_addr_t end
,
110 phys_addr_t size
, phys_addr_t align
, int nid
,
113 phys_addr_t this_start
, this_end
, cand
;
116 for_each_free_mem_range(i
, nid
, flags
, &this_start
, &this_end
, NULL
) {
117 this_start
= clamp(this_start
, start
, end
);
118 this_end
= clamp(this_end
, start
, end
);
120 cand
= round_up(this_start
, align
);
121 if (cand
< this_end
&& this_end
- cand
>= size
)
129 * __memblock_find_range_top_down - find free area utility, in top-down
130 * @start: start of candidate range
131 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
132 * @size: size of free area to find
133 * @align: alignment of free area to find
134 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
135 * @flags: pick from blocks based on memory attributes
137 * Utility called from memblock_find_in_range_node(), find free area top-down.
140 * Found address on success, 0 on failure.
142 static phys_addr_t __init_memblock
143 __memblock_find_range_top_down(phys_addr_t start
, phys_addr_t end
,
144 phys_addr_t size
, phys_addr_t align
, int nid
,
147 phys_addr_t this_start
, this_end
, cand
;
150 for_each_free_mem_range_reverse(i
, nid
, flags
, &this_start
, &this_end
,
152 this_start
= clamp(this_start
, start
, end
);
153 this_end
= clamp(this_end
, start
, end
);
158 cand
= round_down(this_end
- size
, align
);
159 if (cand
>= this_start
)
167 * memblock_find_in_range_node - find free area in given range and node
168 * @size: size of free area to find
169 * @align: alignment of free area to find
170 * @start: start of candidate range
171 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
172 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
173 * @flags: pick from blocks based on memory attributes
175 * Find @size free area aligned to @align in the specified range and node.
177 * When allocation direction is bottom-up, the @start should be greater
178 * than the end of the kernel image. Otherwise, it will be trimmed. The
179 * reason is that we want the bottom-up allocation just near the kernel
180 * image so it is highly likely that the allocated memory and the kernel
181 * will reside in the same node.
183 * If bottom-up allocation failed, will try to allocate memory top-down.
186 * Found address on success, 0 on failure.
188 phys_addr_t __init_memblock
memblock_find_in_range_node(phys_addr_t size
,
189 phys_addr_t align
, phys_addr_t start
,
190 phys_addr_t end
, int nid
, ulong flags
)
192 phys_addr_t kernel_end
, ret
;
195 if (end
== MEMBLOCK_ALLOC_ACCESSIBLE
)
196 end
= memblock
.current_limit
;
198 /* avoid allocating the first page */
199 start
= max_t(phys_addr_t
, start
, PAGE_SIZE
);
200 end
= max(start
, end
);
201 kernel_end
= __pa_symbol(_end
);
204 * try bottom-up allocation only when bottom-up mode
205 * is set and @end is above the kernel image.
207 if (memblock_bottom_up() && end
> kernel_end
) {
208 phys_addr_t bottom_up_start
;
210 /* make sure we will allocate above the kernel */
211 bottom_up_start
= max(start
, kernel_end
);
213 /* ok, try bottom-up allocation first */
214 ret
= __memblock_find_range_bottom_up(bottom_up_start
, end
,
215 size
, align
, nid
, flags
);
220 * we always limit bottom-up allocation above the kernel,
221 * but top-down allocation doesn't have the limit, so
222 * retrying top-down allocation may succeed when bottom-up
225 * bottom-up allocation is expected to be fail very rarely,
226 * so we use WARN_ONCE() here to see the stack trace if
229 WARN_ONCE(1, "memblock: bottom-up allocation failed, memory hotunplug may be affected\n");
232 return __memblock_find_range_top_down(start
, end
, size
, align
, nid
,
237 * memblock_find_in_range - find free area in given range
238 * @start: start of candidate range
239 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_{ANYWHERE|ACCESSIBLE}
240 * @size: size of free area to find
241 * @align: alignment of free area to find
243 * Find @size free area aligned to @align in the specified range.
246 * Found address on success, 0 on failure.
248 phys_addr_t __init_memblock
memblock_find_in_range(phys_addr_t start
,
249 phys_addr_t end
, phys_addr_t size
,
253 ulong flags
= choose_memblock_flags();
256 ret
= memblock_find_in_range_node(size
, align
, start
, end
,
257 NUMA_NO_NODE
, flags
);
259 if (!ret
&& (flags
& MEMBLOCK_MIRROR
)) {
260 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
262 flags
&= ~MEMBLOCK_MIRROR
;
269 static void __init_memblock
memblock_remove_region(struct memblock_type
*type
, unsigned long r
)
271 type
->total_size
-= type
->regions
[r
].size
;
272 memmove(&type
->regions
[r
], &type
->regions
[r
+ 1],
273 (type
->cnt
- (r
+ 1)) * sizeof(type
->regions
[r
]));
276 /* Special case for empty arrays */
277 if (type
->cnt
== 0) {
278 WARN_ON(type
->total_size
!= 0);
280 type
->regions
[0].base
= 0;
281 type
->regions
[0].size
= 0;
282 type
->regions
[0].flags
= 0;
283 memblock_set_region_node(&type
->regions
[0], MAX_NUMNODES
);
287 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
289 phys_addr_t __init_memblock
get_allocated_memblock_reserved_regions_info(
292 if (memblock
.reserved
.regions
== memblock_reserved_init_regions
)
295 *addr
= __pa(memblock
.reserved
.regions
);
297 return PAGE_ALIGN(sizeof(struct memblock_region
) *
298 memblock
.reserved
.max
);
301 phys_addr_t __init_memblock
get_allocated_memblock_memory_regions_info(
304 if (memblock
.memory
.regions
== memblock_memory_init_regions
)
307 *addr
= __pa(memblock
.memory
.regions
);
309 return PAGE_ALIGN(sizeof(struct memblock_region
) *
310 memblock
.memory
.max
);
316 * memblock_double_array - double the size of the memblock regions array
317 * @type: memblock type of the regions array being doubled
318 * @new_area_start: starting address of memory range to avoid overlap with
319 * @new_area_size: size of memory range to avoid overlap with
321 * Double the size of the @type regions array. If memblock is being used to
322 * allocate memory for a new reserved regions array and there is a previously
323 * allocated memory range [@new_area_start,@new_area_start+@new_area_size]
324 * waiting to be reserved, ensure the memory used by the new array does
328 * 0 on success, -1 on failure.
330 static int __init_memblock
memblock_double_array(struct memblock_type
*type
,
331 phys_addr_t new_area_start
,
332 phys_addr_t new_area_size
)
334 struct memblock_region
*new_array
, *old_array
;
335 phys_addr_t old_alloc_size
, new_alloc_size
;
336 phys_addr_t old_size
, new_size
, addr
;
337 int use_slab
= slab_is_available();
340 /* We don't allow resizing until we know about the reserved regions
341 * of memory that aren't suitable for allocation
343 if (!memblock_can_resize
)
346 /* Calculate new doubled size */
347 old_size
= type
->max
* sizeof(struct memblock_region
);
348 new_size
= old_size
<< 1;
350 * We need to allocated new one align to PAGE_SIZE,
351 * so we can free them completely later.
353 old_alloc_size
= PAGE_ALIGN(old_size
);
354 new_alloc_size
= PAGE_ALIGN(new_size
);
356 /* Retrieve the slab flag */
357 if (type
== &memblock
.memory
)
358 in_slab
= &memblock_memory_in_slab
;
360 in_slab
= &memblock_reserved_in_slab
;
362 /* Try to find some space for it.
364 * WARNING: We assume that either slab_is_available() and we use it or
365 * we use MEMBLOCK for allocations. That means that this is unsafe to
366 * use when bootmem is currently active (unless bootmem itself is
367 * implemented on top of MEMBLOCK which isn't the case yet)
369 * This should however not be an issue for now, as we currently only
370 * call into MEMBLOCK while it's still active, or much later when slab
371 * is active for memory hotplug operations
374 new_array
= kmalloc(new_size
, GFP_KERNEL
);
375 addr
= new_array
? __pa(new_array
) : 0;
377 /* only exclude range when trying to double reserved.regions */
378 if (type
!= &memblock
.reserved
)
379 new_area_start
= new_area_size
= 0;
381 addr
= memblock_find_in_range(new_area_start
+ new_area_size
,
382 memblock
.current_limit
,
383 new_alloc_size
, PAGE_SIZE
);
384 if (!addr
&& new_area_size
)
385 addr
= memblock_find_in_range(0,
386 min(new_area_start
, memblock
.current_limit
),
387 new_alloc_size
, PAGE_SIZE
);
389 new_array
= addr
? __va(addr
) : NULL
;
392 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
393 type
->name
, type
->max
, type
->max
* 2);
397 memblock_dbg("memblock: %s is doubled to %ld at [%#010llx-%#010llx]",
398 type
->name
, type
->max
* 2, (u64
)addr
,
399 (u64
)addr
+ new_size
- 1);
402 * Found space, we now need to move the array over before we add the
403 * reserved region since it may be our reserved array itself that is
406 memcpy(new_array
, type
->regions
, old_size
);
407 memset(new_array
+ type
->max
, 0, old_size
);
408 old_array
= type
->regions
;
409 type
->regions
= new_array
;
412 /* Free old array. We needn't free it if the array is the static one */
415 else if (old_array
!= memblock_memory_init_regions
&&
416 old_array
!= memblock_reserved_init_regions
)
417 memblock_free(__pa(old_array
), old_alloc_size
);
420 * Reserve the new array if that comes from the memblock. Otherwise, we
424 BUG_ON(memblock_reserve(addr
, new_alloc_size
));
426 /* Update slab flag */
433 * memblock_merge_regions - merge neighboring compatible regions
434 * @type: memblock type to scan
436 * Scan @type and merge neighboring compatible regions.
438 static void __init_memblock
memblock_merge_regions(struct memblock_type
*type
)
442 /* cnt never goes below 1 */
443 while (i
< type
->cnt
- 1) {
444 struct memblock_region
*this = &type
->regions
[i
];
445 struct memblock_region
*next
= &type
->regions
[i
+ 1];
447 if (this->base
+ this->size
!= next
->base
||
448 memblock_get_region_node(this) !=
449 memblock_get_region_node(next
) ||
450 this->flags
!= next
->flags
) {
451 BUG_ON(this->base
+ this->size
> next
->base
);
456 this->size
+= next
->size
;
457 /* move forward from next + 1, index of which is i + 2 */
458 memmove(next
, next
+ 1, (type
->cnt
- (i
+ 2)) * sizeof(*next
));
464 * memblock_insert_region - insert new memblock region
465 * @type: memblock type to insert into
466 * @idx: index for the insertion point
467 * @base: base address of the new region
468 * @size: size of the new region
469 * @nid: node id of the new region
470 * @flags: flags of the new region
472 * Insert new memblock region [@base,@base+@size) into @type at @idx.
473 * @type must already have extra room to accommodate the new region.
475 static void __init_memblock
memblock_insert_region(struct memblock_type
*type
,
476 int idx
, phys_addr_t base
,
478 int nid
, unsigned long flags
)
480 struct memblock_region
*rgn
= &type
->regions
[idx
];
482 BUG_ON(type
->cnt
>= type
->max
);
483 memmove(rgn
+ 1, rgn
, (type
->cnt
- idx
) * sizeof(*rgn
));
487 memblock_set_region_node(rgn
, nid
);
489 type
->total_size
+= size
;
493 * memblock_add_range - add new memblock region
494 * @type: memblock type to add new region into
495 * @base: base address of the new region
496 * @size: size of the new region
497 * @nid: nid of the new region
498 * @flags: flags of the new region
500 * Add new memblock region [@base,@base+@size) into @type. The new region
501 * is allowed to overlap with existing ones - overlaps don't affect already
502 * existing regions. @type is guaranteed to be minimal (all neighbouring
503 * compatible regions are merged) after the addition.
506 * 0 on success, -errno on failure.
508 int __init_memblock
memblock_add_range(struct memblock_type
*type
,
509 phys_addr_t base
, phys_addr_t size
,
510 int nid
, unsigned long flags
)
513 phys_addr_t obase
= base
;
514 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
516 struct memblock_region
*rgn
;
521 /* special case for empty array */
522 if (type
->regions
[0].size
== 0) {
523 WARN_ON(type
->cnt
!= 1 || type
->total_size
);
524 type
->regions
[0].base
= base
;
525 type
->regions
[0].size
= size
;
526 type
->regions
[0].flags
= flags
;
527 memblock_set_region_node(&type
->regions
[0], nid
);
528 type
->total_size
= size
;
533 * The following is executed twice. Once with %false @insert and
534 * then with %true. The first counts the number of regions needed
535 * to accommodate the new area. The second actually inserts them.
540 for_each_memblock_type(type
, rgn
) {
541 phys_addr_t rbase
= rgn
->base
;
542 phys_addr_t rend
= rbase
+ rgn
->size
;
549 * @rgn overlaps. If it separates the lower part of new
550 * area, insert that portion.
553 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
554 WARN_ON(nid
!= memblock_get_region_node(rgn
));
556 WARN_ON(flags
!= rgn
->flags
);
559 memblock_insert_region(type
, idx
++, base
,
563 /* area below @rend is dealt with, forget about it */
564 base
= min(rend
, end
);
567 /* insert the remaining portion */
571 memblock_insert_region(type
, idx
, base
, end
- base
,
579 * If this was the first round, resize array and repeat for actual
580 * insertions; otherwise, merge and return.
583 while (type
->cnt
+ nr_new
> type
->max
)
584 if (memblock_double_array(type
, obase
, size
) < 0)
589 memblock_merge_regions(type
);
594 int __init_memblock
memblock_add_node(phys_addr_t base
, phys_addr_t size
,
597 return memblock_add_range(&memblock
.memory
, base
, size
, nid
, 0);
600 int __init_memblock
memblock_add(phys_addr_t base
, phys_addr_t size
)
602 phys_addr_t end
= base
+ size
- 1;
604 memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
605 &base
, &end
, (void *)_RET_IP_
);
607 return memblock_add_range(&memblock
.memory
, base
, size
, MAX_NUMNODES
, 0);
611 * memblock_isolate_range - isolate given range into disjoint memblocks
612 * @type: memblock type to isolate range for
613 * @base: base of range to isolate
614 * @size: size of range to isolate
615 * @start_rgn: out parameter for the start of isolated region
616 * @end_rgn: out parameter for the end of isolated region
618 * Walk @type and ensure that regions don't cross the boundaries defined by
619 * [@base,@base+@size). Crossing regions are split at the boundaries,
620 * which may create at most two more regions. The index of the first
621 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
624 * 0 on success, -errno on failure.
626 static int __init_memblock
memblock_isolate_range(struct memblock_type
*type
,
627 phys_addr_t base
, phys_addr_t size
,
628 int *start_rgn
, int *end_rgn
)
630 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
632 struct memblock_region
*rgn
;
634 *start_rgn
= *end_rgn
= 0;
639 /* we'll create at most two more regions */
640 while (type
->cnt
+ 2 > type
->max
)
641 if (memblock_double_array(type
, base
, size
) < 0)
644 for_each_memblock_type(type
, rgn
) {
645 phys_addr_t rbase
= rgn
->base
;
646 phys_addr_t rend
= rbase
+ rgn
->size
;
655 * @rgn intersects from below. Split and continue
656 * to process the next region - the new top half.
659 rgn
->size
-= base
- rbase
;
660 type
->total_size
-= base
- rbase
;
661 memblock_insert_region(type
, idx
, rbase
, base
- rbase
,
662 memblock_get_region_node(rgn
),
664 } else if (rend
> end
) {
666 * @rgn intersects from above. Split and redo the
667 * current region - the new bottom half.
670 rgn
->size
-= end
- rbase
;
671 type
->total_size
-= end
- rbase
;
672 memblock_insert_region(type
, idx
--, rbase
, end
- rbase
,
673 memblock_get_region_node(rgn
),
676 /* @rgn is fully contained, record it */
686 static int __init_memblock
memblock_remove_range(struct memblock_type
*type
,
687 phys_addr_t base
, phys_addr_t size
)
689 int start_rgn
, end_rgn
;
692 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
696 for (i
= end_rgn
- 1; i
>= start_rgn
; i
--)
697 memblock_remove_region(type
, i
);
701 int __init_memblock
memblock_remove(phys_addr_t base
, phys_addr_t size
)
703 return memblock_remove_range(&memblock
.memory
, base
, size
);
707 int __init_memblock
memblock_free(phys_addr_t base
, phys_addr_t size
)
709 phys_addr_t end
= base
+ size
- 1;
711 memblock_dbg(" memblock_free: [%pa-%pa] %pF\n",
712 &base
, &end
, (void *)_RET_IP_
);
714 kmemleak_free_part_phys(base
, size
);
715 return memblock_remove_range(&memblock
.reserved
, base
, size
);
718 int __init_memblock
memblock_reserve(phys_addr_t base
, phys_addr_t size
)
720 phys_addr_t end
= base
+ size
- 1;
722 memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
723 &base
, &end
, (void *)_RET_IP_
);
725 return memblock_add_range(&memblock
.reserved
, base
, size
, MAX_NUMNODES
, 0);
730 * This function isolates region [@base, @base + @size), and sets/clears flag
732 * Return 0 on success, -errno on failure.
734 static int __init_memblock
memblock_setclr_flag(phys_addr_t base
,
735 phys_addr_t size
, int set
, int flag
)
737 struct memblock_type
*type
= &memblock
.memory
;
738 int i
, ret
, start_rgn
, end_rgn
;
740 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
744 for (i
= start_rgn
; i
< end_rgn
; i
++)
746 memblock_set_region_flags(&type
->regions
[i
], flag
);
748 memblock_clear_region_flags(&type
->regions
[i
], flag
);
750 memblock_merge_regions(type
);
755 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
756 * @base: the base phys addr of the region
757 * @size: the size of the region
759 * Return 0 on success, -errno on failure.
761 int __init_memblock
memblock_mark_hotplug(phys_addr_t base
, phys_addr_t size
)
763 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_HOTPLUG
);
767 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
768 * @base: the base phys addr of the region
769 * @size: the size of the region
771 * Return 0 on success, -errno on failure.
773 int __init_memblock
memblock_clear_hotplug(phys_addr_t base
, phys_addr_t size
)
775 return memblock_setclr_flag(base
, size
, 0, MEMBLOCK_HOTPLUG
);
779 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
780 * @base: the base phys addr of the region
781 * @size: the size of the region
783 * Return 0 on success, -errno on failure.
785 int __init_memblock
memblock_mark_mirror(phys_addr_t base
, phys_addr_t size
)
787 system_has_some_mirror
= true;
789 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_MIRROR
);
793 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
794 * @base: the base phys addr of the region
795 * @size: the size of the region
797 * Return 0 on success, -errno on failure.
799 int __init_memblock
memblock_mark_nomap(phys_addr_t base
, phys_addr_t size
)
801 return memblock_setclr_flag(base
, size
, 1, MEMBLOCK_NOMAP
);
805 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
806 * @base: the base phys addr of the region
807 * @size: the size of the region
809 * Return 0 on success, -errno on failure.
811 int __init_memblock
memblock_clear_nomap(phys_addr_t base
, phys_addr_t size
)
813 return memblock_setclr_flag(base
, size
, 0, MEMBLOCK_NOMAP
);
817 * __next_reserved_mem_region - next function for for_each_reserved_region()
818 * @idx: pointer to u64 loop variable
819 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
820 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
822 * Iterate over all reserved memory regions.
824 void __init_memblock
__next_reserved_mem_region(u64
*idx
,
825 phys_addr_t
*out_start
,
826 phys_addr_t
*out_end
)
828 struct memblock_type
*type
= &memblock
.reserved
;
830 if (*idx
< type
->cnt
) {
831 struct memblock_region
*r
= &type
->regions
[*idx
];
832 phys_addr_t base
= r
->base
;
833 phys_addr_t size
= r
->size
;
838 *out_end
= base
+ size
- 1;
844 /* signal end of iteration */
849 * __next__mem_range - next function for for_each_free_mem_range() etc.
850 * @idx: pointer to u64 loop variable
851 * @nid: node selector, %NUMA_NO_NODE for all nodes
852 * @flags: pick from blocks based on memory attributes
853 * @type_a: pointer to memblock_type from where the range is taken
854 * @type_b: pointer to memblock_type which excludes memory from being taken
855 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
856 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
857 * @out_nid: ptr to int for nid of the range, can be %NULL
859 * Find the first area from *@idx which matches @nid, fill the out
860 * parameters, and update *@idx for the next iteration. The lower 32bit of
861 * *@idx contains index into type_a and the upper 32bit indexes the
862 * areas before each region in type_b. For example, if type_b regions
863 * look like the following,
865 * 0:[0-16), 1:[32-48), 2:[128-130)
867 * The upper 32bit indexes the following regions.
869 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
871 * As both region arrays are sorted, the function advances the two indices
872 * in lockstep and returns each intersection.
874 void __init_memblock
__next_mem_range(u64
*idx
, int nid
, ulong flags
,
875 struct memblock_type
*type_a
,
876 struct memblock_type
*type_b
,
877 phys_addr_t
*out_start
,
878 phys_addr_t
*out_end
, int *out_nid
)
880 int idx_a
= *idx
& 0xffffffff;
881 int idx_b
= *idx
>> 32;
883 if (WARN_ONCE(nid
== MAX_NUMNODES
,
884 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
887 for (; idx_a
< type_a
->cnt
; idx_a
++) {
888 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
890 phys_addr_t m_start
= m
->base
;
891 phys_addr_t m_end
= m
->base
+ m
->size
;
892 int m_nid
= memblock_get_region_node(m
);
894 /* only memory regions are associated with nodes, check it */
895 if (nid
!= NUMA_NO_NODE
&& nid
!= m_nid
)
898 /* skip hotpluggable memory regions if needed */
899 if (movable_node_is_enabled() && memblock_is_hotpluggable(m
))
902 /* if we want mirror memory skip non-mirror memory regions */
903 if ((flags
& MEMBLOCK_MIRROR
) && !memblock_is_mirror(m
))
906 /* skip nomap memory unless we were asked for it explicitly */
907 if (!(flags
& MEMBLOCK_NOMAP
) && memblock_is_nomap(m
))
912 *out_start
= m_start
;
918 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
922 /* scan areas before each reservation */
923 for (; idx_b
< type_b
->cnt
+ 1; idx_b
++) {
924 struct memblock_region
*r
;
928 r
= &type_b
->regions
[idx_b
];
929 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
930 r_end
= idx_b
< type_b
->cnt
?
931 r
->base
: ULLONG_MAX
;
934 * if idx_b advanced past idx_a,
935 * break out to advance idx_a
937 if (r_start
>= m_end
)
939 /* if the two regions intersect, we're done */
940 if (m_start
< r_end
) {
943 max(m_start
, r_start
);
945 *out_end
= min(m_end
, r_end
);
949 * The region which ends first is
950 * advanced for the next iteration.
956 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
962 /* signal end of iteration */
967 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
969 * Finds the next range from type_a which is not marked as unsuitable
972 * @idx: pointer to u64 loop variable
973 * @nid: node selector, %NUMA_NO_NODE for all nodes
974 * @flags: pick from blocks based on memory attributes
975 * @type_a: pointer to memblock_type from where the range is taken
976 * @type_b: pointer to memblock_type which excludes memory from being taken
977 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
978 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
979 * @out_nid: ptr to int for nid of the range, can be %NULL
981 * Reverse of __next_mem_range().
983 void __init_memblock
__next_mem_range_rev(u64
*idx
, int nid
, ulong flags
,
984 struct memblock_type
*type_a
,
985 struct memblock_type
*type_b
,
986 phys_addr_t
*out_start
,
987 phys_addr_t
*out_end
, int *out_nid
)
989 int idx_a
= *idx
& 0xffffffff;
990 int idx_b
= *idx
>> 32;
992 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
995 if (*idx
== (u64
)ULLONG_MAX
) {
996 idx_a
= type_a
->cnt
- 1;
1003 for (; idx_a
>= 0; idx_a
--) {
1004 struct memblock_region
*m
= &type_a
->regions
[idx_a
];
1006 phys_addr_t m_start
= m
->base
;
1007 phys_addr_t m_end
= m
->base
+ m
->size
;
1008 int m_nid
= memblock_get_region_node(m
);
1010 /* only memory regions are associated with nodes, check it */
1011 if (nid
!= NUMA_NO_NODE
&& nid
!= m_nid
)
1014 /* skip hotpluggable memory regions if needed */
1015 if (movable_node_is_enabled() && memblock_is_hotpluggable(m
))
1018 /* if we want mirror memory skip non-mirror memory regions */
1019 if ((flags
& MEMBLOCK_MIRROR
) && !memblock_is_mirror(m
))
1022 /* skip nomap memory unless we were asked for it explicitly */
1023 if (!(flags
& MEMBLOCK_NOMAP
) && memblock_is_nomap(m
))
1028 *out_start
= m_start
;
1034 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1038 /* scan areas before each reservation */
1039 for (; idx_b
>= 0; idx_b
--) {
1040 struct memblock_region
*r
;
1041 phys_addr_t r_start
;
1044 r
= &type_b
->regions
[idx_b
];
1045 r_start
= idx_b
? r
[-1].base
+ r
[-1].size
: 0;
1046 r_end
= idx_b
< type_b
->cnt
?
1047 r
->base
: ULLONG_MAX
;
1049 * if idx_b advanced past idx_a,
1050 * break out to advance idx_a
1053 if (r_end
<= m_start
)
1055 /* if the two regions intersect, we're done */
1056 if (m_end
> r_start
) {
1058 *out_start
= max(m_start
, r_start
);
1060 *out_end
= min(m_end
, r_end
);
1063 if (m_start
>= r_start
)
1067 *idx
= (u32
)idx_a
| (u64
)idx_b
<< 32;
1072 /* signal end of iteration */
1076 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1078 * Common iterator interface used to define for_each_mem_range().
1080 void __init_memblock
__next_mem_pfn_range(int *idx
, int nid
,
1081 unsigned long *out_start_pfn
,
1082 unsigned long *out_end_pfn
, int *out_nid
)
1084 struct memblock_type
*type
= &memblock
.memory
;
1085 struct memblock_region
*r
;
1087 while (++*idx
< type
->cnt
) {
1088 r
= &type
->regions
[*idx
];
1090 if (PFN_UP(r
->base
) >= PFN_DOWN(r
->base
+ r
->size
))
1092 if (nid
== MAX_NUMNODES
|| nid
== r
->nid
)
1095 if (*idx
>= type
->cnt
) {
1101 *out_start_pfn
= PFN_UP(r
->base
);
1103 *out_end_pfn
= PFN_DOWN(r
->base
+ r
->size
);
1108 unsigned long __init_memblock
memblock_next_valid_pfn(unsigned long pfn
,
1109 unsigned long max_pfn
)
1111 struct memblock_type
*type
= &memblock
.memory
;
1112 unsigned int right
= type
->cnt
;
1113 unsigned int mid
, left
= 0;
1114 phys_addr_t addr
= PFN_PHYS(pfn
+ 1);
1117 mid
= (right
+ left
) / 2;
1119 if (addr
< type
->regions
[mid
].base
)
1121 else if (addr
>= (type
->regions
[mid
].base
+
1122 type
->regions
[mid
].size
))
1125 /* addr is within the region, so pfn + 1 is valid */
1126 return min(pfn
+ 1, max_pfn
);
1128 } while (left
< right
);
1130 if (right
== type
->cnt
)
1133 return min(PHYS_PFN(type
->regions
[right
].base
), max_pfn
);
1137 * memblock_set_node - set node ID on memblock regions
1138 * @base: base of area to set node ID for
1139 * @size: size of area to set node ID for
1140 * @type: memblock type to set node ID for
1141 * @nid: node ID to set
1143 * Set the nid of memblock @type regions in [@base,@base+@size) to @nid.
1144 * Regions which cross the area boundaries are split as necessary.
1147 * 0 on success, -errno on failure.
1149 int __init_memblock
memblock_set_node(phys_addr_t base
, phys_addr_t size
,
1150 struct memblock_type
*type
, int nid
)
1152 int start_rgn
, end_rgn
;
1155 ret
= memblock_isolate_range(type
, base
, size
, &start_rgn
, &end_rgn
);
1159 for (i
= start_rgn
; i
< end_rgn
; i
++)
1160 memblock_set_region_node(&type
->regions
[i
], nid
);
1162 memblock_merge_regions(type
);
1165 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1167 static phys_addr_t __init
memblock_alloc_range_nid(phys_addr_t size
,
1168 phys_addr_t align
, phys_addr_t start
,
1169 phys_addr_t end
, int nid
, ulong flags
)
1174 align
= SMP_CACHE_BYTES
;
1176 found
= memblock_find_in_range_node(size
, align
, start
, end
, nid
,
1178 if (found
&& !memblock_reserve(found
, size
)) {
1180 * The min_count is set to 0 so that memblock allocations are
1181 * never reported as leaks.
1183 kmemleak_alloc_phys(found
, size
, 0, 0);
1189 phys_addr_t __init
memblock_alloc_range(phys_addr_t size
, phys_addr_t align
,
1190 phys_addr_t start
, phys_addr_t end
,
1193 return memblock_alloc_range_nid(size
, align
, start
, end
, NUMA_NO_NODE
,
1197 static phys_addr_t __init
memblock_alloc_base_nid(phys_addr_t size
,
1198 phys_addr_t align
, phys_addr_t max_addr
,
1199 int nid
, ulong flags
)
1201 return memblock_alloc_range_nid(size
, align
, 0, max_addr
, nid
, flags
);
1204 phys_addr_t __init
memblock_alloc_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
1206 ulong flags
= choose_memblock_flags();
1210 ret
= memblock_alloc_base_nid(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
,
1213 if (!ret
&& (flags
& MEMBLOCK_MIRROR
)) {
1214 flags
&= ~MEMBLOCK_MIRROR
;
1220 phys_addr_t __init
__memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
1222 return memblock_alloc_base_nid(size
, align
, max_addr
, NUMA_NO_NODE
,
1226 phys_addr_t __init
memblock_alloc_base(phys_addr_t size
, phys_addr_t align
, phys_addr_t max_addr
)
1230 alloc
= __memblock_alloc_base(size
, align
, max_addr
);
1233 panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1239 phys_addr_t __init
memblock_alloc(phys_addr_t size
, phys_addr_t align
)
1241 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
1244 phys_addr_t __init
memblock_alloc_try_nid(phys_addr_t size
, phys_addr_t align
, int nid
)
1246 phys_addr_t res
= memblock_alloc_nid(size
, align
, nid
);
1250 return memblock_alloc_base(size
, align
, MEMBLOCK_ALLOC_ACCESSIBLE
);
1254 * memblock_virt_alloc_internal - allocate boot memory block
1255 * @size: size of memory block to be allocated in bytes
1256 * @align: alignment of the region and block's size
1257 * @min_addr: the lower bound of the memory region to allocate (phys address)
1258 * @max_addr: the upper bound of the memory region to allocate (phys address)
1259 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1261 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1262 * will fall back to memory below @min_addr. Also, allocation may fall back
1263 * to any node in the system if the specified node can not
1264 * hold the requested memory.
1266 * The allocation is performed from memory region limited by
1267 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1269 * The memory block is aligned on SMP_CACHE_BYTES if @align == 0.
1271 * The phys address of allocated boot memory block is converted to virtual and
1272 * allocated memory is reset to 0.
1274 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1275 * allocated boot memory block, so that it is never reported as leaks.
1278 * Virtual address of allocated memory block on success, NULL on failure.
1280 static void * __init
memblock_virt_alloc_internal(
1281 phys_addr_t size
, phys_addr_t align
,
1282 phys_addr_t min_addr
, phys_addr_t max_addr
,
1287 ulong flags
= choose_memblock_flags();
1289 if (WARN_ONCE(nid
== MAX_NUMNODES
, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1293 * Detect any accidental use of these APIs after slab is ready, as at
1294 * this moment memblock may be deinitialized already and its
1295 * internal data may be destroyed (after execution of free_all_bootmem)
1297 if (WARN_ON_ONCE(slab_is_available()))
1298 return kzalloc_node(size
, GFP_NOWAIT
, nid
);
1301 align
= SMP_CACHE_BYTES
;
1303 if (max_addr
> memblock
.current_limit
)
1304 max_addr
= memblock
.current_limit
;
1306 alloc
= memblock_find_in_range_node(size
, align
, min_addr
, max_addr
,
1308 if (alloc
&& !memblock_reserve(alloc
, size
))
1311 if (nid
!= NUMA_NO_NODE
) {
1312 alloc
= memblock_find_in_range_node(size
, align
, min_addr
,
1313 max_addr
, NUMA_NO_NODE
,
1315 if (alloc
&& !memblock_reserve(alloc
, size
))
1324 if (flags
& MEMBLOCK_MIRROR
) {
1325 flags
&= ~MEMBLOCK_MIRROR
;
1326 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1333 ptr
= phys_to_virt(alloc
);
1334 memset(ptr
, 0, size
);
1337 * The min_count is set to 0 so that bootmem allocated blocks
1338 * are never reported as leaks. This is because many of these blocks
1339 * are only referred via the physical address which is not
1340 * looked up by kmemleak.
1342 kmemleak_alloc(ptr
, size
, 0, 0);
1348 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1349 * @size: size of memory block to be allocated in bytes
1350 * @align: alignment of the region and block's size
1351 * @min_addr: the lower bound of the memory region from where the allocation
1352 * is preferred (phys address)
1353 * @max_addr: the upper bound of the memory region from where the allocation
1354 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1355 * allocate only from memory limited by memblock.current_limit value
1356 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1358 * Public version of _memblock_virt_alloc_try_nid_nopanic() which provides
1359 * additional debug information (including caller info), if enabled.
1362 * Virtual address of allocated memory block on success, NULL on failure.
1364 void * __init
memblock_virt_alloc_try_nid_nopanic(
1365 phys_addr_t size
, phys_addr_t align
,
1366 phys_addr_t min_addr
, phys_addr_t max_addr
,
1369 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1370 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1371 (u64
)max_addr
, (void *)_RET_IP_
);
1372 return memblock_virt_alloc_internal(size
, align
, min_addr
,
1377 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1378 * @size: size of memory block to be allocated in bytes
1379 * @align: alignment of the region and block's size
1380 * @min_addr: the lower bound of the memory region from where the allocation
1381 * is preferred (phys address)
1382 * @max_addr: the upper bound of the memory region from where the allocation
1383 * is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1384 * allocate only from memory limited by memblock.current_limit value
1385 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1387 * Public panicking version of _memblock_virt_alloc_try_nid_nopanic()
1388 * which provides debug information (including caller info), if enabled,
1389 * and panics if the request can not be satisfied.
1392 * Virtual address of allocated memory block on success, NULL on failure.
1394 void * __init
memblock_virt_alloc_try_nid(
1395 phys_addr_t size
, phys_addr_t align
,
1396 phys_addr_t min_addr
, phys_addr_t max_addr
,
1401 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx %pF\n",
1402 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1403 (u64
)max_addr
, (void *)_RET_IP_
);
1404 ptr
= memblock_virt_alloc_internal(size
, align
,
1405 min_addr
, max_addr
, nid
);
1409 panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=0x%llx max_addr=0x%llx\n",
1410 __func__
, (u64
)size
, (u64
)align
, nid
, (u64
)min_addr
,
1416 * __memblock_free_early - free boot memory block
1417 * @base: phys starting address of the boot memory block
1418 * @size: size of the boot memory block in bytes
1420 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1421 * The freeing memory will not be released to the buddy allocator.
1423 void __init
__memblock_free_early(phys_addr_t base
, phys_addr_t size
)
1425 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1426 __func__
, (u64
)base
, (u64
)base
+ size
- 1,
1428 kmemleak_free_part_phys(base
, size
);
1429 memblock_remove_range(&memblock
.reserved
, base
, size
);
1433 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1434 * @addr: phys starting address of the boot memory block
1435 * @size: size of the boot memory block in bytes
1437 * This is only useful when the bootmem allocator has already been torn
1438 * down, but we are still initializing the system. Pages are released directly
1439 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1441 void __init
__memblock_free_late(phys_addr_t base
, phys_addr_t size
)
1445 memblock_dbg("%s: [%#016llx-%#016llx] %pF\n",
1446 __func__
, (u64
)base
, (u64
)base
+ size
- 1,
1448 kmemleak_free_part_phys(base
, size
);
1449 cursor
= PFN_UP(base
);
1450 end
= PFN_DOWN(base
+ size
);
1452 for (; cursor
< end
; cursor
++) {
1453 __free_pages_bootmem(pfn_to_page(cursor
), cursor
, 0);
1459 * Remaining API functions
1462 phys_addr_t __init_memblock
memblock_phys_mem_size(void)
1464 return memblock
.memory
.total_size
;
1467 phys_addr_t __init_memblock
memblock_reserved_size(void)
1469 return memblock
.reserved
.total_size
;
1472 phys_addr_t __init
memblock_mem_size(unsigned long limit_pfn
)
1474 unsigned long pages
= 0;
1475 struct memblock_region
*r
;
1476 unsigned long start_pfn
, end_pfn
;
1478 for_each_memblock(memory
, r
) {
1479 start_pfn
= memblock_region_memory_base_pfn(r
);
1480 end_pfn
= memblock_region_memory_end_pfn(r
);
1481 start_pfn
= min_t(unsigned long, start_pfn
, limit_pfn
);
1482 end_pfn
= min_t(unsigned long, end_pfn
, limit_pfn
);
1483 pages
+= end_pfn
- start_pfn
;
1486 return PFN_PHYS(pages
);
1489 /* lowest address */
1490 phys_addr_t __init_memblock
memblock_start_of_DRAM(void)
1492 return memblock
.memory
.regions
[0].base
;
1495 phys_addr_t __init_memblock
memblock_end_of_DRAM(void)
1497 int idx
= memblock
.memory
.cnt
- 1;
1499 return (memblock
.memory
.regions
[idx
].base
+ memblock
.memory
.regions
[idx
].size
);
1502 static phys_addr_t __init_memblock
__find_max_addr(phys_addr_t limit
)
1504 phys_addr_t max_addr
= (phys_addr_t
)ULLONG_MAX
;
1505 struct memblock_region
*r
;
1508 * translate the memory @limit size into the max address within one of
1509 * the memory memblock regions, if the @limit exceeds the total size
1510 * of those regions, max_addr will keep original value ULLONG_MAX
1512 for_each_memblock(memory
, r
) {
1513 if (limit
<= r
->size
) {
1514 max_addr
= r
->base
+ limit
;
1523 void __init
memblock_enforce_memory_limit(phys_addr_t limit
)
1525 phys_addr_t max_addr
= (phys_addr_t
)ULLONG_MAX
;
1530 max_addr
= __find_max_addr(limit
);
1532 /* @limit exceeds the total size of the memory, do nothing */
1533 if (max_addr
== (phys_addr_t
)ULLONG_MAX
)
1536 /* truncate both memory and reserved regions */
1537 memblock_remove_range(&memblock
.memory
, max_addr
,
1538 (phys_addr_t
)ULLONG_MAX
);
1539 memblock_remove_range(&memblock
.reserved
, max_addr
,
1540 (phys_addr_t
)ULLONG_MAX
);
1543 void __init
memblock_cap_memory_range(phys_addr_t base
, phys_addr_t size
)
1545 int start_rgn
, end_rgn
;
1551 ret
= memblock_isolate_range(&memblock
.memory
, base
, size
,
1552 &start_rgn
, &end_rgn
);
1556 /* remove all the MAP regions */
1557 for (i
= memblock
.memory
.cnt
- 1; i
>= end_rgn
; i
--)
1558 if (!memblock_is_nomap(&memblock
.memory
.regions
[i
]))
1559 memblock_remove_region(&memblock
.memory
, i
);
1561 for (i
= start_rgn
- 1; i
>= 0; i
--)
1562 if (!memblock_is_nomap(&memblock
.memory
.regions
[i
]))
1563 memblock_remove_region(&memblock
.memory
, i
);
1565 /* truncate the reserved regions */
1566 memblock_remove_range(&memblock
.reserved
, 0, base
);
1567 memblock_remove_range(&memblock
.reserved
,
1568 base
+ size
, (phys_addr_t
)ULLONG_MAX
);
1571 void __init
memblock_mem_limit_remove_map(phys_addr_t limit
)
1573 phys_addr_t max_addr
;
1578 max_addr
= __find_max_addr(limit
);
1580 /* @limit exceeds the total size of the memory, do nothing */
1581 if (max_addr
== (phys_addr_t
)ULLONG_MAX
)
1584 memblock_cap_memory_range(0, max_addr
);
1587 static int __init_memblock
memblock_search(struct memblock_type
*type
, phys_addr_t addr
)
1589 unsigned int left
= 0, right
= type
->cnt
;
1592 unsigned int mid
= (right
+ left
) / 2;
1594 if (addr
< type
->regions
[mid
].base
)
1596 else if (addr
>= (type
->regions
[mid
].base
+
1597 type
->regions
[mid
].size
))
1601 } while (left
< right
);
1605 bool __init
memblock_is_reserved(phys_addr_t addr
)
1607 return memblock_search(&memblock
.reserved
, addr
) != -1;
1610 bool __init_memblock
memblock_is_memory(phys_addr_t addr
)
1612 return memblock_search(&memblock
.memory
, addr
) != -1;
1615 int __init_memblock
memblock_is_map_memory(phys_addr_t addr
)
1617 int i
= memblock_search(&memblock
.memory
, addr
);
1621 return !memblock_is_nomap(&memblock
.memory
.regions
[i
]);
1624 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1625 int __init_memblock
memblock_search_pfn_nid(unsigned long pfn
,
1626 unsigned long *start_pfn
, unsigned long *end_pfn
)
1628 struct memblock_type
*type
= &memblock
.memory
;
1629 int mid
= memblock_search(type
, PFN_PHYS(pfn
));
1634 *start_pfn
= PFN_DOWN(type
->regions
[mid
].base
);
1635 *end_pfn
= PFN_DOWN(type
->regions
[mid
].base
+ type
->regions
[mid
].size
);
1637 return type
->regions
[mid
].nid
;
1642 * memblock_is_region_memory - check if a region is a subset of memory
1643 * @base: base of region to check
1644 * @size: size of region to check
1646 * Check if the region [@base, @base+@size) is a subset of a memory block.
1649 * 0 if false, non-zero if true
1651 int __init_memblock
memblock_is_region_memory(phys_addr_t base
, phys_addr_t size
)
1653 int idx
= memblock_search(&memblock
.memory
, base
);
1654 phys_addr_t end
= base
+ memblock_cap_size(base
, &size
);
1658 return (memblock
.memory
.regions
[idx
].base
+
1659 memblock
.memory
.regions
[idx
].size
) >= end
;
1663 * memblock_is_region_reserved - check if a region intersects reserved memory
1664 * @base: base of region to check
1665 * @size: size of region to check
1667 * Check if the region [@base, @base+@size) intersects a reserved memory block.
1670 * True if they intersect, false if not.
1672 bool __init_memblock
memblock_is_region_reserved(phys_addr_t base
, phys_addr_t size
)
1674 memblock_cap_size(base
, &size
);
1675 return memblock_overlaps_region(&memblock
.reserved
, base
, size
);
1678 void __init_memblock
memblock_trim_memory(phys_addr_t align
)
1680 phys_addr_t start
, end
, orig_start
, orig_end
;
1681 struct memblock_region
*r
;
1683 for_each_memblock(memory
, r
) {
1684 orig_start
= r
->base
;
1685 orig_end
= r
->base
+ r
->size
;
1686 start
= round_up(orig_start
, align
);
1687 end
= round_down(orig_end
, align
);
1689 if (start
== orig_start
&& end
== orig_end
)
1694 r
->size
= end
- start
;
1696 memblock_remove_region(&memblock
.memory
,
1697 r
- memblock
.memory
.regions
);
1703 void __init_memblock
memblock_set_current_limit(phys_addr_t limit
)
1705 memblock
.current_limit
= limit
;
1708 phys_addr_t __init_memblock
memblock_get_current_limit(void)
1710 return memblock
.current_limit
;
1713 static void __init_memblock
memblock_dump(struct memblock_type
*type
)
1715 phys_addr_t base
, end
, size
;
1716 unsigned long flags
;
1718 struct memblock_region
*rgn
;
1720 pr_info(" %s.cnt = 0x%lx\n", type
->name
, type
->cnt
);
1722 for_each_memblock_type(type
, rgn
) {
1723 char nid_buf
[32] = "";
1727 end
= base
+ size
- 1;
1729 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1730 if (memblock_get_region_node(rgn
) != MAX_NUMNODES
)
1731 snprintf(nid_buf
, sizeof(nid_buf
), " on node %d",
1732 memblock_get_region_node(rgn
));
1734 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#lx\n",
1735 type
->name
, idx
, &base
, &end
, &size
, nid_buf
, flags
);
1739 extern unsigned long __init_memblock
1740 memblock_reserved_memory_within(phys_addr_t start_addr
, phys_addr_t end_addr
)
1742 struct memblock_region
*rgn
;
1743 unsigned long size
= 0;
1746 for_each_memblock_type((&memblock
.reserved
), rgn
) {
1747 phys_addr_t start
, end
;
1749 if (rgn
->base
+ rgn
->size
< start_addr
)
1751 if (rgn
->base
> end_addr
)
1755 end
= start
+ rgn
->size
;
1756 size
+= end
- start
;
1762 void __init_memblock
__memblock_dump_all(void)
1764 pr_info("MEMBLOCK configuration:\n");
1765 pr_info(" memory size = %pa reserved size = %pa\n",
1766 &memblock
.memory
.total_size
,
1767 &memblock
.reserved
.total_size
);
1769 memblock_dump(&memblock
.memory
);
1770 memblock_dump(&memblock
.reserved
);
1771 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1772 memblock_dump(&memblock
.physmem
);
1776 void __init
memblock_allow_resize(void)
1778 memblock_can_resize
= 1;
1781 static int __init
early_memblock(char *p
)
1783 if (p
&& strstr(p
, "debug"))
1787 early_param("memblock", early_memblock
);
1789 #if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1791 static int memblock_debug_show(struct seq_file
*m
, void *private)
1793 struct memblock_type
*type
= m
->private;
1794 struct memblock_region
*reg
;
1798 for (i
= 0; i
< type
->cnt
; i
++) {
1799 reg
= &type
->regions
[i
];
1800 end
= reg
->base
+ reg
->size
- 1;
1802 seq_printf(m
, "%4d: ", i
);
1803 seq_printf(m
, "%pa..%pa\n", ®
->base
, &end
);
1808 static int memblock_debug_open(struct inode
*inode
, struct file
*file
)
1810 return single_open(file
, memblock_debug_show
, inode
->i_private
);
1813 static const struct file_operations memblock_debug_fops
= {
1814 .open
= memblock_debug_open
,
1816 .llseek
= seq_lseek
,
1817 .release
= single_release
,
1820 static int __init
memblock_init_debugfs(void)
1822 struct dentry
*root
= debugfs_create_dir("memblock", NULL
);
1825 debugfs_create_file("memory", S_IRUGO
, root
, &memblock
.memory
, &memblock_debug_fops
);
1826 debugfs_create_file("reserved", S_IRUGO
, root
, &memblock
.reserved
, &memblock_debug_fops
);
1827 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1828 debugfs_create_file("physmem", S_IRUGO
, root
, &memblock
.physmem
, &memblock_debug_fops
);
1833 __initcall(memblock_init_debugfs
);
1835 #endif /* CONFIG_DEBUG_FS */