2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
10 * See ../COPYING for licensing terms.
12 #define pr_fmt(fmt) "%s: " fmt, __func__
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
25 #include <linux/sched/signal.h>
27 #include <linux/file.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_context.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/timer.h>
34 #include <linux/aio.h>
35 #include <linux/highmem.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/eventfd.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/migrate.h>
42 #include <linux/ramfs.h>
43 #include <linux/percpu-refcount.h>
44 #include <linux/mount.h>
46 #include <asm/kmap_types.h>
47 #include <linux/uaccess.h>
48 #include <linux/nospec.h>
54 #define AIO_RING_MAGIC 0xa10a10a1
55 #define AIO_RING_COMPAT_FEATURES 1
56 #define AIO_RING_INCOMPAT_FEATURES 0
58 unsigned id
; /* kernel internal index number */
59 unsigned nr
; /* number of io_events */
60 unsigned head
; /* Written to by userland or under ring_lock
61 * mutex by aio_read_events_ring(). */
65 unsigned compat_features
;
66 unsigned incompat_features
;
67 unsigned header_length
; /* size of aio_ring */
70 struct io_event io_events
[0];
71 }; /* 128 bytes + ring size */
74 * Plugging is meant to work with larger batches of IOs. If we don't
75 * have more than the below, then don't bother setting up a plug.
77 #define AIO_PLUG_THRESHOLD 2
79 #define AIO_RING_PAGES 8
84 struct kioctx __rcu
*table
[];
88 unsigned reqs_available
;
92 struct completion comp
;
97 struct percpu_ref users
;
100 struct percpu_ref reqs
;
102 unsigned long user_id
;
104 struct __percpu kioctx_cpu
*cpu
;
107 * For percpu reqs_available, number of slots we move to/from global
112 * This is what userspace passed to io_setup(), it's not used for
113 * anything but counting against the global max_reqs quota.
115 * The real limit is nr_events - 1, which will be larger (see
120 /* Size of ringbuffer, in units of struct io_event */
123 unsigned long mmap_base
;
124 unsigned long mmap_size
;
126 struct page
**ring_pages
;
129 struct rcu_work free_rwork
; /* see free_ioctx() */
132 * signals when all in-flight requests are done
134 struct ctx_rq_wait
*rq_wait
;
138 * This counts the number of available slots in the ringbuffer,
139 * so we avoid overflowing it: it's decremented (if positive)
140 * when allocating a kiocb and incremented when the resulting
141 * io_event is pulled off the ringbuffer.
143 * We batch accesses to it with a percpu version.
145 atomic_t reqs_available
;
146 } ____cacheline_aligned_in_smp
;
150 struct list_head active_reqs
; /* used for cancellation */
151 } ____cacheline_aligned_in_smp
;
154 struct mutex ring_lock
;
155 wait_queue_head_t wait
;
156 } ____cacheline_aligned_in_smp
;
160 unsigned completed_events
;
161 spinlock_t completion_lock
;
162 } ____cacheline_aligned_in_smp
;
164 struct page
*internal_pages
[AIO_RING_PAGES
];
165 struct file
*aio_ring_file
;
171 struct work_struct work
;
178 struct wait_queue_head
*head
;
182 struct wait_queue_entry wait
;
183 struct work_struct work
;
189 struct fsync_iocb fsync
;
190 struct poll_iocb poll
;
193 struct kioctx
*ki_ctx
;
194 kiocb_cancel_fn
*ki_cancel
;
196 struct iocb __user
*ki_user_iocb
; /* user's aiocb */
197 __u64 ki_user_data
; /* user's data for completion */
199 struct list_head ki_list
; /* the aio core uses this
200 * for cancellation */
201 refcount_t ki_refcnt
;
204 * If the aio_resfd field of the userspace iocb is not zero,
205 * this is the underlying eventfd context to deliver events to.
207 struct eventfd_ctx
*ki_eventfd
;
210 /*------ sysctl variables----*/
211 static DEFINE_SPINLOCK(aio_nr_lock
);
212 unsigned long aio_nr
; /* current system wide number of aio requests */
213 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
214 /*----end sysctl variables---*/
216 static struct kmem_cache
*kiocb_cachep
;
217 static struct kmem_cache
*kioctx_cachep
;
219 static struct vfsmount
*aio_mnt
;
221 static const struct file_operations aio_ring_fops
;
222 static const struct address_space_operations aio_ctx_aops
;
224 static struct file
*aio_private_file(struct kioctx
*ctx
, loff_t nr_pages
)
227 struct inode
*inode
= alloc_anon_inode(aio_mnt
->mnt_sb
);
229 return ERR_CAST(inode
);
231 inode
->i_mapping
->a_ops
= &aio_ctx_aops
;
232 inode
->i_mapping
->private_data
= ctx
;
233 inode
->i_size
= PAGE_SIZE
* nr_pages
;
235 file
= alloc_file_pseudo(inode
, aio_mnt
, "[aio]",
236 O_RDWR
, &aio_ring_fops
);
242 static struct dentry
*aio_mount(struct file_system_type
*fs_type
,
243 int flags
, const char *dev_name
, void *data
)
245 struct dentry
*root
= mount_pseudo(fs_type
, "aio:", NULL
, NULL
,
249 root
->d_sb
->s_iflags
|= SB_I_NOEXEC
;
254 * Creates the slab caches used by the aio routines, panic on
255 * failure as this is done early during the boot sequence.
257 static int __init
aio_setup(void)
259 static struct file_system_type aio_fs
= {
262 .kill_sb
= kill_anon_super
,
264 aio_mnt
= kern_mount(&aio_fs
);
266 panic("Failed to create aio fs mount.");
268 kiocb_cachep
= KMEM_CACHE(aio_kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
269 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
272 __initcall(aio_setup
);
274 static void put_aio_ring_file(struct kioctx
*ctx
)
276 struct file
*aio_ring_file
= ctx
->aio_ring_file
;
277 struct address_space
*i_mapping
;
280 truncate_setsize(file_inode(aio_ring_file
), 0);
282 /* Prevent further access to the kioctx from migratepages */
283 i_mapping
= aio_ring_file
->f_mapping
;
284 spin_lock(&i_mapping
->private_lock
);
285 i_mapping
->private_data
= NULL
;
286 ctx
->aio_ring_file
= NULL
;
287 spin_unlock(&i_mapping
->private_lock
);
293 static void aio_free_ring(struct kioctx
*ctx
)
297 /* Disconnect the kiotx from the ring file. This prevents future
298 * accesses to the kioctx from page migration.
300 put_aio_ring_file(ctx
);
302 for (i
= 0; i
< ctx
->nr_pages
; i
++) {
304 pr_debug("pid(%d) [%d] page->count=%d\n", current
->pid
, i
,
305 page_count(ctx
->ring_pages
[i
]));
306 page
= ctx
->ring_pages
[i
];
309 ctx
->ring_pages
[i
] = NULL
;
313 if (ctx
->ring_pages
&& ctx
->ring_pages
!= ctx
->internal_pages
) {
314 kfree(ctx
->ring_pages
);
315 ctx
->ring_pages
= NULL
;
319 static int aio_ring_mremap(struct vm_area_struct
*vma
)
321 struct file
*file
= vma
->vm_file
;
322 struct mm_struct
*mm
= vma
->vm_mm
;
323 struct kioctx_table
*table
;
324 int i
, res
= -EINVAL
;
326 spin_lock(&mm
->ioctx_lock
);
328 table
= rcu_dereference(mm
->ioctx_table
);
329 for (i
= 0; i
< table
->nr
; i
++) {
332 ctx
= rcu_dereference(table
->table
[i
]);
333 if (ctx
&& ctx
->aio_ring_file
== file
) {
334 if (!atomic_read(&ctx
->dead
)) {
335 ctx
->user_id
= ctx
->mmap_base
= vma
->vm_start
;
343 spin_unlock(&mm
->ioctx_lock
);
347 static const struct vm_operations_struct aio_ring_vm_ops
= {
348 .mremap
= aio_ring_mremap
,
349 #if IS_ENABLED(CONFIG_MMU)
350 .fault
= filemap_fault
,
351 .map_pages
= filemap_map_pages
,
352 .page_mkwrite
= filemap_page_mkwrite
,
356 static int aio_ring_mmap(struct file
*file
, struct vm_area_struct
*vma
)
358 vma
->vm_flags
|= VM_DONTEXPAND
;
359 vma
->vm_ops
= &aio_ring_vm_ops
;
363 static const struct file_operations aio_ring_fops
= {
364 .mmap
= aio_ring_mmap
,
367 #if IS_ENABLED(CONFIG_MIGRATION)
368 static int aio_migratepage(struct address_space
*mapping
, struct page
*new,
369 struct page
*old
, enum migrate_mode mode
)
377 * We cannot support the _NO_COPY case here, because copy needs to
378 * happen under the ctx->completion_lock. That does not work with the
379 * migration workflow of MIGRATE_SYNC_NO_COPY.
381 if (mode
== MIGRATE_SYNC_NO_COPY
)
386 /* mapping->private_lock here protects against the kioctx teardown. */
387 spin_lock(&mapping
->private_lock
);
388 ctx
= mapping
->private_data
;
394 /* The ring_lock mutex. The prevents aio_read_events() from writing
395 * to the ring's head, and prevents page migration from mucking in
396 * a partially initialized kiotx.
398 if (!mutex_trylock(&ctx
->ring_lock
)) {
404 if (idx
< (pgoff_t
)ctx
->nr_pages
) {
405 /* Make sure the old page hasn't already been changed */
406 if (ctx
->ring_pages
[idx
] != old
)
414 /* Writeback must be complete */
415 BUG_ON(PageWriteback(old
));
418 rc
= migrate_page_move_mapping(mapping
, new, old
, mode
, 1);
419 if (rc
!= MIGRATEPAGE_SUCCESS
) {
424 /* Take completion_lock to prevent other writes to the ring buffer
425 * while the old page is copied to the new. This prevents new
426 * events from being lost.
428 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
429 migrate_page_copy(new, old
);
430 BUG_ON(ctx
->ring_pages
[idx
] != old
);
431 ctx
->ring_pages
[idx
] = new;
432 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
434 /* The old page is no longer accessible. */
438 mutex_unlock(&ctx
->ring_lock
);
440 spin_unlock(&mapping
->private_lock
);
445 static const struct address_space_operations aio_ctx_aops
= {
446 .set_page_dirty
= __set_page_dirty_no_writeback
,
447 #if IS_ENABLED(CONFIG_MIGRATION)
448 .migratepage
= aio_migratepage
,
452 static int aio_setup_ring(struct kioctx
*ctx
, unsigned int nr_events
)
454 struct aio_ring
*ring
;
455 struct mm_struct
*mm
= current
->mm
;
456 unsigned long size
, unused
;
461 /* Compensate for the ring buffer's head/tail overlap entry */
462 nr_events
+= 2; /* 1 is required, 2 for good luck */
464 size
= sizeof(struct aio_ring
);
465 size
+= sizeof(struct io_event
) * nr_events
;
467 nr_pages
= PFN_UP(size
);
471 file
= aio_private_file(ctx
, nr_pages
);
473 ctx
->aio_ring_file
= NULL
;
477 ctx
->aio_ring_file
= file
;
478 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
))
479 / sizeof(struct io_event
);
481 ctx
->ring_pages
= ctx
->internal_pages
;
482 if (nr_pages
> AIO_RING_PAGES
) {
483 ctx
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*),
485 if (!ctx
->ring_pages
) {
486 put_aio_ring_file(ctx
);
491 for (i
= 0; i
< nr_pages
; i
++) {
493 page
= find_or_create_page(file
->f_mapping
,
494 i
, GFP_HIGHUSER
| __GFP_ZERO
);
497 pr_debug("pid(%d) page[%d]->count=%d\n",
498 current
->pid
, i
, page_count(page
));
499 SetPageUptodate(page
);
502 ctx
->ring_pages
[i
] = page
;
506 if (unlikely(i
!= nr_pages
)) {
511 ctx
->mmap_size
= nr_pages
* PAGE_SIZE
;
512 pr_debug("attempting mmap of %lu bytes\n", ctx
->mmap_size
);
514 if (down_write_killable(&mm
->mmap_sem
)) {
520 ctx
->mmap_base
= do_mmap_pgoff(ctx
->aio_ring_file
, 0, ctx
->mmap_size
,
521 PROT_READ
| PROT_WRITE
,
522 MAP_SHARED
, 0, &unused
, NULL
);
523 up_write(&mm
->mmap_sem
);
524 if (IS_ERR((void *)ctx
->mmap_base
)) {
530 pr_debug("mmap address: 0x%08lx\n", ctx
->mmap_base
);
532 ctx
->user_id
= ctx
->mmap_base
;
533 ctx
->nr_events
= nr_events
; /* trusted copy */
535 ring
= kmap_atomic(ctx
->ring_pages
[0]);
536 ring
->nr
= nr_events
; /* user copy */
538 ring
->head
= ring
->tail
= 0;
539 ring
->magic
= AIO_RING_MAGIC
;
540 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
541 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
542 ring
->header_length
= sizeof(struct aio_ring
);
544 flush_dcache_page(ctx
->ring_pages
[0]);
549 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
550 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
551 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
553 void kiocb_set_cancel_fn(struct kiocb
*iocb
, kiocb_cancel_fn
*cancel
)
555 struct aio_kiocb
*req
= container_of(iocb
, struct aio_kiocb
, rw
);
556 struct kioctx
*ctx
= req
->ki_ctx
;
559 if (WARN_ON_ONCE(!list_empty(&req
->ki_list
)))
562 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
563 list_add_tail(&req
->ki_list
, &ctx
->active_reqs
);
564 req
->ki_cancel
= cancel
;
565 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
567 EXPORT_SYMBOL(kiocb_set_cancel_fn
);
570 * free_ioctx() should be RCU delayed to synchronize against the RCU
571 * protected lookup_ioctx() and also needs process context to call
572 * aio_free_ring(). Use rcu_work.
574 static void free_ioctx(struct work_struct
*work
)
576 struct kioctx
*ctx
= container_of(to_rcu_work(work
), struct kioctx
,
578 pr_debug("freeing %p\n", ctx
);
581 free_percpu(ctx
->cpu
);
582 percpu_ref_exit(&ctx
->reqs
);
583 percpu_ref_exit(&ctx
->users
);
584 kmem_cache_free(kioctx_cachep
, ctx
);
587 static void free_ioctx_reqs(struct percpu_ref
*ref
)
589 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, reqs
);
591 /* At this point we know that there are no any in-flight requests */
592 if (ctx
->rq_wait
&& atomic_dec_and_test(&ctx
->rq_wait
->count
))
593 complete(&ctx
->rq_wait
->comp
);
595 /* Synchronize against RCU protected table->table[] dereferences */
596 INIT_RCU_WORK(&ctx
->free_rwork
, free_ioctx
);
597 queue_rcu_work(system_wq
, &ctx
->free_rwork
);
601 * When this function runs, the kioctx has been removed from the "hash table"
602 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
603 * now it's safe to cancel any that need to be.
605 static void free_ioctx_users(struct percpu_ref
*ref
)
607 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, users
);
608 struct aio_kiocb
*req
;
610 spin_lock_irq(&ctx
->ctx_lock
);
612 while (!list_empty(&ctx
->active_reqs
)) {
613 req
= list_first_entry(&ctx
->active_reqs
,
614 struct aio_kiocb
, ki_list
);
615 req
->ki_cancel(&req
->rw
);
616 list_del_init(&req
->ki_list
);
619 spin_unlock_irq(&ctx
->ctx_lock
);
621 percpu_ref_kill(&ctx
->reqs
);
622 percpu_ref_put(&ctx
->reqs
);
625 static int ioctx_add_table(struct kioctx
*ctx
, struct mm_struct
*mm
)
628 struct kioctx_table
*table
, *old
;
629 struct aio_ring
*ring
;
631 spin_lock(&mm
->ioctx_lock
);
632 table
= rcu_dereference_raw(mm
->ioctx_table
);
636 for (i
= 0; i
< table
->nr
; i
++)
637 if (!rcu_access_pointer(table
->table
[i
])) {
639 rcu_assign_pointer(table
->table
[i
], ctx
);
640 spin_unlock(&mm
->ioctx_lock
);
642 /* While kioctx setup is in progress,
643 * we are protected from page migration
644 * changes ring_pages by ->ring_lock.
646 ring
= kmap_atomic(ctx
->ring_pages
[0]);
652 new_nr
= (table
? table
->nr
: 1) * 4;
653 spin_unlock(&mm
->ioctx_lock
);
655 table
= kzalloc(sizeof(*table
) + sizeof(struct kioctx
*) *
662 spin_lock(&mm
->ioctx_lock
);
663 old
= rcu_dereference_raw(mm
->ioctx_table
);
666 rcu_assign_pointer(mm
->ioctx_table
, table
);
667 } else if (table
->nr
> old
->nr
) {
668 memcpy(table
->table
, old
->table
,
669 old
->nr
* sizeof(struct kioctx
*));
671 rcu_assign_pointer(mm
->ioctx_table
, table
);
680 static void aio_nr_sub(unsigned nr
)
682 spin_lock(&aio_nr_lock
);
683 if (WARN_ON(aio_nr
- nr
> aio_nr
))
687 spin_unlock(&aio_nr_lock
);
691 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
693 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
695 struct mm_struct
*mm
= current
->mm
;
700 * Store the original nr_events -- what userspace passed to io_setup(),
701 * for counting against the global limit -- before it changes.
703 unsigned int max_reqs
= nr_events
;
706 * We keep track of the number of available ringbuffer slots, to prevent
707 * overflow (reqs_available), and we also use percpu counters for this.
709 * So since up to half the slots might be on other cpu's percpu counters
710 * and unavailable, double nr_events so userspace sees what they
711 * expected: additionally, we move req_batch slots to/from percpu
712 * counters at a time, so make sure that isn't 0:
714 nr_events
= max(nr_events
, num_possible_cpus() * 4);
717 /* Prevent overflows */
718 if (nr_events
> (0x10000000U
/ sizeof(struct io_event
))) {
719 pr_debug("ENOMEM: nr_events too high\n");
720 return ERR_PTR(-EINVAL
);
723 if (!nr_events
|| (unsigned long)max_reqs
> aio_max_nr
)
724 return ERR_PTR(-EAGAIN
);
726 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
728 return ERR_PTR(-ENOMEM
);
730 ctx
->max_reqs
= max_reqs
;
732 spin_lock_init(&ctx
->ctx_lock
);
733 spin_lock_init(&ctx
->completion_lock
);
734 mutex_init(&ctx
->ring_lock
);
735 /* Protect against page migration throughout kiotx setup by keeping
736 * the ring_lock mutex held until setup is complete. */
737 mutex_lock(&ctx
->ring_lock
);
738 init_waitqueue_head(&ctx
->wait
);
740 INIT_LIST_HEAD(&ctx
->active_reqs
);
742 if (percpu_ref_init(&ctx
->users
, free_ioctx_users
, 0, GFP_KERNEL
))
745 if (percpu_ref_init(&ctx
->reqs
, free_ioctx_reqs
, 0, GFP_KERNEL
))
748 ctx
->cpu
= alloc_percpu(struct kioctx_cpu
);
752 err
= aio_setup_ring(ctx
, nr_events
);
756 atomic_set(&ctx
->reqs_available
, ctx
->nr_events
- 1);
757 ctx
->req_batch
= (ctx
->nr_events
- 1) / (num_possible_cpus() * 4);
758 if (ctx
->req_batch
< 1)
761 /* limit the number of system wide aios */
762 spin_lock(&aio_nr_lock
);
763 if (aio_nr
+ ctx
->max_reqs
> aio_max_nr
||
764 aio_nr
+ ctx
->max_reqs
< aio_nr
) {
765 spin_unlock(&aio_nr_lock
);
769 aio_nr
+= ctx
->max_reqs
;
770 spin_unlock(&aio_nr_lock
);
772 percpu_ref_get(&ctx
->users
); /* io_setup() will drop this ref */
773 percpu_ref_get(&ctx
->reqs
); /* free_ioctx_users() will drop this */
775 err
= ioctx_add_table(ctx
, mm
);
779 /* Release the ring_lock mutex now that all setup is complete. */
780 mutex_unlock(&ctx
->ring_lock
);
782 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
783 ctx
, ctx
->user_id
, mm
, ctx
->nr_events
);
787 aio_nr_sub(ctx
->max_reqs
);
789 atomic_set(&ctx
->dead
, 1);
791 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
794 mutex_unlock(&ctx
->ring_lock
);
795 free_percpu(ctx
->cpu
);
796 percpu_ref_exit(&ctx
->reqs
);
797 percpu_ref_exit(&ctx
->users
);
798 kmem_cache_free(kioctx_cachep
, ctx
);
799 pr_debug("error allocating ioctx %d\n", err
);
804 * Cancels all outstanding aio requests on an aio context. Used
805 * when the processes owning a context have all exited to encourage
806 * the rapid destruction of the kioctx.
808 static int kill_ioctx(struct mm_struct
*mm
, struct kioctx
*ctx
,
809 struct ctx_rq_wait
*wait
)
811 struct kioctx_table
*table
;
813 spin_lock(&mm
->ioctx_lock
);
814 if (atomic_xchg(&ctx
->dead
, 1)) {
815 spin_unlock(&mm
->ioctx_lock
);
819 table
= rcu_dereference_raw(mm
->ioctx_table
);
820 WARN_ON(ctx
!= rcu_access_pointer(table
->table
[ctx
->id
]));
821 RCU_INIT_POINTER(table
->table
[ctx
->id
], NULL
);
822 spin_unlock(&mm
->ioctx_lock
);
824 /* free_ioctx_reqs() will do the necessary RCU synchronization */
825 wake_up_all(&ctx
->wait
);
828 * It'd be more correct to do this in free_ioctx(), after all
829 * the outstanding kiocbs have finished - but by then io_destroy
830 * has already returned, so io_setup() could potentially return
831 * -EAGAIN with no ioctxs actually in use (as far as userspace
834 aio_nr_sub(ctx
->max_reqs
);
837 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
840 percpu_ref_kill(&ctx
->users
);
845 * exit_aio: called when the last user of mm goes away. At this point, there is
846 * no way for any new requests to be submited or any of the io_* syscalls to be
847 * called on the context.
849 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
852 void exit_aio(struct mm_struct
*mm
)
854 struct kioctx_table
*table
= rcu_dereference_raw(mm
->ioctx_table
);
855 struct ctx_rq_wait wait
;
861 atomic_set(&wait
.count
, table
->nr
);
862 init_completion(&wait
.comp
);
865 for (i
= 0; i
< table
->nr
; ++i
) {
867 rcu_dereference_protected(table
->table
[i
], true);
875 * We don't need to bother with munmap() here - exit_mmap(mm)
876 * is coming and it'll unmap everything. And we simply can't,
877 * this is not necessarily our ->mm.
878 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
879 * that it needs to unmap the area, just set it to 0.
882 kill_ioctx(mm
, ctx
, &wait
);
885 if (!atomic_sub_and_test(skipped
, &wait
.count
)) {
886 /* Wait until all IO for the context are done. */
887 wait_for_completion(&wait
.comp
);
890 RCU_INIT_POINTER(mm
->ioctx_table
, NULL
);
894 static void put_reqs_available(struct kioctx
*ctx
, unsigned nr
)
896 struct kioctx_cpu
*kcpu
;
899 local_irq_save(flags
);
900 kcpu
= this_cpu_ptr(ctx
->cpu
);
901 kcpu
->reqs_available
+= nr
;
903 while (kcpu
->reqs_available
>= ctx
->req_batch
* 2) {
904 kcpu
->reqs_available
-= ctx
->req_batch
;
905 atomic_add(ctx
->req_batch
, &ctx
->reqs_available
);
908 local_irq_restore(flags
);
911 static bool __get_reqs_available(struct kioctx
*ctx
)
913 struct kioctx_cpu
*kcpu
;
917 local_irq_save(flags
);
918 kcpu
= this_cpu_ptr(ctx
->cpu
);
919 if (!kcpu
->reqs_available
) {
920 int old
, avail
= atomic_read(&ctx
->reqs_available
);
923 if (avail
< ctx
->req_batch
)
927 avail
= atomic_cmpxchg(&ctx
->reqs_available
,
928 avail
, avail
- ctx
->req_batch
);
929 } while (avail
!= old
);
931 kcpu
->reqs_available
+= ctx
->req_batch
;
935 kcpu
->reqs_available
--;
937 local_irq_restore(flags
);
941 /* refill_reqs_available
942 * Updates the reqs_available reference counts used for tracking the
943 * number of free slots in the completion ring. This can be called
944 * from aio_complete() (to optimistically update reqs_available) or
945 * from aio_get_req() (the we're out of events case). It must be
946 * called holding ctx->completion_lock.
948 static void refill_reqs_available(struct kioctx
*ctx
, unsigned head
,
951 unsigned events_in_ring
, completed
;
953 /* Clamp head since userland can write to it. */
954 head
%= ctx
->nr_events
;
956 events_in_ring
= tail
- head
;
958 events_in_ring
= ctx
->nr_events
- (head
- tail
);
960 completed
= ctx
->completed_events
;
961 if (events_in_ring
< completed
)
962 completed
-= events_in_ring
;
969 ctx
->completed_events
-= completed
;
970 put_reqs_available(ctx
, completed
);
973 /* user_refill_reqs_available
974 * Called to refill reqs_available when aio_get_req() encounters an
975 * out of space in the completion ring.
977 static void user_refill_reqs_available(struct kioctx
*ctx
)
979 spin_lock_irq(&ctx
->completion_lock
);
980 if (ctx
->completed_events
) {
981 struct aio_ring
*ring
;
984 /* Access of ring->head may race with aio_read_events_ring()
985 * here, but that's okay since whether we read the old version
986 * or the new version, and either will be valid. The important
987 * part is that head cannot pass tail since we prevent
988 * aio_complete() from updating tail by holding
989 * ctx->completion_lock. Even if head is invalid, the check
990 * against ctx->completed_events below will make sure we do the
993 ring
= kmap_atomic(ctx
->ring_pages
[0]);
997 refill_reqs_available(ctx
, head
, ctx
->tail
);
1000 spin_unlock_irq(&ctx
->completion_lock
);
1003 static bool get_reqs_available(struct kioctx
*ctx
)
1005 if (__get_reqs_available(ctx
))
1007 user_refill_reqs_available(ctx
);
1008 return __get_reqs_available(ctx
);
1012 * Allocate a slot for an aio request.
1013 * Returns NULL if no requests are free.
1015 static inline struct aio_kiocb
*aio_get_req(struct kioctx
*ctx
)
1017 struct aio_kiocb
*req
;
1019 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
1023 percpu_ref_get(&ctx
->reqs
);
1025 INIT_LIST_HEAD(&req
->ki_list
);
1026 refcount_set(&req
->ki_refcnt
, 0);
1027 req
->ki_eventfd
= NULL
;
1031 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
1033 struct aio_ring __user
*ring
= (void __user
*)ctx_id
;
1034 struct mm_struct
*mm
= current
->mm
;
1035 struct kioctx
*ctx
, *ret
= NULL
;
1036 struct kioctx_table
*table
;
1039 if (get_user(id
, &ring
->id
))
1043 table
= rcu_dereference(mm
->ioctx_table
);
1045 if (!table
|| id
>= table
->nr
)
1048 id
= array_index_nospec(id
, table
->nr
);
1049 ctx
= rcu_dereference(table
->table
[id
]);
1050 if (ctx
&& ctx
->user_id
== ctx_id
) {
1051 if (percpu_ref_tryget_live(&ctx
->users
))
1059 static inline void iocb_put(struct aio_kiocb
*iocb
)
1061 if (refcount_read(&iocb
->ki_refcnt
) == 0 ||
1062 refcount_dec_and_test(&iocb
->ki_refcnt
)) {
1063 percpu_ref_put(&iocb
->ki_ctx
->reqs
);
1064 kmem_cache_free(kiocb_cachep
, iocb
);
1068 static void aio_fill_event(struct io_event
*ev
, struct aio_kiocb
*iocb
,
1069 long res
, long res2
)
1071 ev
->obj
= (u64
)(unsigned long)iocb
->ki_user_iocb
;
1072 ev
->data
= iocb
->ki_user_data
;
1078 * Called when the io request on the given iocb is complete.
1080 static void aio_complete(struct aio_kiocb
*iocb
, long res
, long res2
)
1082 struct kioctx
*ctx
= iocb
->ki_ctx
;
1083 struct aio_ring
*ring
;
1084 struct io_event
*ev_page
, *event
;
1085 unsigned tail
, pos
, head
;
1086 unsigned long flags
;
1089 * Add a completion event to the ring buffer. Must be done holding
1090 * ctx->completion_lock to prevent other code from messing with the tail
1091 * pointer since we might be called from irq context.
1093 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
1096 pos
= tail
+ AIO_EVENTS_OFFSET
;
1098 if (++tail
>= ctx
->nr_events
)
1101 ev_page
= kmap_atomic(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1102 event
= ev_page
+ pos
% AIO_EVENTS_PER_PAGE
;
1104 aio_fill_event(event
, iocb
, res
, res2
);
1106 kunmap_atomic(ev_page
);
1107 flush_dcache_page(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1109 pr_debug("%p[%u]: %p: %p %Lx %lx %lx\n",
1110 ctx
, tail
, iocb
, iocb
->ki_user_iocb
, iocb
->ki_user_data
,
1113 /* after flagging the request as done, we
1114 * must never even look at it again
1116 smp_wmb(); /* make event visible before updating tail */
1120 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1123 kunmap_atomic(ring
);
1124 flush_dcache_page(ctx
->ring_pages
[0]);
1126 ctx
->completed_events
++;
1127 if (ctx
->completed_events
> 1)
1128 refill_reqs_available(ctx
, head
, tail
);
1129 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
1131 pr_debug("added to ring %p at [%u]\n", iocb
, tail
);
1134 * Check if the user asked us to deliver the result through an
1135 * eventfd. The eventfd_signal() function is safe to be called
1138 if (iocb
->ki_eventfd
) {
1139 eventfd_signal(iocb
->ki_eventfd
, 1);
1140 eventfd_ctx_put(iocb
->ki_eventfd
);
1144 * We have to order our ring_info tail store above and test
1145 * of the wait list below outside the wait lock. This is
1146 * like in wake_up_bit() where clearing a bit has to be
1147 * ordered with the unlocked test.
1151 if (waitqueue_active(&ctx
->wait
))
1152 wake_up(&ctx
->wait
);
1156 /* aio_read_events_ring
1157 * Pull an event off of the ioctx's event ring. Returns the number of
1160 static long aio_read_events_ring(struct kioctx
*ctx
,
1161 struct io_event __user
*event
, long nr
)
1163 struct aio_ring
*ring
;
1164 unsigned head
, tail
, pos
;
1169 * The mutex can block and wake us up and that will cause
1170 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1171 * and repeat. This should be rare enough that it doesn't cause
1172 * peformance issues. See the comment in read_events() for more detail.
1174 sched_annotate_sleep();
1175 mutex_lock(&ctx
->ring_lock
);
1177 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1178 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1181 kunmap_atomic(ring
);
1184 * Ensure that once we've read the current tail pointer, that
1185 * we also see the events that were stored up to the tail.
1189 pr_debug("h%u t%u m%u\n", head
, tail
, ctx
->nr_events
);
1194 head
%= ctx
->nr_events
;
1195 tail
%= ctx
->nr_events
;
1199 struct io_event
*ev
;
1202 avail
= (head
<= tail
? tail
: ctx
->nr_events
) - head
;
1206 pos
= head
+ AIO_EVENTS_OFFSET
;
1207 page
= ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
];
1208 pos
%= AIO_EVENTS_PER_PAGE
;
1210 avail
= min(avail
, nr
- ret
);
1211 avail
= min_t(long, avail
, AIO_EVENTS_PER_PAGE
- pos
);
1214 copy_ret
= copy_to_user(event
+ ret
, ev
+ pos
,
1215 sizeof(*ev
) * avail
);
1218 if (unlikely(copy_ret
)) {
1225 head
%= ctx
->nr_events
;
1228 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1230 kunmap_atomic(ring
);
1231 flush_dcache_page(ctx
->ring_pages
[0]);
1233 pr_debug("%li h%u t%u\n", ret
, head
, tail
);
1235 mutex_unlock(&ctx
->ring_lock
);
1240 static bool aio_read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1241 struct io_event __user
*event
, long *i
)
1243 long ret
= aio_read_events_ring(ctx
, event
+ *i
, nr
- *i
);
1248 if (unlikely(atomic_read(&ctx
->dead
)))
1254 return ret
< 0 || *i
>= min_nr
;
1257 static long read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1258 struct io_event __user
*event
,
1264 * Note that aio_read_events() is being called as the conditional - i.e.
1265 * we're calling it after prepare_to_wait() has set task state to
1266 * TASK_INTERRUPTIBLE.
1268 * But aio_read_events() can block, and if it blocks it's going to flip
1269 * the task state back to TASK_RUNNING.
1271 * This should be ok, provided it doesn't flip the state back to
1272 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1273 * will only happen if the mutex_lock() call blocks, and we then find
1274 * the ringbuffer empty. So in practice we should be ok, but it's
1275 * something to be aware of when touching this code.
1278 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
);
1280 wait_event_interruptible_hrtimeout(ctx
->wait
,
1281 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
),
1287 * Create an aio_context capable of receiving at least nr_events.
1288 * ctxp must not point to an aio_context that already exists, and
1289 * must be initialized to 0 prior to the call. On successful
1290 * creation of the aio_context, *ctxp is filled in with the resulting
1291 * handle. May fail with -EINVAL if *ctxp is not initialized,
1292 * if the specified nr_events exceeds internal limits. May fail
1293 * with -EAGAIN if the specified nr_events exceeds the user's limit
1294 * of available events. May fail with -ENOMEM if insufficient kernel
1295 * resources are available. May fail with -EFAULT if an invalid
1296 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1299 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1301 struct kioctx
*ioctx
= NULL
;
1305 ret
= get_user(ctx
, ctxp
);
1310 if (unlikely(ctx
|| nr_events
== 0)) {
1311 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1316 ioctx
= ioctx_alloc(nr_events
);
1317 ret
= PTR_ERR(ioctx
);
1318 if (!IS_ERR(ioctx
)) {
1319 ret
= put_user(ioctx
->user_id
, ctxp
);
1321 kill_ioctx(current
->mm
, ioctx
, NULL
);
1322 percpu_ref_put(&ioctx
->users
);
1329 #ifdef CONFIG_COMPAT
1330 COMPAT_SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, u32 __user
*, ctx32p
)
1332 struct kioctx
*ioctx
= NULL
;
1336 ret
= get_user(ctx
, ctx32p
);
1341 if (unlikely(ctx
|| nr_events
== 0)) {
1342 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1347 ioctx
= ioctx_alloc(nr_events
);
1348 ret
= PTR_ERR(ioctx
);
1349 if (!IS_ERR(ioctx
)) {
1350 /* truncating is ok because it's a user address */
1351 ret
= put_user((u32
)ioctx
->user_id
, ctx32p
);
1353 kill_ioctx(current
->mm
, ioctx
, NULL
);
1354 percpu_ref_put(&ioctx
->users
);
1363 * Destroy the aio_context specified. May cancel any outstanding
1364 * AIOs and block on completion. Will fail with -ENOSYS if not
1365 * implemented. May fail with -EINVAL if the context pointed to
1368 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1370 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1371 if (likely(NULL
!= ioctx
)) {
1372 struct ctx_rq_wait wait
;
1375 init_completion(&wait
.comp
);
1376 atomic_set(&wait
.count
, 1);
1378 /* Pass requests_done to kill_ioctx() where it can be set
1379 * in a thread-safe way. If we try to set it here then we have
1380 * a race condition if two io_destroy() called simultaneously.
1382 ret
= kill_ioctx(current
->mm
, ioctx
, &wait
);
1383 percpu_ref_put(&ioctx
->users
);
1385 /* Wait until all IO for the context are done. Otherwise kernel
1386 * keep using user-space buffers even if user thinks the context
1390 wait_for_completion(&wait
.comp
);
1394 pr_debug("EINVAL: invalid context id\n");
1398 static void aio_remove_iocb(struct aio_kiocb
*iocb
)
1400 struct kioctx
*ctx
= iocb
->ki_ctx
;
1401 unsigned long flags
;
1403 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
1404 list_del(&iocb
->ki_list
);
1405 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1408 static void aio_complete_rw(struct kiocb
*kiocb
, long res
, long res2
)
1410 struct aio_kiocb
*iocb
= container_of(kiocb
, struct aio_kiocb
, rw
);
1412 if (!list_empty_careful(&iocb
->ki_list
))
1413 aio_remove_iocb(iocb
);
1415 if (kiocb
->ki_flags
& IOCB_WRITE
) {
1416 struct inode
*inode
= file_inode(kiocb
->ki_filp
);
1419 * Tell lockdep we inherited freeze protection from submission
1422 if (S_ISREG(inode
->i_mode
))
1423 __sb_writers_acquired(inode
->i_sb
, SB_FREEZE_WRITE
);
1424 file_end_write(kiocb
->ki_filp
);
1427 fput(kiocb
->ki_filp
);
1428 aio_complete(iocb
, res
, res2
);
1431 static int aio_prep_rw(struct kiocb
*req
, const struct iocb
*iocb
)
1435 req
->ki_filp
= fget(iocb
->aio_fildes
);
1436 if (unlikely(!req
->ki_filp
))
1438 req
->ki_complete
= aio_complete_rw
;
1439 req
->ki_pos
= iocb
->aio_offset
;
1440 req
->ki_flags
= iocb_flags(req
->ki_filp
);
1441 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
)
1442 req
->ki_flags
|= IOCB_EVENTFD
;
1443 req
->ki_hint
= ki_hint_validate(file_write_hint(req
->ki_filp
));
1444 if (iocb
->aio_flags
& IOCB_FLAG_IOPRIO
) {
1446 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1447 * aio_reqprio is interpreted as an I/O scheduling
1448 * class and priority.
1450 ret
= ioprio_check_cap(iocb
->aio_reqprio
);
1452 pr_debug("aio ioprio check cap error: %d\n", ret
);
1456 req
->ki_ioprio
= iocb
->aio_reqprio
;
1458 req
->ki_ioprio
= get_current_ioprio();
1460 ret
= kiocb_set_rw_flags(req
, iocb
->aio_rw_flags
);
1464 req
->ki_flags
&= ~IOCB_HIPRI
; /* no one is going to poll for this I/O */
1472 static int aio_setup_rw(int rw
, const struct iocb
*iocb
, struct iovec
**iovec
,
1473 bool vectored
, bool compat
, struct iov_iter
*iter
)
1475 void __user
*buf
= (void __user
*)(uintptr_t)iocb
->aio_buf
;
1476 size_t len
= iocb
->aio_nbytes
;
1479 ssize_t ret
= import_single_range(rw
, buf
, len
, *iovec
, iter
);
1483 #ifdef CONFIG_COMPAT
1485 return compat_import_iovec(rw
, buf
, len
, UIO_FASTIOV
, iovec
,
1488 return import_iovec(rw
, buf
, len
, UIO_FASTIOV
, iovec
, iter
);
1491 static inline void aio_rw_done(struct kiocb
*req
, ssize_t ret
)
1497 case -ERESTARTNOINTR
:
1498 case -ERESTARTNOHAND
:
1499 case -ERESTART_RESTARTBLOCK
:
1501 * There's no easy way to restart the syscall since other AIO's
1502 * may be already running. Just fail this IO with EINTR.
1507 req
->ki_complete(req
, ret
, 0);
1511 static ssize_t
aio_read(struct kiocb
*req
, const struct iocb
*iocb
,
1512 bool vectored
, bool compat
)
1514 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1515 struct iov_iter iter
;
1519 ret
= aio_prep_rw(req
, iocb
);
1522 file
= req
->ki_filp
;
1525 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1528 if (unlikely(!file
->f_op
->read_iter
))
1531 ret
= aio_setup_rw(READ
, iocb
, &iovec
, vectored
, compat
, &iter
);
1534 ret
= rw_verify_area(READ
, file
, &req
->ki_pos
, iov_iter_count(&iter
));
1536 aio_rw_done(req
, call_read_iter(file
, req
, &iter
));
1544 static ssize_t
aio_write(struct kiocb
*req
, const struct iocb
*iocb
,
1545 bool vectored
, bool compat
)
1547 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1548 struct iov_iter iter
;
1552 ret
= aio_prep_rw(req
, iocb
);
1555 file
= req
->ki_filp
;
1558 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1561 if (unlikely(!file
->f_op
->write_iter
))
1564 ret
= aio_setup_rw(WRITE
, iocb
, &iovec
, vectored
, compat
, &iter
);
1567 ret
= rw_verify_area(WRITE
, file
, &req
->ki_pos
, iov_iter_count(&iter
));
1570 * Open-code file_start_write here to grab freeze protection,
1571 * which will be released by another thread in
1572 * aio_complete_rw(). Fool lockdep by telling it the lock got
1573 * released so that it doesn't complain about the held lock when
1574 * we return to userspace.
1576 if (S_ISREG(file_inode(file
)->i_mode
)) {
1577 __sb_start_write(file_inode(file
)->i_sb
, SB_FREEZE_WRITE
, true);
1578 __sb_writers_release(file_inode(file
)->i_sb
, SB_FREEZE_WRITE
);
1580 req
->ki_flags
|= IOCB_WRITE
;
1581 aio_rw_done(req
, call_write_iter(file
, req
, &iter
));
1590 static void aio_fsync_work(struct work_struct
*work
)
1592 struct fsync_iocb
*req
= container_of(work
, struct fsync_iocb
, work
);
1595 ret
= vfs_fsync(req
->file
, req
->datasync
);
1597 aio_complete(container_of(req
, struct aio_kiocb
, fsync
), ret
, 0);
1600 static int aio_fsync(struct fsync_iocb
*req
, const struct iocb
*iocb
,
1603 if (unlikely(iocb
->aio_buf
|| iocb
->aio_offset
|| iocb
->aio_nbytes
||
1604 iocb
->aio_rw_flags
))
1607 req
->file
= fget(iocb
->aio_fildes
);
1608 if (unlikely(!req
->file
))
1610 if (unlikely(!req
->file
->f_op
->fsync
)) {
1615 req
->datasync
= datasync
;
1616 INIT_WORK(&req
->work
, aio_fsync_work
);
1617 schedule_work(&req
->work
);
1621 static inline void aio_poll_complete(struct aio_kiocb
*iocb
, __poll_t mask
)
1623 struct file
*file
= iocb
->poll
.file
;
1625 aio_complete(iocb
, mangle_poll(mask
), 0);
1629 static void aio_poll_complete_work(struct work_struct
*work
)
1631 struct poll_iocb
*req
= container_of(work
, struct poll_iocb
, work
);
1632 struct aio_kiocb
*iocb
= container_of(req
, struct aio_kiocb
, poll
);
1633 struct poll_table_struct pt
= { ._key
= req
->events
};
1634 struct kioctx
*ctx
= iocb
->ki_ctx
;
1637 if (!READ_ONCE(req
->cancelled
))
1638 mask
= vfs_poll(req
->file
, &pt
) & req
->events
;
1641 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1642 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1643 * synchronize with them. In the cancellation case the list_del_init
1644 * itself is not actually needed, but harmless so we keep it in to
1645 * avoid further branches in the fast path.
1647 spin_lock_irq(&ctx
->ctx_lock
);
1648 if (!mask
&& !READ_ONCE(req
->cancelled
)) {
1649 add_wait_queue(req
->head
, &req
->wait
);
1650 spin_unlock_irq(&ctx
->ctx_lock
);
1653 list_del_init(&iocb
->ki_list
);
1654 spin_unlock_irq(&ctx
->ctx_lock
);
1656 aio_poll_complete(iocb
, mask
);
1659 /* assumes we are called with irqs disabled */
1660 static int aio_poll_cancel(struct kiocb
*iocb
)
1662 struct aio_kiocb
*aiocb
= container_of(iocb
, struct aio_kiocb
, rw
);
1663 struct poll_iocb
*req
= &aiocb
->poll
;
1665 spin_lock(&req
->head
->lock
);
1666 WRITE_ONCE(req
->cancelled
, true);
1667 if (!list_empty(&req
->wait
.entry
)) {
1668 list_del_init(&req
->wait
.entry
);
1669 schedule_work(&aiocb
->poll
.work
);
1671 spin_unlock(&req
->head
->lock
);
1676 static int aio_poll_wake(struct wait_queue_entry
*wait
, unsigned mode
, int sync
,
1679 struct poll_iocb
*req
= container_of(wait
, struct poll_iocb
, wait
);
1680 struct aio_kiocb
*iocb
= container_of(req
, struct aio_kiocb
, poll
);
1681 __poll_t mask
= key_to_poll(key
);
1685 /* for instances that support it check for an event match first: */
1687 if (!(mask
& req
->events
))
1690 /* try to complete the iocb inline if we can: */
1691 if (spin_trylock(&iocb
->ki_ctx
->ctx_lock
)) {
1692 list_del(&iocb
->ki_list
);
1693 spin_unlock(&iocb
->ki_ctx
->ctx_lock
);
1695 list_del_init(&req
->wait
.entry
);
1696 aio_poll_complete(iocb
, mask
);
1701 list_del_init(&req
->wait
.entry
);
1702 schedule_work(&req
->work
);
1706 struct aio_poll_table
{
1707 struct poll_table_struct pt
;
1708 struct aio_kiocb
*iocb
;
1713 aio_poll_queue_proc(struct file
*file
, struct wait_queue_head
*head
,
1714 struct poll_table_struct
*p
)
1716 struct aio_poll_table
*pt
= container_of(p
, struct aio_poll_table
, pt
);
1718 /* multiple wait queues per file are not supported */
1719 if (unlikely(pt
->iocb
->poll
.head
)) {
1720 pt
->error
= -EINVAL
;
1725 pt
->iocb
->poll
.head
= head
;
1726 add_wait_queue(head
, &pt
->iocb
->poll
.wait
);
1729 static ssize_t
aio_poll(struct aio_kiocb
*aiocb
, const struct iocb
*iocb
)
1731 struct kioctx
*ctx
= aiocb
->ki_ctx
;
1732 struct poll_iocb
*req
= &aiocb
->poll
;
1733 struct aio_poll_table apt
;
1736 /* reject any unknown events outside the normal event mask. */
1737 if ((u16
)iocb
->aio_buf
!= iocb
->aio_buf
)
1739 /* reject fields that are not defined for poll */
1740 if (iocb
->aio_offset
|| iocb
->aio_nbytes
|| iocb
->aio_rw_flags
)
1743 INIT_WORK(&req
->work
, aio_poll_complete_work
);
1744 req
->events
= demangle_poll(iocb
->aio_buf
) | EPOLLERR
| EPOLLHUP
;
1745 req
->file
= fget(iocb
->aio_fildes
);
1746 if (unlikely(!req
->file
))
1751 req
->cancelled
= false;
1753 apt
.pt
._qproc
= aio_poll_queue_proc
;
1754 apt
.pt
._key
= req
->events
;
1756 apt
.error
= -EINVAL
; /* same as no support for IOCB_CMD_POLL */
1758 /* initialized the list so that we can do list_empty checks */
1759 INIT_LIST_HEAD(&req
->wait
.entry
);
1760 init_waitqueue_func_entry(&req
->wait
, aio_poll_wake
);
1762 /* one for removal from waitqueue, one for this function */
1763 refcount_set(&aiocb
->ki_refcnt
, 2);
1765 mask
= vfs_poll(req
->file
, &apt
.pt
) & req
->events
;
1766 if (unlikely(!req
->head
)) {
1767 /* we did not manage to set up a waitqueue, done */
1771 spin_lock_irq(&ctx
->ctx_lock
);
1772 spin_lock(&req
->head
->lock
);
1774 /* wake_up context handles the rest */
1777 } else if (mask
|| apt
.error
) {
1778 /* if we get an error or a mask we are done */
1779 WARN_ON_ONCE(list_empty(&req
->wait
.entry
));
1780 list_del_init(&req
->wait
.entry
);
1782 /* actually waiting for an event */
1783 list_add_tail(&aiocb
->ki_list
, &ctx
->active_reqs
);
1784 aiocb
->ki_cancel
= aio_poll_cancel
;
1786 spin_unlock(&req
->head
->lock
);
1787 spin_unlock_irq(&ctx
->ctx_lock
);
1790 if (unlikely(apt
.error
)) {
1796 aio_poll_complete(aiocb
, mask
);
1801 static int __io_submit_one(struct kioctx
*ctx
, const struct iocb
*iocb
,
1802 struct iocb __user
*user_iocb
, bool compat
)
1804 struct aio_kiocb
*req
;
1807 /* enforce forwards compatibility on users */
1808 if (unlikely(iocb
->aio_reserved2
)) {
1809 pr_debug("EINVAL: reserve field set\n");
1813 /* prevent overflows */
1815 (iocb
->aio_buf
!= (unsigned long)iocb
->aio_buf
) ||
1816 (iocb
->aio_nbytes
!= (size_t)iocb
->aio_nbytes
) ||
1817 ((ssize_t
)iocb
->aio_nbytes
< 0)
1819 pr_debug("EINVAL: overflow check\n");
1823 if (!get_reqs_available(ctx
))
1827 req
= aio_get_req(ctx
);
1829 goto out_put_reqs_available
;
1831 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1833 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1834 * instance of the file* now. The file descriptor must be
1835 * an eventfd() fd, and will be signaled for each completed
1836 * event using the eventfd_signal() function.
1838 req
->ki_eventfd
= eventfd_ctx_fdget((int) iocb
->aio_resfd
);
1839 if (IS_ERR(req
->ki_eventfd
)) {
1840 ret
= PTR_ERR(req
->ki_eventfd
);
1841 req
->ki_eventfd
= NULL
;
1846 ret
= put_user(KIOCB_KEY
, &user_iocb
->aio_key
);
1847 if (unlikely(ret
)) {
1848 pr_debug("EFAULT: aio_key\n");
1852 req
->ki_user_iocb
= user_iocb
;
1853 req
->ki_user_data
= iocb
->aio_data
;
1855 switch (iocb
->aio_lio_opcode
) {
1856 case IOCB_CMD_PREAD
:
1857 ret
= aio_read(&req
->rw
, iocb
, false, compat
);
1859 case IOCB_CMD_PWRITE
:
1860 ret
= aio_write(&req
->rw
, iocb
, false, compat
);
1862 case IOCB_CMD_PREADV
:
1863 ret
= aio_read(&req
->rw
, iocb
, true, compat
);
1865 case IOCB_CMD_PWRITEV
:
1866 ret
= aio_write(&req
->rw
, iocb
, true, compat
);
1868 case IOCB_CMD_FSYNC
:
1869 ret
= aio_fsync(&req
->fsync
, iocb
, false);
1871 case IOCB_CMD_FDSYNC
:
1872 ret
= aio_fsync(&req
->fsync
, iocb
, true);
1875 ret
= aio_poll(req
, iocb
);
1878 pr_debug("invalid aio operation %d\n", iocb
->aio_lio_opcode
);
1884 * If ret is 0, we'd either done aio_complete() ourselves or have
1885 * arranged for that to be done asynchronously. Anything non-zero
1886 * means that we need to destroy req ourselves.
1892 if (req
->ki_eventfd
)
1893 eventfd_ctx_put(req
->ki_eventfd
);
1895 out_put_reqs_available
:
1896 put_reqs_available(ctx
, 1);
1900 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1905 if (unlikely(copy_from_user(&iocb
, user_iocb
, sizeof(iocb
))))
1908 return __io_submit_one(ctx
, &iocb
, user_iocb
, compat
);
1912 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1913 * the number of iocbs queued. May return -EINVAL if the aio_context
1914 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1915 * *iocbpp[0] is not properly initialized, if the operation specified
1916 * is invalid for the file descriptor in the iocb. May fail with
1917 * -EFAULT if any of the data structures point to invalid data. May
1918 * fail with -EBADF if the file descriptor specified in the first
1919 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1920 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1921 * fail with -ENOSYS if not implemented.
1923 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1924 struct iocb __user
* __user
*, iocbpp
)
1929 struct blk_plug plug
;
1931 if (unlikely(nr
< 0))
1934 ctx
= lookup_ioctx(ctx_id
);
1935 if (unlikely(!ctx
)) {
1936 pr_debug("EINVAL: invalid context id\n");
1940 if (nr
> ctx
->nr_events
)
1941 nr
= ctx
->nr_events
;
1943 if (nr
> AIO_PLUG_THRESHOLD
)
1944 blk_start_plug(&plug
);
1945 for (i
= 0; i
< nr
; i
++) {
1946 struct iocb __user
*user_iocb
;
1948 if (unlikely(get_user(user_iocb
, iocbpp
+ i
))) {
1953 ret
= io_submit_one(ctx
, user_iocb
, false);
1957 if (nr
> AIO_PLUG_THRESHOLD
)
1958 blk_finish_plug(&plug
);
1960 percpu_ref_put(&ctx
->users
);
1964 #ifdef CONFIG_COMPAT
1965 COMPAT_SYSCALL_DEFINE3(io_submit
, compat_aio_context_t
, ctx_id
,
1966 int, nr
, compat_uptr_t __user
*, iocbpp
)
1971 struct blk_plug plug
;
1973 if (unlikely(nr
< 0))
1976 ctx
= lookup_ioctx(ctx_id
);
1977 if (unlikely(!ctx
)) {
1978 pr_debug("EINVAL: invalid context id\n");
1982 if (nr
> ctx
->nr_events
)
1983 nr
= ctx
->nr_events
;
1985 if (nr
> AIO_PLUG_THRESHOLD
)
1986 blk_start_plug(&plug
);
1987 for (i
= 0; i
< nr
; i
++) {
1988 compat_uptr_t user_iocb
;
1990 if (unlikely(get_user(user_iocb
, iocbpp
+ i
))) {
1995 ret
= io_submit_one(ctx
, compat_ptr(user_iocb
), true);
1999 if (nr
> AIO_PLUG_THRESHOLD
)
2000 blk_finish_plug(&plug
);
2002 percpu_ref_put(&ctx
->users
);
2008 * Finds a given iocb for cancellation.
2010 static struct aio_kiocb
*
2011 lookup_kiocb(struct kioctx
*ctx
, struct iocb __user
*iocb
)
2013 struct aio_kiocb
*kiocb
;
2015 assert_spin_locked(&ctx
->ctx_lock
);
2017 /* TODO: use a hash or array, this sucks. */
2018 list_for_each_entry(kiocb
, &ctx
->active_reqs
, ki_list
) {
2019 if (kiocb
->ki_user_iocb
== iocb
)
2026 * Attempts to cancel an iocb previously passed to io_submit. If
2027 * the operation is successfully cancelled, the resulting event is
2028 * copied into the memory pointed to by result without being placed
2029 * into the completion queue and 0 is returned. May fail with
2030 * -EFAULT if any of the data structures pointed to are invalid.
2031 * May fail with -EINVAL if aio_context specified by ctx_id is
2032 * invalid. May fail with -EAGAIN if the iocb specified was not
2033 * cancelled. Will fail with -ENOSYS if not implemented.
2035 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
2036 struct io_event __user
*, result
)
2039 struct aio_kiocb
*kiocb
;
2043 if (unlikely(get_user(key
, &iocb
->aio_key
)))
2045 if (unlikely(key
!= KIOCB_KEY
))
2048 ctx
= lookup_ioctx(ctx_id
);
2052 spin_lock_irq(&ctx
->ctx_lock
);
2053 kiocb
= lookup_kiocb(ctx
, iocb
);
2055 ret
= kiocb
->ki_cancel(&kiocb
->rw
);
2056 list_del_init(&kiocb
->ki_list
);
2058 spin_unlock_irq(&ctx
->ctx_lock
);
2062 * The result argument is no longer used - the io_event is
2063 * always delivered via the ring buffer. -EINPROGRESS indicates
2064 * cancellation is progress:
2069 percpu_ref_put(&ctx
->users
);
2074 static long do_io_getevents(aio_context_t ctx_id
,
2077 struct io_event __user
*events
,
2078 struct timespec64
*ts
)
2080 ktime_t until
= ts
? timespec64_to_ktime(*ts
) : KTIME_MAX
;
2081 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
2084 if (likely(ioctx
)) {
2085 if (likely(min_nr
<= nr
&& min_nr
>= 0))
2086 ret
= read_events(ioctx
, min_nr
, nr
, events
, until
);
2087 percpu_ref_put(&ioctx
->users
);
2094 * Attempts to read at least min_nr events and up to nr events from
2095 * the completion queue for the aio_context specified by ctx_id. If
2096 * it succeeds, the number of read events is returned. May fail with
2097 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2098 * out of range, if timeout is out of range. May fail with -EFAULT
2099 * if any of the memory specified is invalid. May return 0 or
2100 * < min_nr if the timeout specified by timeout has elapsed
2101 * before sufficient events are available, where timeout == NULL
2102 * specifies an infinite timeout. Note that the timeout pointed to by
2103 * timeout is relative. Will fail with -ENOSYS if not implemented.
2105 #if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
2107 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
2110 struct io_event __user
*, events
,
2111 struct __kernel_timespec __user
*, timeout
)
2113 struct timespec64 ts
;
2116 if (timeout
&& unlikely(get_timespec64(&ts
, timeout
)))
2119 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &ts
: NULL
);
2120 if (!ret
&& signal_pending(current
))
2127 struct __aio_sigset
{
2128 const sigset_t __user
*sigmask
;
2132 SYSCALL_DEFINE6(io_pgetevents
,
2133 aio_context_t
, ctx_id
,
2136 struct io_event __user
*, events
,
2137 struct __kernel_timespec __user
*, timeout
,
2138 const struct __aio_sigset __user
*, usig
)
2140 struct __aio_sigset ksig
= { NULL
, };
2141 sigset_t ksigmask
, sigsaved
;
2142 struct timespec64 ts
;
2145 if (timeout
&& unlikely(get_timespec64(&ts
, timeout
)))
2148 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
2151 ret
= set_user_sigmask(ksig
.sigmask
, &ksigmask
, &sigsaved
, ksig
.sigsetsize
);
2155 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &ts
: NULL
);
2156 restore_user_sigmask(ksig
.sigmask
, &sigsaved
);
2157 if (signal_pending(current
) && !ret
)
2158 ret
= -ERESTARTNOHAND
;
2163 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2165 SYSCALL_DEFINE6(io_pgetevents_time32
,
2166 aio_context_t
, ctx_id
,
2169 struct io_event __user
*, events
,
2170 struct old_timespec32 __user
*, timeout
,
2171 const struct __aio_sigset __user
*, usig
)
2173 struct __aio_sigset ksig
= { NULL
, };
2174 sigset_t ksigmask
, sigsaved
;
2175 struct timespec64 ts
;
2178 if (timeout
&& unlikely(get_old_timespec32(&ts
, timeout
)))
2181 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
2185 ret
= set_user_sigmask(ksig
.sigmask
, &ksigmask
, &sigsaved
, ksig
.sigsetsize
);
2189 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &ts
: NULL
);
2190 restore_user_sigmask(ksig
.sigmask
, &sigsaved
);
2191 if (signal_pending(current
) && !ret
)
2192 ret
= -ERESTARTNOHAND
;
2199 #if defined(CONFIG_COMPAT_32BIT_TIME)
2201 COMPAT_SYSCALL_DEFINE5(io_getevents
, compat_aio_context_t
, ctx_id
,
2202 compat_long_t
, min_nr
,
2204 struct io_event __user
*, events
,
2205 struct old_timespec32 __user
*, timeout
)
2207 struct timespec64 t
;
2210 if (timeout
&& get_old_timespec32(&t
, timeout
))
2213 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &t
: NULL
);
2214 if (!ret
&& signal_pending(current
))
2221 #ifdef CONFIG_COMPAT
2223 struct __compat_aio_sigset
{
2224 compat_sigset_t __user
*sigmask
;
2225 compat_size_t sigsetsize
;
2228 #if defined(CONFIG_COMPAT_32BIT_TIME)
2230 COMPAT_SYSCALL_DEFINE6(io_pgetevents
,
2231 compat_aio_context_t
, ctx_id
,
2232 compat_long_t
, min_nr
,
2234 struct io_event __user
*, events
,
2235 struct old_timespec32 __user
*, timeout
,
2236 const struct __compat_aio_sigset __user
*, usig
)
2238 struct __compat_aio_sigset ksig
= { NULL
, };
2239 sigset_t ksigmask
, sigsaved
;
2240 struct timespec64 t
;
2243 if (timeout
&& get_old_timespec32(&t
, timeout
))
2246 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
2249 ret
= set_compat_user_sigmask(ksig
.sigmask
, &ksigmask
, &sigsaved
, ksig
.sigsetsize
);
2253 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &t
: NULL
);
2254 restore_user_sigmask(ksig
.sigmask
, &sigsaved
);
2255 if (signal_pending(current
) && !ret
)
2256 ret
= -ERESTARTNOHAND
;
2263 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64
,
2264 compat_aio_context_t
, ctx_id
,
2265 compat_long_t
, min_nr
,
2267 struct io_event __user
*, events
,
2268 struct __kernel_timespec __user
*, timeout
,
2269 const struct __compat_aio_sigset __user
*, usig
)
2271 struct __compat_aio_sigset ksig
= { NULL
, };
2272 sigset_t ksigmask
, sigsaved
;
2273 struct timespec64 t
;
2276 if (timeout
&& get_timespec64(&t
, timeout
))
2279 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
2282 ret
= set_compat_user_sigmask(ksig
.sigmask
, &ksigmask
, &sigsaved
, ksig
.sigsetsize
);
2286 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &t
: NULL
);
2287 restore_user_sigmask(ksig
.sigmask
, &sigsaved
);
2288 if (signal_pending(current
) && !ret
)
2289 ret
= -ERESTARTNOHAND
;