Merge tag 'xarray-4.20-rc7' of git://git.infradead.org/users/willy/linux-dax
[linux/fpc-iii.git] / fs / btrfs / scrub.c
blob902819d3cf41ab08b4e2edb88c0bad40c242a79b
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2011, 2012 STRATO. All rights reserved.
4 */
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include "ctree.h"
10 #include "volumes.h"
11 #include "disk-io.h"
12 #include "ordered-data.h"
13 #include "transaction.h"
14 #include "backref.h"
15 #include "extent_io.h"
16 #include "dev-replace.h"
17 #include "check-integrity.h"
18 #include "rcu-string.h"
19 #include "raid56.h"
22 * This is only the first step towards a full-features scrub. It reads all
23 * extent and super block and verifies the checksums. In case a bad checksum
24 * is found or the extent cannot be read, good data will be written back if
25 * any can be found.
27 * Future enhancements:
28 * - In case an unrepairable extent is encountered, track which files are
29 * affected and report them
30 * - track and record media errors, throw out bad devices
31 * - add a mode to also read unallocated space
34 struct scrub_block;
35 struct scrub_ctx;
38 * the following three values only influence the performance.
39 * The last one configures the number of parallel and outstanding I/O
40 * operations. The first two values configure an upper limit for the number
41 * of (dynamically allocated) pages that are added to a bio.
43 #define SCRUB_PAGES_PER_RD_BIO 32 /* 128k per bio */
44 #define SCRUB_PAGES_PER_WR_BIO 32 /* 128k per bio */
45 #define SCRUB_BIOS_PER_SCTX 64 /* 8MB per device in flight */
48 * the following value times PAGE_SIZE needs to be large enough to match the
49 * largest node/leaf/sector size that shall be supported.
50 * Values larger than BTRFS_STRIPE_LEN are not supported.
52 #define SCRUB_MAX_PAGES_PER_BLOCK 16 /* 64k per node/leaf/sector */
54 struct scrub_recover {
55 refcount_t refs;
56 struct btrfs_bio *bbio;
57 u64 map_length;
60 struct scrub_page {
61 struct scrub_block *sblock;
62 struct page *page;
63 struct btrfs_device *dev;
64 struct list_head list;
65 u64 flags; /* extent flags */
66 u64 generation;
67 u64 logical;
68 u64 physical;
69 u64 physical_for_dev_replace;
70 atomic_t refs;
71 struct {
72 unsigned int mirror_num:8;
73 unsigned int have_csum:1;
74 unsigned int io_error:1;
76 u8 csum[BTRFS_CSUM_SIZE];
78 struct scrub_recover *recover;
81 struct scrub_bio {
82 int index;
83 struct scrub_ctx *sctx;
84 struct btrfs_device *dev;
85 struct bio *bio;
86 blk_status_t status;
87 u64 logical;
88 u64 physical;
89 #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
90 struct scrub_page *pagev[SCRUB_PAGES_PER_WR_BIO];
91 #else
92 struct scrub_page *pagev[SCRUB_PAGES_PER_RD_BIO];
93 #endif
94 int page_count;
95 int next_free;
96 struct btrfs_work work;
99 struct scrub_block {
100 struct scrub_page *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
101 int page_count;
102 atomic_t outstanding_pages;
103 refcount_t refs; /* free mem on transition to zero */
104 struct scrub_ctx *sctx;
105 struct scrub_parity *sparity;
106 struct {
107 unsigned int header_error:1;
108 unsigned int checksum_error:1;
109 unsigned int no_io_error_seen:1;
110 unsigned int generation_error:1; /* also sets header_error */
112 /* The following is for the data used to check parity */
113 /* It is for the data with checksum */
114 unsigned int data_corrected:1;
116 struct btrfs_work work;
119 /* Used for the chunks with parity stripe such RAID5/6 */
120 struct scrub_parity {
121 struct scrub_ctx *sctx;
123 struct btrfs_device *scrub_dev;
125 u64 logic_start;
127 u64 logic_end;
129 int nsectors;
131 u64 stripe_len;
133 refcount_t refs;
135 struct list_head spages;
137 /* Work of parity check and repair */
138 struct btrfs_work work;
140 /* Mark the parity blocks which have data */
141 unsigned long *dbitmap;
144 * Mark the parity blocks which have data, but errors happen when
145 * read data or check data
147 unsigned long *ebitmap;
149 unsigned long bitmap[0];
152 struct scrub_ctx {
153 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX];
154 struct btrfs_fs_info *fs_info;
155 int first_free;
156 int curr;
157 atomic_t bios_in_flight;
158 atomic_t workers_pending;
159 spinlock_t list_lock;
160 wait_queue_head_t list_wait;
161 u16 csum_size;
162 struct list_head csum_list;
163 atomic_t cancel_req;
164 int readonly;
165 int pages_per_rd_bio;
167 int is_dev_replace;
169 struct scrub_bio *wr_curr_bio;
170 struct mutex wr_lock;
171 int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
172 struct btrfs_device *wr_tgtdev;
173 bool flush_all_writes;
176 * statistics
178 struct btrfs_scrub_progress stat;
179 spinlock_t stat_lock;
182 * Use a ref counter to avoid use-after-free issues. Scrub workers
183 * decrement bios_in_flight and workers_pending and then do a wakeup
184 * on the list_wait wait queue. We must ensure the main scrub task
185 * doesn't free the scrub context before or while the workers are
186 * doing the wakeup() call.
188 refcount_t refs;
191 struct scrub_warning {
192 struct btrfs_path *path;
193 u64 extent_item_size;
194 const char *errstr;
195 u64 physical;
196 u64 logical;
197 struct btrfs_device *dev;
200 struct full_stripe_lock {
201 struct rb_node node;
202 u64 logical;
203 u64 refs;
204 struct mutex mutex;
207 static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
208 static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
209 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
210 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
211 struct scrub_block *sblocks_for_recheck);
212 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
213 struct scrub_block *sblock,
214 int retry_failed_mirror);
215 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
216 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
217 struct scrub_block *sblock_good);
218 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
219 struct scrub_block *sblock_good,
220 int page_num, int force_write);
221 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
222 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
223 int page_num);
224 static int scrub_checksum_data(struct scrub_block *sblock);
225 static int scrub_checksum_tree_block(struct scrub_block *sblock);
226 static int scrub_checksum_super(struct scrub_block *sblock);
227 static void scrub_block_get(struct scrub_block *sblock);
228 static void scrub_block_put(struct scrub_block *sblock);
229 static void scrub_page_get(struct scrub_page *spage);
230 static void scrub_page_put(struct scrub_page *spage);
231 static void scrub_parity_get(struct scrub_parity *sparity);
232 static void scrub_parity_put(struct scrub_parity *sparity);
233 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
234 struct scrub_page *spage);
235 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
236 u64 physical, struct btrfs_device *dev, u64 flags,
237 u64 gen, int mirror_num, u8 *csum, int force,
238 u64 physical_for_dev_replace);
239 static void scrub_bio_end_io(struct bio *bio);
240 static void scrub_bio_end_io_worker(struct btrfs_work *work);
241 static void scrub_block_complete(struct scrub_block *sblock);
242 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
243 u64 extent_logical, u64 extent_len,
244 u64 *extent_physical,
245 struct btrfs_device **extent_dev,
246 int *extent_mirror_num);
247 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
248 struct scrub_page *spage);
249 static void scrub_wr_submit(struct scrub_ctx *sctx);
250 static void scrub_wr_bio_end_io(struct bio *bio);
251 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
252 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
253 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info);
254 static void scrub_put_ctx(struct scrub_ctx *sctx);
256 static inline int scrub_is_page_on_raid56(struct scrub_page *page)
258 return page->recover &&
259 (page->recover->bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
262 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
264 refcount_inc(&sctx->refs);
265 atomic_inc(&sctx->bios_in_flight);
268 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
270 atomic_dec(&sctx->bios_in_flight);
271 wake_up(&sctx->list_wait);
272 scrub_put_ctx(sctx);
275 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
277 while (atomic_read(&fs_info->scrub_pause_req)) {
278 mutex_unlock(&fs_info->scrub_lock);
279 wait_event(fs_info->scrub_pause_wait,
280 atomic_read(&fs_info->scrub_pause_req) == 0);
281 mutex_lock(&fs_info->scrub_lock);
285 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
287 atomic_inc(&fs_info->scrubs_paused);
288 wake_up(&fs_info->scrub_pause_wait);
291 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
293 mutex_lock(&fs_info->scrub_lock);
294 __scrub_blocked_if_needed(fs_info);
295 atomic_dec(&fs_info->scrubs_paused);
296 mutex_unlock(&fs_info->scrub_lock);
298 wake_up(&fs_info->scrub_pause_wait);
301 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
303 scrub_pause_on(fs_info);
304 scrub_pause_off(fs_info);
308 * Insert new full stripe lock into full stripe locks tree
310 * Return pointer to existing or newly inserted full_stripe_lock structure if
311 * everything works well.
312 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
314 * NOTE: caller must hold full_stripe_locks_root->lock before calling this
315 * function
317 static struct full_stripe_lock *insert_full_stripe_lock(
318 struct btrfs_full_stripe_locks_tree *locks_root,
319 u64 fstripe_logical)
321 struct rb_node **p;
322 struct rb_node *parent = NULL;
323 struct full_stripe_lock *entry;
324 struct full_stripe_lock *ret;
326 lockdep_assert_held(&locks_root->lock);
328 p = &locks_root->root.rb_node;
329 while (*p) {
330 parent = *p;
331 entry = rb_entry(parent, struct full_stripe_lock, node);
332 if (fstripe_logical < entry->logical) {
333 p = &(*p)->rb_left;
334 } else if (fstripe_logical > entry->logical) {
335 p = &(*p)->rb_right;
336 } else {
337 entry->refs++;
338 return entry;
342 /* Insert new lock */
343 ret = kmalloc(sizeof(*ret), GFP_KERNEL);
344 if (!ret)
345 return ERR_PTR(-ENOMEM);
346 ret->logical = fstripe_logical;
347 ret->refs = 1;
348 mutex_init(&ret->mutex);
350 rb_link_node(&ret->node, parent, p);
351 rb_insert_color(&ret->node, &locks_root->root);
352 return ret;
356 * Search for a full stripe lock of a block group
358 * Return pointer to existing full stripe lock if found
359 * Return NULL if not found
361 static struct full_stripe_lock *search_full_stripe_lock(
362 struct btrfs_full_stripe_locks_tree *locks_root,
363 u64 fstripe_logical)
365 struct rb_node *node;
366 struct full_stripe_lock *entry;
368 lockdep_assert_held(&locks_root->lock);
370 node = locks_root->root.rb_node;
371 while (node) {
372 entry = rb_entry(node, struct full_stripe_lock, node);
373 if (fstripe_logical < entry->logical)
374 node = node->rb_left;
375 else if (fstripe_logical > entry->logical)
376 node = node->rb_right;
377 else
378 return entry;
380 return NULL;
384 * Helper to get full stripe logical from a normal bytenr.
386 * Caller must ensure @cache is a RAID56 block group.
388 static u64 get_full_stripe_logical(struct btrfs_block_group_cache *cache,
389 u64 bytenr)
391 u64 ret;
394 * Due to chunk item size limit, full stripe length should not be
395 * larger than U32_MAX. Just a sanity check here.
397 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
400 * round_down() can only handle power of 2, while RAID56 full
401 * stripe length can be 64KiB * n, so we need to manually round down.
403 ret = div64_u64(bytenr - cache->key.objectid, cache->full_stripe_len) *
404 cache->full_stripe_len + cache->key.objectid;
405 return ret;
409 * Lock a full stripe to avoid concurrency of recovery and read
411 * It's only used for profiles with parities (RAID5/6), for other profiles it
412 * does nothing.
414 * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
415 * So caller must call unlock_full_stripe() at the same context.
417 * Return <0 if encounters error.
419 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
420 bool *locked_ret)
422 struct btrfs_block_group_cache *bg_cache;
423 struct btrfs_full_stripe_locks_tree *locks_root;
424 struct full_stripe_lock *existing;
425 u64 fstripe_start;
426 int ret = 0;
428 *locked_ret = false;
429 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
430 if (!bg_cache) {
431 ASSERT(0);
432 return -ENOENT;
435 /* Profiles not based on parity don't need full stripe lock */
436 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
437 goto out;
438 locks_root = &bg_cache->full_stripe_locks_root;
440 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
442 /* Now insert the full stripe lock */
443 mutex_lock(&locks_root->lock);
444 existing = insert_full_stripe_lock(locks_root, fstripe_start);
445 mutex_unlock(&locks_root->lock);
446 if (IS_ERR(existing)) {
447 ret = PTR_ERR(existing);
448 goto out;
450 mutex_lock(&existing->mutex);
451 *locked_ret = true;
452 out:
453 btrfs_put_block_group(bg_cache);
454 return ret;
458 * Unlock a full stripe.
460 * NOTE: Caller must ensure it's the same context calling corresponding
461 * lock_full_stripe().
463 * Return 0 if we unlock full stripe without problem.
464 * Return <0 for error
466 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
467 bool locked)
469 struct btrfs_block_group_cache *bg_cache;
470 struct btrfs_full_stripe_locks_tree *locks_root;
471 struct full_stripe_lock *fstripe_lock;
472 u64 fstripe_start;
473 bool freeit = false;
474 int ret = 0;
476 /* If we didn't acquire full stripe lock, no need to continue */
477 if (!locked)
478 return 0;
480 bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
481 if (!bg_cache) {
482 ASSERT(0);
483 return -ENOENT;
485 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
486 goto out;
488 locks_root = &bg_cache->full_stripe_locks_root;
489 fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
491 mutex_lock(&locks_root->lock);
492 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
493 /* Unpaired unlock_full_stripe() detected */
494 if (!fstripe_lock) {
495 WARN_ON(1);
496 ret = -ENOENT;
497 mutex_unlock(&locks_root->lock);
498 goto out;
501 if (fstripe_lock->refs == 0) {
502 WARN_ON(1);
503 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
504 fstripe_lock->logical);
505 } else {
506 fstripe_lock->refs--;
509 if (fstripe_lock->refs == 0) {
510 rb_erase(&fstripe_lock->node, &locks_root->root);
511 freeit = true;
513 mutex_unlock(&locks_root->lock);
515 mutex_unlock(&fstripe_lock->mutex);
516 if (freeit)
517 kfree(fstripe_lock);
518 out:
519 btrfs_put_block_group(bg_cache);
520 return ret;
523 static void scrub_free_csums(struct scrub_ctx *sctx)
525 while (!list_empty(&sctx->csum_list)) {
526 struct btrfs_ordered_sum *sum;
527 sum = list_first_entry(&sctx->csum_list,
528 struct btrfs_ordered_sum, list);
529 list_del(&sum->list);
530 kfree(sum);
534 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
536 int i;
538 if (!sctx)
539 return;
541 /* this can happen when scrub is cancelled */
542 if (sctx->curr != -1) {
543 struct scrub_bio *sbio = sctx->bios[sctx->curr];
545 for (i = 0; i < sbio->page_count; i++) {
546 WARN_ON(!sbio->pagev[i]->page);
547 scrub_block_put(sbio->pagev[i]->sblock);
549 bio_put(sbio->bio);
552 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
553 struct scrub_bio *sbio = sctx->bios[i];
555 if (!sbio)
556 break;
557 kfree(sbio);
560 kfree(sctx->wr_curr_bio);
561 scrub_free_csums(sctx);
562 kfree(sctx);
565 static void scrub_put_ctx(struct scrub_ctx *sctx)
567 if (refcount_dec_and_test(&sctx->refs))
568 scrub_free_ctx(sctx);
571 static noinline_for_stack
572 struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
574 struct scrub_ctx *sctx;
575 int i;
576 struct btrfs_fs_info *fs_info = dev->fs_info;
578 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
579 if (!sctx)
580 goto nomem;
581 refcount_set(&sctx->refs, 1);
582 sctx->is_dev_replace = is_dev_replace;
583 sctx->pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
584 sctx->curr = -1;
585 sctx->fs_info = dev->fs_info;
586 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
587 struct scrub_bio *sbio;
589 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
590 if (!sbio)
591 goto nomem;
592 sctx->bios[i] = sbio;
594 sbio->index = i;
595 sbio->sctx = sctx;
596 sbio->page_count = 0;
597 btrfs_init_work(&sbio->work, btrfs_scrub_helper,
598 scrub_bio_end_io_worker, NULL, NULL);
600 if (i != SCRUB_BIOS_PER_SCTX - 1)
601 sctx->bios[i]->next_free = i + 1;
602 else
603 sctx->bios[i]->next_free = -1;
605 sctx->first_free = 0;
606 atomic_set(&sctx->bios_in_flight, 0);
607 atomic_set(&sctx->workers_pending, 0);
608 atomic_set(&sctx->cancel_req, 0);
609 sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
610 INIT_LIST_HEAD(&sctx->csum_list);
612 spin_lock_init(&sctx->list_lock);
613 spin_lock_init(&sctx->stat_lock);
614 init_waitqueue_head(&sctx->list_wait);
616 WARN_ON(sctx->wr_curr_bio != NULL);
617 mutex_init(&sctx->wr_lock);
618 sctx->wr_curr_bio = NULL;
619 if (is_dev_replace) {
620 WARN_ON(!fs_info->dev_replace.tgtdev);
621 sctx->pages_per_wr_bio = SCRUB_PAGES_PER_WR_BIO;
622 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
623 sctx->flush_all_writes = false;
626 return sctx;
628 nomem:
629 scrub_free_ctx(sctx);
630 return ERR_PTR(-ENOMEM);
633 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
634 void *warn_ctx)
636 u64 isize;
637 u32 nlink;
638 int ret;
639 int i;
640 unsigned nofs_flag;
641 struct extent_buffer *eb;
642 struct btrfs_inode_item *inode_item;
643 struct scrub_warning *swarn = warn_ctx;
644 struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
645 struct inode_fs_paths *ipath = NULL;
646 struct btrfs_root *local_root;
647 struct btrfs_key root_key;
648 struct btrfs_key key;
650 root_key.objectid = root;
651 root_key.type = BTRFS_ROOT_ITEM_KEY;
652 root_key.offset = (u64)-1;
653 local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
654 if (IS_ERR(local_root)) {
655 ret = PTR_ERR(local_root);
656 goto err;
660 * this makes the path point to (inum INODE_ITEM ioff)
662 key.objectid = inum;
663 key.type = BTRFS_INODE_ITEM_KEY;
664 key.offset = 0;
666 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
667 if (ret) {
668 btrfs_release_path(swarn->path);
669 goto err;
672 eb = swarn->path->nodes[0];
673 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
674 struct btrfs_inode_item);
675 isize = btrfs_inode_size(eb, inode_item);
676 nlink = btrfs_inode_nlink(eb, inode_item);
677 btrfs_release_path(swarn->path);
680 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
681 * uses GFP_NOFS in this context, so we keep it consistent but it does
682 * not seem to be strictly necessary.
684 nofs_flag = memalloc_nofs_save();
685 ipath = init_ipath(4096, local_root, swarn->path);
686 memalloc_nofs_restore(nofs_flag);
687 if (IS_ERR(ipath)) {
688 ret = PTR_ERR(ipath);
689 ipath = NULL;
690 goto err;
692 ret = paths_from_inode(inum, ipath);
694 if (ret < 0)
695 goto err;
698 * we deliberately ignore the bit ipath might have been too small to
699 * hold all of the paths here
701 for (i = 0; i < ipath->fspath->elem_cnt; ++i)
702 btrfs_warn_in_rcu(fs_info,
703 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %llu, links %u (path: %s)",
704 swarn->errstr, swarn->logical,
705 rcu_str_deref(swarn->dev->name),
706 swarn->physical,
707 root, inum, offset,
708 min(isize - offset, (u64)PAGE_SIZE), nlink,
709 (char *)(unsigned long)ipath->fspath->val[i]);
711 free_ipath(ipath);
712 return 0;
714 err:
715 btrfs_warn_in_rcu(fs_info,
716 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
717 swarn->errstr, swarn->logical,
718 rcu_str_deref(swarn->dev->name),
719 swarn->physical,
720 root, inum, offset, ret);
722 free_ipath(ipath);
723 return 0;
726 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
728 struct btrfs_device *dev;
729 struct btrfs_fs_info *fs_info;
730 struct btrfs_path *path;
731 struct btrfs_key found_key;
732 struct extent_buffer *eb;
733 struct btrfs_extent_item *ei;
734 struct scrub_warning swarn;
735 unsigned long ptr = 0;
736 u64 extent_item_pos;
737 u64 flags = 0;
738 u64 ref_root;
739 u32 item_size;
740 u8 ref_level = 0;
741 int ret;
743 WARN_ON(sblock->page_count < 1);
744 dev = sblock->pagev[0]->dev;
745 fs_info = sblock->sctx->fs_info;
747 path = btrfs_alloc_path();
748 if (!path)
749 return;
751 swarn.physical = sblock->pagev[0]->physical;
752 swarn.logical = sblock->pagev[0]->logical;
753 swarn.errstr = errstr;
754 swarn.dev = NULL;
756 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
757 &flags);
758 if (ret < 0)
759 goto out;
761 extent_item_pos = swarn.logical - found_key.objectid;
762 swarn.extent_item_size = found_key.offset;
764 eb = path->nodes[0];
765 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
766 item_size = btrfs_item_size_nr(eb, path->slots[0]);
768 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
769 do {
770 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
771 item_size, &ref_root,
772 &ref_level);
773 btrfs_warn_in_rcu(fs_info,
774 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
775 errstr, swarn.logical,
776 rcu_str_deref(dev->name),
777 swarn.physical,
778 ref_level ? "node" : "leaf",
779 ret < 0 ? -1 : ref_level,
780 ret < 0 ? -1 : ref_root);
781 } while (ret != 1);
782 btrfs_release_path(path);
783 } else {
784 btrfs_release_path(path);
785 swarn.path = path;
786 swarn.dev = dev;
787 iterate_extent_inodes(fs_info, found_key.objectid,
788 extent_item_pos, 1,
789 scrub_print_warning_inode, &swarn, false);
792 out:
793 btrfs_free_path(path);
796 static inline void scrub_get_recover(struct scrub_recover *recover)
798 refcount_inc(&recover->refs);
801 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
802 struct scrub_recover *recover)
804 if (refcount_dec_and_test(&recover->refs)) {
805 btrfs_bio_counter_dec(fs_info);
806 btrfs_put_bbio(recover->bbio);
807 kfree(recover);
812 * scrub_handle_errored_block gets called when either verification of the
813 * pages failed or the bio failed to read, e.g. with EIO. In the latter
814 * case, this function handles all pages in the bio, even though only one
815 * may be bad.
816 * The goal of this function is to repair the errored block by using the
817 * contents of one of the mirrors.
819 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
821 struct scrub_ctx *sctx = sblock_to_check->sctx;
822 struct btrfs_device *dev;
823 struct btrfs_fs_info *fs_info;
824 u64 logical;
825 unsigned int failed_mirror_index;
826 unsigned int is_metadata;
827 unsigned int have_csum;
828 struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
829 struct scrub_block *sblock_bad;
830 int ret;
831 int mirror_index;
832 int page_num;
833 int success;
834 bool full_stripe_locked;
835 static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
836 DEFAULT_RATELIMIT_BURST);
838 BUG_ON(sblock_to_check->page_count < 1);
839 fs_info = sctx->fs_info;
840 if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
842 * if we find an error in a super block, we just report it.
843 * They will get written with the next transaction commit
844 * anyway
846 spin_lock(&sctx->stat_lock);
847 ++sctx->stat.super_errors;
848 spin_unlock(&sctx->stat_lock);
849 return 0;
851 logical = sblock_to_check->pagev[0]->logical;
852 BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
853 failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
854 is_metadata = !(sblock_to_check->pagev[0]->flags &
855 BTRFS_EXTENT_FLAG_DATA);
856 have_csum = sblock_to_check->pagev[0]->have_csum;
857 dev = sblock_to_check->pagev[0]->dev;
860 * For RAID5/6, race can happen for a different device scrub thread.
861 * For data corruption, Parity and Data threads will both try
862 * to recovery the data.
863 * Race can lead to doubly added csum error, or even unrecoverable
864 * error.
866 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
867 if (ret < 0) {
868 spin_lock(&sctx->stat_lock);
869 if (ret == -ENOMEM)
870 sctx->stat.malloc_errors++;
871 sctx->stat.read_errors++;
872 sctx->stat.uncorrectable_errors++;
873 spin_unlock(&sctx->stat_lock);
874 return ret;
878 * read all mirrors one after the other. This includes to
879 * re-read the extent or metadata block that failed (that was
880 * the cause that this fixup code is called) another time,
881 * page by page this time in order to know which pages
882 * caused I/O errors and which ones are good (for all mirrors).
883 * It is the goal to handle the situation when more than one
884 * mirror contains I/O errors, but the errors do not
885 * overlap, i.e. the data can be repaired by selecting the
886 * pages from those mirrors without I/O error on the
887 * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
888 * would be that mirror #1 has an I/O error on the first page,
889 * the second page is good, and mirror #2 has an I/O error on
890 * the second page, but the first page is good.
891 * Then the first page of the first mirror can be repaired by
892 * taking the first page of the second mirror, and the
893 * second page of the second mirror can be repaired by
894 * copying the contents of the 2nd page of the 1st mirror.
895 * One more note: if the pages of one mirror contain I/O
896 * errors, the checksum cannot be verified. In order to get
897 * the best data for repairing, the first attempt is to find
898 * a mirror without I/O errors and with a validated checksum.
899 * Only if this is not possible, the pages are picked from
900 * mirrors with I/O errors without considering the checksum.
901 * If the latter is the case, at the end, the checksum of the
902 * repaired area is verified in order to correctly maintain
903 * the statistics.
906 sblocks_for_recheck = kcalloc(BTRFS_MAX_MIRRORS,
907 sizeof(*sblocks_for_recheck), GFP_NOFS);
908 if (!sblocks_for_recheck) {
909 spin_lock(&sctx->stat_lock);
910 sctx->stat.malloc_errors++;
911 sctx->stat.read_errors++;
912 sctx->stat.uncorrectable_errors++;
913 spin_unlock(&sctx->stat_lock);
914 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
915 goto out;
918 /* setup the context, map the logical blocks and alloc the pages */
919 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
920 if (ret) {
921 spin_lock(&sctx->stat_lock);
922 sctx->stat.read_errors++;
923 sctx->stat.uncorrectable_errors++;
924 spin_unlock(&sctx->stat_lock);
925 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
926 goto out;
928 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
929 sblock_bad = sblocks_for_recheck + failed_mirror_index;
931 /* build and submit the bios for the failed mirror, check checksums */
932 scrub_recheck_block(fs_info, sblock_bad, 1);
934 if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
935 sblock_bad->no_io_error_seen) {
937 * the error disappeared after reading page by page, or
938 * the area was part of a huge bio and other parts of the
939 * bio caused I/O errors, or the block layer merged several
940 * read requests into one and the error is caused by a
941 * different bio (usually one of the two latter cases is
942 * the cause)
944 spin_lock(&sctx->stat_lock);
945 sctx->stat.unverified_errors++;
946 sblock_to_check->data_corrected = 1;
947 spin_unlock(&sctx->stat_lock);
949 if (sctx->is_dev_replace)
950 scrub_write_block_to_dev_replace(sblock_bad);
951 goto out;
954 if (!sblock_bad->no_io_error_seen) {
955 spin_lock(&sctx->stat_lock);
956 sctx->stat.read_errors++;
957 spin_unlock(&sctx->stat_lock);
958 if (__ratelimit(&_rs))
959 scrub_print_warning("i/o error", sblock_to_check);
960 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
961 } else if (sblock_bad->checksum_error) {
962 spin_lock(&sctx->stat_lock);
963 sctx->stat.csum_errors++;
964 spin_unlock(&sctx->stat_lock);
965 if (__ratelimit(&_rs))
966 scrub_print_warning("checksum error", sblock_to_check);
967 btrfs_dev_stat_inc_and_print(dev,
968 BTRFS_DEV_STAT_CORRUPTION_ERRS);
969 } else if (sblock_bad->header_error) {
970 spin_lock(&sctx->stat_lock);
971 sctx->stat.verify_errors++;
972 spin_unlock(&sctx->stat_lock);
973 if (__ratelimit(&_rs))
974 scrub_print_warning("checksum/header error",
975 sblock_to_check);
976 if (sblock_bad->generation_error)
977 btrfs_dev_stat_inc_and_print(dev,
978 BTRFS_DEV_STAT_GENERATION_ERRS);
979 else
980 btrfs_dev_stat_inc_and_print(dev,
981 BTRFS_DEV_STAT_CORRUPTION_ERRS);
984 if (sctx->readonly) {
985 ASSERT(!sctx->is_dev_replace);
986 goto out;
990 * now build and submit the bios for the other mirrors, check
991 * checksums.
992 * First try to pick the mirror which is completely without I/O
993 * errors and also does not have a checksum error.
994 * If one is found, and if a checksum is present, the full block
995 * that is known to contain an error is rewritten. Afterwards
996 * the block is known to be corrected.
997 * If a mirror is found which is completely correct, and no
998 * checksum is present, only those pages are rewritten that had
999 * an I/O error in the block to be repaired, since it cannot be
1000 * determined, which copy of the other pages is better (and it
1001 * could happen otherwise that a correct page would be
1002 * overwritten by a bad one).
1004 for (mirror_index = 0; ;mirror_index++) {
1005 struct scrub_block *sblock_other;
1007 if (mirror_index == failed_mirror_index)
1008 continue;
1010 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1011 if (!scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1012 if (mirror_index >= BTRFS_MAX_MIRRORS)
1013 break;
1014 if (!sblocks_for_recheck[mirror_index].page_count)
1015 break;
1017 sblock_other = sblocks_for_recheck + mirror_index;
1018 } else {
1019 struct scrub_recover *r = sblock_bad->pagev[0]->recover;
1020 int max_allowed = r->bbio->num_stripes -
1021 r->bbio->num_tgtdevs;
1023 if (mirror_index >= max_allowed)
1024 break;
1025 if (!sblocks_for_recheck[1].page_count)
1026 break;
1028 ASSERT(failed_mirror_index == 0);
1029 sblock_other = sblocks_for_recheck + 1;
1030 sblock_other->pagev[0]->mirror_num = 1 + mirror_index;
1033 /* build and submit the bios, check checksums */
1034 scrub_recheck_block(fs_info, sblock_other, 0);
1036 if (!sblock_other->header_error &&
1037 !sblock_other->checksum_error &&
1038 sblock_other->no_io_error_seen) {
1039 if (sctx->is_dev_replace) {
1040 scrub_write_block_to_dev_replace(sblock_other);
1041 goto corrected_error;
1042 } else {
1043 ret = scrub_repair_block_from_good_copy(
1044 sblock_bad, sblock_other);
1045 if (!ret)
1046 goto corrected_error;
1051 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1052 goto did_not_correct_error;
1055 * In case of I/O errors in the area that is supposed to be
1056 * repaired, continue by picking good copies of those pages.
1057 * Select the good pages from mirrors to rewrite bad pages from
1058 * the area to fix. Afterwards verify the checksum of the block
1059 * that is supposed to be repaired. This verification step is
1060 * only done for the purpose of statistic counting and for the
1061 * final scrub report, whether errors remain.
1062 * A perfect algorithm could make use of the checksum and try
1063 * all possible combinations of pages from the different mirrors
1064 * until the checksum verification succeeds. For example, when
1065 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1066 * of mirror #2 is readable but the final checksum test fails,
1067 * then the 2nd page of mirror #3 could be tried, whether now
1068 * the final checksum succeeds. But this would be a rare
1069 * exception and is therefore not implemented. At least it is
1070 * avoided that the good copy is overwritten.
1071 * A more useful improvement would be to pick the sectors
1072 * without I/O error based on sector sizes (512 bytes on legacy
1073 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1074 * mirror could be repaired by taking 512 byte of a different
1075 * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1076 * area are unreadable.
1078 success = 1;
1079 for (page_num = 0; page_num < sblock_bad->page_count;
1080 page_num++) {
1081 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1082 struct scrub_block *sblock_other = NULL;
1084 /* skip no-io-error page in scrub */
1085 if (!page_bad->io_error && !sctx->is_dev_replace)
1086 continue;
1088 if (scrub_is_page_on_raid56(sblock_bad->pagev[0])) {
1090 * In case of dev replace, if raid56 rebuild process
1091 * didn't work out correct data, then copy the content
1092 * in sblock_bad to make sure target device is identical
1093 * to source device, instead of writing garbage data in
1094 * sblock_for_recheck array to target device.
1096 sblock_other = NULL;
1097 } else if (page_bad->io_error) {
1098 /* try to find no-io-error page in mirrors */
1099 for (mirror_index = 0;
1100 mirror_index < BTRFS_MAX_MIRRORS &&
1101 sblocks_for_recheck[mirror_index].page_count > 0;
1102 mirror_index++) {
1103 if (!sblocks_for_recheck[mirror_index].
1104 pagev[page_num]->io_error) {
1105 sblock_other = sblocks_for_recheck +
1106 mirror_index;
1107 break;
1110 if (!sblock_other)
1111 success = 0;
1114 if (sctx->is_dev_replace) {
1116 * did not find a mirror to fetch the page
1117 * from. scrub_write_page_to_dev_replace()
1118 * handles this case (page->io_error), by
1119 * filling the block with zeros before
1120 * submitting the write request
1122 if (!sblock_other)
1123 sblock_other = sblock_bad;
1125 if (scrub_write_page_to_dev_replace(sblock_other,
1126 page_num) != 0) {
1127 atomic64_inc(
1128 &fs_info->dev_replace.num_write_errors);
1129 success = 0;
1131 } else if (sblock_other) {
1132 ret = scrub_repair_page_from_good_copy(sblock_bad,
1133 sblock_other,
1134 page_num, 0);
1135 if (0 == ret)
1136 page_bad->io_error = 0;
1137 else
1138 success = 0;
1142 if (success && !sctx->is_dev_replace) {
1143 if (is_metadata || have_csum) {
1145 * need to verify the checksum now that all
1146 * sectors on disk are repaired (the write
1147 * request for data to be repaired is on its way).
1148 * Just be lazy and use scrub_recheck_block()
1149 * which re-reads the data before the checksum
1150 * is verified, but most likely the data comes out
1151 * of the page cache.
1153 scrub_recheck_block(fs_info, sblock_bad, 1);
1154 if (!sblock_bad->header_error &&
1155 !sblock_bad->checksum_error &&
1156 sblock_bad->no_io_error_seen)
1157 goto corrected_error;
1158 else
1159 goto did_not_correct_error;
1160 } else {
1161 corrected_error:
1162 spin_lock(&sctx->stat_lock);
1163 sctx->stat.corrected_errors++;
1164 sblock_to_check->data_corrected = 1;
1165 spin_unlock(&sctx->stat_lock);
1166 btrfs_err_rl_in_rcu(fs_info,
1167 "fixed up error at logical %llu on dev %s",
1168 logical, rcu_str_deref(dev->name));
1170 } else {
1171 did_not_correct_error:
1172 spin_lock(&sctx->stat_lock);
1173 sctx->stat.uncorrectable_errors++;
1174 spin_unlock(&sctx->stat_lock);
1175 btrfs_err_rl_in_rcu(fs_info,
1176 "unable to fixup (regular) error at logical %llu on dev %s",
1177 logical, rcu_str_deref(dev->name));
1180 out:
1181 if (sblocks_for_recheck) {
1182 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1183 mirror_index++) {
1184 struct scrub_block *sblock = sblocks_for_recheck +
1185 mirror_index;
1186 struct scrub_recover *recover;
1187 int page_index;
1189 for (page_index = 0; page_index < sblock->page_count;
1190 page_index++) {
1191 sblock->pagev[page_index]->sblock = NULL;
1192 recover = sblock->pagev[page_index]->recover;
1193 if (recover) {
1194 scrub_put_recover(fs_info, recover);
1195 sblock->pagev[page_index]->recover =
1196 NULL;
1198 scrub_page_put(sblock->pagev[page_index]);
1201 kfree(sblocks_for_recheck);
1204 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1205 if (ret < 0)
1206 return ret;
1207 return 0;
1210 static inline int scrub_nr_raid_mirrors(struct btrfs_bio *bbio)
1212 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID5)
1213 return 2;
1214 else if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID6)
1215 return 3;
1216 else
1217 return (int)bbio->num_stripes;
1220 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1221 u64 *raid_map,
1222 u64 mapped_length,
1223 int nstripes, int mirror,
1224 int *stripe_index,
1225 u64 *stripe_offset)
1227 int i;
1229 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1230 /* RAID5/6 */
1231 for (i = 0; i < nstripes; i++) {
1232 if (raid_map[i] == RAID6_Q_STRIPE ||
1233 raid_map[i] == RAID5_P_STRIPE)
1234 continue;
1236 if (logical >= raid_map[i] &&
1237 logical < raid_map[i] + mapped_length)
1238 break;
1241 *stripe_index = i;
1242 *stripe_offset = logical - raid_map[i];
1243 } else {
1244 /* The other RAID type */
1245 *stripe_index = mirror;
1246 *stripe_offset = 0;
1250 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1251 struct scrub_block *sblocks_for_recheck)
1253 struct scrub_ctx *sctx = original_sblock->sctx;
1254 struct btrfs_fs_info *fs_info = sctx->fs_info;
1255 u64 length = original_sblock->page_count * PAGE_SIZE;
1256 u64 logical = original_sblock->pagev[0]->logical;
1257 u64 generation = original_sblock->pagev[0]->generation;
1258 u64 flags = original_sblock->pagev[0]->flags;
1259 u64 have_csum = original_sblock->pagev[0]->have_csum;
1260 struct scrub_recover *recover;
1261 struct btrfs_bio *bbio;
1262 u64 sublen;
1263 u64 mapped_length;
1264 u64 stripe_offset;
1265 int stripe_index;
1266 int page_index = 0;
1267 int mirror_index;
1268 int nmirrors;
1269 int ret;
1272 * note: the two members refs and outstanding_pages
1273 * are not used (and not set) in the blocks that are used for
1274 * the recheck procedure
1277 while (length > 0) {
1278 sublen = min_t(u64, length, PAGE_SIZE);
1279 mapped_length = sublen;
1280 bbio = NULL;
1283 * with a length of PAGE_SIZE, each returned stripe
1284 * represents one mirror
1286 btrfs_bio_counter_inc_blocked(fs_info);
1287 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1288 logical, &mapped_length, &bbio);
1289 if (ret || !bbio || mapped_length < sublen) {
1290 btrfs_put_bbio(bbio);
1291 btrfs_bio_counter_dec(fs_info);
1292 return -EIO;
1295 recover = kzalloc(sizeof(struct scrub_recover), GFP_NOFS);
1296 if (!recover) {
1297 btrfs_put_bbio(bbio);
1298 btrfs_bio_counter_dec(fs_info);
1299 return -ENOMEM;
1302 refcount_set(&recover->refs, 1);
1303 recover->bbio = bbio;
1304 recover->map_length = mapped_length;
1306 BUG_ON(page_index >= SCRUB_MAX_PAGES_PER_BLOCK);
1308 nmirrors = min(scrub_nr_raid_mirrors(bbio), BTRFS_MAX_MIRRORS);
1310 for (mirror_index = 0; mirror_index < nmirrors;
1311 mirror_index++) {
1312 struct scrub_block *sblock;
1313 struct scrub_page *page;
1315 sblock = sblocks_for_recheck + mirror_index;
1316 sblock->sctx = sctx;
1318 page = kzalloc(sizeof(*page), GFP_NOFS);
1319 if (!page) {
1320 leave_nomem:
1321 spin_lock(&sctx->stat_lock);
1322 sctx->stat.malloc_errors++;
1323 spin_unlock(&sctx->stat_lock);
1324 scrub_put_recover(fs_info, recover);
1325 return -ENOMEM;
1327 scrub_page_get(page);
1328 sblock->pagev[page_index] = page;
1329 page->sblock = sblock;
1330 page->flags = flags;
1331 page->generation = generation;
1332 page->logical = logical;
1333 page->have_csum = have_csum;
1334 if (have_csum)
1335 memcpy(page->csum,
1336 original_sblock->pagev[0]->csum,
1337 sctx->csum_size);
1339 scrub_stripe_index_and_offset(logical,
1340 bbio->map_type,
1341 bbio->raid_map,
1342 mapped_length,
1343 bbio->num_stripes -
1344 bbio->num_tgtdevs,
1345 mirror_index,
1346 &stripe_index,
1347 &stripe_offset);
1348 page->physical = bbio->stripes[stripe_index].physical +
1349 stripe_offset;
1350 page->dev = bbio->stripes[stripe_index].dev;
1352 BUG_ON(page_index >= original_sblock->page_count);
1353 page->physical_for_dev_replace =
1354 original_sblock->pagev[page_index]->
1355 physical_for_dev_replace;
1356 /* for missing devices, dev->bdev is NULL */
1357 page->mirror_num = mirror_index + 1;
1358 sblock->page_count++;
1359 page->page = alloc_page(GFP_NOFS);
1360 if (!page->page)
1361 goto leave_nomem;
1363 scrub_get_recover(recover);
1364 page->recover = recover;
1366 scrub_put_recover(fs_info, recover);
1367 length -= sublen;
1368 logical += sublen;
1369 page_index++;
1372 return 0;
1375 static void scrub_bio_wait_endio(struct bio *bio)
1377 complete(bio->bi_private);
1380 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1381 struct bio *bio,
1382 struct scrub_page *page)
1384 DECLARE_COMPLETION_ONSTACK(done);
1385 int ret;
1386 int mirror_num;
1388 bio->bi_iter.bi_sector = page->logical >> 9;
1389 bio->bi_private = &done;
1390 bio->bi_end_io = scrub_bio_wait_endio;
1392 mirror_num = page->sblock->pagev[0]->mirror_num;
1393 ret = raid56_parity_recover(fs_info, bio, page->recover->bbio,
1394 page->recover->map_length,
1395 mirror_num, 0);
1396 if (ret)
1397 return ret;
1399 wait_for_completion_io(&done);
1400 return blk_status_to_errno(bio->bi_status);
1403 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1404 struct scrub_block *sblock)
1406 struct scrub_page *first_page = sblock->pagev[0];
1407 struct bio *bio;
1408 int page_num;
1410 /* All pages in sblock belong to the same stripe on the same device. */
1411 ASSERT(first_page->dev);
1412 if (!first_page->dev->bdev)
1413 goto out;
1415 bio = btrfs_io_bio_alloc(BIO_MAX_PAGES);
1416 bio_set_dev(bio, first_page->dev->bdev);
1418 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1419 struct scrub_page *page = sblock->pagev[page_num];
1421 WARN_ON(!page->page);
1422 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1425 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_page)) {
1426 bio_put(bio);
1427 goto out;
1430 bio_put(bio);
1432 scrub_recheck_block_checksum(sblock);
1434 return;
1435 out:
1436 for (page_num = 0; page_num < sblock->page_count; page_num++)
1437 sblock->pagev[page_num]->io_error = 1;
1439 sblock->no_io_error_seen = 0;
1443 * this function will check the on disk data for checksum errors, header
1444 * errors and read I/O errors. If any I/O errors happen, the exact pages
1445 * which are errored are marked as being bad. The goal is to enable scrub
1446 * to take those pages that are not errored from all the mirrors so that
1447 * the pages that are errored in the just handled mirror can be repaired.
1449 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1450 struct scrub_block *sblock,
1451 int retry_failed_mirror)
1453 int page_num;
1455 sblock->no_io_error_seen = 1;
1457 /* short cut for raid56 */
1458 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->pagev[0]))
1459 return scrub_recheck_block_on_raid56(fs_info, sblock);
1461 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1462 struct bio *bio;
1463 struct scrub_page *page = sblock->pagev[page_num];
1465 if (page->dev->bdev == NULL) {
1466 page->io_error = 1;
1467 sblock->no_io_error_seen = 0;
1468 continue;
1471 WARN_ON(!page->page);
1472 bio = btrfs_io_bio_alloc(1);
1473 bio_set_dev(bio, page->dev->bdev);
1475 bio_add_page(bio, page->page, PAGE_SIZE, 0);
1476 bio->bi_iter.bi_sector = page->physical >> 9;
1477 bio->bi_opf = REQ_OP_READ;
1479 if (btrfsic_submit_bio_wait(bio)) {
1480 page->io_error = 1;
1481 sblock->no_io_error_seen = 0;
1484 bio_put(bio);
1487 if (sblock->no_io_error_seen)
1488 scrub_recheck_block_checksum(sblock);
1491 static inline int scrub_check_fsid(u8 fsid[],
1492 struct scrub_page *spage)
1494 struct btrfs_fs_devices *fs_devices = spage->dev->fs_devices;
1495 int ret;
1497 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1498 return !ret;
1501 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1503 sblock->header_error = 0;
1504 sblock->checksum_error = 0;
1505 sblock->generation_error = 0;
1507 if (sblock->pagev[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1508 scrub_checksum_data(sblock);
1509 else
1510 scrub_checksum_tree_block(sblock);
1513 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1514 struct scrub_block *sblock_good)
1516 int page_num;
1517 int ret = 0;
1519 for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1520 int ret_sub;
1522 ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1523 sblock_good,
1524 page_num, 1);
1525 if (ret_sub)
1526 ret = ret_sub;
1529 return ret;
1532 static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1533 struct scrub_block *sblock_good,
1534 int page_num, int force_write)
1536 struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1537 struct scrub_page *page_good = sblock_good->pagev[page_num];
1538 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1540 BUG_ON(page_bad->page == NULL);
1541 BUG_ON(page_good->page == NULL);
1542 if (force_write || sblock_bad->header_error ||
1543 sblock_bad->checksum_error || page_bad->io_error) {
1544 struct bio *bio;
1545 int ret;
1547 if (!page_bad->dev->bdev) {
1548 btrfs_warn_rl(fs_info,
1549 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1550 return -EIO;
1553 bio = btrfs_io_bio_alloc(1);
1554 bio_set_dev(bio, page_bad->dev->bdev);
1555 bio->bi_iter.bi_sector = page_bad->physical >> 9;
1556 bio->bi_opf = REQ_OP_WRITE;
1558 ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1559 if (PAGE_SIZE != ret) {
1560 bio_put(bio);
1561 return -EIO;
1564 if (btrfsic_submit_bio_wait(bio)) {
1565 btrfs_dev_stat_inc_and_print(page_bad->dev,
1566 BTRFS_DEV_STAT_WRITE_ERRS);
1567 atomic64_inc(&fs_info->dev_replace.num_write_errors);
1568 bio_put(bio);
1569 return -EIO;
1571 bio_put(bio);
1574 return 0;
1577 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1579 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1580 int page_num;
1583 * This block is used for the check of the parity on the source device,
1584 * so the data needn't be written into the destination device.
1586 if (sblock->sparity)
1587 return;
1589 for (page_num = 0; page_num < sblock->page_count; page_num++) {
1590 int ret;
1592 ret = scrub_write_page_to_dev_replace(sblock, page_num);
1593 if (ret)
1594 atomic64_inc(&fs_info->dev_replace.num_write_errors);
1598 static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1599 int page_num)
1601 struct scrub_page *spage = sblock->pagev[page_num];
1603 BUG_ON(spage->page == NULL);
1604 if (spage->io_error) {
1605 void *mapped_buffer = kmap_atomic(spage->page);
1607 clear_page(mapped_buffer);
1608 flush_dcache_page(spage->page);
1609 kunmap_atomic(mapped_buffer);
1611 return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1614 static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1615 struct scrub_page *spage)
1617 struct scrub_bio *sbio;
1618 int ret;
1620 mutex_lock(&sctx->wr_lock);
1621 again:
1622 if (!sctx->wr_curr_bio) {
1623 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1624 GFP_KERNEL);
1625 if (!sctx->wr_curr_bio) {
1626 mutex_unlock(&sctx->wr_lock);
1627 return -ENOMEM;
1629 sctx->wr_curr_bio->sctx = sctx;
1630 sctx->wr_curr_bio->page_count = 0;
1632 sbio = sctx->wr_curr_bio;
1633 if (sbio->page_count == 0) {
1634 struct bio *bio;
1636 sbio->physical = spage->physical_for_dev_replace;
1637 sbio->logical = spage->logical;
1638 sbio->dev = sctx->wr_tgtdev;
1639 bio = sbio->bio;
1640 if (!bio) {
1641 bio = btrfs_io_bio_alloc(sctx->pages_per_wr_bio);
1642 sbio->bio = bio;
1645 bio->bi_private = sbio;
1646 bio->bi_end_io = scrub_wr_bio_end_io;
1647 bio_set_dev(bio, sbio->dev->bdev);
1648 bio->bi_iter.bi_sector = sbio->physical >> 9;
1649 bio->bi_opf = REQ_OP_WRITE;
1650 sbio->status = 0;
1651 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1652 spage->physical_for_dev_replace ||
1653 sbio->logical + sbio->page_count * PAGE_SIZE !=
1654 spage->logical) {
1655 scrub_wr_submit(sctx);
1656 goto again;
1659 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1660 if (ret != PAGE_SIZE) {
1661 if (sbio->page_count < 1) {
1662 bio_put(sbio->bio);
1663 sbio->bio = NULL;
1664 mutex_unlock(&sctx->wr_lock);
1665 return -EIO;
1667 scrub_wr_submit(sctx);
1668 goto again;
1671 sbio->pagev[sbio->page_count] = spage;
1672 scrub_page_get(spage);
1673 sbio->page_count++;
1674 if (sbio->page_count == sctx->pages_per_wr_bio)
1675 scrub_wr_submit(sctx);
1676 mutex_unlock(&sctx->wr_lock);
1678 return 0;
1681 static void scrub_wr_submit(struct scrub_ctx *sctx)
1683 struct scrub_bio *sbio;
1685 if (!sctx->wr_curr_bio)
1686 return;
1688 sbio = sctx->wr_curr_bio;
1689 sctx->wr_curr_bio = NULL;
1690 WARN_ON(!sbio->bio->bi_disk);
1691 scrub_pending_bio_inc(sctx);
1692 /* process all writes in a single worker thread. Then the block layer
1693 * orders the requests before sending them to the driver which
1694 * doubled the write performance on spinning disks when measured
1695 * with Linux 3.5 */
1696 btrfsic_submit_bio(sbio->bio);
1699 static void scrub_wr_bio_end_io(struct bio *bio)
1701 struct scrub_bio *sbio = bio->bi_private;
1702 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1704 sbio->status = bio->bi_status;
1705 sbio->bio = bio;
1707 btrfs_init_work(&sbio->work, btrfs_scrubwrc_helper,
1708 scrub_wr_bio_end_io_worker, NULL, NULL);
1709 btrfs_queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1712 static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1714 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1715 struct scrub_ctx *sctx = sbio->sctx;
1716 int i;
1718 WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1719 if (sbio->status) {
1720 struct btrfs_dev_replace *dev_replace =
1721 &sbio->sctx->fs_info->dev_replace;
1723 for (i = 0; i < sbio->page_count; i++) {
1724 struct scrub_page *spage = sbio->pagev[i];
1726 spage->io_error = 1;
1727 atomic64_inc(&dev_replace->num_write_errors);
1731 for (i = 0; i < sbio->page_count; i++)
1732 scrub_page_put(sbio->pagev[i]);
1734 bio_put(sbio->bio);
1735 kfree(sbio);
1736 scrub_pending_bio_dec(sctx);
1739 static int scrub_checksum(struct scrub_block *sblock)
1741 u64 flags;
1742 int ret;
1745 * No need to initialize these stats currently,
1746 * because this function only use return value
1747 * instead of these stats value.
1749 * Todo:
1750 * always use stats
1752 sblock->header_error = 0;
1753 sblock->generation_error = 0;
1754 sblock->checksum_error = 0;
1756 WARN_ON(sblock->page_count < 1);
1757 flags = sblock->pagev[0]->flags;
1758 ret = 0;
1759 if (flags & BTRFS_EXTENT_FLAG_DATA)
1760 ret = scrub_checksum_data(sblock);
1761 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1762 ret = scrub_checksum_tree_block(sblock);
1763 else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1764 (void)scrub_checksum_super(sblock);
1765 else
1766 WARN_ON(1);
1767 if (ret)
1768 scrub_handle_errored_block(sblock);
1770 return ret;
1773 static int scrub_checksum_data(struct scrub_block *sblock)
1775 struct scrub_ctx *sctx = sblock->sctx;
1776 u8 csum[BTRFS_CSUM_SIZE];
1777 u8 *on_disk_csum;
1778 struct page *page;
1779 void *buffer;
1780 u32 crc = ~(u32)0;
1781 u64 len;
1782 int index;
1784 BUG_ON(sblock->page_count < 1);
1785 if (!sblock->pagev[0]->have_csum)
1786 return 0;
1788 on_disk_csum = sblock->pagev[0]->csum;
1789 page = sblock->pagev[0]->page;
1790 buffer = kmap_atomic(page);
1792 len = sctx->fs_info->sectorsize;
1793 index = 0;
1794 for (;;) {
1795 u64 l = min_t(u64, len, PAGE_SIZE);
1797 crc = btrfs_csum_data(buffer, crc, l);
1798 kunmap_atomic(buffer);
1799 len -= l;
1800 if (len == 0)
1801 break;
1802 index++;
1803 BUG_ON(index >= sblock->page_count);
1804 BUG_ON(!sblock->pagev[index]->page);
1805 page = sblock->pagev[index]->page;
1806 buffer = kmap_atomic(page);
1809 btrfs_csum_final(crc, csum);
1810 if (memcmp(csum, on_disk_csum, sctx->csum_size))
1811 sblock->checksum_error = 1;
1813 return sblock->checksum_error;
1816 static int scrub_checksum_tree_block(struct scrub_block *sblock)
1818 struct scrub_ctx *sctx = sblock->sctx;
1819 struct btrfs_header *h;
1820 struct btrfs_fs_info *fs_info = sctx->fs_info;
1821 u8 calculated_csum[BTRFS_CSUM_SIZE];
1822 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1823 struct page *page;
1824 void *mapped_buffer;
1825 u64 mapped_size;
1826 void *p;
1827 u32 crc = ~(u32)0;
1828 u64 len;
1829 int index;
1831 BUG_ON(sblock->page_count < 1);
1832 page = sblock->pagev[0]->page;
1833 mapped_buffer = kmap_atomic(page);
1834 h = (struct btrfs_header *)mapped_buffer;
1835 memcpy(on_disk_csum, h->csum, sctx->csum_size);
1838 * we don't use the getter functions here, as we
1839 * a) don't have an extent buffer and
1840 * b) the page is already kmapped
1842 if (sblock->pagev[0]->logical != btrfs_stack_header_bytenr(h))
1843 sblock->header_error = 1;
1845 if (sblock->pagev[0]->generation != btrfs_stack_header_generation(h)) {
1846 sblock->header_error = 1;
1847 sblock->generation_error = 1;
1850 if (!scrub_check_fsid(h->fsid, sblock->pagev[0]))
1851 sblock->header_error = 1;
1853 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1854 BTRFS_UUID_SIZE))
1855 sblock->header_error = 1;
1857 len = sctx->fs_info->nodesize - BTRFS_CSUM_SIZE;
1858 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1859 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1860 index = 0;
1861 for (;;) {
1862 u64 l = min_t(u64, len, mapped_size);
1864 crc = btrfs_csum_data(p, crc, l);
1865 kunmap_atomic(mapped_buffer);
1866 len -= l;
1867 if (len == 0)
1868 break;
1869 index++;
1870 BUG_ON(index >= sblock->page_count);
1871 BUG_ON(!sblock->pagev[index]->page);
1872 page = sblock->pagev[index]->page;
1873 mapped_buffer = kmap_atomic(page);
1874 mapped_size = PAGE_SIZE;
1875 p = mapped_buffer;
1878 btrfs_csum_final(crc, calculated_csum);
1879 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1880 sblock->checksum_error = 1;
1882 return sblock->header_error || sblock->checksum_error;
1885 static int scrub_checksum_super(struct scrub_block *sblock)
1887 struct btrfs_super_block *s;
1888 struct scrub_ctx *sctx = sblock->sctx;
1889 u8 calculated_csum[BTRFS_CSUM_SIZE];
1890 u8 on_disk_csum[BTRFS_CSUM_SIZE];
1891 struct page *page;
1892 void *mapped_buffer;
1893 u64 mapped_size;
1894 void *p;
1895 u32 crc = ~(u32)0;
1896 int fail_gen = 0;
1897 int fail_cor = 0;
1898 u64 len;
1899 int index;
1901 BUG_ON(sblock->page_count < 1);
1902 page = sblock->pagev[0]->page;
1903 mapped_buffer = kmap_atomic(page);
1904 s = (struct btrfs_super_block *)mapped_buffer;
1905 memcpy(on_disk_csum, s->csum, sctx->csum_size);
1907 if (sblock->pagev[0]->logical != btrfs_super_bytenr(s))
1908 ++fail_cor;
1910 if (sblock->pagev[0]->generation != btrfs_super_generation(s))
1911 ++fail_gen;
1913 if (!scrub_check_fsid(s->fsid, sblock->pagev[0]))
1914 ++fail_cor;
1916 len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1917 mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1918 p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1919 index = 0;
1920 for (;;) {
1921 u64 l = min_t(u64, len, mapped_size);
1923 crc = btrfs_csum_data(p, crc, l);
1924 kunmap_atomic(mapped_buffer);
1925 len -= l;
1926 if (len == 0)
1927 break;
1928 index++;
1929 BUG_ON(index >= sblock->page_count);
1930 BUG_ON(!sblock->pagev[index]->page);
1931 page = sblock->pagev[index]->page;
1932 mapped_buffer = kmap_atomic(page);
1933 mapped_size = PAGE_SIZE;
1934 p = mapped_buffer;
1937 btrfs_csum_final(crc, calculated_csum);
1938 if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1939 ++fail_cor;
1941 if (fail_cor + fail_gen) {
1943 * if we find an error in a super block, we just report it.
1944 * They will get written with the next transaction commit
1945 * anyway
1947 spin_lock(&sctx->stat_lock);
1948 ++sctx->stat.super_errors;
1949 spin_unlock(&sctx->stat_lock);
1950 if (fail_cor)
1951 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1952 BTRFS_DEV_STAT_CORRUPTION_ERRS);
1953 else
1954 btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1955 BTRFS_DEV_STAT_GENERATION_ERRS);
1958 return fail_cor + fail_gen;
1961 static void scrub_block_get(struct scrub_block *sblock)
1963 refcount_inc(&sblock->refs);
1966 static void scrub_block_put(struct scrub_block *sblock)
1968 if (refcount_dec_and_test(&sblock->refs)) {
1969 int i;
1971 if (sblock->sparity)
1972 scrub_parity_put(sblock->sparity);
1974 for (i = 0; i < sblock->page_count; i++)
1975 scrub_page_put(sblock->pagev[i]);
1976 kfree(sblock);
1980 static void scrub_page_get(struct scrub_page *spage)
1982 atomic_inc(&spage->refs);
1985 static void scrub_page_put(struct scrub_page *spage)
1987 if (atomic_dec_and_test(&spage->refs)) {
1988 if (spage->page)
1989 __free_page(spage->page);
1990 kfree(spage);
1994 static void scrub_submit(struct scrub_ctx *sctx)
1996 struct scrub_bio *sbio;
1998 if (sctx->curr == -1)
1999 return;
2001 sbio = sctx->bios[sctx->curr];
2002 sctx->curr = -1;
2003 scrub_pending_bio_inc(sctx);
2004 btrfsic_submit_bio(sbio->bio);
2007 static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
2008 struct scrub_page *spage)
2010 struct scrub_block *sblock = spage->sblock;
2011 struct scrub_bio *sbio;
2012 int ret;
2014 again:
2016 * grab a fresh bio or wait for one to become available
2018 while (sctx->curr == -1) {
2019 spin_lock(&sctx->list_lock);
2020 sctx->curr = sctx->first_free;
2021 if (sctx->curr != -1) {
2022 sctx->first_free = sctx->bios[sctx->curr]->next_free;
2023 sctx->bios[sctx->curr]->next_free = -1;
2024 sctx->bios[sctx->curr]->page_count = 0;
2025 spin_unlock(&sctx->list_lock);
2026 } else {
2027 spin_unlock(&sctx->list_lock);
2028 wait_event(sctx->list_wait, sctx->first_free != -1);
2031 sbio = sctx->bios[sctx->curr];
2032 if (sbio->page_count == 0) {
2033 struct bio *bio;
2035 sbio->physical = spage->physical;
2036 sbio->logical = spage->logical;
2037 sbio->dev = spage->dev;
2038 bio = sbio->bio;
2039 if (!bio) {
2040 bio = btrfs_io_bio_alloc(sctx->pages_per_rd_bio);
2041 sbio->bio = bio;
2044 bio->bi_private = sbio;
2045 bio->bi_end_io = scrub_bio_end_io;
2046 bio_set_dev(bio, sbio->dev->bdev);
2047 bio->bi_iter.bi_sector = sbio->physical >> 9;
2048 bio->bi_opf = REQ_OP_READ;
2049 sbio->status = 0;
2050 } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
2051 spage->physical ||
2052 sbio->logical + sbio->page_count * PAGE_SIZE !=
2053 spage->logical ||
2054 sbio->dev != spage->dev) {
2055 scrub_submit(sctx);
2056 goto again;
2059 sbio->pagev[sbio->page_count] = spage;
2060 ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
2061 if (ret != PAGE_SIZE) {
2062 if (sbio->page_count < 1) {
2063 bio_put(sbio->bio);
2064 sbio->bio = NULL;
2065 return -EIO;
2067 scrub_submit(sctx);
2068 goto again;
2071 scrub_block_get(sblock); /* one for the page added to the bio */
2072 atomic_inc(&sblock->outstanding_pages);
2073 sbio->page_count++;
2074 if (sbio->page_count == sctx->pages_per_rd_bio)
2075 scrub_submit(sctx);
2077 return 0;
2080 static void scrub_missing_raid56_end_io(struct bio *bio)
2082 struct scrub_block *sblock = bio->bi_private;
2083 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2085 if (bio->bi_status)
2086 sblock->no_io_error_seen = 0;
2088 bio_put(bio);
2090 btrfs_queue_work(fs_info->scrub_workers, &sblock->work);
2093 static void scrub_missing_raid56_worker(struct btrfs_work *work)
2095 struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2096 struct scrub_ctx *sctx = sblock->sctx;
2097 struct btrfs_fs_info *fs_info = sctx->fs_info;
2098 u64 logical;
2099 struct btrfs_device *dev;
2101 logical = sblock->pagev[0]->logical;
2102 dev = sblock->pagev[0]->dev;
2104 if (sblock->no_io_error_seen)
2105 scrub_recheck_block_checksum(sblock);
2107 if (!sblock->no_io_error_seen) {
2108 spin_lock(&sctx->stat_lock);
2109 sctx->stat.read_errors++;
2110 spin_unlock(&sctx->stat_lock);
2111 btrfs_err_rl_in_rcu(fs_info,
2112 "IO error rebuilding logical %llu for dev %s",
2113 logical, rcu_str_deref(dev->name));
2114 } else if (sblock->header_error || sblock->checksum_error) {
2115 spin_lock(&sctx->stat_lock);
2116 sctx->stat.uncorrectable_errors++;
2117 spin_unlock(&sctx->stat_lock);
2118 btrfs_err_rl_in_rcu(fs_info,
2119 "failed to rebuild valid logical %llu for dev %s",
2120 logical, rcu_str_deref(dev->name));
2121 } else {
2122 scrub_write_block_to_dev_replace(sblock);
2125 scrub_block_put(sblock);
2127 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2128 mutex_lock(&sctx->wr_lock);
2129 scrub_wr_submit(sctx);
2130 mutex_unlock(&sctx->wr_lock);
2133 scrub_pending_bio_dec(sctx);
2136 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2138 struct scrub_ctx *sctx = sblock->sctx;
2139 struct btrfs_fs_info *fs_info = sctx->fs_info;
2140 u64 length = sblock->page_count * PAGE_SIZE;
2141 u64 logical = sblock->pagev[0]->logical;
2142 struct btrfs_bio *bbio = NULL;
2143 struct bio *bio;
2144 struct btrfs_raid_bio *rbio;
2145 int ret;
2146 int i;
2148 btrfs_bio_counter_inc_blocked(fs_info);
2149 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2150 &length, &bbio);
2151 if (ret || !bbio || !bbio->raid_map)
2152 goto bbio_out;
2154 if (WARN_ON(!sctx->is_dev_replace ||
2155 !(bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2157 * We shouldn't be scrubbing a missing device. Even for dev
2158 * replace, we should only get here for RAID 5/6. We either
2159 * managed to mount something with no mirrors remaining or
2160 * there's a bug in scrub_remap_extent()/btrfs_map_block().
2162 goto bbio_out;
2165 bio = btrfs_io_bio_alloc(0);
2166 bio->bi_iter.bi_sector = logical >> 9;
2167 bio->bi_private = sblock;
2168 bio->bi_end_io = scrub_missing_raid56_end_io;
2170 rbio = raid56_alloc_missing_rbio(fs_info, bio, bbio, length);
2171 if (!rbio)
2172 goto rbio_out;
2174 for (i = 0; i < sblock->page_count; i++) {
2175 struct scrub_page *spage = sblock->pagev[i];
2177 raid56_add_scrub_pages(rbio, spage->page, spage->logical);
2180 btrfs_init_work(&sblock->work, btrfs_scrub_helper,
2181 scrub_missing_raid56_worker, NULL, NULL);
2182 scrub_block_get(sblock);
2183 scrub_pending_bio_inc(sctx);
2184 raid56_submit_missing_rbio(rbio);
2185 return;
2187 rbio_out:
2188 bio_put(bio);
2189 bbio_out:
2190 btrfs_bio_counter_dec(fs_info);
2191 btrfs_put_bbio(bbio);
2192 spin_lock(&sctx->stat_lock);
2193 sctx->stat.malloc_errors++;
2194 spin_unlock(&sctx->stat_lock);
2197 static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
2198 u64 physical, struct btrfs_device *dev, u64 flags,
2199 u64 gen, int mirror_num, u8 *csum, int force,
2200 u64 physical_for_dev_replace)
2202 struct scrub_block *sblock;
2203 int index;
2205 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2206 if (!sblock) {
2207 spin_lock(&sctx->stat_lock);
2208 sctx->stat.malloc_errors++;
2209 spin_unlock(&sctx->stat_lock);
2210 return -ENOMEM;
2213 /* one ref inside this function, plus one for each page added to
2214 * a bio later on */
2215 refcount_set(&sblock->refs, 1);
2216 sblock->sctx = sctx;
2217 sblock->no_io_error_seen = 1;
2219 for (index = 0; len > 0; index++) {
2220 struct scrub_page *spage;
2221 u64 l = min_t(u64, len, PAGE_SIZE);
2223 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2224 if (!spage) {
2225 leave_nomem:
2226 spin_lock(&sctx->stat_lock);
2227 sctx->stat.malloc_errors++;
2228 spin_unlock(&sctx->stat_lock);
2229 scrub_block_put(sblock);
2230 return -ENOMEM;
2232 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2233 scrub_page_get(spage);
2234 sblock->pagev[index] = spage;
2235 spage->sblock = sblock;
2236 spage->dev = dev;
2237 spage->flags = flags;
2238 spage->generation = gen;
2239 spage->logical = logical;
2240 spage->physical = physical;
2241 spage->physical_for_dev_replace = physical_for_dev_replace;
2242 spage->mirror_num = mirror_num;
2243 if (csum) {
2244 spage->have_csum = 1;
2245 memcpy(spage->csum, csum, sctx->csum_size);
2246 } else {
2247 spage->have_csum = 0;
2249 sblock->page_count++;
2250 spage->page = alloc_page(GFP_KERNEL);
2251 if (!spage->page)
2252 goto leave_nomem;
2253 len -= l;
2254 logical += l;
2255 physical += l;
2256 physical_for_dev_replace += l;
2259 WARN_ON(sblock->page_count == 0);
2260 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2262 * This case should only be hit for RAID 5/6 device replace. See
2263 * the comment in scrub_missing_raid56_pages() for details.
2265 scrub_missing_raid56_pages(sblock);
2266 } else {
2267 for (index = 0; index < sblock->page_count; index++) {
2268 struct scrub_page *spage = sblock->pagev[index];
2269 int ret;
2271 ret = scrub_add_page_to_rd_bio(sctx, spage);
2272 if (ret) {
2273 scrub_block_put(sblock);
2274 return ret;
2278 if (force)
2279 scrub_submit(sctx);
2282 /* last one frees, either here or in bio completion for last page */
2283 scrub_block_put(sblock);
2284 return 0;
2287 static void scrub_bio_end_io(struct bio *bio)
2289 struct scrub_bio *sbio = bio->bi_private;
2290 struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2292 sbio->status = bio->bi_status;
2293 sbio->bio = bio;
2295 btrfs_queue_work(fs_info->scrub_workers, &sbio->work);
2298 static void scrub_bio_end_io_worker(struct btrfs_work *work)
2300 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2301 struct scrub_ctx *sctx = sbio->sctx;
2302 int i;
2304 BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2305 if (sbio->status) {
2306 for (i = 0; i < sbio->page_count; i++) {
2307 struct scrub_page *spage = sbio->pagev[i];
2309 spage->io_error = 1;
2310 spage->sblock->no_io_error_seen = 0;
2314 /* now complete the scrub_block items that have all pages completed */
2315 for (i = 0; i < sbio->page_count; i++) {
2316 struct scrub_page *spage = sbio->pagev[i];
2317 struct scrub_block *sblock = spage->sblock;
2319 if (atomic_dec_and_test(&sblock->outstanding_pages))
2320 scrub_block_complete(sblock);
2321 scrub_block_put(sblock);
2324 bio_put(sbio->bio);
2325 sbio->bio = NULL;
2326 spin_lock(&sctx->list_lock);
2327 sbio->next_free = sctx->first_free;
2328 sctx->first_free = sbio->index;
2329 spin_unlock(&sctx->list_lock);
2331 if (sctx->is_dev_replace && sctx->flush_all_writes) {
2332 mutex_lock(&sctx->wr_lock);
2333 scrub_wr_submit(sctx);
2334 mutex_unlock(&sctx->wr_lock);
2337 scrub_pending_bio_dec(sctx);
2340 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2341 unsigned long *bitmap,
2342 u64 start, u64 len)
2344 u64 offset;
2345 u64 nsectors64;
2346 u32 nsectors;
2347 int sectorsize = sparity->sctx->fs_info->sectorsize;
2349 if (len >= sparity->stripe_len) {
2350 bitmap_set(bitmap, 0, sparity->nsectors);
2351 return;
2354 start -= sparity->logic_start;
2355 start = div64_u64_rem(start, sparity->stripe_len, &offset);
2356 offset = div_u64(offset, sectorsize);
2357 nsectors64 = div_u64(len, sectorsize);
2359 ASSERT(nsectors64 < UINT_MAX);
2360 nsectors = (u32)nsectors64;
2362 if (offset + nsectors <= sparity->nsectors) {
2363 bitmap_set(bitmap, offset, nsectors);
2364 return;
2367 bitmap_set(bitmap, offset, sparity->nsectors - offset);
2368 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2371 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2372 u64 start, u64 len)
2374 __scrub_mark_bitmap(sparity, sparity->ebitmap, start, len);
2377 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2378 u64 start, u64 len)
2380 __scrub_mark_bitmap(sparity, sparity->dbitmap, start, len);
2383 static void scrub_block_complete(struct scrub_block *sblock)
2385 int corrupted = 0;
2387 if (!sblock->no_io_error_seen) {
2388 corrupted = 1;
2389 scrub_handle_errored_block(sblock);
2390 } else {
2392 * if has checksum error, write via repair mechanism in
2393 * dev replace case, otherwise write here in dev replace
2394 * case.
2396 corrupted = scrub_checksum(sblock);
2397 if (!corrupted && sblock->sctx->is_dev_replace)
2398 scrub_write_block_to_dev_replace(sblock);
2401 if (sblock->sparity && corrupted && !sblock->data_corrected) {
2402 u64 start = sblock->pagev[0]->logical;
2403 u64 end = sblock->pagev[sblock->page_count - 1]->logical +
2404 PAGE_SIZE;
2406 scrub_parity_mark_sectors_error(sblock->sparity,
2407 start, end - start);
2411 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2413 struct btrfs_ordered_sum *sum = NULL;
2414 unsigned long index;
2415 unsigned long num_sectors;
2417 while (!list_empty(&sctx->csum_list)) {
2418 sum = list_first_entry(&sctx->csum_list,
2419 struct btrfs_ordered_sum, list);
2420 if (sum->bytenr > logical)
2421 return 0;
2422 if (sum->bytenr + sum->len > logical)
2423 break;
2425 ++sctx->stat.csum_discards;
2426 list_del(&sum->list);
2427 kfree(sum);
2428 sum = NULL;
2430 if (!sum)
2431 return 0;
2433 index = div_u64(logical - sum->bytenr, sctx->fs_info->sectorsize);
2434 ASSERT(index < UINT_MAX);
2436 num_sectors = sum->len / sctx->fs_info->sectorsize;
2437 memcpy(csum, sum->sums + index, sctx->csum_size);
2438 if (index == num_sectors - 1) {
2439 list_del(&sum->list);
2440 kfree(sum);
2442 return 1;
2445 /* scrub extent tries to collect up to 64 kB for each bio */
2446 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2447 u64 logical, u64 len,
2448 u64 physical, struct btrfs_device *dev, u64 flags,
2449 u64 gen, int mirror_num, u64 physical_for_dev_replace)
2451 int ret;
2452 u8 csum[BTRFS_CSUM_SIZE];
2453 u32 blocksize;
2455 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2456 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2457 blocksize = map->stripe_len;
2458 else
2459 blocksize = sctx->fs_info->sectorsize;
2460 spin_lock(&sctx->stat_lock);
2461 sctx->stat.data_extents_scrubbed++;
2462 sctx->stat.data_bytes_scrubbed += len;
2463 spin_unlock(&sctx->stat_lock);
2464 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2465 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2466 blocksize = map->stripe_len;
2467 else
2468 blocksize = sctx->fs_info->nodesize;
2469 spin_lock(&sctx->stat_lock);
2470 sctx->stat.tree_extents_scrubbed++;
2471 sctx->stat.tree_bytes_scrubbed += len;
2472 spin_unlock(&sctx->stat_lock);
2473 } else {
2474 blocksize = sctx->fs_info->sectorsize;
2475 WARN_ON(1);
2478 while (len) {
2479 u64 l = min_t(u64, len, blocksize);
2480 int have_csum = 0;
2482 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2483 /* push csums to sbio */
2484 have_csum = scrub_find_csum(sctx, logical, csum);
2485 if (have_csum == 0)
2486 ++sctx->stat.no_csum;
2488 ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2489 mirror_num, have_csum ? csum : NULL, 0,
2490 physical_for_dev_replace);
2491 if (ret)
2492 return ret;
2493 len -= l;
2494 logical += l;
2495 physical += l;
2496 physical_for_dev_replace += l;
2498 return 0;
2501 static int scrub_pages_for_parity(struct scrub_parity *sparity,
2502 u64 logical, u64 len,
2503 u64 physical, struct btrfs_device *dev,
2504 u64 flags, u64 gen, int mirror_num, u8 *csum)
2506 struct scrub_ctx *sctx = sparity->sctx;
2507 struct scrub_block *sblock;
2508 int index;
2510 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
2511 if (!sblock) {
2512 spin_lock(&sctx->stat_lock);
2513 sctx->stat.malloc_errors++;
2514 spin_unlock(&sctx->stat_lock);
2515 return -ENOMEM;
2518 /* one ref inside this function, plus one for each page added to
2519 * a bio later on */
2520 refcount_set(&sblock->refs, 1);
2521 sblock->sctx = sctx;
2522 sblock->no_io_error_seen = 1;
2523 sblock->sparity = sparity;
2524 scrub_parity_get(sparity);
2526 for (index = 0; len > 0; index++) {
2527 struct scrub_page *spage;
2528 u64 l = min_t(u64, len, PAGE_SIZE);
2530 spage = kzalloc(sizeof(*spage), GFP_KERNEL);
2531 if (!spage) {
2532 leave_nomem:
2533 spin_lock(&sctx->stat_lock);
2534 sctx->stat.malloc_errors++;
2535 spin_unlock(&sctx->stat_lock);
2536 scrub_block_put(sblock);
2537 return -ENOMEM;
2539 BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2540 /* For scrub block */
2541 scrub_page_get(spage);
2542 sblock->pagev[index] = spage;
2543 /* For scrub parity */
2544 scrub_page_get(spage);
2545 list_add_tail(&spage->list, &sparity->spages);
2546 spage->sblock = sblock;
2547 spage->dev = dev;
2548 spage->flags = flags;
2549 spage->generation = gen;
2550 spage->logical = logical;
2551 spage->physical = physical;
2552 spage->mirror_num = mirror_num;
2553 if (csum) {
2554 spage->have_csum = 1;
2555 memcpy(spage->csum, csum, sctx->csum_size);
2556 } else {
2557 spage->have_csum = 0;
2559 sblock->page_count++;
2560 spage->page = alloc_page(GFP_KERNEL);
2561 if (!spage->page)
2562 goto leave_nomem;
2563 len -= l;
2564 logical += l;
2565 physical += l;
2568 WARN_ON(sblock->page_count == 0);
2569 for (index = 0; index < sblock->page_count; index++) {
2570 struct scrub_page *spage = sblock->pagev[index];
2571 int ret;
2573 ret = scrub_add_page_to_rd_bio(sctx, spage);
2574 if (ret) {
2575 scrub_block_put(sblock);
2576 return ret;
2580 /* last one frees, either here or in bio completion for last page */
2581 scrub_block_put(sblock);
2582 return 0;
2585 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2586 u64 logical, u64 len,
2587 u64 physical, struct btrfs_device *dev,
2588 u64 flags, u64 gen, int mirror_num)
2590 struct scrub_ctx *sctx = sparity->sctx;
2591 int ret;
2592 u8 csum[BTRFS_CSUM_SIZE];
2593 u32 blocksize;
2595 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2596 scrub_parity_mark_sectors_error(sparity, logical, len);
2597 return 0;
2600 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2601 blocksize = sparity->stripe_len;
2602 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2603 blocksize = sparity->stripe_len;
2604 } else {
2605 blocksize = sctx->fs_info->sectorsize;
2606 WARN_ON(1);
2609 while (len) {
2610 u64 l = min_t(u64, len, blocksize);
2611 int have_csum = 0;
2613 if (flags & BTRFS_EXTENT_FLAG_DATA) {
2614 /* push csums to sbio */
2615 have_csum = scrub_find_csum(sctx, logical, csum);
2616 if (have_csum == 0)
2617 goto skip;
2619 ret = scrub_pages_for_parity(sparity, logical, l, physical, dev,
2620 flags, gen, mirror_num,
2621 have_csum ? csum : NULL);
2622 if (ret)
2623 return ret;
2624 skip:
2625 len -= l;
2626 logical += l;
2627 physical += l;
2629 return 0;
2633 * Given a physical address, this will calculate it's
2634 * logical offset. if this is a parity stripe, it will return
2635 * the most left data stripe's logical offset.
2637 * return 0 if it is a data stripe, 1 means parity stripe.
2639 static int get_raid56_logic_offset(u64 physical, int num,
2640 struct map_lookup *map, u64 *offset,
2641 u64 *stripe_start)
2643 int i;
2644 int j = 0;
2645 u64 stripe_nr;
2646 u64 last_offset;
2647 u32 stripe_index;
2648 u32 rot;
2650 last_offset = (physical - map->stripes[num].physical) *
2651 nr_data_stripes(map);
2652 if (stripe_start)
2653 *stripe_start = last_offset;
2655 *offset = last_offset;
2656 for (i = 0; i < nr_data_stripes(map); i++) {
2657 *offset = last_offset + i * map->stripe_len;
2659 stripe_nr = div64_u64(*offset, map->stripe_len);
2660 stripe_nr = div_u64(stripe_nr, nr_data_stripes(map));
2662 /* Work out the disk rotation on this stripe-set */
2663 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2664 /* calculate which stripe this data locates */
2665 rot += i;
2666 stripe_index = rot % map->num_stripes;
2667 if (stripe_index == num)
2668 return 0;
2669 if (stripe_index < num)
2670 j++;
2672 *offset = last_offset + j * map->stripe_len;
2673 return 1;
2676 static void scrub_free_parity(struct scrub_parity *sparity)
2678 struct scrub_ctx *sctx = sparity->sctx;
2679 struct scrub_page *curr, *next;
2680 int nbits;
2682 nbits = bitmap_weight(sparity->ebitmap, sparity->nsectors);
2683 if (nbits) {
2684 spin_lock(&sctx->stat_lock);
2685 sctx->stat.read_errors += nbits;
2686 sctx->stat.uncorrectable_errors += nbits;
2687 spin_unlock(&sctx->stat_lock);
2690 list_for_each_entry_safe(curr, next, &sparity->spages, list) {
2691 list_del_init(&curr->list);
2692 scrub_page_put(curr);
2695 kfree(sparity);
2698 static void scrub_parity_bio_endio_worker(struct btrfs_work *work)
2700 struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2701 work);
2702 struct scrub_ctx *sctx = sparity->sctx;
2704 scrub_free_parity(sparity);
2705 scrub_pending_bio_dec(sctx);
2708 static void scrub_parity_bio_endio(struct bio *bio)
2710 struct scrub_parity *sparity = (struct scrub_parity *)bio->bi_private;
2711 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2713 if (bio->bi_status)
2714 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2715 sparity->nsectors);
2717 bio_put(bio);
2719 btrfs_init_work(&sparity->work, btrfs_scrubparity_helper,
2720 scrub_parity_bio_endio_worker, NULL, NULL);
2721 btrfs_queue_work(fs_info->scrub_parity_workers, &sparity->work);
2724 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2726 struct scrub_ctx *sctx = sparity->sctx;
2727 struct btrfs_fs_info *fs_info = sctx->fs_info;
2728 struct bio *bio;
2729 struct btrfs_raid_bio *rbio;
2730 struct btrfs_bio *bbio = NULL;
2731 u64 length;
2732 int ret;
2734 if (!bitmap_andnot(sparity->dbitmap, sparity->dbitmap, sparity->ebitmap,
2735 sparity->nsectors))
2736 goto out;
2738 length = sparity->logic_end - sparity->logic_start;
2740 btrfs_bio_counter_inc_blocked(fs_info);
2741 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2742 &length, &bbio);
2743 if (ret || !bbio || !bbio->raid_map)
2744 goto bbio_out;
2746 bio = btrfs_io_bio_alloc(0);
2747 bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2748 bio->bi_private = sparity;
2749 bio->bi_end_io = scrub_parity_bio_endio;
2751 rbio = raid56_parity_alloc_scrub_rbio(fs_info, bio, bbio,
2752 length, sparity->scrub_dev,
2753 sparity->dbitmap,
2754 sparity->nsectors);
2755 if (!rbio)
2756 goto rbio_out;
2758 scrub_pending_bio_inc(sctx);
2759 raid56_parity_submit_scrub_rbio(rbio);
2760 return;
2762 rbio_out:
2763 bio_put(bio);
2764 bbio_out:
2765 btrfs_bio_counter_dec(fs_info);
2766 btrfs_put_bbio(bbio);
2767 bitmap_or(sparity->ebitmap, sparity->ebitmap, sparity->dbitmap,
2768 sparity->nsectors);
2769 spin_lock(&sctx->stat_lock);
2770 sctx->stat.malloc_errors++;
2771 spin_unlock(&sctx->stat_lock);
2772 out:
2773 scrub_free_parity(sparity);
2776 static inline int scrub_calc_parity_bitmap_len(int nsectors)
2778 return DIV_ROUND_UP(nsectors, BITS_PER_LONG) * sizeof(long);
2781 static void scrub_parity_get(struct scrub_parity *sparity)
2783 refcount_inc(&sparity->refs);
2786 static void scrub_parity_put(struct scrub_parity *sparity)
2788 if (!refcount_dec_and_test(&sparity->refs))
2789 return;
2791 scrub_parity_check_and_repair(sparity);
2794 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
2795 struct map_lookup *map,
2796 struct btrfs_device *sdev,
2797 struct btrfs_path *path,
2798 u64 logic_start,
2799 u64 logic_end)
2801 struct btrfs_fs_info *fs_info = sctx->fs_info;
2802 struct btrfs_root *root = fs_info->extent_root;
2803 struct btrfs_root *csum_root = fs_info->csum_root;
2804 struct btrfs_extent_item *extent;
2805 struct btrfs_bio *bbio = NULL;
2806 u64 flags;
2807 int ret;
2808 int slot;
2809 struct extent_buffer *l;
2810 struct btrfs_key key;
2811 u64 generation;
2812 u64 extent_logical;
2813 u64 extent_physical;
2814 u64 extent_len;
2815 u64 mapped_length;
2816 struct btrfs_device *extent_dev;
2817 struct scrub_parity *sparity;
2818 int nsectors;
2819 int bitmap_len;
2820 int extent_mirror_num;
2821 int stop_loop = 0;
2823 nsectors = div_u64(map->stripe_len, fs_info->sectorsize);
2824 bitmap_len = scrub_calc_parity_bitmap_len(nsectors);
2825 sparity = kzalloc(sizeof(struct scrub_parity) + 2 * bitmap_len,
2826 GFP_NOFS);
2827 if (!sparity) {
2828 spin_lock(&sctx->stat_lock);
2829 sctx->stat.malloc_errors++;
2830 spin_unlock(&sctx->stat_lock);
2831 return -ENOMEM;
2834 sparity->stripe_len = map->stripe_len;
2835 sparity->nsectors = nsectors;
2836 sparity->sctx = sctx;
2837 sparity->scrub_dev = sdev;
2838 sparity->logic_start = logic_start;
2839 sparity->logic_end = logic_end;
2840 refcount_set(&sparity->refs, 1);
2841 INIT_LIST_HEAD(&sparity->spages);
2842 sparity->dbitmap = sparity->bitmap;
2843 sparity->ebitmap = (void *)sparity->bitmap + bitmap_len;
2845 ret = 0;
2846 while (logic_start < logic_end) {
2847 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2848 key.type = BTRFS_METADATA_ITEM_KEY;
2849 else
2850 key.type = BTRFS_EXTENT_ITEM_KEY;
2851 key.objectid = logic_start;
2852 key.offset = (u64)-1;
2854 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2855 if (ret < 0)
2856 goto out;
2858 if (ret > 0) {
2859 ret = btrfs_previous_extent_item(root, path, 0);
2860 if (ret < 0)
2861 goto out;
2862 if (ret > 0) {
2863 btrfs_release_path(path);
2864 ret = btrfs_search_slot(NULL, root, &key,
2865 path, 0, 0);
2866 if (ret < 0)
2867 goto out;
2871 stop_loop = 0;
2872 while (1) {
2873 u64 bytes;
2875 l = path->nodes[0];
2876 slot = path->slots[0];
2877 if (slot >= btrfs_header_nritems(l)) {
2878 ret = btrfs_next_leaf(root, path);
2879 if (ret == 0)
2880 continue;
2881 if (ret < 0)
2882 goto out;
2884 stop_loop = 1;
2885 break;
2887 btrfs_item_key_to_cpu(l, &key, slot);
2889 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2890 key.type != BTRFS_METADATA_ITEM_KEY)
2891 goto next;
2893 if (key.type == BTRFS_METADATA_ITEM_KEY)
2894 bytes = fs_info->nodesize;
2895 else
2896 bytes = key.offset;
2898 if (key.objectid + bytes <= logic_start)
2899 goto next;
2901 if (key.objectid >= logic_end) {
2902 stop_loop = 1;
2903 break;
2906 while (key.objectid >= logic_start + map->stripe_len)
2907 logic_start += map->stripe_len;
2909 extent = btrfs_item_ptr(l, slot,
2910 struct btrfs_extent_item);
2911 flags = btrfs_extent_flags(l, extent);
2912 generation = btrfs_extent_generation(l, extent);
2914 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
2915 (key.objectid < logic_start ||
2916 key.objectid + bytes >
2917 logic_start + map->stripe_len)) {
2918 btrfs_err(fs_info,
2919 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
2920 key.objectid, logic_start);
2921 spin_lock(&sctx->stat_lock);
2922 sctx->stat.uncorrectable_errors++;
2923 spin_unlock(&sctx->stat_lock);
2924 goto next;
2926 again:
2927 extent_logical = key.objectid;
2928 extent_len = bytes;
2930 if (extent_logical < logic_start) {
2931 extent_len -= logic_start - extent_logical;
2932 extent_logical = logic_start;
2935 if (extent_logical + extent_len >
2936 logic_start + map->stripe_len)
2937 extent_len = logic_start + map->stripe_len -
2938 extent_logical;
2940 scrub_parity_mark_sectors_data(sparity, extent_logical,
2941 extent_len);
2943 mapped_length = extent_len;
2944 bbio = NULL;
2945 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ,
2946 extent_logical, &mapped_length, &bbio,
2948 if (!ret) {
2949 if (!bbio || mapped_length < extent_len)
2950 ret = -EIO;
2952 if (ret) {
2953 btrfs_put_bbio(bbio);
2954 goto out;
2956 extent_physical = bbio->stripes[0].physical;
2957 extent_mirror_num = bbio->mirror_num;
2958 extent_dev = bbio->stripes[0].dev;
2959 btrfs_put_bbio(bbio);
2961 ret = btrfs_lookup_csums_range(csum_root,
2962 extent_logical,
2963 extent_logical + extent_len - 1,
2964 &sctx->csum_list, 1);
2965 if (ret)
2966 goto out;
2968 ret = scrub_extent_for_parity(sparity, extent_logical,
2969 extent_len,
2970 extent_physical,
2971 extent_dev, flags,
2972 generation,
2973 extent_mirror_num);
2975 scrub_free_csums(sctx);
2977 if (ret)
2978 goto out;
2980 if (extent_logical + extent_len <
2981 key.objectid + bytes) {
2982 logic_start += map->stripe_len;
2984 if (logic_start >= logic_end) {
2985 stop_loop = 1;
2986 break;
2989 if (logic_start < key.objectid + bytes) {
2990 cond_resched();
2991 goto again;
2994 next:
2995 path->slots[0]++;
2998 btrfs_release_path(path);
3000 if (stop_loop)
3001 break;
3003 logic_start += map->stripe_len;
3005 out:
3006 if (ret < 0)
3007 scrub_parity_mark_sectors_error(sparity, logic_start,
3008 logic_end - logic_start);
3009 scrub_parity_put(sparity);
3010 scrub_submit(sctx);
3011 mutex_lock(&sctx->wr_lock);
3012 scrub_wr_submit(sctx);
3013 mutex_unlock(&sctx->wr_lock);
3015 btrfs_release_path(path);
3016 return ret < 0 ? ret : 0;
3019 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3020 struct map_lookup *map,
3021 struct btrfs_device *scrub_dev,
3022 int num, u64 base, u64 length)
3024 struct btrfs_path *path, *ppath;
3025 struct btrfs_fs_info *fs_info = sctx->fs_info;
3026 struct btrfs_root *root = fs_info->extent_root;
3027 struct btrfs_root *csum_root = fs_info->csum_root;
3028 struct btrfs_extent_item *extent;
3029 struct blk_plug plug;
3030 u64 flags;
3031 int ret;
3032 int slot;
3033 u64 nstripes;
3034 struct extent_buffer *l;
3035 u64 physical;
3036 u64 logical;
3037 u64 logic_end;
3038 u64 physical_end;
3039 u64 generation;
3040 int mirror_num;
3041 struct reada_control *reada1;
3042 struct reada_control *reada2;
3043 struct btrfs_key key;
3044 struct btrfs_key key_end;
3045 u64 increment = map->stripe_len;
3046 u64 offset;
3047 u64 extent_logical;
3048 u64 extent_physical;
3049 u64 extent_len;
3050 u64 stripe_logical;
3051 u64 stripe_end;
3052 struct btrfs_device *extent_dev;
3053 int extent_mirror_num;
3054 int stop_loop = 0;
3056 physical = map->stripes[num].physical;
3057 offset = 0;
3058 nstripes = div64_u64(length, map->stripe_len);
3059 if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
3060 offset = map->stripe_len * num;
3061 increment = map->stripe_len * map->num_stripes;
3062 mirror_num = 1;
3063 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
3064 int factor = map->num_stripes / map->sub_stripes;
3065 offset = map->stripe_len * (num / map->sub_stripes);
3066 increment = map->stripe_len * factor;
3067 mirror_num = num % map->sub_stripes + 1;
3068 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
3069 increment = map->stripe_len;
3070 mirror_num = num % map->num_stripes + 1;
3071 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
3072 increment = map->stripe_len;
3073 mirror_num = num % map->num_stripes + 1;
3074 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3075 get_raid56_logic_offset(physical, num, map, &offset, NULL);
3076 increment = map->stripe_len * nr_data_stripes(map);
3077 mirror_num = 1;
3078 } else {
3079 increment = map->stripe_len;
3080 mirror_num = 1;
3083 path = btrfs_alloc_path();
3084 if (!path)
3085 return -ENOMEM;
3087 ppath = btrfs_alloc_path();
3088 if (!ppath) {
3089 btrfs_free_path(path);
3090 return -ENOMEM;
3094 * work on commit root. The related disk blocks are static as
3095 * long as COW is applied. This means, it is save to rewrite
3096 * them to repair disk errors without any race conditions
3098 path->search_commit_root = 1;
3099 path->skip_locking = 1;
3101 ppath->search_commit_root = 1;
3102 ppath->skip_locking = 1;
3104 * trigger the readahead for extent tree csum tree and wait for
3105 * completion. During readahead, the scrub is officially paused
3106 * to not hold off transaction commits
3108 logical = base + offset;
3109 physical_end = physical + nstripes * map->stripe_len;
3110 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3111 get_raid56_logic_offset(physical_end, num,
3112 map, &logic_end, NULL);
3113 logic_end += base;
3114 } else {
3115 logic_end = logical + increment * nstripes;
3117 wait_event(sctx->list_wait,
3118 atomic_read(&sctx->bios_in_flight) == 0);
3119 scrub_blocked_if_needed(fs_info);
3121 /* FIXME it might be better to start readahead at commit root */
3122 key.objectid = logical;
3123 key.type = BTRFS_EXTENT_ITEM_KEY;
3124 key.offset = (u64)0;
3125 key_end.objectid = logic_end;
3126 key_end.type = BTRFS_METADATA_ITEM_KEY;
3127 key_end.offset = (u64)-1;
3128 reada1 = btrfs_reada_add(root, &key, &key_end);
3130 key.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3131 key.type = BTRFS_EXTENT_CSUM_KEY;
3132 key.offset = logical;
3133 key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
3134 key_end.type = BTRFS_EXTENT_CSUM_KEY;
3135 key_end.offset = logic_end;
3136 reada2 = btrfs_reada_add(csum_root, &key, &key_end);
3138 if (!IS_ERR(reada1))
3139 btrfs_reada_wait(reada1);
3140 if (!IS_ERR(reada2))
3141 btrfs_reada_wait(reada2);
3145 * collect all data csums for the stripe to avoid seeking during
3146 * the scrub. This might currently (crc32) end up to be about 1MB
3148 blk_start_plug(&plug);
3151 * now find all extents for each stripe and scrub them
3153 ret = 0;
3154 while (physical < physical_end) {
3156 * canceled?
3158 if (atomic_read(&fs_info->scrub_cancel_req) ||
3159 atomic_read(&sctx->cancel_req)) {
3160 ret = -ECANCELED;
3161 goto out;
3164 * check to see if we have to pause
3166 if (atomic_read(&fs_info->scrub_pause_req)) {
3167 /* push queued extents */
3168 sctx->flush_all_writes = true;
3169 scrub_submit(sctx);
3170 mutex_lock(&sctx->wr_lock);
3171 scrub_wr_submit(sctx);
3172 mutex_unlock(&sctx->wr_lock);
3173 wait_event(sctx->list_wait,
3174 atomic_read(&sctx->bios_in_flight) == 0);
3175 sctx->flush_all_writes = false;
3176 scrub_blocked_if_needed(fs_info);
3179 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3180 ret = get_raid56_logic_offset(physical, num, map,
3181 &logical,
3182 &stripe_logical);
3183 logical += base;
3184 if (ret) {
3185 /* it is parity strip */
3186 stripe_logical += base;
3187 stripe_end = stripe_logical + increment;
3188 ret = scrub_raid56_parity(sctx, map, scrub_dev,
3189 ppath, stripe_logical,
3190 stripe_end);
3191 if (ret)
3192 goto out;
3193 goto skip;
3197 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3198 key.type = BTRFS_METADATA_ITEM_KEY;
3199 else
3200 key.type = BTRFS_EXTENT_ITEM_KEY;
3201 key.objectid = logical;
3202 key.offset = (u64)-1;
3204 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3205 if (ret < 0)
3206 goto out;
3208 if (ret > 0) {
3209 ret = btrfs_previous_extent_item(root, path, 0);
3210 if (ret < 0)
3211 goto out;
3212 if (ret > 0) {
3213 /* there's no smaller item, so stick with the
3214 * larger one */
3215 btrfs_release_path(path);
3216 ret = btrfs_search_slot(NULL, root, &key,
3217 path, 0, 0);
3218 if (ret < 0)
3219 goto out;
3223 stop_loop = 0;
3224 while (1) {
3225 u64 bytes;
3227 l = path->nodes[0];
3228 slot = path->slots[0];
3229 if (slot >= btrfs_header_nritems(l)) {
3230 ret = btrfs_next_leaf(root, path);
3231 if (ret == 0)
3232 continue;
3233 if (ret < 0)
3234 goto out;
3236 stop_loop = 1;
3237 break;
3239 btrfs_item_key_to_cpu(l, &key, slot);
3241 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3242 key.type != BTRFS_METADATA_ITEM_KEY)
3243 goto next;
3245 if (key.type == BTRFS_METADATA_ITEM_KEY)
3246 bytes = fs_info->nodesize;
3247 else
3248 bytes = key.offset;
3250 if (key.objectid + bytes <= logical)
3251 goto next;
3253 if (key.objectid >= logical + map->stripe_len) {
3254 /* out of this device extent */
3255 if (key.objectid >= logic_end)
3256 stop_loop = 1;
3257 break;
3260 extent = btrfs_item_ptr(l, slot,
3261 struct btrfs_extent_item);
3262 flags = btrfs_extent_flags(l, extent);
3263 generation = btrfs_extent_generation(l, extent);
3265 if ((flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3266 (key.objectid < logical ||
3267 key.objectid + bytes >
3268 logical + map->stripe_len)) {
3269 btrfs_err(fs_info,
3270 "scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3271 key.objectid, logical);
3272 spin_lock(&sctx->stat_lock);
3273 sctx->stat.uncorrectable_errors++;
3274 spin_unlock(&sctx->stat_lock);
3275 goto next;
3278 again:
3279 extent_logical = key.objectid;
3280 extent_len = bytes;
3283 * trim extent to this stripe
3285 if (extent_logical < logical) {
3286 extent_len -= logical - extent_logical;
3287 extent_logical = logical;
3289 if (extent_logical + extent_len >
3290 logical + map->stripe_len) {
3291 extent_len = logical + map->stripe_len -
3292 extent_logical;
3295 extent_physical = extent_logical - logical + physical;
3296 extent_dev = scrub_dev;
3297 extent_mirror_num = mirror_num;
3298 if (sctx->is_dev_replace)
3299 scrub_remap_extent(fs_info, extent_logical,
3300 extent_len, &extent_physical,
3301 &extent_dev,
3302 &extent_mirror_num);
3304 ret = btrfs_lookup_csums_range(csum_root,
3305 extent_logical,
3306 extent_logical +
3307 extent_len - 1,
3308 &sctx->csum_list, 1);
3309 if (ret)
3310 goto out;
3312 ret = scrub_extent(sctx, map, extent_logical, extent_len,
3313 extent_physical, extent_dev, flags,
3314 generation, extent_mirror_num,
3315 extent_logical - logical + physical);
3317 scrub_free_csums(sctx);
3319 if (ret)
3320 goto out;
3322 if (extent_logical + extent_len <
3323 key.objectid + bytes) {
3324 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
3326 * loop until we find next data stripe
3327 * or we have finished all stripes.
3329 loop:
3330 physical += map->stripe_len;
3331 ret = get_raid56_logic_offset(physical,
3332 num, map, &logical,
3333 &stripe_logical);
3334 logical += base;
3336 if (ret && physical < physical_end) {
3337 stripe_logical += base;
3338 stripe_end = stripe_logical +
3339 increment;
3340 ret = scrub_raid56_parity(sctx,
3341 map, scrub_dev, ppath,
3342 stripe_logical,
3343 stripe_end);
3344 if (ret)
3345 goto out;
3346 goto loop;
3348 } else {
3349 physical += map->stripe_len;
3350 logical += increment;
3352 if (logical < key.objectid + bytes) {
3353 cond_resched();
3354 goto again;
3357 if (physical >= physical_end) {
3358 stop_loop = 1;
3359 break;
3362 next:
3363 path->slots[0]++;
3365 btrfs_release_path(path);
3366 skip:
3367 logical += increment;
3368 physical += map->stripe_len;
3369 spin_lock(&sctx->stat_lock);
3370 if (stop_loop)
3371 sctx->stat.last_physical = map->stripes[num].physical +
3372 length;
3373 else
3374 sctx->stat.last_physical = physical;
3375 spin_unlock(&sctx->stat_lock);
3376 if (stop_loop)
3377 break;
3379 out:
3380 /* push queued extents */
3381 scrub_submit(sctx);
3382 mutex_lock(&sctx->wr_lock);
3383 scrub_wr_submit(sctx);
3384 mutex_unlock(&sctx->wr_lock);
3386 blk_finish_plug(&plug);
3387 btrfs_free_path(path);
3388 btrfs_free_path(ppath);
3389 return ret < 0 ? ret : 0;
3392 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3393 struct btrfs_device *scrub_dev,
3394 u64 chunk_offset, u64 length,
3395 u64 dev_offset,
3396 struct btrfs_block_group_cache *cache)
3398 struct btrfs_fs_info *fs_info = sctx->fs_info;
3399 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
3400 struct map_lookup *map;
3401 struct extent_map *em;
3402 int i;
3403 int ret = 0;
3405 read_lock(&map_tree->map_tree.lock);
3406 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
3407 read_unlock(&map_tree->map_tree.lock);
3409 if (!em) {
3411 * Might have been an unused block group deleted by the cleaner
3412 * kthread or relocation.
3414 spin_lock(&cache->lock);
3415 if (!cache->removed)
3416 ret = -EINVAL;
3417 spin_unlock(&cache->lock);
3419 return ret;
3422 map = em->map_lookup;
3423 if (em->start != chunk_offset)
3424 goto out;
3426 if (em->len < length)
3427 goto out;
3429 for (i = 0; i < map->num_stripes; ++i) {
3430 if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3431 map->stripes[i].physical == dev_offset) {
3432 ret = scrub_stripe(sctx, map, scrub_dev, i,
3433 chunk_offset, length);
3434 if (ret)
3435 goto out;
3438 out:
3439 free_extent_map(em);
3441 return ret;
3444 static noinline_for_stack
3445 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3446 struct btrfs_device *scrub_dev, u64 start, u64 end)
3448 struct btrfs_dev_extent *dev_extent = NULL;
3449 struct btrfs_path *path;
3450 struct btrfs_fs_info *fs_info = sctx->fs_info;
3451 struct btrfs_root *root = fs_info->dev_root;
3452 u64 length;
3453 u64 chunk_offset;
3454 int ret = 0;
3455 int ro_set;
3456 int slot;
3457 struct extent_buffer *l;
3458 struct btrfs_key key;
3459 struct btrfs_key found_key;
3460 struct btrfs_block_group_cache *cache;
3461 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3463 path = btrfs_alloc_path();
3464 if (!path)
3465 return -ENOMEM;
3467 path->reada = READA_FORWARD;
3468 path->search_commit_root = 1;
3469 path->skip_locking = 1;
3471 key.objectid = scrub_dev->devid;
3472 key.offset = 0ull;
3473 key.type = BTRFS_DEV_EXTENT_KEY;
3475 while (1) {
3476 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3477 if (ret < 0)
3478 break;
3479 if (ret > 0) {
3480 if (path->slots[0] >=
3481 btrfs_header_nritems(path->nodes[0])) {
3482 ret = btrfs_next_leaf(root, path);
3483 if (ret < 0)
3484 break;
3485 if (ret > 0) {
3486 ret = 0;
3487 break;
3489 } else {
3490 ret = 0;
3494 l = path->nodes[0];
3495 slot = path->slots[0];
3497 btrfs_item_key_to_cpu(l, &found_key, slot);
3499 if (found_key.objectid != scrub_dev->devid)
3500 break;
3502 if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3503 break;
3505 if (found_key.offset >= end)
3506 break;
3508 if (found_key.offset < key.offset)
3509 break;
3511 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3512 length = btrfs_dev_extent_length(l, dev_extent);
3514 if (found_key.offset + length <= start)
3515 goto skip;
3517 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3520 * get a reference on the corresponding block group to prevent
3521 * the chunk from going away while we scrub it
3523 cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3525 /* some chunks are removed but not committed to disk yet,
3526 * continue scrubbing */
3527 if (!cache)
3528 goto skip;
3531 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3532 * to avoid deadlock caused by:
3533 * btrfs_inc_block_group_ro()
3534 * -> btrfs_wait_for_commit()
3535 * -> btrfs_commit_transaction()
3536 * -> btrfs_scrub_pause()
3538 scrub_pause_on(fs_info);
3539 ret = btrfs_inc_block_group_ro(cache);
3540 if (!ret && sctx->is_dev_replace) {
3542 * If we are doing a device replace wait for any tasks
3543 * that started dellaloc right before we set the block
3544 * group to RO mode, as they might have just allocated
3545 * an extent from it or decided they could do a nocow
3546 * write. And if any such tasks did that, wait for their
3547 * ordered extents to complete and then commit the
3548 * current transaction, so that we can later see the new
3549 * extent items in the extent tree - the ordered extents
3550 * create delayed data references (for cow writes) when
3551 * they complete, which will be run and insert the
3552 * corresponding extent items into the extent tree when
3553 * we commit the transaction they used when running
3554 * inode.c:btrfs_finish_ordered_io(). We later use
3555 * the commit root of the extent tree to find extents
3556 * to copy from the srcdev into the tgtdev, and we don't
3557 * want to miss any new extents.
3559 btrfs_wait_block_group_reservations(cache);
3560 btrfs_wait_nocow_writers(cache);
3561 ret = btrfs_wait_ordered_roots(fs_info, U64_MAX,
3562 cache->key.objectid,
3563 cache->key.offset);
3564 if (ret > 0) {
3565 struct btrfs_trans_handle *trans;
3567 trans = btrfs_join_transaction(root);
3568 if (IS_ERR(trans))
3569 ret = PTR_ERR(trans);
3570 else
3571 ret = btrfs_commit_transaction(trans);
3572 if (ret) {
3573 scrub_pause_off(fs_info);
3574 btrfs_put_block_group(cache);
3575 break;
3579 scrub_pause_off(fs_info);
3581 if (ret == 0) {
3582 ro_set = 1;
3583 } else if (ret == -ENOSPC) {
3585 * btrfs_inc_block_group_ro return -ENOSPC when it
3586 * failed in creating new chunk for metadata.
3587 * It is not a problem for scrub/replace, because
3588 * metadata are always cowed, and our scrub paused
3589 * commit_transactions.
3591 ro_set = 0;
3592 } else {
3593 btrfs_warn(fs_info,
3594 "failed setting block group ro: %d", ret);
3595 btrfs_put_block_group(cache);
3596 break;
3599 btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3600 dev_replace->cursor_right = found_key.offset + length;
3601 dev_replace->cursor_left = found_key.offset;
3602 dev_replace->item_needs_writeback = 1;
3603 btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3604 ret = scrub_chunk(sctx, scrub_dev, chunk_offset, length,
3605 found_key.offset, cache);
3608 * flush, submit all pending read and write bios, afterwards
3609 * wait for them.
3610 * Note that in the dev replace case, a read request causes
3611 * write requests that are submitted in the read completion
3612 * worker. Therefore in the current situation, it is required
3613 * that all write requests are flushed, so that all read and
3614 * write requests are really completed when bios_in_flight
3615 * changes to 0.
3617 sctx->flush_all_writes = true;
3618 scrub_submit(sctx);
3619 mutex_lock(&sctx->wr_lock);
3620 scrub_wr_submit(sctx);
3621 mutex_unlock(&sctx->wr_lock);
3623 wait_event(sctx->list_wait,
3624 atomic_read(&sctx->bios_in_flight) == 0);
3626 scrub_pause_on(fs_info);
3629 * must be called before we decrease @scrub_paused.
3630 * make sure we don't block transaction commit while
3631 * we are waiting pending workers finished.
3633 wait_event(sctx->list_wait,
3634 atomic_read(&sctx->workers_pending) == 0);
3635 sctx->flush_all_writes = false;
3637 scrub_pause_off(fs_info);
3639 btrfs_dev_replace_write_lock(&fs_info->dev_replace);
3640 dev_replace->cursor_left = dev_replace->cursor_right;
3641 dev_replace->item_needs_writeback = 1;
3642 btrfs_dev_replace_write_unlock(&fs_info->dev_replace);
3644 if (ro_set)
3645 btrfs_dec_block_group_ro(cache);
3648 * We might have prevented the cleaner kthread from deleting
3649 * this block group if it was already unused because we raced
3650 * and set it to RO mode first. So add it back to the unused
3651 * list, otherwise it might not ever be deleted unless a manual
3652 * balance is triggered or it becomes used and unused again.
3654 spin_lock(&cache->lock);
3655 if (!cache->removed && !cache->ro && cache->reserved == 0 &&
3656 btrfs_block_group_used(&cache->item) == 0) {
3657 spin_unlock(&cache->lock);
3658 btrfs_mark_bg_unused(cache);
3659 } else {
3660 spin_unlock(&cache->lock);
3663 btrfs_put_block_group(cache);
3664 if (ret)
3665 break;
3666 if (sctx->is_dev_replace &&
3667 atomic64_read(&dev_replace->num_write_errors) > 0) {
3668 ret = -EIO;
3669 break;
3671 if (sctx->stat.malloc_errors > 0) {
3672 ret = -ENOMEM;
3673 break;
3675 skip:
3676 key.offset = found_key.offset + length;
3677 btrfs_release_path(path);
3680 btrfs_free_path(path);
3682 return ret;
3685 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
3686 struct btrfs_device *scrub_dev)
3688 int i;
3689 u64 bytenr;
3690 u64 gen;
3691 int ret;
3692 struct btrfs_fs_info *fs_info = sctx->fs_info;
3694 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3695 return -EIO;
3697 /* Seed devices of a new filesystem has their own generation. */
3698 if (scrub_dev->fs_devices != fs_info->fs_devices)
3699 gen = scrub_dev->generation;
3700 else
3701 gen = fs_info->last_trans_committed;
3703 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
3704 bytenr = btrfs_sb_offset(i);
3705 if (bytenr + BTRFS_SUPER_INFO_SIZE >
3706 scrub_dev->commit_total_bytes)
3707 break;
3709 ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
3710 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
3711 NULL, 1, bytenr);
3712 if (ret)
3713 return ret;
3715 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3717 return 0;
3721 * get a reference count on fs_info->scrub_workers. start worker if necessary
3723 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
3724 int is_dev_replace)
3726 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
3727 int max_active = fs_info->thread_pool_size;
3729 if (fs_info->scrub_workers_refcnt == 0) {
3730 fs_info->scrub_workers = btrfs_alloc_workqueue(fs_info, "scrub",
3731 flags, is_dev_replace ? 1 : max_active, 4);
3732 if (!fs_info->scrub_workers)
3733 goto fail_scrub_workers;
3735 fs_info->scrub_wr_completion_workers =
3736 btrfs_alloc_workqueue(fs_info, "scrubwrc", flags,
3737 max_active, 2);
3738 if (!fs_info->scrub_wr_completion_workers)
3739 goto fail_scrub_wr_completion_workers;
3741 fs_info->scrub_parity_workers =
3742 btrfs_alloc_workqueue(fs_info, "scrubparity", flags,
3743 max_active, 2);
3744 if (!fs_info->scrub_parity_workers)
3745 goto fail_scrub_parity_workers;
3747 ++fs_info->scrub_workers_refcnt;
3748 return 0;
3750 fail_scrub_parity_workers:
3751 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3752 fail_scrub_wr_completion_workers:
3753 btrfs_destroy_workqueue(fs_info->scrub_workers);
3754 fail_scrub_workers:
3755 return -ENOMEM;
3758 static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
3760 if (--fs_info->scrub_workers_refcnt == 0) {
3761 btrfs_destroy_workqueue(fs_info->scrub_workers);
3762 btrfs_destroy_workqueue(fs_info->scrub_wr_completion_workers);
3763 btrfs_destroy_workqueue(fs_info->scrub_parity_workers);
3765 WARN_ON(fs_info->scrub_workers_refcnt < 0);
3768 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3769 u64 end, struct btrfs_scrub_progress *progress,
3770 int readonly, int is_dev_replace)
3772 struct scrub_ctx *sctx;
3773 int ret;
3774 struct btrfs_device *dev;
3776 if (btrfs_fs_closing(fs_info))
3777 return -EINVAL;
3779 if (fs_info->nodesize > BTRFS_STRIPE_LEN) {
3781 * in this case scrub is unable to calculate the checksum
3782 * the way scrub is implemented. Do not handle this
3783 * situation at all because it won't ever happen.
3785 btrfs_err(fs_info,
3786 "scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails",
3787 fs_info->nodesize,
3788 BTRFS_STRIPE_LEN);
3789 return -EINVAL;
3792 if (fs_info->sectorsize != PAGE_SIZE) {
3793 /* not supported for data w/o checksums */
3794 btrfs_err_rl(fs_info,
3795 "scrub: size assumption sectorsize != PAGE_SIZE (%d != %lu) fails",
3796 fs_info->sectorsize, PAGE_SIZE);
3797 return -EINVAL;
3800 if (fs_info->nodesize >
3801 PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
3802 fs_info->sectorsize > PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
3804 * would exhaust the array bounds of pagev member in
3805 * struct scrub_block
3807 btrfs_err(fs_info,
3808 "scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails",
3809 fs_info->nodesize,
3810 SCRUB_MAX_PAGES_PER_BLOCK,
3811 fs_info->sectorsize,
3812 SCRUB_MAX_PAGES_PER_BLOCK);
3813 return -EINVAL;
3817 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3818 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3819 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
3820 !is_dev_replace)) {
3821 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3822 return -ENODEV;
3825 if (!is_dev_replace && !readonly &&
3826 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
3827 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3828 btrfs_err_in_rcu(fs_info, "scrub: device %s is not writable",
3829 rcu_str_deref(dev->name));
3830 return -EROFS;
3833 mutex_lock(&fs_info->scrub_lock);
3834 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
3835 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
3836 mutex_unlock(&fs_info->scrub_lock);
3837 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3838 return -EIO;
3841 btrfs_dev_replace_read_lock(&fs_info->dev_replace);
3842 if (dev->scrub_ctx ||
3843 (!is_dev_replace &&
3844 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
3845 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3846 mutex_unlock(&fs_info->scrub_lock);
3847 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3848 return -EINPROGRESS;
3850 btrfs_dev_replace_read_unlock(&fs_info->dev_replace);
3852 ret = scrub_workers_get(fs_info, is_dev_replace);
3853 if (ret) {
3854 mutex_unlock(&fs_info->scrub_lock);
3855 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3856 return ret;
3859 sctx = scrub_setup_ctx(dev, is_dev_replace);
3860 if (IS_ERR(sctx)) {
3861 mutex_unlock(&fs_info->scrub_lock);
3862 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3863 scrub_workers_put(fs_info);
3864 return PTR_ERR(sctx);
3866 sctx->readonly = readonly;
3867 dev->scrub_ctx = sctx;
3868 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3871 * checking @scrub_pause_req here, we can avoid
3872 * race between committing transaction and scrubbing.
3874 __scrub_blocked_if_needed(fs_info);
3875 atomic_inc(&fs_info->scrubs_running);
3876 mutex_unlock(&fs_info->scrub_lock);
3878 if (!is_dev_replace) {
3880 * by holding device list mutex, we can
3881 * kick off writing super in log tree sync.
3883 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3884 ret = scrub_supers(sctx, dev);
3885 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3888 if (!ret)
3889 ret = scrub_enumerate_chunks(sctx, dev, start, end);
3891 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3892 atomic_dec(&fs_info->scrubs_running);
3893 wake_up(&fs_info->scrub_pause_wait);
3895 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
3897 if (progress)
3898 memcpy(progress, &sctx->stat, sizeof(*progress));
3900 mutex_lock(&fs_info->scrub_lock);
3901 dev->scrub_ctx = NULL;
3902 scrub_workers_put(fs_info);
3903 mutex_unlock(&fs_info->scrub_lock);
3905 scrub_put_ctx(sctx);
3907 return ret;
3910 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
3912 mutex_lock(&fs_info->scrub_lock);
3913 atomic_inc(&fs_info->scrub_pause_req);
3914 while (atomic_read(&fs_info->scrubs_paused) !=
3915 atomic_read(&fs_info->scrubs_running)) {
3916 mutex_unlock(&fs_info->scrub_lock);
3917 wait_event(fs_info->scrub_pause_wait,
3918 atomic_read(&fs_info->scrubs_paused) ==
3919 atomic_read(&fs_info->scrubs_running));
3920 mutex_lock(&fs_info->scrub_lock);
3922 mutex_unlock(&fs_info->scrub_lock);
3925 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
3927 atomic_dec(&fs_info->scrub_pause_req);
3928 wake_up(&fs_info->scrub_pause_wait);
3931 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3933 mutex_lock(&fs_info->scrub_lock);
3934 if (!atomic_read(&fs_info->scrubs_running)) {
3935 mutex_unlock(&fs_info->scrub_lock);
3936 return -ENOTCONN;
3939 atomic_inc(&fs_info->scrub_cancel_req);
3940 while (atomic_read(&fs_info->scrubs_running)) {
3941 mutex_unlock(&fs_info->scrub_lock);
3942 wait_event(fs_info->scrub_pause_wait,
3943 atomic_read(&fs_info->scrubs_running) == 0);
3944 mutex_lock(&fs_info->scrub_lock);
3946 atomic_dec(&fs_info->scrub_cancel_req);
3947 mutex_unlock(&fs_info->scrub_lock);
3949 return 0;
3952 int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3953 struct btrfs_device *dev)
3955 struct scrub_ctx *sctx;
3957 mutex_lock(&fs_info->scrub_lock);
3958 sctx = dev->scrub_ctx;
3959 if (!sctx) {
3960 mutex_unlock(&fs_info->scrub_lock);
3961 return -ENOTCONN;
3963 atomic_inc(&sctx->cancel_req);
3964 while (dev->scrub_ctx) {
3965 mutex_unlock(&fs_info->scrub_lock);
3966 wait_event(fs_info->scrub_pause_wait,
3967 dev->scrub_ctx == NULL);
3968 mutex_lock(&fs_info->scrub_lock);
3970 mutex_unlock(&fs_info->scrub_lock);
3972 return 0;
3975 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3976 struct btrfs_scrub_progress *progress)
3978 struct btrfs_device *dev;
3979 struct scrub_ctx *sctx = NULL;
3981 mutex_lock(&fs_info->fs_devices->device_list_mutex);
3982 dev = btrfs_find_device(fs_info, devid, NULL, NULL);
3983 if (dev)
3984 sctx = dev->scrub_ctx;
3985 if (sctx)
3986 memcpy(progress, &sctx->stat, sizeof(*progress));
3987 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3989 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3992 static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3993 u64 extent_logical, u64 extent_len,
3994 u64 *extent_physical,
3995 struct btrfs_device **extent_dev,
3996 int *extent_mirror_num)
3998 u64 mapped_length;
3999 struct btrfs_bio *bbio = NULL;
4000 int ret;
4002 mapped_length = extent_len;
4003 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4004 &mapped_length, &bbio, 0);
4005 if (ret || !bbio || mapped_length < extent_len ||
4006 !bbio->stripes[0].dev->bdev) {
4007 btrfs_put_bbio(bbio);
4008 return;
4011 *extent_physical = bbio->stripes[0].physical;
4012 *extent_mirror_num = bbio->mirror_num;
4013 *extent_dev = bbio->stripes[0].dev;
4014 btrfs_put_bbio(bbio);