Merge tag 'xarray-4.20-rc7' of git://git.infradead.org/users/willy/linux-dax
[linux/fpc-iii.git] / fs / btrfs / tree-log.c
bloba5ce99a6c936558f820d94a63d1301a111f8486b
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
11 #include "ctree.h"
12 #include "tree-log.h"
13 #include "disk-io.h"
14 #include "locking.h"
15 #include "print-tree.h"
16 #include "backref.h"
17 #include "compression.h"
18 #include "qgroup.h"
19 #include "inode-map.h"
21 /* magic values for the inode_only field in btrfs_log_inode:
23 * LOG_INODE_ALL means to log everything
24 * LOG_INODE_EXISTS means to log just enough to recreate the inode
25 * during log replay
27 #define LOG_INODE_ALL 0
28 #define LOG_INODE_EXISTS 1
29 #define LOG_OTHER_INODE 2
32 * directory trouble cases
34 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
35 * log, we must force a full commit before doing an fsync of the directory
36 * where the unlink was done.
37 * ---> record transid of last unlink/rename per directory
39 * mkdir foo/some_dir
40 * normal commit
41 * rename foo/some_dir foo2/some_dir
42 * mkdir foo/some_dir
43 * fsync foo/some_dir/some_file
45 * The fsync above will unlink the original some_dir without recording
46 * it in its new location (foo2). After a crash, some_dir will be gone
47 * unless the fsync of some_file forces a full commit
49 * 2) we must log any new names for any file or dir that is in the fsync
50 * log. ---> check inode while renaming/linking.
52 * 2a) we must log any new names for any file or dir during rename
53 * when the directory they are being removed from was logged.
54 * ---> check inode and old parent dir during rename
56 * 2a is actually the more important variant. With the extra logging
57 * a crash might unlink the old name without recreating the new one
59 * 3) after a crash, we must go through any directories with a link count
60 * of zero and redo the rm -rf
62 * mkdir f1/foo
63 * normal commit
64 * rm -rf f1/foo
65 * fsync(f1)
67 * The directory f1 was fully removed from the FS, but fsync was never
68 * called on f1, only its parent dir. After a crash the rm -rf must
69 * be replayed. This must be able to recurse down the entire
70 * directory tree. The inode link count fixup code takes care of the
71 * ugly details.
75 * stages for the tree walking. The first
76 * stage (0) is to only pin down the blocks we find
77 * the second stage (1) is to make sure that all the inodes
78 * we find in the log are created in the subvolume.
80 * The last stage is to deal with directories and links and extents
81 * and all the other fun semantics
83 #define LOG_WALK_PIN_ONLY 0
84 #define LOG_WALK_REPLAY_INODES 1
85 #define LOG_WALK_REPLAY_DIR_INDEX 2
86 #define LOG_WALK_REPLAY_ALL 3
88 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
89 struct btrfs_root *root, struct btrfs_inode *inode,
90 int inode_only,
91 const loff_t start,
92 const loff_t end,
93 struct btrfs_log_ctx *ctx);
94 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
95 struct btrfs_root *root,
96 struct btrfs_path *path, u64 objectid);
97 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
98 struct btrfs_root *root,
99 struct btrfs_root *log,
100 struct btrfs_path *path,
101 u64 dirid, int del_all);
104 * tree logging is a special write ahead log used to make sure that
105 * fsyncs and O_SYNCs can happen without doing full tree commits.
107 * Full tree commits are expensive because they require commonly
108 * modified blocks to be recowed, creating many dirty pages in the
109 * extent tree an 4x-6x higher write load than ext3.
111 * Instead of doing a tree commit on every fsync, we use the
112 * key ranges and transaction ids to find items for a given file or directory
113 * that have changed in this transaction. Those items are copied into
114 * a special tree (one per subvolume root), that tree is written to disk
115 * and then the fsync is considered complete.
117 * After a crash, items are copied out of the log-tree back into the
118 * subvolume tree. Any file data extents found are recorded in the extent
119 * allocation tree, and the log-tree freed.
121 * The log tree is read three times, once to pin down all the extents it is
122 * using in ram and once, once to create all the inodes logged in the tree
123 * and once to do all the other items.
127 * start a sub transaction and setup the log tree
128 * this increments the log tree writer count to make the people
129 * syncing the tree wait for us to finish
131 static int start_log_trans(struct btrfs_trans_handle *trans,
132 struct btrfs_root *root,
133 struct btrfs_log_ctx *ctx)
135 struct btrfs_fs_info *fs_info = root->fs_info;
136 int ret = 0;
138 mutex_lock(&root->log_mutex);
140 if (root->log_root) {
141 if (btrfs_need_log_full_commit(fs_info, trans)) {
142 ret = -EAGAIN;
143 goto out;
146 if (!root->log_start_pid) {
147 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
148 root->log_start_pid = current->pid;
149 } else if (root->log_start_pid != current->pid) {
150 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
152 } else {
153 mutex_lock(&fs_info->tree_log_mutex);
154 if (!fs_info->log_root_tree)
155 ret = btrfs_init_log_root_tree(trans, fs_info);
156 mutex_unlock(&fs_info->tree_log_mutex);
157 if (ret)
158 goto out;
160 ret = btrfs_add_log_tree(trans, root);
161 if (ret)
162 goto out;
164 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
165 root->log_start_pid = current->pid;
168 atomic_inc(&root->log_batch);
169 atomic_inc(&root->log_writers);
170 if (ctx) {
171 int index = root->log_transid % 2;
172 list_add_tail(&ctx->list, &root->log_ctxs[index]);
173 ctx->log_transid = root->log_transid;
176 out:
177 mutex_unlock(&root->log_mutex);
178 return ret;
182 * returns 0 if there was a log transaction running and we were able
183 * to join, or returns -ENOENT if there were not transactions
184 * in progress
186 static int join_running_log_trans(struct btrfs_root *root)
188 int ret = -ENOENT;
190 smp_mb();
191 if (!root->log_root)
192 return -ENOENT;
194 mutex_lock(&root->log_mutex);
195 if (root->log_root) {
196 ret = 0;
197 atomic_inc(&root->log_writers);
199 mutex_unlock(&root->log_mutex);
200 return ret;
204 * This either makes the current running log transaction wait
205 * until you call btrfs_end_log_trans() or it makes any future
206 * log transactions wait until you call btrfs_end_log_trans()
208 void btrfs_pin_log_trans(struct btrfs_root *root)
210 mutex_lock(&root->log_mutex);
211 atomic_inc(&root->log_writers);
212 mutex_unlock(&root->log_mutex);
216 * indicate we're done making changes to the log tree
217 * and wake up anyone waiting to do a sync
219 void btrfs_end_log_trans(struct btrfs_root *root)
221 if (atomic_dec_and_test(&root->log_writers)) {
222 /* atomic_dec_and_test implies a barrier */
223 cond_wake_up_nomb(&root->log_writer_wait);
229 * the walk control struct is used to pass state down the chain when
230 * processing the log tree. The stage field tells us which part
231 * of the log tree processing we are currently doing. The others
232 * are state fields used for that specific part
234 struct walk_control {
235 /* should we free the extent on disk when done? This is used
236 * at transaction commit time while freeing a log tree
238 int free;
240 /* should we write out the extent buffer? This is used
241 * while flushing the log tree to disk during a sync
243 int write;
245 /* should we wait for the extent buffer io to finish? Also used
246 * while flushing the log tree to disk for a sync
248 int wait;
250 /* pin only walk, we record which extents on disk belong to the
251 * log trees
253 int pin;
255 /* what stage of the replay code we're currently in */
256 int stage;
259 * Ignore any items from the inode currently being processed. Needs
260 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
261 * the LOG_WALK_REPLAY_INODES stage.
263 bool ignore_cur_inode;
265 /* the root we are currently replaying */
266 struct btrfs_root *replay_dest;
268 /* the trans handle for the current replay */
269 struct btrfs_trans_handle *trans;
271 /* the function that gets used to process blocks we find in the
272 * tree. Note the extent_buffer might not be up to date when it is
273 * passed in, and it must be checked or read if you need the data
274 * inside it
276 int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
277 struct walk_control *wc, u64 gen, int level);
281 * process_func used to pin down extents, write them or wait on them
283 static int process_one_buffer(struct btrfs_root *log,
284 struct extent_buffer *eb,
285 struct walk_control *wc, u64 gen, int level)
287 struct btrfs_fs_info *fs_info = log->fs_info;
288 int ret = 0;
291 * If this fs is mixed then we need to be able to process the leaves to
292 * pin down any logged extents, so we have to read the block.
294 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
295 ret = btrfs_read_buffer(eb, gen, level, NULL);
296 if (ret)
297 return ret;
300 if (wc->pin)
301 ret = btrfs_pin_extent_for_log_replay(fs_info, eb->start,
302 eb->len);
304 if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
305 if (wc->pin && btrfs_header_level(eb) == 0)
306 ret = btrfs_exclude_logged_extents(fs_info, eb);
307 if (wc->write)
308 btrfs_write_tree_block(eb);
309 if (wc->wait)
310 btrfs_wait_tree_block_writeback(eb);
312 return ret;
316 * Item overwrite used by replay and tree logging. eb, slot and key all refer
317 * to the src data we are copying out.
319 * root is the tree we are copying into, and path is a scratch
320 * path for use in this function (it should be released on entry and
321 * will be released on exit).
323 * If the key is already in the destination tree the existing item is
324 * overwritten. If the existing item isn't big enough, it is extended.
325 * If it is too large, it is truncated.
327 * If the key isn't in the destination yet, a new item is inserted.
329 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
330 struct btrfs_root *root,
331 struct btrfs_path *path,
332 struct extent_buffer *eb, int slot,
333 struct btrfs_key *key)
335 struct btrfs_fs_info *fs_info = root->fs_info;
336 int ret;
337 u32 item_size;
338 u64 saved_i_size = 0;
339 int save_old_i_size = 0;
340 unsigned long src_ptr;
341 unsigned long dst_ptr;
342 int overwrite_root = 0;
343 bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
345 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
346 overwrite_root = 1;
348 item_size = btrfs_item_size_nr(eb, slot);
349 src_ptr = btrfs_item_ptr_offset(eb, slot);
351 /* look for the key in the destination tree */
352 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
353 if (ret < 0)
354 return ret;
356 if (ret == 0) {
357 char *src_copy;
358 char *dst_copy;
359 u32 dst_size = btrfs_item_size_nr(path->nodes[0],
360 path->slots[0]);
361 if (dst_size != item_size)
362 goto insert;
364 if (item_size == 0) {
365 btrfs_release_path(path);
366 return 0;
368 dst_copy = kmalloc(item_size, GFP_NOFS);
369 src_copy = kmalloc(item_size, GFP_NOFS);
370 if (!dst_copy || !src_copy) {
371 btrfs_release_path(path);
372 kfree(dst_copy);
373 kfree(src_copy);
374 return -ENOMEM;
377 read_extent_buffer(eb, src_copy, src_ptr, item_size);
379 dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
380 read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
381 item_size);
382 ret = memcmp(dst_copy, src_copy, item_size);
384 kfree(dst_copy);
385 kfree(src_copy);
387 * they have the same contents, just return, this saves
388 * us from cowing blocks in the destination tree and doing
389 * extra writes that may not have been done by a previous
390 * sync
392 if (ret == 0) {
393 btrfs_release_path(path);
394 return 0;
398 * We need to load the old nbytes into the inode so when we
399 * replay the extents we've logged we get the right nbytes.
401 if (inode_item) {
402 struct btrfs_inode_item *item;
403 u64 nbytes;
404 u32 mode;
406 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
407 struct btrfs_inode_item);
408 nbytes = btrfs_inode_nbytes(path->nodes[0], item);
409 item = btrfs_item_ptr(eb, slot,
410 struct btrfs_inode_item);
411 btrfs_set_inode_nbytes(eb, item, nbytes);
414 * If this is a directory we need to reset the i_size to
415 * 0 so that we can set it up properly when replaying
416 * the rest of the items in this log.
418 mode = btrfs_inode_mode(eb, item);
419 if (S_ISDIR(mode))
420 btrfs_set_inode_size(eb, item, 0);
422 } else if (inode_item) {
423 struct btrfs_inode_item *item;
424 u32 mode;
427 * New inode, set nbytes to 0 so that the nbytes comes out
428 * properly when we replay the extents.
430 item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
431 btrfs_set_inode_nbytes(eb, item, 0);
434 * If this is a directory we need to reset the i_size to 0 so
435 * that we can set it up properly when replaying the rest of
436 * the items in this log.
438 mode = btrfs_inode_mode(eb, item);
439 if (S_ISDIR(mode))
440 btrfs_set_inode_size(eb, item, 0);
442 insert:
443 btrfs_release_path(path);
444 /* try to insert the key into the destination tree */
445 path->skip_release_on_error = 1;
446 ret = btrfs_insert_empty_item(trans, root, path,
447 key, item_size);
448 path->skip_release_on_error = 0;
450 /* make sure any existing item is the correct size */
451 if (ret == -EEXIST || ret == -EOVERFLOW) {
452 u32 found_size;
453 found_size = btrfs_item_size_nr(path->nodes[0],
454 path->slots[0]);
455 if (found_size > item_size)
456 btrfs_truncate_item(fs_info, path, item_size, 1);
457 else if (found_size < item_size)
458 btrfs_extend_item(fs_info, path,
459 item_size - found_size);
460 } else if (ret) {
461 return ret;
463 dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
464 path->slots[0]);
466 /* don't overwrite an existing inode if the generation number
467 * was logged as zero. This is done when the tree logging code
468 * is just logging an inode to make sure it exists after recovery.
470 * Also, don't overwrite i_size on directories during replay.
471 * log replay inserts and removes directory items based on the
472 * state of the tree found in the subvolume, and i_size is modified
473 * as it goes
475 if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
476 struct btrfs_inode_item *src_item;
477 struct btrfs_inode_item *dst_item;
479 src_item = (struct btrfs_inode_item *)src_ptr;
480 dst_item = (struct btrfs_inode_item *)dst_ptr;
482 if (btrfs_inode_generation(eb, src_item) == 0) {
483 struct extent_buffer *dst_eb = path->nodes[0];
484 const u64 ino_size = btrfs_inode_size(eb, src_item);
487 * For regular files an ino_size == 0 is used only when
488 * logging that an inode exists, as part of a directory
489 * fsync, and the inode wasn't fsynced before. In this
490 * case don't set the size of the inode in the fs/subvol
491 * tree, otherwise we would be throwing valid data away.
493 if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
494 S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
495 ino_size != 0) {
496 struct btrfs_map_token token;
498 btrfs_init_map_token(&token);
499 btrfs_set_token_inode_size(dst_eb, dst_item,
500 ino_size, &token);
502 goto no_copy;
505 if (overwrite_root &&
506 S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
507 S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
508 save_old_i_size = 1;
509 saved_i_size = btrfs_inode_size(path->nodes[0],
510 dst_item);
514 copy_extent_buffer(path->nodes[0], eb, dst_ptr,
515 src_ptr, item_size);
517 if (save_old_i_size) {
518 struct btrfs_inode_item *dst_item;
519 dst_item = (struct btrfs_inode_item *)dst_ptr;
520 btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
523 /* make sure the generation is filled in */
524 if (key->type == BTRFS_INODE_ITEM_KEY) {
525 struct btrfs_inode_item *dst_item;
526 dst_item = (struct btrfs_inode_item *)dst_ptr;
527 if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
528 btrfs_set_inode_generation(path->nodes[0], dst_item,
529 trans->transid);
532 no_copy:
533 btrfs_mark_buffer_dirty(path->nodes[0]);
534 btrfs_release_path(path);
535 return 0;
539 * simple helper to read an inode off the disk from a given root
540 * This can only be called for subvolume roots and not for the log
542 static noinline struct inode *read_one_inode(struct btrfs_root *root,
543 u64 objectid)
545 struct btrfs_key key;
546 struct inode *inode;
548 key.objectid = objectid;
549 key.type = BTRFS_INODE_ITEM_KEY;
550 key.offset = 0;
551 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
552 if (IS_ERR(inode))
553 inode = NULL;
554 return inode;
557 /* replays a single extent in 'eb' at 'slot' with 'key' into the
558 * subvolume 'root'. path is released on entry and should be released
559 * on exit.
561 * extents in the log tree have not been allocated out of the extent
562 * tree yet. So, this completes the allocation, taking a reference
563 * as required if the extent already exists or creating a new extent
564 * if it isn't in the extent allocation tree yet.
566 * The extent is inserted into the file, dropping any existing extents
567 * from the file that overlap the new one.
569 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
570 struct btrfs_root *root,
571 struct btrfs_path *path,
572 struct extent_buffer *eb, int slot,
573 struct btrfs_key *key)
575 struct btrfs_fs_info *fs_info = root->fs_info;
576 int found_type;
577 u64 extent_end;
578 u64 start = key->offset;
579 u64 nbytes = 0;
580 struct btrfs_file_extent_item *item;
581 struct inode *inode = NULL;
582 unsigned long size;
583 int ret = 0;
585 item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
586 found_type = btrfs_file_extent_type(eb, item);
588 if (found_type == BTRFS_FILE_EXTENT_REG ||
589 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
590 nbytes = btrfs_file_extent_num_bytes(eb, item);
591 extent_end = start + nbytes;
594 * We don't add to the inodes nbytes if we are prealloc or a
595 * hole.
597 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
598 nbytes = 0;
599 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
600 size = btrfs_file_extent_ram_bytes(eb, item);
601 nbytes = btrfs_file_extent_ram_bytes(eb, item);
602 extent_end = ALIGN(start + size,
603 fs_info->sectorsize);
604 } else {
605 ret = 0;
606 goto out;
609 inode = read_one_inode(root, key->objectid);
610 if (!inode) {
611 ret = -EIO;
612 goto out;
616 * first check to see if we already have this extent in the
617 * file. This must be done before the btrfs_drop_extents run
618 * so we don't try to drop this extent.
620 ret = btrfs_lookup_file_extent(trans, root, path,
621 btrfs_ino(BTRFS_I(inode)), start, 0);
623 if (ret == 0 &&
624 (found_type == BTRFS_FILE_EXTENT_REG ||
625 found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
626 struct btrfs_file_extent_item cmp1;
627 struct btrfs_file_extent_item cmp2;
628 struct btrfs_file_extent_item *existing;
629 struct extent_buffer *leaf;
631 leaf = path->nodes[0];
632 existing = btrfs_item_ptr(leaf, path->slots[0],
633 struct btrfs_file_extent_item);
635 read_extent_buffer(eb, &cmp1, (unsigned long)item,
636 sizeof(cmp1));
637 read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
638 sizeof(cmp2));
641 * we already have a pointer to this exact extent,
642 * we don't have to do anything
644 if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
645 btrfs_release_path(path);
646 goto out;
649 btrfs_release_path(path);
651 /* drop any overlapping extents */
652 ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
653 if (ret)
654 goto out;
656 if (found_type == BTRFS_FILE_EXTENT_REG ||
657 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
658 u64 offset;
659 unsigned long dest_offset;
660 struct btrfs_key ins;
662 if (btrfs_file_extent_disk_bytenr(eb, item) == 0 &&
663 btrfs_fs_incompat(fs_info, NO_HOLES))
664 goto update_inode;
666 ret = btrfs_insert_empty_item(trans, root, path, key,
667 sizeof(*item));
668 if (ret)
669 goto out;
670 dest_offset = btrfs_item_ptr_offset(path->nodes[0],
671 path->slots[0]);
672 copy_extent_buffer(path->nodes[0], eb, dest_offset,
673 (unsigned long)item, sizeof(*item));
675 ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
676 ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
677 ins.type = BTRFS_EXTENT_ITEM_KEY;
678 offset = key->offset - btrfs_file_extent_offset(eb, item);
681 * Manually record dirty extent, as here we did a shallow
682 * file extent item copy and skip normal backref update,
683 * but modifying extent tree all by ourselves.
684 * So need to manually record dirty extent for qgroup,
685 * as the owner of the file extent changed from log tree
686 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
688 ret = btrfs_qgroup_trace_extent(trans,
689 btrfs_file_extent_disk_bytenr(eb, item),
690 btrfs_file_extent_disk_num_bytes(eb, item),
691 GFP_NOFS);
692 if (ret < 0)
693 goto out;
695 if (ins.objectid > 0) {
696 u64 csum_start;
697 u64 csum_end;
698 LIST_HEAD(ordered_sums);
700 * is this extent already allocated in the extent
701 * allocation tree? If so, just add a reference
703 ret = btrfs_lookup_data_extent(fs_info, ins.objectid,
704 ins.offset);
705 if (ret == 0) {
706 ret = btrfs_inc_extent_ref(trans, root,
707 ins.objectid, ins.offset,
708 0, root->root_key.objectid,
709 key->objectid, offset);
710 if (ret)
711 goto out;
712 } else {
714 * insert the extent pointer in the extent
715 * allocation tree
717 ret = btrfs_alloc_logged_file_extent(trans,
718 root->root_key.objectid,
719 key->objectid, offset, &ins);
720 if (ret)
721 goto out;
723 btrfs_release_path(path);
725 if (btrfs_file_extent_compression(eb, item)) {
726 csum_start = ins.objectid;
727 csum_end = csum_start + ins.offset;
728 } else {
729 csum_start = ins.objectid +
730 btrfs_file_extent_offset(eb, item);
731 csum_end = csum_start +
732 btrfs_file_extent_num_bytes(eb, item);
735 ret = btrfs_lookup_csums_range(root->log_root,
736 csum_start, csum_end - 1,
737 &ordered_sums, 0);
738 if (ret)
739 goto out;
741 * Now delete all existing cums in the csum root that
742 * cover our range. We do this because we can have an
743 * extent that is completely referenced by one file
744 * extent item and partially referenced by another
745 * file extent item (like after using the clone or
746 * extent_same ioctls). In this case if we end up doing
747 * the replay of the one that partially references the
748 * extent first, and we do not do the csum deletion
749 * below, we can get 2 csum items in the csum tree that
750 * overlap each other. For example, imagine our log has
751 * the two following file extent items:
753 * key (257 EXTENT_DATA 409600)
754 * extent data disk byte 12845056 nr 102400
755 * extent data offset 20480 nr 20480 ram 102400
757 * key (257 EXTENT_DATA 819200)
758 * extent data disk byte 12845056 nr 102400
759 * extent data offset 0 nr 102400 ram 102400
761 * Where the second one fully references the 100K extent
762 * that starts at disk byte 12845056, and the log tree
763 * has a single csum item that covers the entire range
764 * of the extent:
766 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
768 * After the first file extent item is replayed, the
769 * csum tree gets the following csum item:
771 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
773 * Which covers the 20K sub-range starting at offset 20K
774 * of our extent. Now when we replay the second file
775 * extent item, if we do not delete existing csum items
776 * that cover any of its blocks, we end up getting two
777 * csum items in our csum tree that overlap each other:
779 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
780 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
782 * Which is a problem, because after this anyone trying
783 * to lookup up for the checksum of any block of our
784 * extent starting at an offset of 40K or higher, will
785 * end up looking at the second csum item only, which
786 * does not contain the checksum for any block starting
787 * at offset 40K or higher of our extent.
789 while (!list_empty(&ordered_sums)) {
790 struct btrfs_ordered_sum *sums;
791 sums = list_entry(ordered_sums.next,
792 struct btrfs_ordered_sum,
793 list);
794 if (!ret)
795 ret = btrfs_del_csums(trans, fs_info,
796 sums->bytenr,
797 sums->len);
798 if (!ret)
799 ret = btrfs_csum_file_blocks(trans,
800 fs_info->csum_root, sums);
801 list_del(&sums->list);
802 kfree(sums);
804 if (ret)
805 goto out;
806 } else {
807 btrfs_release_path(path);
809 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
810 /* inline extents are easy, we just overwrite them */
811 ret = overwrite_item(trans, root, path, eb, slot, key);
812 if (ret)
813 goto out;
816 inode_add_bytes(inode, nbytes);
817 update_inode:
818 ret = btrfs_update_inode(trans, root, inode);
819 out:
820 if (inode)
821 iput(inode);
822 return ret;
826 * when cleaning up conflicts between the directory names in the
827 * subvolume, directory names in the log and directory names in the
828 * inode back references, we may have to unlink inodes from directories.
830 * This is a helper function to do the unlink of a specific directory
831 * item
833 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
834 struct btrfs_root *root,
835 struct btrfs_path *path,
836 struct btrfs_inode *dir,
837 struct btrfs_dir_item *di)
839 struct inode *inode;
840 char *name;
841 int name_len;
842 struct extent_buffer *leaf;
843 struct btrfs_key location;
844 int ret;
846 leaf = path->nodes[0];
848 btrfs_dir_item_key_to_cpu(leaf, di, &location);
849 name_len = btrfs_dir_name_len(leaf, di);
850 name = kmalloc(name_len, GFP_NOFS);
851 if (!name)
852 return -ENOMEM;
854 read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
855 btrfs_release_path(path);
857 inode = read_one_inode(root, location.objectid);
858 if (!inode) {
859 ret = -EIO;
860 goto out;
863 ret = link_to_fixup_dir(trans, root, path, location.objectid);
864 if (ret)
865 goto out;
867 ret = btrfs_unlink_inode(trans, root, dir, BTRFS_I(inode), name,
868 name_len);
869 if (ret)
870 goto out;
871 else
872 ret = btrfs_run_delayed_items(trans);
873 out:
874 kfree(name);
875 iput(inode);
876 return ret;
880 * helper function to see if a given name and sequence number found
881 * in an inode back reference are already in a directory and correctly
882 * point to this inode
884 static noinline int inode_in_dir(struct btrfs_root *root,
885 struct btrfs_path *path,
886 u64 dirid, u64 objectid, u64 index,
887 const char *name, int name_len)
889 struct btrfs_dir_item *di;
890 struct btrfs_key location;
891 int match = 0;
893 di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
894 index, name, name_len, 0);
895 if (di && !IS_ERR(di)) {
896 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
897 if (location.objectid != objectid)
898 goto out;
899 } else
900 goto out;
901 btrfs_release_path(path);
903 di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
904 if (di && !IS_ERR(di)) {
905 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
906 if (location.objectid != objectid)
907 goto out;
908 } else
909 goto out;
910 match = 1;
911 out:
912 btrfs_release_path(path);
913 return match;
917 * helper function to check a log tree for a named back reference in
918 * an inode. This is used to decide if a back reference that is
919 * found in the subvolume conflicts with what we find in the log.
921 * inode backreferences may have multiple refs in a single item,
922 * during replay we process one reference at a time, and we don't
923 * want to delete valid links to a file from the subvolume if that
924 * link is also in the log.
926 static noinline int backref_in_log(struct btrfs_root *log,
927 struct btrfs_key *key,
928 u64 ref_objectid,
929 const char *name, int namelen)
931 struct btrfs_path *path;
932 struct btrfs_inode_ref *ref;
933 unsigned long ptr;
934 unsigned long ptr_end;
935 unsigned long name_ptr;
936 int found_name_len;
937 int item_size;
938 int ret;
939 int match = 0;
941 path = btrfs_alloc_path();
942 if (!path)
943 return -ENOMEM;
945 ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
946 if (ret != 0)
947 goto out;
949 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
951 if (key->type == BTRFS_INODE_EXTREF_KEY) {
952 if (btrfs_find_name_in_ext_backref(path->nodes[0],
953 path->slots[0],
954 ref_objectid,
955 name, namelen, NULL))
956 match = 1;
958 goto out;
961 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
962 ptr_end = ptr + item_size;
963 while (ptr < ptr_end) {
964 ref = (struct btrfs_inode_ref *)ptr;
965 found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
966 if (found_name_len == namelen) {
967 name_ptr = (unsigned long)(ref + 1);
968 ret = memcmp_extent_buffer(path->nodes[0], name,
969 name_ptr, namelen);
970 if (ret == 0) {
971 match = 1;
972 goto out;
975 ptr = (unsigned long)(ref + 1) + found_name_len;
977 out:
978 btrfs_free_path(path);
979 return match;
982 static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
983 struct btrfs_root *root,
984 struct btrfs_path *path,
985 struct btrfs_root *log_root,
986 struct btrfs_inode *dir,
987 struct btrfs_inode *inode,
988 u64 inode_objectid, u64 parent_objectid,
989 u64 ref_index, char *name, int namelen,
990 int *search_done)
992 int ret;
993 char *victim_name;
994 int victim_name_len;
995 struct extent_buffer *leaf;
996 struct btrfs_dir_item *di;
997 struct btrfs_key search_key;
998 struct btrfs_inode_extref *extref;
1000 again:
1001 /* Search old style refs */
1002 search_key.objectid = inode_objectid;
1003 search_key.type = BTRFS_INODE_REF_KEY;
1004 search_key.offset = parent_objectid;
1005 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
1006 if (ret == 0) {
1007 struct btrfs_inode_ref *victim_ref;
1008 unsigned long ptr;
1009 unsigned long ptr_end;
1011 leaf = path->nodes[0];
1013 /* are we trying to overwrite a back ref for the root directory
1014 * if so, just jump out, we're done
1016 if (search_key.objectid == search_key.offset)
1017 return 1;
1019 /* check all the names in this back reference to see
1020 * if they are in the log. if so, we allow them to stay
1021 * otherwise they must be unlinked as a conflict
1023 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1024 ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
1025 while (ptr < ptr_end) {
1026 victim_ref = (struct btrfs_inode_ref *)ptr;
1027 victim_name_len = btrfs_inode_ref_name_len(leaf,
1028 victim_ref);
1029 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1030 if (!victim_name)
1031 return -ENOMEM;
1033 read_extent_buffer(leaf, victim_name,
1034 (unsigned long)(victim_ref + 1),
1035 victim_name_len);
1037 if (!backref_in_log(log_root, &search_key,
1038 parent_objectid,
1039 victim_name,
1040 victim_name_len)) {
1041 inc_nlink(&inode->vfs_inode);
1042 btrfs_release_path(path);
1044 ret = btrfs_unlink_inode(trans, root, dir, inode,
1045 victim_name, victim_name_len);
1046 kfree(victim_name);
1047 if (ret)
1048 return ret;
1049 ret = btrfs_run_delayed_items(trans);
1050 if (ret)
1051 return ret;
1052 *search_done = 1;
1053 goto again;
1055 kfree(victim_name);
1057 ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
1061 * NOTE: we have searched root tree and checked the
1062 * corresponding ref, it does not need to check again.
1064 *search_done = 1;
1066 btrfs_release_path(path);
1068 /* Same search but for extended refs */
1069 extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
1070 inode_objectid, parent_objectid, 0,
1072 if (!IS_ERR_OR_NULL(extref)) {
1073 u32 item_size;
1074 u32 cur_offset = 0;
1075 unsigned long base;
1076 struct inode *victim_parent;
1078 leaf = path->nodes[0];
1080 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1081 base = btrfs_item_ptr_offset(leaf, path->slots[0]);
1083 while (cur_offset < item_size) {
1084 extref = (struct btrfs_inode_extref *)(base + cur_offset);
1086 victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
1088 if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
1089 goto next;
1091 victim_name = kmalloc(victim_name_len, GFP_NOFS);
1092 if (!victim_name)
1093 return -ENOMEM;
1094 read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
1095 victim_name_len);
1097 search_key.objectid = inode_objectid;
1098 search_key.type = BTRFS_INODE_EXTREF_KEY;
1099 search_key.offset = btrfs_extref_hash(parent_objectid,
1100 victim_name,
1101 victim_name_len);
1102 ret = 0;
1103 if (!backref_in_log(log_root, &search_key,
1104 parent_objectid, victim_name,
1105 victim_name_len)) {
1106 ret = -ENOENT;
1107 victim_parent = read_one_inode(root,
1108 parent_objectid);
1109 if (victim_parent) {
1110 inc_nlink(&inode->vfs_inode);
1111 btrfs_release_path(path);
1113 ret = btrfs_unlink_inode(trans, root,
1114 BTRFS_I(victim_parent),
1115 inode,
1116 victim_name,
1117 victim_name_len);
1118 if (!ret)
1119 ret = btrfs_run_delayed_items(
1120 trans);
1122 iput(victim_parent);
1123 kfree(victim_name);
1124 if (ret)
1125 return ret;
1126 *search_done = 1;
1127 goto again;
1129 kfree(victim_name);
1130 next:
1131 cur_offset += victim_name_len + sizeof(*extref);
1133 *search_done = 1;
1135 btrfs_release_path(path);
1137 /* look for a conflicting sequence number */
1138 di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
1139 ref_index, name, namelen, 0);
1140 if (di && !IS_ERR(di)) {
1141 ret = drop_one_dir_item(trans, root, path, dir, di);
1142 if (ret)
1143 return ret;
1145 btrfs_release_path(path);
1147 /* look for a conflicing name */
1148 di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
1149 name, namelen, 0);
1150 if (di && !IS_ERR(di)) {
1151 ret = drop_one_dir_item(trans, root, path, dir, di);
1152 if (ret)
1153 return ret;
1155 btrfs_release_path(path);
1157 return 0;
1160 static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1161 u32 *namelen, char **name, u64 *index,
1162 u64 *parent_objectid)
1164 struct btrfs_inode_extref *extref;
1166 extref = (struct btrfs_inode_extref *)ref_ptr;
1168 *namelen = btrfs_inode_extref_name_len(eb, extref);
1169 *name = kmalloc(*namelen, GFP_NOFS);
1170 if (*name == NULL)
1171 return -ENOMEM;
1173 read_extent_buffer(eb, *name, (unsigned long)&extref->name,
1174 *namelen);
1176 if (index)
1177 *index = btrfs_inode_extref_index(eb, extref);
1178 if (parent_objectid)
1179 *parent_objectid = btrfs_inode_extref_parent(eb, extref);
1181 return 0;
1184 static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
1185 u32 *namelen, char **name, u64 *index)
1187 struct btrfs_inode_ref *ref;
1189 ref = (struct btrfs_inode_ref *)ref_ptr;
1191 *namelen = btrfs_inode_ref_name_len(eb, ref);
1192 *name = kmalloc(*namelen, GFP_NOFS);
1193 if (*name == NULL)
1194 return -ENOMEM;
1196 read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
1198 if (index)
1199 *index = btrfs_inode_ref_index(eb, ref);
1201 return 0;
1205 * Take an inode reference item from the log tree and iterate all names from the
1206 * inode reference item in the subvolume tree with the same key (if it exists).
1207 * For any name that is not in the inode reference item from the log tree, do a
1208 * proper unlink of that name (that is, remove its entry from the inode
1209 * reference item and both dir index keys).
1211 static int unlink_old_inode_refs(struct btrfs_trans_handle *trans,
1212 struct btrfs_root *root,
1213 struct btrfs_path *path,
1214 struct btrfs_inode *inode,
1215 struct extent_buffer *log_eb,
1216 int log_slot,
1217 struct btrfs_key *key)
1219 int ret;
1220 unsigned long ref_ptr;
1221 unsigned long ref_end;
1222 struct extent_buffer *eb;
1224 again:
1225 btrfs_release_path(path);
1226 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1227 if (ret > 0) {
1228 ret = 0;
1229 goto out;
1231 if (ret < 0)
1232 goto out;
1234 eb = path->nodes[0];
1235 ref_ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
1236 ref_end = ref_ptr + btrfs_item_size_nr(eb, path->slots[0]);
1237 while (ref_ptr < ref_end) {
1238 char *name = NULL;
1239 int namelen;
1240 u64 parent_id;
1242 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1243 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1244 NULL, &parent_id);
1245 } else {
1246 parent_id = key->offset;
1247 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1248 NULL);
1250 if (ret)
1251 goto out;
1253 if (key->type == BTRFS_INODE_EXTREF_KEY)
1254 ret = btrfs_find_name_in_ext_backref(log_eb, log_slot,
1255 parent_id, name,
1256 namelen, NULL);
1257 else
1258 ret = btrfs_find_name_in_backref(log_eb, log_slot, name,
1259 namelen, NULL);
1261 if (!ret) {
1262 struct inode *dir;
1264 btrfs_release_path(path);
1265 dir = read_one_inode(root, parent_id);
1266 if (!dir) {
1267 ret = -ENOENT;
1268 kfree(name);
1269 goto out;
1271 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
1272 inode, name, namelen);
1273 kfree(name);
1274 iput(dir);
1275 if (ret)
1276 goto out;
1277 goto again;
1280 kfree(name);
1281 ref_ptr += namelen;
1282 if (key->type == BTRFS_INODE_EXTREF_KEY)
1283 ref_ptr += sizeof(struct btrfs_inode_extref);
1284 else
1285 ref_ptr += sizeof(struct btrfs_inode_ref);
1287 ret = 0;
1288 out:
1289 btrfs_release_path(path);
1290 return ret;
1293 static int btrfs_inode_ref_exists(struct inode *inode, struct inode *dir,
1294 const u8 ref_type, const char *name,
1295 const int namelen)
1297 struct btrfs_key key;
1298 struct btrfs_path *path;
1299 const u64 parent_id = btrfs_ino(BTRFS_I(dir));
1300 int ret;
1302 path = btrfs_alloc_path();
1303 if (!path)
1304 return -ENOMEM;
1306 key.objectid = btrfs_ino(BTRFS_I(inode));
1307 key.type = ref_type;
1308 if (key.type == BTRFS_INODE_REF_KEY)
1309 key.offset = parent_id;
1310 else
1311 key.offset = btrfs_extref_hash(parent_id, name, namelen);
1313 ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &key, path, 0, 0);
1314 if (ret < 0)
1315 goto out;
1316 if (ret > 0) {
1317 ret = 0;
1318 goto out;
1320 if (key.type == BTRFS_INODE_EXTREF_KEY)
1321 ret = btrfs_find_name_in_ext_backref(path->nodes[0],
1322 path->slots[0], parent_id,
1323 name, namelen, NULL);
1324 else
1325 ret = btrfs_find_name_in_backref(path->nodes[0], path->slots[0],
1326 name, namelen, NULL);
1328 out:
1329 btrfs_free_path(path);
1330 return ret;
1334 * replay one inode back reference item found in the log tree.
1335 * eb, slot and key refer to the buffer and key found in the log tree.
1336 * root is the destination we are replaying into, and path is for temp
1337 * use by this function. (it should be released on return).
1339 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
1340 struct btrfs_root *root,
1341 struct btrfs_root *log,
1342 struct btrfs_path *path,
1343 struct extent_buffer *eb, int slot,
1344 struct btrfs_key *key)
1346 struct inode *dir = NULL;
1347 struct inode *inode = NULL;
1348 unsigned long ref_ptr;
1349 unsigned long ref_end;
1350 char *name = NULL;
1351 int namelen;
1352 int ret;
1353 int search_done = 0;
1354 int log_ref_ver = 0;
1355 u64 parent_objectid;
1356 u64 inode_objectid;
1357 u64 ref_index = 0;
1358 int ref_struct_size;
1360 ref_ptr = btrfs_item_ptr_offset(eb, slot);
1361 ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
1363 if (key->type == BTRFS_INODE_EXTREF_KEY) {
1364 struct btrfs_inode_extref *r;
1366 ref_struct_size = sizeof(struct btrfs_inode_extref);
1367 log_ref_ver = 1;
1368 r = (struct btrfs_inode_extref *)ref_ptr;
1369 parent_objectid = btrfs_inode_extref_parent(eb, r);
1370 } else {
1371 ref_struct_size = sizeof(struct btrfs_inode_ref);
1372 parent_objectid = key->offset;
1374 inode_objectid = key->objectid;
1377 * it is possible that we didn't log all the parent directories
1378 * for a given inode. If we don't find the dir, just don't
1379 * copy the back ref in. The link count fixup code will take
1380 * care of the rest
1382 dir = read_one_inode(root, parent_objectid);
1383 if (!dir) {
1384 ret = -ENOENT;
1385 goto out;
1388 inode = read_one_inode(root, inode_objectid);
1389 if (!inode) {
1390 ret = -EIO;
1391 goto out;
1394 while (ref_ptr < ref_end) {
1395 if (log_ref_ver) {
1396 ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
1397 &ref_index, &parent_objectid);
1399 * parent object can change from one array
1400 * item to another.
1402 if (!dir)
1403 dir = read_one_inode(root, parent_objectid);
1404 if (!dir) {
1405 ret = -ENOENT;
1406 goto out;
1408 } else {
1409 ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
1410 &ref_index);
1412 if (ret)
1413 goto out;
1415 /* if we already have a perfect match, we're done */
1416 if (!inode_in_dir(root, path, btrfs_ino(BTRFS_I(dir)),
1417 btrfs_ino(BTRFS_I(inode)), ref_index,
1418 name, namelen)) {
1420 * look for a conflicting back reference in the
1421 * metadata. if we find one we have to unlink that name
1422 * of the file before we add our new link. Later on, we
1423 * overwrite any existing back reference, and we don't
1424 * want to create dangling pointers in the directory.
1427 if (!search_done) {
1428 ret = __add_inode_ref(trans, root, path, log,
1429 BTRFS_I(dir),
1430 BTRFS_I(inode),
1431 inode_objectid,
1432 parent_objectid,
1433 ref_index, name, namelen,
1434 &search_done);
1435 if (ret) {
1436 if (ret == 1)
1437 ret = 0;
1438 goto out;
1443 * If a reference item already exists for this inode
1444 * with the same parent and name, but different index,
1445 * drop it and the corresponding directory index entries
1446 * from the parent before adding the new reference item
1447 * and dir index entries, otherwise we would fail with
1448 * -EEXIST returned from btrfs_add_link() below.
1450 ret = btrfs_inode_ref_exists(inode, dir, key->type,
1451 name, namelen);
1452 if (ret > 0) {
1453 ret = btrfs_unlink_inode(trans, root,
1454 BTRFS_I(dir),
1455 BTRFS_I(inode),
1456 name, namelen);
1458 * If we dropped the link count to 0, bump it so
1459 * that later the iput() on the inode will not
1460 * free it. We will fixup the link count later.
1462 if (!ret && inode->i_nlink == 0)
1463 inc_nlink(inode);
1465 if (ret < 0)
1466 goto out;
1468 /* insert our name */
1469 ret = btrfs_add_link(trans, BTRFS_I(dir),
1470 BTRFS_I(inode),
1471 name, namelen, 0, ref_index);
1472 if (ret)
1473 goto out;
1475 btrfs_update_inode(trans, root, inode);
1478 ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
1479 kfree(name);
1480 name = NULL;
1481 if (log_ref_ver) {
1482 iput(dir);
1483 dir = NULL;
1488 * Before we overwrite the inode reference item in the subvolume tree
1489 * with the item from the log tree, we must unlink all names from the
1490 * parent directory that are in the subvolume's tree inode reference
1491 * item, otherwise we end up with an inconsistent subvolume tree where
1492 * dir index entries exist for a name but there is no inode reference
1493 * item with the same name.
1495 ret = unlink_old_inode_refs(trans, root, path, BTRFS_I(inode), eb, slot,
1496 key);
1497 if (ret)
1498 goto out;
1500 /* finally write the back reference in the inode */
1501 ret = overwrite_item(trans, root, path, eb, slot, key);
1502 out:
1503 btrfs_release_path(path);
1504 kfree(name);
1505 iput(dir);
1506 iput(inode);
1507 return ret;
1510 static int insert_orphan_item(struct btrfs_trans_handle *trans,
1511 struct btrfs_root *root, u64 ino)
1513 int ret;
1515 ret = btrfs_insert_orphan_item(trans, root, ino);
1516 if (ret == -EEXIST)
1517 ret = 0;
1519 return ret;
1522 static int count_inode_extrefs(struct btrfs_root *root,
1523 struct btrfs_inode *inode, struct btrfs_path *path)
1525 int ret = 0;
1526 int name_len;
1527 unsigned int nlink = 0;
1528 u32 item_size;
1529 u32 cur_offset = 0;
1530 u64 inode_objectid = btrfs_ino(inode);
1531 u64 offset = 0;
1532 unsigned long ptr;
1533 struct btrfs_inode_extref *extref;
1534 struct extent_buffer *leaf;
1536 while (1) {
1537 ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
1538 &extref, &offset);
1539 if (ret)
1540 break;
1542 leaf = path->nodes[0];
1543 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1544 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1545 cur_offset = 0;
1547 while (cur_offset < item_size) {
1548 extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
1549 name_len = btrfs_inode_extref_name_len(leaf, extref);
1551 nlink++;
1553 cur_offset += name_len + sizeof(*extref);
1556 offset++;
1557 btrfs_release_path(path);
1559 btrfs_release_path(path);
1561 if (ret < 0 && ret != -ENOENT)
1562 return ret;
1563 return nlink;
1566 static int count_inode_refs(struct btrfs_root *root,
1567 struct btrfs_inode *inode, struct btrfs_path *path)
1569 int ret;
1570 struct btrfs_key key;
1571 unsigned int nlink = 0;
1572 unsigned long ptr;
1573 unsigned long ptr_end;
1574 int name_len;
1575 u64 ino = btrfs_ino(inode);
1577 key.objectid = ino;
1578 key.type = BTRFS_INODE_REF_KEY;
1579 key.offset = (u64)-1;
1581 while (1) {
1582 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1583 if (ret < 0)
1584 break;
1585 if (ret > 0) {
1586 if (path->slots[0] == 0)
1587 break;
1588 path->slots[0]--;
1590 process_slot:
1591 btrfs_item_key_to_cpu(path->nodes[0], &key,
1592 path->slots[0]);
1593 if (key.objectid != ino ||
1594 key.type != BTRFS_INODE_REF_KEY)
1595 break;
1596 ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
1597 ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
1598 path->slots[0]);
1599 while (ptr < ptr_end) {
1600 struct btrfs_inode_ref *ref;
1602 ref = (struct btrfs_inode_ref *)ptr;
1603 name_len = btrfs_inode_ref_name_len(path->nodes[0],
1604 ref);
1605 ptr = (unsigned long)(ref + 1) + name_len;
1606 nlink++;
1609 if (key.offset == 0)
1610 break;
1611 if (path->slots[0] > 0) {
1612 path->slots[0]--;
1613 goto process_slot;
1615 key.offset--;
1616 btrfs_release_path(path);
1618 btrfs_release_path(path);
1620 return nlink;
1624 * There are a few corners where the link count of the file can't
1625 * be properly maintained during replay. So, instead of adding
1626 * lots of complexity to the log code, we just scan the backrefs
1627 * for any file that has been through replay.
1629 * The scan will update the link count on the inode to reflect the
1630 * number of back refs found. If it goes down to zero, the iput
1631 * will free the inode.
1633 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
1634 struct btrfs_root *root,
1635 struct inode *inode)
1637 struct btrfs_path *path;
1638 int ret;
1639 u64 nlink = 0;
1640 u64 ino = btrfs_ino(BTRFS_I(inode));
1642 path = btrfs_alloc_path();
1643 if (!path)
1644 return -ENOMEM;
1646 ret = count_inode_refs(root, BTRFS_I(inode), path);
1647 if (ret < 0)
1648 goto out;
1650 nlink = ret;
1652 ret = count_inode_extrefs(root, BTRFS_I(inode), path);
1653 if (ret < 0)
1654 goto out;
1656 nlink += ret;
1658 ret = 0;
1660 if (nlink != inode->i_nlink) {
1661 set_nlink(inode, nlink);
1662 btrfs_update_inode(trans, root, inode);
1664 BTRFS_I(inode)->index_cnt = (u64)-1;
1666 if (inode->i_nlink == 0) {
1667 if (S_ISDIR(inode->i_mode)) {
1668 ret = replay_dir_deletes(trans, root, NULL, path,
1669 ino, 1);
1670 if (ret)
1671 goto out;
1673 ret = insert_orphan_item(trans, root, ino);
1676 out:
1677 btrfs_free_path(path);
1678 return ret;
1681 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1682 struct btrfs_root *root,
1683 struct btrfs_path *path)
1685 int ret;
1686 struct btrfs_key key;
1687 struct inode *inode;
1689 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1690 key.type = BTRFS_ORPHAN_ITEM_KEY;
1691 key.offset = (u64)-1;
1692 while (1) {
1693 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1694 if (ret < 0)
1695 break;
1697 if (ret == 1) {
1698 if (path->slots[0] == 0)
1699 break;
1700 path->slots[0]--;
1703 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1704 if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1705 key.type != BTRFS_ORPHAN_ITEM_KEY)
1706 break;
1708 ret = btrfs_del_item(trans, root, path);
1709 if (ret)
1710 goto out;
1712 btrfs_release_path(path);
1713 inode = read_one_inode(root, key.offset);
1714 if (!inode)
1715 return -EIO;
1717 ret = fixup_inode_link_count(trans, root, inode);
1718 iput(inode);
1719 if (ret)
1720 goto out;
1723 * fixup on a directory may create new entries,
1724 * make sure we always look for the highset possible
1725 * offset
1727 key.offset = (u64)-1;
1729 ret = 0;
1730 out:
1731 btrfs_release_path(path);
1732 return ret;
1737 * record a given inode in the fixup dir so we can check its link
1738 * count when replay is done. The link count is incremented here
1739 * so the inode won't go away until we check it
1741 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1742 struct btrfs_root *root,
1743 struct btrfs_path *path,
1744 u64 objectid)
1746 struct btrfs_key key;
1747 int ret = 0;
1748 struct inode *inode;
1750 inode = read_one_inode(root, objectid);
1751 if (!inode)
1752 return -EIO;
1754 key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1755 key.type = BTRFS_ORPHAN_ITEM_KEY;
1756 key.offset = objectid;
1758 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1760 btrfs_release_path(path);
1761 if (ret == 0) {
1762 if (!inode->i_nlink)
1763 set_nlink(inode, 1);
1764 else
1765 inc_nlink(inode);
1766 ret = btrfs_update_inode(trans, root, inode);
1767 } else if (ret == -EEXIST) {
1768 ret = 0;
1769 } else {
1770 BUG(); /* Logic Error */
1772 iput(inode);
1774 return ret;
1778 * when replaying the log for a directory, we only insert names
1779 * for inodes that actually exist. This means an fsync on a directory
1780 * does not implicitly fsync all the new files in it
1782 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1783 struct btrfs_root *root,
1784 u64 dirid, u64 index,
1785 char *name, int name_len,
1786 struct btrfs_key *location)
1788 struct inode *inode;
1789 struct inode *dir;
1790 int ret;
1792 inode = read_one_inode(root, location->objectid);
1793 if (!inode)
1794 return -ENOENT;
1796 dir = read_one_inode(root, dirid);
1797 if (!dir) {
1798 iput(inode);
1799 return -EIO;
1802 ret = btrfs_add_link(trans, BTRFS_I(dir), BTRFS_I(inode), name,
1803 name_len, 1, index);
1805 /* FIXME, put inode into FIXUP list */
1807 iput(inode);
1808 iput(dir);
1809 return ret;
1813 * Return true if an inode reference exists in the log for the given name,
1814 * inode and parent inode.
1816 static bool name_in_log_ref(struct btrfs_root *log_root,
1817 const char *name, const int name_len,
1818 const u64 dirid, const u64 ino)
1820 struct btrfs_key search_key;
1822 search_key.objectid = ino;
1823 search_key.type = BTRFS_INODE_REF_KEY;
1824 search_key.offset = dirid;
1825 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1826 return true;
1828 search_key.type = BTRFS_INODE_EXTREF_KEY;
1829 search_key.offset = btrfs_extref_hash(dirid, name, name_len);
1830 if (backref_in_log(log_root, &search_key, dirid, name, name_len))
1831 return true;
1833 return false;
1837 * take a single entry in a log directory item and replay it into
1838 * the subvolume.
1840 * if a conflicting item exists in the subdirectory already,
1841 * the inode it points to is unlinked and put into the link count
1842 * fix up tree.
1844 * If a name from the log points to a file or directory that does
1845 * not exist in the FS, it is skipped. fsyncs on directories
1846 * do not force down inodes inside that directory, just changes to the
1847 * names or unlinks in a directory.
1849 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1850 * non-existing inode) and 1 if the name was replayed.
1852 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1853 struct btrfs_root *root,
1854 struct btrfs_path *path,
1855 struct extent_buffer *eb,
1856 struct btrfs_dir_item *di,
1857 struct btrfs_key *key)
1859 char *name;
1860 int name_len;
1861 struct btrfs_dir_item *dst_di;
1862 struct btrfs_key found_key;
1863 struct btrfs_key log_key;
1864 struct inode *dir;
1865 u8 log_type;
1866 int exists;
1867 int ret = 0;
1868 bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
1869 bool name_added = false;
1871 dir = read_one_inode(root, key->objectid);
1872 if (!dir)
1873 return -EIO;
1875 name_len = btrfs_dir_name_len(eb, di);
1876 name = kmalloc(name_len, GFP_NOFS);
1877 if (!name) {
1878 ret = -ENOMEM;
1879 goto out;
1882 log_type = btrfs_dir_type(eb, di);
1883 read_extent_buffer(eb, name, (unsigned long)(di + 1),
1884 name_len);
1886 btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1887 exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1888 if (exists == 0)
1889 exists = 1;
1890 else
1891 exists = 0;
1892 btrfs_release_path(path);
1894 if (key->type == BTRFS_DIR_ITEM_KEY) {
1895 dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1896 name, name_len, 1);
1897 } else if (key->type == BTRFS_DIR_INDEX_KEY) {
1898 dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1899 key->objectid,
1900 key->offset, name,
1901 name_len, 1);
1902 } else {
1903 /* Corruption */
1904 ret = -EINVAL;
1905 goto out;
1907 if (IS_ERR_OR_NULL(dst_di)) {
1908 /* we need a sequence number to insert, so we only
1909 * do inserts for the BTRFS_DIR_INDEX_KEY types
1911 if (key->type != BTRFS_DIR_INDEX_KEY)
1912 goto out;
1913 goto insert;
1916 btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1917 /* the existing item matches the logged item */
1918 if (found_key.objectid == log_key.objectid &&
1919 found_key.type == log_key.type &&
1920 found_key.offset == log_key.offset &&
1921 btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1922 update_size = false;
1923 goto out;
1927 * don't drop the conflicting directory entry if the inode
1928 * for the new entry doesn't exist
1930 if (!exists)
1931 goto out;
1933 ret = drop_one_dir_item(trans, root, path, BTRFS_I(dir), dst_di);
1934 if (ret)
1935 goto out;
1937 if (key->type == BTRFS_DIR_INDEX_KEY)
1938 goto insert;
1939 out:
1940 btrfs_release_path(path);
1941 if (!ret && update_size) {
1942 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + name_len * 2);
1943 ret = btrfs_update_inode(trans, root, dir);
1945 kfree(name);
1946 iput(dir);
1947 if (!ret && name_added)
1948 ret = 1;
1949 return ret;
1951 insert:
1952 if (name_in_log_ref(root->log_root, name, name_len,
1953 key->objectid, log_key.objectid)) {
1954 /* The dentry will be added later. */
1955 ret = 0;
1956 update_size = false;
1957 goto out;
1959 btrfs_release_path(path);
1960 ret = insert_one_name(trans, root, key->objectid, key->offset,
1961 name, name_len, &log_key);
1962 if (ret && ret != -ENOENT && ret != -EEXIST)
1963 goto out;
1964 if (!ret)
1965 name_added = true;
1966 update_size = false;
1967 ret = 0;
1968 goto out;
1972 * find all the names in a directory item and reconcile them into
1973 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1974 * one name in a directory item, but the same code gets used for
1975 * both directory index types
1977 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1978 struct btrfs_root *root,
1979 struct btrfs_path *path,
1980 struct extent_buffer *eb, int slot,
1981 struct btrfs_key *key)
1983 int ret = 0;
1984 u32 item_size = btrfs_item_size_nr(eb, slot);
1985 struct btrfs_dir_item *di;
1986 int name_len;
1987 unsigned long ptr;
1988 unsigned long ptr_end;
1989 struct btrfs_path *fixup_path = NULL;
1991 ptr = btrfs_item_ptr_offset(eb, slot);
1992 ptr_end = ptr + item_size;
1993 while (ptr < ptr_end) {
1994 di = (struct btrfs_dir_item *)ptr;
1995 name_len = btrfs_dir_name_len(eb, di);
1996 ret = replay_one_name(trans, root, path, eb, di, key);
1997 if (ret < 0)
1998 break;
1999 ptr = (unsigned long)(di + 1);
2000 ptr += name_len;
2003 * If this entry refers to a non-directory (directories can not
2004 * have a link count > 1) and it was added in the transaction
2005 * that was not committed, make sure we fixup the link count of
2006 * the inode it the entry points to. Otherwise something like
2007 * the following would result in a directory pointing to an
2008 * inode with a wrong link that does not account for this dir
2009 * entry:
2011 * mkdir testdir
2012 * touch testdir/foo
2013 * touch testdir/bar
2014 * sync
2016 * ln testdir/bar testdir/bar_link
2017 * ln testdir/foo testdir/foo_link
2018 * xfs_io -c "fsync" testdir/bar
2020 * <power failure>
2022 * mount fs, log replay happens
2024 * File foo would remain with a link count of 1 when it has two
2025 * entries pointing to it in the directory testdir. This would
2026 * make it impossible to ever delete the parent directory has
2027 * it would result in stale dentries that can never be deleted.
2029 if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
2030 struct btrfs_key di_key;
2032 if (!fixup_path) {
2033 fixup_path = btrfs_alloc_path();
2034 if (!fixup_path) {
2035 ret = -ENOMEM;
2036 break;
2040 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2041 ret = link_to_fixup_dir(trans, root, fixup_path,
2042 di_key.objectid);
2043 if (ret)
2044 break;
2046 ret = 0;
2048 btrfs_free_path(fixup_path);
2049 return ret;
2053 * directory replay has two parts. There are the standard directory
2054 * items in the log copied from the subvolume, and range items
2055 * created in the log while the subvolume was logged.
2057 * The range items tell us which parts of the key space the log
2058 * is authoritative for. During replay, if a key in the subvolume
2059 * directory is in a logged range item, but not actually in the log
2060 * that means it was deleted from the directory before the fsync
2061 * and should be removed.
2063 static noinline int find_dir_range(struct btrfs_root *root,
2064 struct btrfs_path *path,
2065 u64 dirid, int key_type,
2066 u64 *start_ret, u64 *end_ret)
2068 struct btrfs_key key;
2069 u64 found_end;
2070 struct btrfs_dir_log_item *item;
2071 int ret;
2072 int nritems;
2074 if (*start_ret == (u64)-1)
2075 return 1;
2077 key.objectid = dirid;
2078 key.type = key_type;
2079 key.offset = *start_ret;
2081 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2082 if (ret < 0)
2083 goto out;
2084 if (ret > 0) {
2085 if (path->slots[0] == 0)
2086 goto out;
2087 path->slots[0]--;
2089 if (ret != 0)
2090 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2092 if (key.type != key_type || key.objectid != dirid) {
2093 ret = 1;
2094 goto next;
2096 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2097 struct btrfs_dir_log_item);
2098 found_end = btrfs_dir_log_end(path->nodes[0], item);
2100 if (*start_ret >= key.offset && *start_ret <= found_end) {
2101 ret = 0;
2102 *start_ret = key.offset;
2103 *end_ret = found_end;
2104 goto out;
2106 ret = 1;
2107 next:
2108 /* check the next slot in the tree to see if it is a valid item */
2109 nritems = btrfs_header_nritems(path->nodes[0]);
2110 path->slots[0]++;
2111 if (path->slots[0] >= nritems) {
2112 ret = btrfs_next_leaf(root, path);
2113 if (ret)
2114 goto out;
2117 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2119 if (key.type != key_type || key.objectid != dirid) {
2120 ret = 1;
2121 goto out;
2123 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2124 struct btrfs_dir_log_item);
2125 found_end = btrfs_dir_log_end(path->nodes[0], item);
2126 *start_ret = key.offset;
2127 *end_ret = found_end;
2128 ret = 0;
2129 out:
2130 btrfs_release_path(path);
2131 return ret;
2135 * this looks for a given directory item in the log. If the directory
2136 * item is not in the log, the item is removed and the inode it points
2137 * to is unlinked
2139 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
2140 struct btrfs_root *root,
2141 struct btrfs_root *log,
2142 struct btrfs_path *path,
2143 struct btrfs_path *log_path,
2144 struct inode *dir,
2145 struct btrfs_key *dir_key)
2147 int ret;
2148 struct extent_buffer *eb;
2149 int slot;
2150 u32 item_size;
2151 struct btrfs_dir_item *di;
2152 struct btrfs_dir_item *log_di;
2153 int name_len;
2154 unsigned long ptr;
2155 unsigned long ptr_end;
2156 char *name;
2157 struct inode *inode;
2158 struct btrfs_key location;
2160 again:
2161 eb = path->nodes[0];
2162 slot = path->slots[0];
2163 item_size = btrfs_item_size_nr(eb, slot);
2164 ptr = btrfs_item_ptr_offset(eb, slot);
2165 ptr_end = ptr + item_size;
2166 while (ptr < ptr_end) {
2167 di = (struct btrfs_dir_item *)ptr;
2168 name_len = btrfs_dir_name_len(eb, di);
2169 name = kmalloc(name_len, GFP_NOFS);
2170 if (!name) {
2171 ret = -ENOMEM;
2172 goto out;
2174 read_extent_buffer(eb, name, (unsigned long)(di + 1),
2175 name_len);
2176 log_di = NULL;
2177 if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
2178 log_di = btrfs_lookup_dir_item(trans, log, log_path,
2179 dir_key->objectid,
2180 name, name_len, 0);
2181 } else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
2182 log_di = btrfs_lookup_dir_index_item(trans, log,
2183 log_path,
2184 dir_key->objectid,
2185 dir_key->offset,
2186 name, name_len, 0);
2188 if (!log_di || log_di == ERR_PTR(-ENOENT)) {
2189 btrfs_dir_item_key_to_cpu(eb, di, &location);
2190 btrfs_release_path(path);
2191 btrfs_release_path(log_path);
2192 inode = read_one_inode(root, location.objectid);
2193 if (!inode) {
2194 kfree(name);
2195 return -EIO;
2198 ret = link_to_fixup_dir(trans, root,
2199 path, location.objectid);
2200 if (ret) {
2201 kfree(name);
2202 iput(inode);
2203 goto out;
2206 inc_nlink(inode);
2207 ret = btrfs_unlink_inode(trans, root, BTRFS_I(dir),
2208 BTRFS_I(inode), name, name_len);
2209 if (!ret)
2210 ret = btrfs_run_delayed_items(trans);
2211 kfree(name);
2212 iput(inode);
2213 if (ret)
2214 goto out;
2216 /* there might still be more names under this key
2217 * check and repeat if required
2219 ret = btrfs_search_slot(NULL, root, dir_key, path,
2220 0, 0);
2221 if (ret == 0)
2222 goto again;
2223 ret = 0;
2224 goto out;
2225 } else if (IS_ERR(log_di)) {
2226 kfree(name);
2227 return PTR_ERR(log_di);
2229 btrfs_release_path(log_path);
2230 kfree(name);
2232 ptr = (unsigned long)(di + 1);
2233 ptr += name_len;
2235 ret = 0;
2236 out:
2237 btrfs_release_path(path);
2238 btrfs_release_path(log_path);
2239 return ret;
2242 static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
2243 struct btrfs_root *root,
2244 struct btrfs_root *log,
2245 struct btrfs_path *path,
2246 const u64 ino)
2248 struct btrfs_key search_key;
2249 struct btrfs_path *log_path;
2250 int i;
2251 int nritems;
2252 int ret;
2254 log_path = btrfs_alloc_path();
2255 if (!log_path)
2256 return -ENOMEM;
2258 search_key.objectid = ino;
2259 search_key.type = BTRFS_XATTR_ITEM_KEY;
2260 search_key.offset = 0;
2261 again:
2262 ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
2263 if (ret < 0)
2264 goto out;
2265 process_leaf:
2266 nritems = btrfs_header_nritems(path->nodes[0]);
2267 for (i = path->slots[0]; i < nritems; i++) {
2268 struct btrfs_key key;
2269 struct btrfs_dir_item *di;
2270 struct btrfs_dir_item *log_di;
2271 u32 total_size;
2272 u32 cur;
2274 btrfs_item_key_to_cpu(path->nodes[0], &key, i);
2275 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
2276 ret = 0;
2277 goto out;
2280 di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
2281 total_size = btrfs_item_size_nr(path->nodes[0], i);
2282 cur = 0;
2283 while (cur < total_size) {
2284 u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
2285 u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
2286 u32 this_len = sizeof(*di) + name_len + data_len;
2287 char *name;
2289 name = kmalloc(name_len, GFP_NOFS);
2290 if (!name) {
2291 ret = -ENOMEM;
2292 goto out;
2294 read_extent_buffer(path->nodes[0], name,
2295 (unsigned long)(di + 1), name_len);
2297 log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
2298 name, name_len, 0);
2299 btrfs_release_path(log_path);
2300 if (!log_di) {
2301 /* Doesn't exist in log tree, so delete it. */
2302 btrfs_release_path(path);
2303 di = btrfs_lookup_xattr(trans, root, path, ino,
2304 name, name_len, -1);
2305 kfree(name);
2306 if (IS_ERR(di)) {
2307 ret = PTR_ERR(di);
2308 goto out;
2310 ASSERT(di);
2311 ret = btrfs_delete_one_dir_name(trans, root,
2312 path, di);
2313 if (ret)
2314 goto out;
2315 btrfs_release_path(path);
2316 search_key = key;
2317 goto again;
2319 kfree(name);
2320 if (IS_ERR(log_di)) {
2321 ret = PTR_ERR(log_di);
2322 goto out;
2324 cur += this_len;
2325 di = (struct btrfs_dir_item *)((char *)di + this_len);
2328 ret = btrfs_next_leaf(root, path);
2329 if (ret > 0)
2330 ret = 0;
2331 else if (ret == 0)
2332 goto process_leaf;
2333 out:
2334 btrfs_free_path(log_path);
2335 btrfs_release_path(path);
2336 return ret;
2341 * deletion replay happens before we copy any new directory items
2342 * out of the log or out of backreferences from inodes. It
2343 * scans the log to find ranges of keys that log is authoritative for,
2344 * and then scans the directory to find items in those ranges that are
2345 * not present in the log.
2347 * Anything we don't find in the log is unlinked and removed from the
2348 * directory.
2350 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
2351 struct btrfs_root *root,
2352 struct btrfs_root *log,
2353 struct btrfs_path *path,
2354 u64 dirid, int del_all)
2356 u64 range_start;
2357 u64 range_end;
2358 int key_type = BTRFS_DIR_LOG_ITEM_KEY;
2359 int ret = 0;
2360 struct btrfs_key dir_key;
2361 struct btrfs_key found_key;
2362 struct btrfs_path *log_path;
2363 struct inode *dir;
2365 dir_key.objectid = dirid;
2366 dir_key.type = BTRFS_DIR_ITEM_KEY;
2367 log_path = btrfs_alloc_path();
2368 if (!log_path)
2369 return -ENOMEM;
2371 dir = read_one_inode(root, dirid);
2372 /* it isn't an error if the inode isn't there, that can happen
2373 * because we replay the deletes before we copy in the inode item
2374 * from the log
2376 if (!dir) {
2377 btrfs_free_path(log_path);
2378 return 0;
2380 again:
2381 range_start = 0;
2382 range_end = 0;
2383 while (1) {
2384 if (del_all)
2385 range_end = (u64)-1;
2386 else {
2387 ret = find_dir_range(log, path, dirid, key_type,
2388 &range_start, &range_end);
2389 if (ret != 0)
2390 break;
2393 dir_key.offset = range_start;
2394 while (1) {
2395 int nritems;
2396 ret = btrfs_search_slot(NULL, root, &dir_key, path,
2397 0, 0);
2398 if (ret < 0)
2399 goto out;
2401 nritems = btrfs_header_nritems(path->nodes[0]);
2402 if (path->slots[0] >= nritems) {
2403 ret = btrfs_next_leaf(root, path);
2404 if (ret == 1)
2405 break;
2406 else if (ret < 0)
2407 goto out;
2409 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2410 path->slots[0]);
2411 if (found_key.objectid != dirid ||
2412 found_key.type != dir_key.type)
2413 goto next_type;
2415 if (found_key.offset > range_end)
2416 break;
2418 ret = check_item_in_log(trans, root, log, path,
2419 log_path, dir,
2420 &found_key);
2421 if (ret)
2422 goto out;
2423 if (found_key.offset == (u64)-1)
2424 break;
2425 dir_key.offset = found_key.offset + 1;
2427 btrfs_release_path(path);
2428 if (range_end == (u64)-1)
2429 break;
2430 range_start = range_end + 1;
2433 next_type:
2434 ret = 0;
2435 if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
2436 key_type = BTRFS_DIR_LOG_INDEX_KEY;
2437 dir_key.type = BTRFS_DIR_INDEX_KEY;
2438 btrfs_release_path(path);
2439 goto again;
2441 out:
2442 btrfs_release_path(path);
2443 btrfs_free_path(log_path);
2444 iput(dir);
2445 return ret;
2449 * the process_func used to replay items from the log tree. This
2450 * gets called in two different stages. The first stage just looks
2451 * for inodes and makes sure they are all copied into the subvolume.
2453 * The second stage copies all the other item types from the log into
2454 * the subvolume. The two stage approach is slower, but gets rid of
2455 * lots of complexity around inodes referencing other inodes that exist
2456 * only in the log (references come from either directory items or inode
2457 * back refs).
2459 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
2460 struct walk_control *wc, u64 gen, int level)
2462 int nritems;
2463 struct btrfs_path *path;
2464 struct btrfs_root *root = wc->replay_dest;
2465 struct btrfs_key key;
2466 int i;
2467 int ret;
2469 ret = btrfs_read_buffer(eb, gen, level, NULL);
2470 if (ret)
2471 return ret;
2473 level = btrfs_header_level(eb);
2475 if (level != 0)
2476 return 0;
2478 path = btrfs_alloc_path();
2479 if (!path)
2480 return -ENOMEM;
2482 nritems = btrfs_header_nritems(eb);
2483 for (i = 0; i < nritems; i++) {
2484 btrfs_item_key_to_cpu(eb, &key, i);
2486 /* inode keys are done during the first stage */
2487 if (key.type == BTRFS_INODE_ITEM_KEY &&
2488 wc->stage == LOG_WALK_REPLAY_INODES) {
2489 struct btrfs_inode_item *inode_item;
2490 u32 mode;
2492 inode_item = btrfs_item_ptr(eb, i,
2493 struct btrfs_inode_item);
2495 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2496 * and never got linked before the fsync, skip it, as
2497 * replaying it is pointless since it would be deleted
2498 * later. We skip logging tmpfiles, but it's always
2499 * possible we are replaying a log created with a kernel
2500 * that used to log tmpfiles.
2502 if (btrfs_inode_nlink(eb, inode_item) == 0) {
2503 wc->ignore_cur_inode = true;
2504 continue;
2505 } else {
2506 wc->ignore_cur_inode = false;
2508 ret = replay_xattr_deletes(wc->trans, root, log,
2509 path, key.objectid);
2510 if (ret)
2511 break;
2512 mode = btrfs_inode_mode(eb, inode_item);
2513 if (S_ISDIR(mode)) {
2514 ret = replay_dir_deletes(wc->trans,
2515 root, log, path, key.objectid, 0);
2516 if (ret)
2517 break;
2519 ret = overwrite_item(wc->trans, root, path,
2520 eb, i, &key);
2521 if (ret)
2522 break;
2525 * Before replaying extents, truncate the inode to its
2526 * size. We need to do it now and not after log replay
2527 * because before an fsync we can have prealloc extents
2528 * added beyond the inode's i_size. If we did it after,
2529 * through orphan cleanup for example, we would drop
2530 * those prealloc extents just after replaying them.
2532 if (S_ISREG(mode)) {
2533 struct inode *inode;
2534 u64 from;
2536 inode = read_one_inode(root, key.objectid);
2537 if (!inode) {
2538 ret = -EIO;
2539 break;
2541 from = ALIGN(i_size_read(inode),
2542 root->fs_info->sectorsize);
2543 ret = btrfs_drop_extents(wc->trans, root, inode,
2544 from, (u64)-1, 1);
2545 if (!ret) {
2546 /* Update the inode's nbytes. */
2547 ret = btrfs_update_inode(wc->trans,
2548 root, inode);
2550 iput(inode);
2551 if (ret)
2552 break;
2555 ret = link_to_fixup_dir(wc->trans, root,
2556 path, key.objectid);
2557 if (ret)
2558 break;
2561 if (wc->ignore_cur_inode)
2562 continue;
2564 if (key.type == BTRFS_DIR_INDEX_KEY &&
2565 wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
2566 ret = replay_one_dir_item(wc->trans, root, path,
2567 eb, i, &key);
2568 if (ret)
2569 break;
2572 if (wc->stage < LOG_WALK_REPLAY_ALL)
2573 continue;
2575 /* these keys are simply copied */
2576 if (key.type == BTRFS_XATTR_ITEM_KEY) {
2577 ret = overwrite_item(wc->trans, root, path,
2578 eb, i, &key);
2579 if (ret)
2580 break;
2581 } else if (key.type == BTRFS_INODE_REF_KEY ||
2582 key.type == BTRFS_INODE_EXTREF_KEY) {
2583 ret = add_inode_ref(wc->trans, root, log, path,
2584 eb, i, &key);
2585 if (ret && ret != -ENOENT)
2586 break;
2587 ret = 0;
2588 } else if (key.type == BTRFS_EXTENT_DATA_KEY) {
2589 ret = replay_one_extent(wc->trans, root, path,
2590 eb, i, &key);
2591 if (ret)
2592 break;
2593 } else if (key.type == BTRFS_DIR_ITEM_KEY) {
2594 ret = replay_one_dir_item(wc->trans, root, path,
2595 eb, i, &key);
2596 if (ret)
2597 break;
2600 btrfs_free_path(path);
2601 return ret;
2604 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
2605 struct btrfs_root *root,
2606 struct btrfs_path *path, int *level,
2607 struct walk_control *wc)
2609 struct btrfs_fs_info *fs_info = root->fs_info;
2610 u64 root_owner;
2611 u64 bytenr;
2612 u64 ptr_gen;
2613 struct extent_buffer *next;
2614 struct extent_buffer *cur;
2615 struct extent_buffer *parent;
2616 u32 blocksize;
2617 int ret = 0;
2619 WARN_ON(*level < 0);
2620 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2622 while (*level > 0) {
2623 struct btrfs_key first_key;
2625 WARN_ON(*level < 0);
2626 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2627 cur = path->nodes[*level];
2629 WARN_ON(btrfs_header_level(cur) != *level);
2631 if (path->slots[*level] >=
2632 btrfs_header_nritems(cur))
2633 break;
2635 bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
2636 ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
2637 btrfs_node_key_to_cpu(cur, &first_key, path->slots[*level]);
2638 blocksize = fs_info->nodesize;
2640 parent = path->nodes[*level];
2641 root_owner = btrfs_header_owner(parent);
2643 next = btrfs_find_create_tree_block(fs_info, bytenr);
2644 if (IS_ERR(next))
2645 return PTR_ERR(next);
2647 if (*level == 1) {
2648 ret = wc->process_func(root, next, wc, ptr_gen,
2649 *level - 1);
2650 if (ret) {
2651 free_extent_buffer(next);
2652 return ret;
2655 path->slots[*level]++;
2656 if (wc->free) {
2657 ret = btrfs_read_buffer(next, ptr_gen,
2658 *level - 1, &first_key);
2659 if (ret) {
2660 free_extent_buffer(next);
2661 return ret;
2664 if (trans) {
2665 btrfs_tree_lock(next);
2666 btrfs_set_lock_blocking(next);
2667 clean_tree_block(fs_info, next);
2668 btrfs_wait_tree_block_writeback(next);
2669 btrfs_tree_unlock(next);
2670 } else {
2671 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2672 clear_extent_buffer_dirty(next);
2675 WARN_ON(root_owner !=
2676 BTRFS_TREE_LOG_OBJECTID);
2677 ret = btrfs_free_and_pin_reserved_extent(
2678 fs_info, bytenr,
2679 blocksize);
2680 if (ret) {
2681 free_extent_buffer(next);
2682 return ret;
2685 free_extent_buffer(next);
2686 continue;
2688 ret = btrfs_read_buffer(next, ptr_gen, *level - 1, &first_key);
2689 if (ret) {
2690 free_extent_buffer(next);
2691 return ret;
2694 WARN_ON(*level <= 0);
2695 if (path->nodes[*level-1])
2696 free_extent_buffer(path->nodes[*level-1]);
2697 path->nodes[*level-1] = next;
2698 *level = btrfs_header_level(next);
2699 path->slots[*level] = 0;
2700 cond_resched();
2702 WARN_ON(*level < 0);
2703 WARN_ON(*level >= BTRFS_MAX_LEVEL);
2705 path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
2707 cond_resched();
2708 return 0;
2711 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
2712 struct btrfs_root *root,
2713 struct btrfs_path *path, int *level,
2714 struct walk_control *wc)
2716 struct btrfs_fs_info *fs_info = root->fs_info;
2717 u64 root_owner;
2718 int i;
2719 int slot;
2720 int ret;
2722 for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
2723 slot = path->slots[i];
2724 if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
2725 path->slots[i]++;
2726 *level = i;
2727 WARN_ON(*level == 0);
2728 return 0;
2729 } else {
2730 struct extent_buffer *parent;
2731 if (path->nodes[*level] == root->node)
2732 parent = path->nodes[*level];
2733 else
2734 parent = path->nodes[*level + 1];
2736 root_owner = btrfs_header_owner(parent);
2737 ret = wc->process_func(root, path->nodes[*level], wc,
2738 btrfs_header_generation(path->nodes[*level]),
2739 *level);
2740 if (ret)
2741 return ret;
2743 if (wc->free) {
2744 struct extent_buffer *next;
2746 next = path->nodes[*level];
2748 if (trans) {
2749 btrfs_tree_lock(next);
2750 btrfs_set_lock_blocking(next);
2751 clean_tree_block(fs_info, next);
2752 btrfs_wait_tree_block_writeback(next);
2753 btrfs_tree_unlock(next);
2754 } else {
2755 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2756 clear_extent_buffer_dirty(next);
2759 WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
2760 ret = btrfs_free_and_pin_reserved_extent(
2761 fs_info,
2762 path->nodes[*level]->start,
2763 path->nodes[*level]->len);
2764 if (ret)
2765 return ret;
2767 free_extent_buffer(path->nodes[*level]);
2768 path->nodes[*level] = NULL;
2769 *level = i + 1;
2772 return 1;
2776 * drop the reference count on the tree rooted at 'snap'. This traverses
2777 * the tree freeing any blocks that have a ref count of zero after being
2778 * decremented.
2780 static int walk_log_tree(struct btrfs_trans_handle *trans,
2781 struct btrfs_root *log, struct walk_control *wc)
2783 struct btrfs_fs_info *fs_info = log->fs_info;
2784 int ret = 0;
2785 int wret;
2786 int level;
2787 struct btrfs_path *path;
2788 int orig_level;
2790 path = btrfs_alloc_path();
2791 if (!path)
2792 return -ENOMEM;
2794 level = btrfs_header_level(log->node);
2795 orig_level = level;
2796 path->nodes[level] = log->node;
2797 extent_buffer_get(log->node);
2798 path->slots[level] = 0;
2800 while (1) {
2801 wret = walk_down_log_tree(trans, log, path, &level, wc);
2802 if (wret > 0)
2803 break;
2804 if (wret < 0) {
2805 ret = wret;
2806 goto out;
2809 wret = walk_up_log_tree(trans, log, path, &level, wc);
2810 if (wret > 0)
2811 break;
2812 if (wret < 0) {
2813 ret = wret;
2814 goto out;
2818 /* was the root node processed? if not, catch it here */
2819 if (path->nodes[orig_level]) {
2820 ret = wc->process_func(log, path->nodes[orig_level], wc,
2821 btrfs_header_generation(path->nodes[orig_level]),
2822 orig_level);
2823 if (ret)
2824 goto out;
2825 if (wc->free) {
2826 struct extent_buffer *next;
2828 next = path->nodes[orig_level];
2830 if (trans) {
2831 btrfs_tree_lock(next);
2832 btrfs_set_lock_blocking(next);
2833 clean_tree_block(fs_info, next);
2834 btrfs_wait_tree_block_writeback(next);
2835 btrfs_tree_unlock(next);
2836 } else {
2837 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &next->bflags))
2838 clear_extent_buffer_dirty(next);
2841 WARN_ON(log->root_key.objectid !=
2842 BTRFS_TREE_LOG_OBJECTID);
2843 ret = btrfs_free_and_pin_reserved_extent(fs_info,
2844 next->start, next->len);
2845 if (ret)
2846 goto out;
2850 out:
2851 btrfs_free_path(path);
2852 return ret;
2856 * helper function to update the item for a given subvolumes log root
2857 * in the tree of log roots
2859 static int update_log_root(struct btrfs_trans_handle *trans,
2860 struct btrfs_root *log)
2862 struct btrfs_fs_info *fs_info = log->fs_info;
2863 int ret;
2865 if (log->log_transid == 1) {
2866 /* insert root item on the first sync */
2867 ret = btrfs_insert_root(trans, fs_info->log_root_tree,
2868 &log->root_key, &log->root_item);
2869 } else {
2870 ret = btrfs_update_root(trans, fs_info->log_root_tree,
2871 &log->root_key, &log->root_item);
2873 return ret;
2876 static void wait_log_commit(struct btrfs_root *root, int transid)
2878 DEFINE_WAIT(wait);
2879 int index = transid % 2;
2882 * we only allow two pending log transactions at a time,
2883 * so we know that if ours is more than 2 older than the
2884 * current transaction, we're done
2886 for (;;) {
2887 prepare_to_wait(&root->log_commit_wait[index],
2888 &wait, TASK_UNINTERRUPTIBLE);
2890 if (!(root->log_transid_committed < transid &&
2891 atomic_read(&root->log_commit[index])))
2892 break;
2894 mutex_unlock(&root->log_mutex);
2895 schedule();
2896 mutex_lock(&root->log_mutex);
2898 finish_wait(&root->log_commit_wait[index], &wait);
2901 static void wait_for_writer(struct btrfs_root *root)
2903 DEFINE_WAIT(wait);
2905 for (;;) {
2906 prepare_to_wait(&root->log_writer_wait, &wait,
2907 TASK_UNINTERRUPTIBLE);
2908 if (!atomic_read(&root->log_writers))
2909 break;
2911 mutex_unlock(&root->log_mutex);
2912 schedule();
2913 mutex_lock(&root->log_mutex);
2915 finish_wait(&root->log_writer_wait, &wait);
2918 static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
2919 struct btrfs_log_ctx *ctx)
2921 if (!ctx)
2922 return;
2924 mutex_lock(&root->log_mutex);
2925 list_del_init(&ctx->list);
2926 mutex_unlock(&root->log_mutex);
2930 * Invoked in log mutex context, or be sure there is no other task which
2931 * can access the list.
2933 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
2934 int index, int error)
2936 struct btrfs_log_ctx *ctx;
2937 struct btrfs_log_ctx *safe;
2939 list_for_each_entry_safe(ctx, safe, &root->log_ctxs[index], list) {
2940 list_del_init(&ctx->list);
2941 ctx->log_ret = error;
2944 INIT_LIST_HEAD(&root->log_ctxs[index]);
2948 * btrfs_sync_log does sends a given tree log down to the disk and
2949 * updates the super blocks to record it. When this call is done,
2950 * you know that any inodes previously logged are safely on disk only
2951 * if it returns 0.
2953 * Any other return value means you need to call btrfs_commit_transaction.
2954 * Some of the edge cases for fsyncing directories that have had unlinks
2955 * or renames done in the past mean that sometimes the only safe
2956 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
2957 * that has happened.
2959 int btrfs_sync_log(struct btrfs_trans_handle *trans,
2960 struct btrfs_root *root, struct btrfs_log_ctx *ctx)
2962 int index1;
2963 int index2;
2964 int mark;
2965 int ret;
2966 struct btrfs_fs_info *fs_info = root->fs_info;
2967 struct btrfs_root *log = root->log_root;
2968 struct btrfs_root *log_root_tree = fs_info->log_root_tree;
2969 int log_transid = 0;
2970 struct btrfs_log_ctx root_log_ctx;
2971 struct blk_plug plug;
2973 mutex_lock(&root->log_mutex);
2974 log_transid = ctx->log_transid;
2975 if (root->log_transid_committed >= log_transid) {
2976 mutex_unlock(&root->log_mutex);
2977 return ctx->log_ret;
2980 index1 = log_transid % 2;
2981 if (atomic_read(&root->log_commit[index1])) {
2982 wait_log_commit(root, log_transid);
2983 mutex_unlock(&root->log_mutex);
2984 return ctx->log_ret;
2986 ASSERT(log_transid == root->log_transid);
2987 atomic_set(&root->log_commit[index1], 1);
2989 /* wait for previous tree log sync to complete */
2990 if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
2991 wait_log_commit(root, log_transid - 1);
2993 while (1) {
2994 int batch = atomic_read(&root->log_batch);
2995 /* when we're on an ssd, just kick the log commit out */
2996 if (!btrfs_test_opt(fs_info, SSD) &&
2997 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
2998 mutex_unlock(&root->log_mutex);
2999 schedule_timeout_uninterruptible(1);
3000 mutex_lock(&root->log_mutex);
3002 wait_for_writer(root);
3003 if (batch == atomic_read(&root->log_batch))
3004 break;
3007 /* bail out if we need to do a full commit */
3008 if (btrfs_need_log_full_commit(fs_info, trans)) {
3009 ret = -EAGAIN;
3010 mutex_unlock(&root->log_mutex);
3011 goto out;
3014 if (log_transid % 2 == 0)
3015 mark = EXTENT_DIRTY;
3016 else
3017 mark = EXTENT_NEW;
3019 /* we start IO on all the marked extents here, but we don't actually
3020 * wait for them until later.
3022 blk_start_plug(&plug);
3023 ret = btrfs_write_marked_extents(fs_info, &log->dirty_log_pages, mark);
3024 if (ret) {
3025 blk_finish_plug(&plug);
3026 btrfs_abort_transaction(trans, ret);
3027 btrfs_set_log_full_commit(fs_info, trans);
3028 mutex_unlock(&root->log_mutex);
3029 goto out;
3032 btrfs_set_root_node(&log->root_item, log->node);
3034 root->log_transid++;
3035 log->log_transid = root->log_transid;
3036 root->log_start_pid = 0;
3038 * IO has been started, blocks of the log tree have WRITTEN flag set
3039 * in their headers. new modifications of the log will be written to
3040 * new positions. so it's safe to allow log writers to go in.
3042 mutex_unlock(&root->log_mutex);
3044 btrfs_init_log_ctx(&root_log_ctx, NULL);
3046 mutex_lock(&log_root_tree->log_mutex);
3047 atomic_inc(&log_root_tree->log_batch);
3048 atomic_inc(&log_root_tree->log_writers);
3050 index2 = log_root_tree->log_transid % 2;
3051 list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
3052 root_log_ctx.log_transid = log_root_tree->log_transid;
3054 mutex_unlock(&log_root_tree->log_mutex);
3056 ret = update_log_root(trans, log);
3058 mutex_lock(&log_root_tree->log_mutex);
3059 if (atomic_dec_and_test(&log_root_tree->log_writers)) {
3060 /* atomic_dec_and_test implies a barrier */
3061 cond_wake_up_nomb(&log_root_tree->log_writer_wait);
3064 if (ret) {
3065 if (!list_empty(&root_log_ctx.list))
3066 list_del_init(&root_log_ctx.list);
3068 blk_finish_plug(&plug);
3069 btrfs_set_log_full_commit(fs_info, trans);
3071 if (ret != -ENOSPC) {
3072 btrfs_abort_transaction(trans, ret);
3073 mutex_unlock(&log_root_tree->log_mutex);
3074 goto out;
3076 btrfs_wait_tree_log_extents(log, mark);
3077 mutex_unlock(&log_root_tree->log_mutex);
3078 ret = -EAGAIN;
3079 goto out;
3082 if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
3083 blk_finish_plug(&plug);
3084 list_del_init(&root_log_ctx.list);
3085 mutex_unlock(&log_root_tree->log_mutex);
3086 ret = root_log_ctx.log_ret;
3087 goto out;
3090 index2 = root_log_ctx.log_transid % 2;
3091 if (atomic_read(&log_root_tree->log_commit[index2])) {
3092 blk_finish_plug(&plug);
3093 ret = btrfs_wait_tree_log_extents(log, mark);
3094 wait_log_commit(log_root_tree,
3095 root_log_ctx.log_transid);
3096 mutex_unlock(&log_root_tree->log_mutex);
3097 if (!ret)
3098 ret = root_log_ctx.log_ret;
3099 goto out;
3101 ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
3102 atomic_set(&log_root_tree->log_commit[index2], 1);
3104 if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
3105 wait_log_commit(log_root_tree,
3106 root_log_ctx.log_transid - 1);
3109 wait_for_writer(log_root_tree);
3112 * now that we've moved on to the tree of log tree roots,
3113 * check the full commit flag again
3115 if (btrfs_need_log_full_commit(fs_info, trans)) {
3116 blk_finish_plug(&plug);
3117 btrfs_wait_tree_log_extents(log, mark);
3118 mutex_unlock(&log_root_tree->log_mutex);
3119 ret = -EAGAIN;
3120 goto out_wake_log_root;
3123 ret = btrfs_write_marked_extents(fs_info,
3124 &log_root_tree->dirty_log_pages,
3125 EXTENT_DIRTY | EXTENT_NEW);
3126 blk_finish_plug(&plug);
3127 if (ret) {
3128 btrfs_set_log_full_commit(fs_info, trans);
3129 btrfs_abort_transaction(trans, ret);
3130 mutex_unlock(&log_root_tree->log_mutex);
3131 goto out_wake_log_root;
3133 ret = btrfs_wait_tree_log_extents(log, mark);
3134 if (!ret)
3135 ret = btrfs_wait_tree_log_extents(log_root_tree,
3136 EXTENT_NEW | EXTENT_DIRTY);
3137 if (ret) {
3138 btrfs_set_log_full_commit(fs_info, trans);
3139 mutex_unlock(&log_root_tree->log_mutex);
3140 goto out_wake_log_root;
3143 btrfs_set_super_log_root(fs_info->super_for_commit,
3144 log_root_tree->node->start);
3145 btrfs_set_super_log_root_level(fs_info->super_for_commit,
3146 btrfs_header_level(log_root_tree->node));
3148 log_root_tree->log_transid++;
3149 mutex_unlock(&log_root_tree->log_mutex);
3152 * nobody else is going to jump in and write the the ctree
3153 * super here because the log_commit atomic below is protecting
3154 * us. We must be called with a transaction handle pinning
3155 * the running transaction open, so a full commit can't hop
3156 * in and cause problems either.
3158 ret = write_all_supers(fs_info, 1);
3159 if (ret) {
3160 btrfs_set_log_full_commit(fs_info, trans);
3161 btrfs_abort_transaction(trans, ret);
3162 goto out_wake_log_root;
3165 mutex_lock(&root->log_mutex);
3166 if (root->last_log_commit < log_transid)
3167 root->last_log_commit = log_transid;
3168 mutex_unlock(&root->log_mutex);
3170 out_wake_log_root:
3171 mutex_lock(&log_root_tree->log_mutex);
3172 btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
3174 log_root_tree->log_transid_committed++;
3175 atomic_set(&log_root_tree->log_commit[index2], 0);
3176 mutex_unlock(&log_root_tree->log_mutex);
3179 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3180 * all the updates above are seen by the woken threads. It might not be
3181 * necessary, but proving that seems to be hard.
3183 cond_wake_up(&log_root_tree->log_commit_wait[index2]);
3184 out:
3185 mutex_lock(&root->log_mutex);
3186 btrfs_remove_all_log_ctxs(root, index1, ret);
3187 root->log_transid_committed++;
3188 atomic_set(&root->log_commit[index1], 0);
3189 mutex_unlock(&root->log_mutex);
3192 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3193 * all the updates above are seen by the woken threads. It might not be
3194 * necessary, but proving that seems to be hard.
3196 cond_wake_up(&root->log_commit_wait[index1]);
3197 return ret;
3200 static void free_log_tree(struct btrfs_trans_handle *trans,
3201 struct btrfs_root *log)
3203 int ret;
3204 u64 start;
3205 u64 end;
3206 struct walk_control wc = {
3207 .free = 1,
3208 .process_func = process_one_buffer
3211 ret = walk_log_tree(trans, log, &wc);
3212 if (ret) {
3213 if (trans)
3214 btrfs_abort_transaction(trans, ret);
3215 else
3216 btrfs_handle_fs_error(log->fs_info, ret, NULL);
3219 while (1) {
3220 ret = find_first_extent_bit(&log->dirty_log_pages,
3221 0, &start, &end,
3222 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT,
3223 NULL);
3224 if (ret)
3225 break;
3227 clear_extent_bits(&log->dirty_log_pages, start, end,
3228 EXTENT_DIRTY | EXTENT_NEW | EXTENT_NEED_WAIT);
3231 free_extent_buffer(log->node);
3232 kfree(log);
3236 * free all the extents used by the tree log. This should be called
3237 * at commit time of the full transaction
3239 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
3241 if (root->log_root) {
3242 free_log_tree(trans, root->log_root);
3243 root->log_root = NULL;
3245 return 0;
3248 int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
3249 struct btrfs_fs_info *fs_info)
3251 if (fs_info->log_root_tree) {
3252 free_log_tree(trans, fs_info->log_root_tree);
3253 fs_info->log_root_tree = NULL;
3255 return 0;
3259 * If both a file and directory are logged, and unlinks or renames are
3260 * mixed in, we have a few interesting corners:
3262 * create file X in dir Y
3263 * link file X to X.link in dir Y
3264 * fsync file X
3265 * unlink file X but leave X.link
3266 * fsync dir Y
3268 * After a crash we would expect only X.link to exist. But file X
3269 * didn't get fsync'd again so the log has back refs for X and X.link.
3271 * We solve this by removing directory entries and inode backrefs from the
3272 * log when a file that was logged in the current transaction is
3273 * unlinked. Any later fsync will include the updated log entries, and
3274 * we'll be able to reconstruct the proper directory items from backrefs.
3276 * This optimizations allows us to avoid relogging the entire inode
3277 * or the entire directory.
3279 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
3280 struct btrfs_root *root,
3281 const char *name, int name_len,
3282 struct btrfs_inode *dir, u64 index)
3284 struct btrfs_root *log;
3285 struct btrfs_dir_item *di;
3286 struct btrfs_path *path;
3287 int ret;
3288 int err = 0;
3289 int bytes_del = 0;
3290 u64 dir_ino = btrfs_ino(dir);
3292 if (dir->logged_trans < trans->transid)
3293 return 0;
3295 ret = join_running_log_trans(root);
3296 if (ret)
3297 return 0;
3299 mutex_lock(&dir->log_mutex);
3301 log = root->log_root;
3302 path = btrfs_alloc_path();
3303 if (!path) {
3304 err = -ENOMEM;
3305 goto out_unlock;
3308 di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
3309 name, name_len, -1);
3310 if (IS_ERR(di)) {
3311 err = PTR_ERR(di);
3312 goto fail;
3314 if (di) {
3315 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3316 bytes_del += name_len;
3317 if (ret) {
3318 err = ret;
3319 goto fail;
3322 btrfs_release_path(path);
3323 di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
3324 index, name, name_len, -1);
3325 if (IS_ERR(di)) {
3326 err = PTR_ERR(di);
3327 goto fail;
3329 if (di) {
3330 ret = btrfs_delete_one_dir_name(trans, log, path, di);
3331 bytes_del += name_len;
3332 if (ret) {
3333 err = ret;
3334 goto fail;
3338 /* update the directory size in the log to reflect the names
3339 * we have removed
3341 if (bytes_del) {
3342 struct btrfs_key key;
3344 key.objectid = dir_ino;
3345 key.offset = 0;
3346 key.type = BTRFS_INODE_ITEM_KEY;
3347 btrfs_release_path(path);
3349 ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
3350 if (ret < 0) {
3351 err = ret;
3352 goto fail;
3354 if (ret == 0) {
3355 struct btrfs_inode_item *item;
3356 u64 i_size;
3358 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3359 struct btrfs_inode_item);
3360 i_size = btrfs_inode_size(path->nodes[0], item);
3361 if (i_size > bytes_del)
3362 i_size -= bytes_del;
3363 else
3364 i_size = 0;
3365 btrfs_set_inode_size(path->nodes[0], item, i_size);
3366 btrfs_mark_buffer_dirty(path->nodes[0]);
3367 } else
3368 ret = 0;
3369 btrfs_release_path(path);
3371 fail:
3372 btrfs_free_path(path);
3373 out_unlock:
3374 mutex_unlock(&dir->log_mutex);
3375 if (ret == -ENOSPC) {
3376 btrfs_set_log_full_commit(root->fs_info, trans);
3377 ret = 0;
3378 } else if (ret < 0)
3379 btrfs_abort_transaction(trans, ret);
3381 btrfs_end_log_trans(root);
3383 return err;
3386 /* see comments for btrfs_del_dir_entries_in_log */
3387 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
3388 struct btrfs_root *root,
3389 const char *name, int name_len,
3390 struct btrfs_inode *inode, u64 dirid)
3392 struct btrfs_fs_info *fs_info = root->fs_info;
3393 struct btrfs_root *log;
3394 u64 index;
3395 int ret;
3397 if (inode->logged_trans < trans->transid)
3398 return 0;
3400 ret = join_running_log_trans(root);
3401 if (ret)
3402 return 0;
3403 log = root->log_root;
3404 mutex_lock(&inode->log_mutex);
3406 ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
3407 dirid, &index);
3408 mutex_unlock(&inode->log_mutex);
3409 if (ret == -ENOSPC) {
3410 btrfs_set_log_full_commit(fs_info, trans);
3411 ret = 0;
3412 } else if (ret < 0 && ret != -ENOENT)
3413 btrfs_abort_transaction(trans, ret);
3414 btrfs_end_log_trans(root);
3416 return ret;
3420 * creates a range item in the log for 'dirid'. first_offset and
3421 * last_offset tell us which parts of the key space the log should
3422 * be considered authoritative for.
3424 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
3425 struct btrfs_root *log,
3426 struct btrfs_path *path,
3427 int key_type, u64 dirid,
3428 u64 first_offset, u64 last_offset)
3430 int ret;
3431 struct btrfs_key key;
3432 struct btrfs_dir_log_item *item;
3434 key.objectid = dirid;
3435 key.offset = first_offset;
3436 if (key_type == BTRFS_DIR_ITEM_KEY)
3437 key.type = BTRFS_DIR_LOG_ITEM_KEY;
3438 else
3439 key.type = BTRFS_DIR_LOG_INDEX_KEY;
3440 ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
3441 if (ret)
3442 return ret;
3444 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3445 struct btrfs_dir_log_item);
3446 btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
3447 btrfs_mark_buffer_dirty(path->nodes[0]);
3448 btrfs_release_path(path);
3449 return 0;
3453 * log all the items included in the current transaction for a given
3454 * directory. This also creates the range items in the log tree required
3455 * to replay anything deleted before the fsync
3457 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
3458 struct btrfs_root *root, struct btrfs_inode *inode,
3459 struct btrfs_path *path,
3460 struct btrfs_path *dst_path, int key_type,
3461 struct btrfs_log_ctx *ctx,
3462 u64 min_offset, u64 *last_offset_ret)
3464 struct btrfs_key min_key;
3465 struct btrfs_root *log = root->log_root;
3466 struct extent_buffer *src;
3467 int err = 0;
3468 int ret;
3469 int i;
3470 int nritems;
3471 u64 first_offset = min_offset;
3472 u64 last_offset = (u64)-1;
3473 u64 ino = btrfs_ino(inode);
3475 log = root->log_root;
3477 min_key.objectid = ino;
3478 min_key.type = key_type;
3479 min_key.offset = min_offset;
3481 ret = btrfs_search_forward(root, &min_key, path, trans->transid);
3484 * we didn't find anything from this transaction, see if there
3485 * is anything at all
3487 if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
3488 min_key.objectid = ino;
3489 min_key.type = key_type;
3490 min_key.offset = (u64)-1;
3491 btrfs_release_path(path);
3492 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3493 if (ret < 0) {
3494 btrfs_release_path(path);
3495 return ret;
3497 ret = btrfs_previous_item(root, path, ino, key_type);
3499 /* if ret == 0 there are items for this type,
3500 * create a range to tell us the last key of this type.
3501 * otherwise, there are no items in this directory after
3502 * *min_offset, and we create a range to indicate that.
3504 if (ret == 0) {
3505 struct btrfs_key tmp;
3506 btrfs_item_key_to_cpu(path->nodes[0], &tmp,
3507 path->slots[0]);
3508 if (key_type == tmp.type)
3509 first_offset = max(min_offset, tmp.offset) + 1;
3511 goto done;
3514 /* go backward to find any previous key */
3515 ret = btrfs_previous_item(root, path, ino, key_type);
3516 if (ret == 0) {
3517 struct btrfs_key tmp;
3518 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3519 if (key_type == tmp.type) {
3520 first_offset = tmp.offset;
3521 ret = overwrite_item(trans, log, dst_path,
3522 path->nodes[0], path->slots[0],
3523 &tmp);
3524 if (ret) {
3525 err = ret;
3526 goto done;
3530 btrfs_release_path(path);
3532 /* find the first key from this transaction again */
3533 ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
3534 if (WARN_ON(ret != 0))
3535 goto done;
3538 * we have a block from this transaction, log every item in it
3539 * from our directory
3541 while (1) {
3542 struct btrfs_key tmp;
3543 src = path->nodes[0];
3544 nritems = btrfs_header_nritems(src);
3545 for (i = path->slots[0]; i < nritems; i++) {
3546 struct btrfs_dir_item *di;
3548 btrfs_item_key_to_cpu(src, &min_key, i);
3550 if (min_key.objectid != ino || min_key.type != key_type)
3551 goto done;
3552 ret = overwrite_item(trans, log, dst_path, src, i,
3553 &min_key);
3554 if (ret) {
3555 err = ret;
3556 goto done;
3560 * We must make sure that when we log a directory entry,
3561 * the corresponding inode, after log replay, has a
3562 * matching link count. For example:
3564 * touch foo
3565 * mkdir mydir
3566 * sync
3567 * ln foo mydir/bar
3568 * xfs_io -c "fsync" mydir
3569 * <crash>
3570 * <mount fs and log replay>
3572 * Would result in a fsync log that when replayed, our
3573 * file inode would have a link count of 1, but we get
3574 * two directory entries pointing to the same inode.
3575 * After removing one of the names, it would not be
3576 * possible to remove the other name, which resulted
3577 * always in stale file handle errors, and would not
3578 * be possible to rmdir the parent directory, since
3579 * its i_size could never decrement to the value
3580 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3582 di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
3583 btrfs_dir_item_key_to_cpu(src, di, &tmp);
3584 if (ctx &&
3585 (btrfs_dir_transid(src, di) == trans->transid ||
3586 btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
3587 tmp.type != BTRFS_ROOT_ITEM_KEY)
3588 ctx->log_new_dentries = true;
3590 path->slots[0] = nritems;
3593 * look ahead to the next item and see if it is also
3594 * from this directory and from this transaction
3596 ret = btrfs_next_leaf(root, path);
3597 if (ret) {
3598 if (ret == 1)
3599 last_offset = (u64)-1;
3600 else
3601 err = ret;
3602 goto done;
3604 btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
3605 if (tmp.objectid != ino || tmp.type != key_type) {
3606 last_offset = (u64)-1;
3607 goto done;
3609 if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
3610 ret = overwrite_item(trans, log, dst_path,
3611 path->nodes[0], path->slots[0],
3612 &tmp);
3613 if (ret)
3614 err = ret;
3615 else
3616 last_offset = tmp.offset;
3617 goto done;
3620 done:
3621 btrfs_release_path(path);
3622 btrfs_release_path(dst_path);
3624 if (err == 0) {
3625 *last_offset_ret = last_offset;
3627 * insert the log range keys to indicate where the log
3628 * is valid
3630 ret = insert_dir_log_key(trans, log, path, key_type,
3631 ino, first_offset, last_offset);
3632 if (ret)
3633 err = ret;
3635 return err;
3639 * logging directories is very similar to logging inodes, We find all the items
3640 * from the current transaction and write them to the log.
3642 * The recovery code scans the directory in the subvolume, and if it finds a
3643 * key in the range logged that is not present in the log tree, then it means
3644 * that dir entry was unlinked during the transaction.
3646 * In order for that scan to work, we must include one key smaller than
3647 * the smallest logged by this transaction and one key larger than the largest
3648 * key logged by this transaction.
3650 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
3651 struct btrfs_root *root, struct btrfs_inode *inode,
3652 struct btrfs_path *path,
3653 struct btrfs_path *dst_path,
3654 struct btrfs_log_ctx *ctx)
3656 u64 min_key;
3657 u64 max_key;
3658 int ret;
3659 int key_type = BTRFS_DIR_ITEM_KEY;
3661 again:
3662 min_key = 0;
3663 max_key = 0;
3664 while (1) {
3665 ret = log_dir_items(trans, root, inode, path, dst_path, key_type,
3666 ctx, min_key, &max_key);
3667 if (ret)
3668 return ret;
3669 if (max_key == (u64)-1)
3670 break;
3671 min_key = max_key + 1;
3674 if (key_type == BTRFS_DIR_ITEM_KEY) {
3675 key_type = BTRFS_DIR_INDEX_KEY;
3676 goto again;
3678 return 0;
3682 * a helper function to drop items from the log before we relog an
3683 * inode. max_key_type indicates the highest item type to remove.
3684 * This cannot be run for file data extents because it does not
3685 * free the extents they point to.
3687 static int drop_objectid_items(struct btrfs_trans_handle *trans,
3688 struct btrfs_root *log,
3689 struct btrfs_path *path,
3690 u64 objectid, int max_key_type)
3692 int ret;
3693 struct btrfs_key key;
3694 struct btrfs_key found_key;
3695 int start_slot;
3697 key.objectid = objectid;
3698 key.type = max_key_type;
3699 key.offset = (u64)-1;
3701 while (1) {
3702 ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
3703 BUG_ON(ret == 0); /* Logic error */
3704 if (ret < 0)
3705 break;
3707 if (path->slots[0] == 0)
3708 break;
3710 path->slots[0]--;
3711 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
3712 path->slots[0]);
3714 if (found_key.objectid != objectid)
3715 break;
3717 found_key.offset = 0;
3718 found_key.type = 0;
3719 ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
3720 &start_slot);
3722 ret = btrfs_del_items(trans, log, path, start_slot,
3723 path->slots[0] - start_slot + 1);
3725 * If start slot isn't 0 then we don't need to re-search, we've
3726 * found the last guy with the objectid in this tree.
3728 if (ret || start_slot != 0)
3729 break;
3730 btrfs_release_path(path);
3732 btrfs_release_path(path);
3733 if (ret > 0)
3734 ret = 0;
3735 return ret;
3738 static void fill_inode_item(struct btrfs_trans_handle *trans,
3739 struct extent_buffer *leaf,
3740 struct btrfs_inode_item *item,
3741 struct inode *inode, int log_inode_only,
3742 u64 logged_isize)
3744 struct btrfs_map_token token;
3746 btrfs_init_map_token(&token);
3748 if (log_inode_only) {
3749 /* set the generation to zero so the recover code
3750 * can tell the difference between an logging
3751 * just to say 'this inode exists' and a logging
3752 * to say 'update this inode with these values'
3754 btrfs_set_token_inode_generation(leaf, item, 0, &token);
3755 btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
3756 } else {
3757 btrfs_set_token_inode_generation(leaf, item,
3758 BTRFS_I(inode)->generation,
3759 &token);
3760 btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
3763 btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3764 btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3765 btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3766 btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3768 btrfs_set_token_timespec_sec(leaf, &item->atime,
3769 inode->i_atime.tv_sec, &token);
3770 btrfs_set_token_timespec_nsec(leaf, &item->atime,
3771 inode->i_atime.tv_nsec, &token);
3773 btrfs_set_token_timespec_sec(leaf, &item->mtime,
3774 inode->i_mtime.tv_sec, &token);
3775 btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3776 inode->i_mtime.tv_nsec, &token);
3778 btrfs_set_token_timespec_sec(leaf, &item->ctime,
3779 inode->i_ctime.tv_sec, &token);
3780 btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3781 inode->i_ctime.tv_nsec, &token);
3783 btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3784 &token);
3786 btrfs_set_token_inode_sequence(leaf, item,
3787 inode_peek_iversion(inode), &token);
3788 btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3789 btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3790 btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3791 btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3794 static int log_inode_item(struct btrfs_trans_handle *trans,
3795 struct btrfs_root *log, struct btrfs_path *path,
3796 struct btrfs_inode *inode)
3798 struct btrfs_inode_item *inode_item;
3799 int ret;
3801 ret = btrfs_insert_empty_item(trans, log, path,
3802 &inode->location, sizeof(*inode_item));
3803 if (ret && ret != -EEXIST)
3804 return ret;
3805 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3806 struct btrfs_inode_item);
3807 fill_inode_item(trans, path->nodes[0], inode_item, &inode->vfs_inode,
3808 0, 0);
3809 btrfs_release_path(path);
3810 return 0;
3813 static noinline int copy_items(struct btrfs_trans_handle *trans,
3814 struct btrfs_inode *inode,
3815 struct btrfs_path *dst_path,
3816 struct btrfs_path *src_path, u64 *last_extent,
3817 int start_slot, int nr, int inode_only,
3818 u64 logged_isize)
3820 struct btrfs_fs_info *fs_info = trans->fs_info;
3821 unsigned long src_offset;
3822 unsigned long dst_offset;
3823 struct btrfs_root *log = inode->root->log_root;
3824 struct btrfs_file_extent_item *extent;
3825 struct btrfs_inode_item *inode_item;
3826 struct extent_buffer *src = src_path->nodes[0];
3827 struct btrfs_key first_key, last_key, key;
3828 int ret;
3829 struct btrfs_key *ins_keys;
3830 u32 *ins_sizes;
3831 char *ins_data;
3832 int i;
3833 struct list_head ordered_sums;
3834 int skip_csum = inode->flags & BTRFS_INODE_NODATASUM;
3835 bool has_extents = false;
3836 bool need_find_last_extent = true;
3837 bool done = false;
3839 INIT_LIST_HEAD(&ordered_sums);
3841 ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
3842 nr * sizeof(u32), GFP_NOFS);
3843 if (!ins_data)
3844 return -ENOMEM;
3846 first_key.objectid = (u64)-1;
3848 ins_sizes = (u32 *)ins_data;
3849 ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
3851 for (i = 0; i < nr; i++) {
3852 ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
3853 btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
3855 ret = btrfs_insert_empty_items(trans, log, dst_path,
3856 ins_keys, ins_sizes, nr);
3857 if (ret) {
3858 kfree(ins_data);
3859 return ret;
3862 for (i = 0; i < nr; i++, dst_path->slots[0]++) {
3863 dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
3864 dst_path->slots[0]);
3866 src_offset = btrfs_item_ptr_offset(src, start_slot + i);
3868 if (i == nr - 1)
3869 last_key = ins_keys[i];
3871 if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
3872 inode_item = btrfs_item_ptr(dst_path->nodes[0],
3873 dst_path->slots[0],
3874 struct btrfs_inode_item);
3875 fill_inode_item(trans, dst_path->nodes[0], inode_item,
3876 &inode->vfs_inode,
3877 inode_only == LOG_INODE_EXISTS,
3878 logged_isize);
3879 } else {
3880 copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
3881 src_offset, ins_sizes[i]);
3885 * We set need_find_last_extent here in case we know we were
3886 * processing other items and then walk into the first extent in
3887 * the inode. If we don't hit an extent then nothing changes,
3888 * we'll do the last search the next time around.
3890 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
3891 has_extents = true;
3892 if (first_key.objectid == (u64)-1)
3893 first_key = ins_keys[i];
3894 } else {
3895 need_find_last_extent = false;
3898 /* take a reference on file data extents so that truncates
3899 * or deletes of this inode don't have to relog the inode
3900 * again
3902 if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
3903 !skip_csum) {
3904 int found_type;
3905 extent = btrfs_item_ptr(src, start_slot + i,
3906 struct btrfs_file_extent_item);
3908 if (btrfs_file_extent_generation(src, extent) < trans->transid)
3909 continue;
3911 found_type = btrfs_file_extent_type(src, extent);
3912 if (found_type == BTRFS_FILE_EXTENT_REG) {
3913 u64 ds, dl, cs, cl;
3914 ds = btrfs_file_extent_disk_bytenr(src,
3915 extent);
3916 /* ds == 0 is a hole */
3917 if (ds == 0)
3918 continue;
3920 dl = btrfs_file_extent_disk_num_bytes(src,
3921 extent);
3922 cs = btrfs_file_extent_offset(src, extent);
3923 cl = btrfs_file_extent_num_bytes(src,
3924 extent);
3925 if (btrfs_file_extent_compression(src,
3926 extent)) {
3927 cs = 0;
3928 cl = dl;
3931 ret = btrfs_lookup_csums_range(
3932 fs_info->csum_root,
3933 ds + cs, ds + cs + cl - 1,
3934 &ordered_sums, 0);
3935 if (ret) {
3936 btrfs_release_path(dst_path);
3937 kfree(ins_data);
3938 return ret;
3944 btrfs_mark_buffer_dirty(dst_path->nodes[0]);
3945 btrfs_release_path(dst_path);
3946 kfree(ins_data);
3949 * we have to do this after the loop above to avoid changing the
3950 * log tree while trying to change the log tree.
3952 ret = 0;
3953 while (!list_empty(&ordered_sums)) {
3954 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
3955 struct btrfs_ordered_sum,
3956 list);
3957 if (!ret)
3958 ret = btrfs_csum_file_blocks(trans, log, sums);
3959 list_del(&sums->list);
3960 kfree(sums);
3963 if (!has_extents)
3964 return ret;
3966 if (need_find_last_extent && *last_extent == first_key.offset) {
3968 * We don't have any leafs between our current one and the one
3969 * we processed before that can have file extent items for our
3970 * inode (and have a generation number smaller than our current
3971 * transaction id).
3973 need_find_last_extent = false;
3977 * Because we use btrfs_search_forward we could skip leaves that were
3978 * not modified and then assume *last_extent is valid when it really
3979 * isn't. So back up to the previous leaf and read the end of the last
3980 * extent before we go and fill in holes.
3982 if (need_find_last_extent) {
3983 u64 len;
3985 ret = btrfs_prev_leaf(inode->root, src_path);
3986 if (ret < 0)
3987 return ret;
3988 if (ret)
3989 goto fill_holes;
3990 if (src_path->slots[0])
3991 src_path->slots[0]--;
3992 src = src_path->nodes[0];
3993 btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
3994 if (key.objectid != btrfs_ino(inode) ||
3995 key.type != BTRFS_EXTENT_DATA_KEY)
3996 goto fill_holes;
3997 extent = btrfs_item_ptr(src, src_path->slots[0],
3998 struct btrfs_file_extent_item);
3999 if (btrfs_file_extent_type(src, extent) ==
4000 BTRFS_FILE_EXTENT_INLINE) {
4001 len = btrfs_file_extent_ram_bytes(src, extent);
4002 *last_extent = ALIGN(key.offset + len,
4003 fs_info->sectorsize);
4004 } else {
4005 len = btrfs_file_extent_num_bytes(src, extent);
4006 *last_extent = key.offset + len;
4009 fill_holes:
4010 /* So we did prev_leaf, now we need to move to the next leaf, but a few
4011 * things could have happened
4013 * 1) A merge could have happened, so we could currently be on a leaf
4014 * that holds what we were copying in the first place.
4015 * 2) A split could have happened, and now not all of the items we want
4016 * are on the same leaf.
4018 * So we need to adjust how we search for holes, we need to drop the
4019 * path and re-search for the first extent key we found, and then walk
4020 * forward until we hit the last one we copied.
4022 if (need_find_last_extent) {
4023 /* btrfs_prev_leaf could return 1 without releasing the path */
4024 btrfs_release_path(src_path);
4025 ret = btrfs_search_slot(NULL, inode->root, &first_key,
4026 src_path, 0, 0);
4027 if (ret < 0)
4028 return ret;
4029 ASSERT(ret == 0);
4030 src = src_path->nodes[0];
4031 i = src_path->slots[0];
4032 } else {
4033 i = start_slot;
4037 * Ok so here we need to go through and fill in any holes we may have
4038 * to make sure that holes are punched for those areas in case they had
4039 * extents previously.
4041 while (!done) {
4042 u64 offset, len;
4043 u64 extent_end;
4045 if (i >= btrfs_header_nritems(src_path->nodes[0])) {
4046 ret = btrfs_next_leaf(inode->root, src_path);
4047 if (ret < 0)
4048 return ret;
4049 ASSERT(ret == 0);
4050 src = src_path->nodes[0];
4051 i = 0;
4052 need_find_last_extent = true;
4055 btrfs_item_key_to_cpu(src, &key, i);
4056 if (!btrfs_comp_cpu_keys(&key, &last_key))
4057 done = true;
4058 if (key.objectid != btrfs_ino(inode) ||
4059 key.type != BTRFS_EXTENT_DATA_KEY) {
4060 i++;
4061 continue;
4063 extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
4064 if (btrfs_file_extent_type(src, extent) ==
4065 BTRFS_FILE_EXTENT_INLINE) {
4066 len = btrfs_file_extent_ram_bytes(src, extent);
4067 extent_end = ALIGN(key.offset + len,
4068 fs_info->sectorsize);
4069 } else {
4070 len = btrfs_file_extent_num_bytes(src, extent);
4071 extent_end = key.offset + len;
4073 i++;
4075 if (*last_extent == key.offset) {
4076 *last_extent = extent_end;
4077 continue;
4079 offset = *last_extent;
4080 len = key.offset - *last_extent;
4081 ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
4082 offset, 0, 0, len, 0, len, 0, 0, 0);
4083 if (ret)
4084 break;
4085 *last_extent = extent_end;
4089 * Check if there is a hole between the last extent found in our leaf
4090 * and the first extent in the next leaf. If there is one, we need to
4091 * log an explicit hole so that at replay time we can punch the hole.
4093 if (ret == 0 &&
4094 key.objectid == btrfs_ino(inode) &&
4095 key.type == BTRFS_EXTENT_DATA_KEY &&
4096 i == btrfs_header_nritems(src_path->nodes[0])) {
4097 ret = btrfs_next_leaf(inode->root, src_path);
4098 need_find_last_extent = true;
4099 if (ret > 0) {
4100 ret = 0;
4101 } else if (ret == 0) {
4102 btrfs_item_key_to_cpu(src_path->nodes[0], &key,
4103 src_path->slots[0]);
4104 if (key.objectid == btrfs_ino(inode) &&
4105 key.type == BTRFS_EXTENT_DATA_KEY &&
4106 *last_extent < key.offset) {
4107 const u64 len = key.offset - *last_extent;
4109 ret = btrfs_insert_file_extent(trans, log,
4110 btrfs_ino(inode),
4111 *last_extent, 0,
4112 0, len, 0, len,
4113 0, 0, 0);
4118 * Need to let the callers know we dropped the path so they should
4119 * re-search.
4121 if (!ret && need_find_last_extent)
4122 ret = 1;
4123 return ret;
4126 static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
4128 struct extent_map *em1, *em2;
4130 em1 = list_entry(a, struct extent_map, list);
4131 em2 = list_entry(b, struct extent_map, list);
4133 if (em1->start < em2->start)
4134 return -1;
4135 else if (em1->start > em2->start)
4136 return 1;
4137 return 0;
4140 static int log_extent_csums(struct btrfs_trans_handle *trans,
4141 struct btrfs_inode *inode,
4142 struct btrfs_root *log_root,
4143 const struct extent_map *em)
4145 u64 csum_offset;
4146 u64 csum_len;
4147 LIST_HEAD(ordered_sums);
4148 int ret = 0;
4150 if (inode->flags & BTRFS_INODE_NODATASUM ||
4151 test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
4152 em->block_start == EXTENT_MAP_HOLE)
4153 return 0;
4155 /* If we're compressed we have to save the entire range of csums. */
4156 if (em->compress_type) {
4157 csum_offset = 0;
4158 csum_len = max(em->block_len, em->orig_block_len);
4159 } else {
4160 csum_offset = em->mod_start - em->start;
4161 csum_len = em->mod_len;
4164 /* block start is already adjusted for the file extent offset. */
4165 ret = btrfs_lookup_csums_range(trans->fs_info->csum_root,
4166 em->block_start + csum_offset,
4167 em->block_start + csum_offset +
4168 csum_len - 1, &ordered_sums, 0);
4169 if (ret)
4170 return ret;
4172 while (!list_empty(&ordered_sums)) {
4173 struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
4174 struct btrfs_ordered_sum,
4175 list);
4176 if (!ret)
4177 ret = btrfs_csum_file_blocks(trans, log_root, sums);
4178 list_del(&sums->list);
4179 kfree(sums);
4182 return ret;
4185 static int log_one_extent(struct btrfs_trans_handle *trans,
4186 struct btrfs_inode *inode, struct btrfs_root *root,
4187 const struct extent_map *em,
4188 struct btrfs_path *path,
4189 struct btrfs_log_ctx *ctx)
4191 struct btrfs_root *log = root->log_root;
4192 struct btrfs_file_extent_item *fi;
4193 struct extent_buffer *leaf;
4194 struct btrfs_map_token token;
4195 struct btrfs_key key;
4196 u64 extent_offset = em->start - em->orig_start;
4197 u64 block_len;
4198 int ret;
4199 int extent_inserted = 0;
4201 ret = log_extent_csums(trans, inode, log, em);
4202 if (ret)
4203 return ret;
4205 btrfs_init_map_token(&token);
4207 ret = __btrfs_drop_extents(trans, log, &inode->vfs_inode, path, em->start,
4208 em->start + em->len, NULL, 0, 1,
4209 sizeof(*fi), &extent_inserted);
4210 if (ret)
4211 return ret;
4213 if (!extent_inserted) {
4214 key.objectid = btrfs_ino(inode);
4215 key.type = BTRFS_EXTENT_DATA_KEY;
4216 key.offset = em->start;
4218 ret = btrfs_insert_empty_item(trans, log, path, &key,
4219 sizeof(*fi));
4220 if (ret)
4221 return ret;
4223 leaf = path->nodes[0];
4224 fi = btrfs_item_ptr(leaf, path->slots[0],
4225 struct btrfs_file_extent_item);
4227 btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
4228 &token);
4229 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4230 btrfs_set_token_file_extent_type(leaf, fi,
4231 BTRFS_FILE_EXTENT_PREALLOC,
4232 &token);
4233 else
4234 btrfs_set_token_file_extent_type(leaf, fi,
4235 BTRFS_FILE_EXTENT_REG,
4236 &token);
4238 block_len = max(em->block_len, em->orig_block_len);
4239 if (em->compress_type != BTRFS_COMPRESS_NONE) {
4240 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4241 em->block_start,
4242 &token);
4243 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4244 &token);
4245 } else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
4246 btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
4247 em->block_start -
4248 extent_offset, &token);
4249 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
4250 &token);
4251 } else {
4252 btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
4253 btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
4254 &token);
4257 btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
4258 btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
4259 btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
4260 btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
4261 &token);
4262 btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
4263 btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
4264 btrfs_mark_buffer_dirty(leaf);
4266 btrfs_release_path(path);
4268 return ret;
4272 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4273 * lose them after doing a fast fsync and replaying the log. We scan the
4274 * subvolume's root instead of iterating the inode's extent map tree because
4275 * otherwise we can log incorrect extent items based on extent map conversion.
4276 * That can happen due to the fact that extent maps are merged when they
4277 * are not in the extent map tree's list of modified extents.
4279 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle *trans,
4280 struct btrfs_inode *inode,
4281 struct btrfs_path *path)
4283 struct btrfs_root *root = inode->root;
4284 struct btrfs_key key;
4285 const u64 i_size = i_size_read(&inode->vfs_inode);
4286 const u64 ino = btrfs_ino(inode);
4287 struct btrfs_path *dst_path = NULL;
4288 u64 last_extent = (u64)-1;
4289 int ins_nr = 0;
4290 int start_slot;
4291 int ret;
4293 if (!(inode->flags & BTRFS_INODE_PREALLOC))
4294 return 0;
4296 key.objectid = ino;
4297 key.type = BTRFS_EXTENT_DATA_KEY;
4298 key.offset = i_size;
4299 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4300 if (ret < 0)
4301 goto out;
4303 while (true) {
4304 struct extent_buffer *leaf = path->nodes[0];
4305 int slot = path->slots[0];
4307 if (slot >= btrfs_header_nritems(leaf)) {
4308 if (ins_nr > 0) {
4309 ret = copy_items(trans, inode, dst_path, path,
4310 &last_extent, start_slot,
4311 ins_nr, 1, 0);
4312 if (ret < 0)
4313 goto out;
4314 ins_nr = 0;
4316 ret = btrfs_next_leaf(root, path);
4317 if (ret < 0)
4318 goto out;
4319 if (ret > 0) {
4320 ret = 0;
4321 break;
4323 continue;
4326 btrfs_item_key_to_cpu(leaf, &key, slot);
4327 if (key.objectid > ino)
4328 break;
4329 if (WARN_ON_ONCE(key.objectid < ino) ||
4330 key.type < BTRFS_EXTENT_DATA_KEY ||
4331 key.offset < i_size) {
4332 path->slots[0]++;
4333 continue;
4335 if (last_extent == (u64)-1) {
4336 last_extent = key.offset;
4338 * Avoid logging extent items logged in past fsync calls
4339 * and leading to duplicate keys in the log tree.
4341 do {
4342 ret = btrfs_truncate_inode_items(trans,
4343 root->log_root,
4344 &inode->vfs_inode,
4345 i_size,
4346 BTRFS_EXTENT_DATA_KEY);
4347 } while (ret == -EAGAIN);
4348 if (ret)
4349 goto out;
4351 if (ins_nr == 0)
4352 start_slot = slot;
4353 ins_nr++;
4354 path->slots[0]++;
4355 if (!dst_path) {
4356 dst_path = btrfs_alloc_path();
4357 if (!dst_path) {
4358 ret = -ENOMEM;
4359 goto out;
4363 if (ins_nr > 0) {
4364 ret = copy_items(trans, inode, dst_path, path, &last_extent,
4365 start_slot, ins_nr, 1, 0);
4366 if (ret > 0)
4367 ret = 0;
4369 out:
4370 btrfs_release_path(path);
4371 btrfs_free_path(dst_path);
4372 return ret;
4375 static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
4376 struct btrfs_root *root,
4377 struct btrfs_inode *inode,
4378 struct btrfs_path *path,
4379 struct btrfs_log_ctx *ctx,
4380 const u64 start,
4381 const u64 end)
4383 struct extent_map *em, *n;
4384 struct list_head extents;
4385 struct extent_map_tree *tree = &inode->extent_tree;
4386 u64 logged_start, logged_end;
4387 u64 test_gen;
4388 int ret = 0;
4389 int num = 0;
4391 INIT_LIST_HEAD(&extents);
4393 write_lock(&tree->lock);
4394 test_gen = root->fs_info->last_trans_committed;
4395 logged_start = start;
4396 logged_end = end;
4398 list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
4400 * Skip extents outside our logging range. It's important to do
4401 * it for correctness because if we don't ignore them, we may
4402 * log them before their ordered extent completes, and therefore
4403 * we could log them without logging their respective checksums
4404 * (the checksum items are added to the csum tree at the very
4405 * end of btrfs_finish_ordered_io()). Also leave such extents
4406 * outside of our range in the list, since we may have another
4407 * ranged fsync in the near future that needs them. If an extent
4408 * outside our range corresponds to a hole, log it to avoid
4409 * leaving gaps between extents (fsck will complain when we are
4410 * not using the NO_HOLES feature).
4412 if ((em->start > end || em->start + em->len <= start) &&
4413 em->block_start != EXTENT_MAP_HOLE)
4414 continue;
4416 list_del_init(&em->list);
4418 * Just an arbitrary number, this can be really CPU intensive
4419 * once we start getting a lot of extents, and really once we
4420 * have a bunch of extents we just want to commit since it will
4421 * be faster.
4423 if (++num > 32768) {
4424 list_del_init(&tree->modified_extents);
4425 ret = -EFBIG;
4426 goto process;
4429 if (em->generation <= test_gen)
4430 continue;
4432 /* We log prealloc extents beyond eof later. */
4433 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) &&
4434 em->start >= i_size_read(&inode->vfs_inode))
4435 continue;
4437 if (em->start < logged_start)
4438 logged_start = em->start;
4439 if ((em->start + em->len - 1) > logged_end)
4440 logged_end = em->start + em->len - 1;
4442 /* Need a ref to keep it from getting evicted from cache */
4443 refcount_inc(&em->refs);
4444 set_bit(EXTENT_FLAG_LOGGING, &em->flags);
4445 list_add_tail(&em->list, &extents);
4446 num++;
4449 list_sort(NULL, &extents, extent_cmp);
4450 process:
4451 while (!list_empty(&extents)) {
4452 em = list_entry(extents.next, struct extent_map, list);
4454 list_del_init(&em->list);
4457 * If we had an error we just need to delete everybody from our
4458 * private list.
4460 if (ret) {
4461 clear_em_logging(tree, em);
4462 free_extent_map(em);
4463 continue;
4466 write_unlock(&tree->lock);
4468 ret = log_one_extent(trans, inode, root, em, path, ctx);
4469 write_lock(&tree->lock);
4470 clear_em_logging(tree, em);
4471 free_extent_map(em);
4473 WARN_ON(!list_empty(&extents));
4474 write_unlock(&tree->lock);
4476 btrfs_release_path(path);
4477 if (!ret)
4478 ret = btrfs_log_prealloc_extents(trans, inode, path);
4480 return ret;
4483 static int logged_inode_size(struct btrfs_root *log, struct btrfs_inode *inode,
4484 struct btrfs_path *path, u64 *size_ret)
4486 struct btrfs_key key;
4487 int ret;
4489 key.objectid = btrfs_ino(inode);
4490 key.type = BTRFS_INODE_ITEM_KEY;
4491 key.offset = 0;
4493 ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
4494 if (ret < 0) {
4495 return ret;
4496 } else if (ret > 0) {
4497 *size_ret = 0;
4498 } else {
4499 struct btrfs_inode_item *item;
4501 item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4502 struct btrfs_inode_item);
4503 *size_ret = btrfs_inode_size(path->nodes[0], item);
4506 btrfs_release_path(path);
4507 return 0;
4511 * At the moment we always log all xattrs. This is to figure out at log replay
4512 * time which xattrs must have their deletion replayed. If a xattr is missing
4513 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4514 * because if a xattr is deleted, the inode is fsynced and a power failure
4515 * happens, causing the log to be replayed the next time the fs is mounted,
4516 * we want the xattr to not exist anymore (same behaviour as other filesystems
4517 * with a journal, ext3/4, xfs, f2fs, etc).
4519 static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
4520 struct btrfs_root *root,
4521 struct btrfs_inode *inode,
4522 struct btrfs_path *path,
4523 struct btrfs_path *dst_path)
4525 int ret;
4526 struct btrfs_key key;
4527 const u64 ino = btrfs_ino(inode);
4528 int ins_nr = 0;
4529 int start_slot = 0;
4531 key.objectid = ino;
4532 key.type = BTRFS_XATTR_ITEM_KEY;
4533 key.offset = 0;
4535 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4536 if (ret < 0)
4537 return ret;
4539 while (true) {
4540 int slot = path->slots[0];
4541 struct extent_buffer *leaf = path->nodes[0];
4542 int nritems = btrfs_header_nritems(leaf);
4544 if (slot >= nritems) {
4545 if (ins_nr > 0) {
4546 u64 last_extent = 0;
4548 ret = copy_items(trans, inode, dst_path, path,
4549 &last_extent, start_slot,
4550 ins_nr, 1, 0);
4551 /* can't be 1, extent items aren't processed */
4552 ASSERT(ret <= 0);
4553 if (ret < 0)
4554 return ret;
4555 ins_nr = 0;
4557 ret = btrfs_next_leaf(root, path);
4558 if (ret < 0)
4559 return ret;
4560 else if (ret > 0)
4561 break;
4562 continue;
4565 btrfs_item_key_to_cpu(leaf, &key, slot);
4566 if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
4567 break;
4569 if (ins_nr == 0)
4570 start_slot = slot;
4571 ins_nr++;
4572 path->slots[0]++;
4573 cond_resched();
4575 if (ins_nr > 0) {
4576 u64 last_extent = 0;
4578 ret = copy_items(trans, inode, dst_path, path,
4579 &last_extent, start_slot,
4580 ins_nr, 1, 0);
4581 /* can't be 1, extent items aren't processed */
4582 ASSERT(ret <= 0);
4583 if (ret < 0)
4584 return ret;
4587 return 0;
4591 * If the no holes feature is enabled we need to make sure any hole between the
4592 * last extent and the i_size of our inode is explicitly marked in the log. This
4593 * is to make sure that doing something like:
4595 * 1) create file with 128Kb of data
4596 * 2) truncate file to 64Kb
4597 * 3) truncate file to 256Kb
4598 * 4) fsync file
4599 * 5) <crash/power failure>
4600 * 6) mount fs and trigger log replay
4602 * Will give us a file with a size of 256Kb, the first 64Kb of data match what
4603 * the file had in its first 64Kb of data at step 1 and the last 192Kb of the
4604 * file correspond to a hole. The presence of explicit holes in a log tree is
4605 * what guarantees that log replay will remove/adjust file extent items in the
4606 * fs/subvol tree.
4608 * Here we do not need to care about holes between extents, that is already done
4609 * by copy_items(). We also only need to do this in the full sync path, where we
4610 * lookup for extents from the fs/subvol tree only. In the fast path case, we
4611 * lookup the list of modified extent maps and if any represents a hole, we
4612 * insert a corresponding extent representing a hole in the log tree.
4614 static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
4615 struct btrfs_root *root,
4616 struct btrfs_inode *inode,
4617 struct btrfs_path *path)
4619 struct btrfs_fs_info *fs_info = root->fs_info;
4620 int ret;
4621 struct btrfs_key key;
4622 u64 hole_start;
4623 u64 hole_size;
4624 struct extent_buffer *leaf;
4625 struct btrfs_root *log = root->log_root;
4626 const u64 ino = btrfs_ino(inode);
4627 const u64 i_size = i_size_read(&inode->vfs_inode);
4629 if (!btrfs_fs_incompat(fs_info, NO_HOLES))
4630 return 0;
4632 key.objectid = ino;
4633 key.type = BTRFS_EXTENT_DATA_KEY;
4634 key.offset = (u64)-1;
4636 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4637 ASSERT(ret != 0);
4638 if (ret < 0)
4639 return ret;
4641 ASSERT(path->slots[0] > 0);
4642 path->slots[0]--;
4643 leaf = path->nodes[0];
4644 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4646 if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
4647 /* inode does not have any extents */
4648 hole_start = 0;
4649 hole_size = i_size;
4650 } else {
4651 struct btrfs_file_extent_item *extent;
4652 u64 len;
4655 * If there's an extent beyond i_size, an explicit hole was
4656 * already inserted by copy_items().
4658 if (key.offset >= i_size)
4659 return 0;
4661 extent = btrfs_item_ptr(leaf, path->slots[0],
4662 struct btrfs_file_extent_item);
4664 if (btrfs_file_extent_type(leaf, extent) ==
4665 BTRFS_FILE_EXTENT_INLINE) {
4666 len = btrfs_file_extent_ram_bytes(leaf, extent);
4667 ASSERT(len == i_size ||
4668 (len == fs_info->sectorsize &&
4669 btrfs_file_extent_compression(leaf, extent) !=
4670 BTRFS_COMPRESS_NONE) ||
4671 (len < i_size && i_size < fs_info->sectorsize));
4672 return 0;
4675 len = btrfs_file_extent_num_bytes(leaf, extent);
4676 /* Last extent goes beyond i_size, no need to log a hole. */
4677 if (key.offset + len > i_size)
4678 return 0;
4679 hole_start = key.offset + len;
4680 hole_size = i_size - hole_start;
4682 btrfs_release_path(path);
4684 /* Last extent ends at i_size. */
4685 if (hole_size == 0)
4686 return 0;
4688 hole_size = ALIGN(hole_size, fs_info->sectorsize);
4689 ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
4690 hole_size, 0, hole_size, 0, 0, 0);
4691 return ret;
4695 * When we are logging a new inode X, check if it doesn't have a reference that
4696 * matches the reference from some other inode Y created in a past transaction
4697 * and that was renamed in the current transaction. If we don't do this, then at
4698 * log replay time we can lose inode Y (and all its files if it's a directory):
4700 * mkdir /mnt/x
4701 * echo "hello world" > /mnt/x/foobar
4702 * sync
4703 * mv /mnt/x /mnt/y
4704 * mkdir /mnt/x # or touch /mnt/x
4705 * xfs_io -c fsync /mnt/x
4706 * <power fail>
4707 * mount fs, trigger log replay
4709 * After the log replay procedure, we would lose the first directory and all its
4710 * files (file foobar).
4711 * For the case where inode Y is not a directory we simply end up losing it:
4713 * echo "123" > /mnt/foo
4714 * sync
4715 * mv /mnt/foo /mnt/bar
4716 * echo "abc" > /mnt/foo
4717 * xfs_io -c fsync /mnt/foo
4718 * <power fail>
4720 * We also need this for cases where a snapshot entry is replaced by some other
4721 * entry (file or directory) otherwise we end up with an unreplayable log due to
4722 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4723 * if it were a regular entry:
4725 * mkdir /mnt/x
4726 * btrfs subvolume snapshot /mnt /mnt/x/snap
4727 * btrfs subvolume delete /mnt/x/snap
4728 * rmdir /mnt/x
4729 * mkdir /mnt/x
4730 * fsync /mnt/x or fsync some new file inside it
4731 * <power fail>
4733 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4734 * the same transaction.
4736 static int btrfs_check_ref_name_override(struct extent_buffer *eb,
4737 const int slot,
4738 const struct btrfs_key *key,
4739 struct btrfs_inode *inode,
4740 u64 *other_ino)
4742 int ret;
4743 struct btrfs_path *search_path;
4744 char *name = NULL;
4745 u32 name_len = 0;
4746 u32 item_size = btrfs_item_size_nr(eb, slot);
4747 u32 cur_offset = 0;
4748 unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
4750 search_path = btrfs_alloc_path();
4751 if (!search_path)
4752 return -ENOMEM;
4753 search_path->search_commit_root = 1;
4754 search_path->skip_locking = 1;
4756 while (cur_offset < item_size) {
4757 u64 parent;
4758 u32 this_name_len;
4759 u32 this_len;
4760 unsigned long name_ptr;
4761 struct btrfs_dir_item *di;
4763 if (key->type == BTRFS_INODE_REF_KEY) {
4764 struct btrfs_inode_ref *iref;
4766 iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
4767 parent = key->offset;
4768 this_name_len = btrfs_inode_ref_name_len(eb, iref);
4769 name_ptr = (unsigned long)(iref + 1);
4770 this_len = sizeof(*iref) + this_name_len;
4771 } else {
4772 struct btrfs_inode_extref *extref;
4774 extref = (struct btrfs_inode_extref *)(ptr +
4775 cur_offset);
4776 parent = btrfs_inode_extref_parent(eb, extref);
4777 this_name_len = btrfs_inode_extref_name_len(eb, extref);
4778 name_ptr = (unsigned long)&extref->name;
4779 this_len = sizeof(*extref) + this_name_len;
4782 if (this_name_len > name_len) {
4783 char *new_name;
4785 new_name = krealloc(name, this_name_len, GFP_NOFS);
4786 if (!new_name) {
4787 ret = -ENOMEM;
4788 goto out;
4790 name_len = this_name_len;
4791 name = new_name;
4794 read_extent_buffer(eb, name, name_ptr, this_name_len);
4795 di = btrfs_lookup_dir_item(NULL, inode->root, search_path,
4796 parent, name, this_name_len, 0);
4797 if (di && !IS_ERR(di)) {
4798 struct btrfs_key di_key;
4800 btrfs_dir_item_key_to_cpu(search_path->nodes[0],
4801 di, &di_key);
4802 if (di_key.type == BTRFS_INODE_ITEM_KEY) {
4803 ret = 1;
4804 *other_ino = di_key.objectid;
4805 } else {
4806 ret = -EAGAIN;
4808 goto out;
4809 } else if (IS_ERR(di)) {
4810 ret = PTR_ERR(di);
4811 goto out;
4813 btrfs_release_path(search_path);
4815 cur_offset += this_len;
4817 ret = 0;
4818 out:
4819 btrfs_free_path(search_path);
4820 kfree(name);
4821 return ret;
4824 /* log a single inode in the tree log.
4825 * At least one parent directory for this inode must exist in the tree
4826 * or be logged already.
4828 * Any items from this inode changed by the current transaction are copied
4829 * to the log tree. An extra reference is taken on any extents in this
4830 * file, allowing us to avoid a whole pile of corner cases around logging
4831 * blocks that have been removed from the tree.
4833 * See LOG_INODE_ALL and related defines for a description of what inode_only
4834 * does.
4836 * This handles both files and directories.
4838 static int btrfs_log_inode(struct btrfs_trans_handle *trans,
4839 struct btrfs_root *root, struct btrfs_inode *inode,
4840 int inode_only,
4841 const loff_t start,
4842 const loff_t end,
4843 struct btrfs_log_ctx *ctx)
4845 struct btrfs_fs_info *fs_info = root->fs_info;
4846 struct btrfs_path *path;
4847 struct btrfs_path *dst_path;
4848 struct btrfs_key min_key;
4849 struct btrfs_key max_key;
4850 struct btrfs_root *log = root->log_root;
4851 u64 last_extent = 0;
4852 int err = 0;
4853 int ret;
4854 int nritems;
4855 int ins_start_slot = 0;
4856 int ins_nr;
4857 bool fast_search = false;
4858 u64 ino = btrfs_ino(inode);
4859 struct extent_map_tree *em_tree = &inode->extent_tree;
4860 u64 logged_isize = 0;
4861 bool need_log_inode_item = true;
4862 bool xattrs_logged = false;
4864 path = btrfs_alloc_path();
4865 if (!path)
4866 return -ENOMEM;
4867 dst_path = btrfs_alloc_path();
4868 if (!dst_path) {
4869 btrfs_free_path(path);
4870 return -ENOMEM;
4873 min_key.objectid = ino;
4874 min_key.type = BTRFS_INODE_ITEM_KEY;
4875 min_key.offset = 0;
4877 max_key.objectid = ino;
4880 /* today the code can only do partial logging of directories */
4881 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4882 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4883 &inode->runtime_flags) &&
4884 inode_only >= LOG_INODE_EXISTS))
4885 max_key.type = BTRFS_XATTR_ITEM_KEY;
4886 else
4887 max_key.type = (u8)-1;
4888 max_key.offset = (u64)-1;
4891 * Only run delayed items if we are a dir or a new file.
4892 * Otherwise commit the delayed inode only, which is needed in
4893 * order for the log replay code to mark inodes for link count
4894 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
4896 if (S_ISDIR(inode->vfs_inode.i_mode) ||
4897 inode->generation > fs_info->last_trans_committed)
4898 ret = btrfs_commit_inode_delayed_items(trans, inode);
4899 else
4900 ret = btrfs_commit_inode_delayed_inode(inode);
4902 if (ret) {
4903 btrfs_free_path(path);
4904 btrfs_free_path(dst_path);
4905 return ret;
4908 if (inode_only == LOG_OTHER_INODE) {
4909 inode_only = LOG_INODE_EXISTS;
4910 mutex_lock_nested(&inode->log_mutex, SINGLE_DEPTH_NESTING);
4911 } else {
4912 mutex_lock(&inode->log_mutex);
4916 * a brute force approach to making sure we get the most uptodate
4917 * copies of everything.
4919 if (S_ISDIR(inode->vfs_inode.i_mode)) {
4920 int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
4922 if (inode_only == LOG_INODE_EXISTS)
4923 max_key_type = BTRFS_XATTR_ITEM_KEY;
4924 ret = drop_objectid_items(trans, log, path, ino, max_key_type);
4925 } else {
4926 if (inode_only == LOG_INODE_EXISTS) {
4928 * Make sure the new inode item we write to the log has
4929 * the same isize as the current one (if it exists).
4930 * This is necessary to prevent data loss after log
4931 * replay, and also to prevent doing a wrong expanding
4932 * truncate - for e.g. create file, write 4K into offset
4933 * 0, fsync, write 4K into offset 4096, add hard link,
4934 * fsync some other file (to sync log), power fail - if
4935 * we use the inode's current i_size, after log replay
4936 * we get a 8Kb file, with the last 4Kb extent as a hole
4937 * (zeroes), as if an expanding truncate happened,
4938 * instead of getting a file of 4Kb only.
4940 err = logged_inode_size(log, inode, path, &logged_isize);
4941 if (err)
4942 goto out_unlock;
4944 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4945 &inode->runtime_flags)) {
4946 if (inode_only == LOG_INODE_EXISTS) {
4947 max_key.type = BTRFS_XATTR_ITEM_KEY;
4948 ret = drop_objectid_items(trans, log, path, ino,
4949 max_key.type);
4950 } else {
4951 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4952 &inode->runtime_flags);
4953 clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4954 &inode->runtime_flags);
4955 while(1) {
4956 ret = btrfs_truncate_inode_items(trans,
4957 log, &inode->vfs_inode, 0, 0);
4958 if (ret != -EAGAIN)
4959 break;
4962 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
4963 &inode->runtime_flags) ||
4964 inode_only == LOG_INODE_EXISTS) {
4965 if (inode_only == LOG_INODE_ALL)
4966 fast_search = true;
4967 max_key.type = BTRFS_XATTR_ITEM_KEY;
4968 ret = drop_objectid_items(trans, log, path, ino,
4969 max_key.type);
4970 } else {
4971 if (inode_only == LOG_INODE_ALL)
4972 fast_search = true;
4973 goto log_extents;
4977 if (ret) {
4978 err = ret;
4979 goto out_unlock;
4982 while (1) {
4983 ins_nr = 0;
4984 ret = btrfs_search_forward(root, &min_key,
4985 path, trans->transid);
4986 if (ret < 0) {
4987 err = ret;
4988 goto out_unlock;
4990 if (ret != 0)
4991 break;
4992 again:
4993 /* note, ins_nr might be > 0 here, cleanup outside the loop */
4994 if (min_key.objectid != ino)
4995 break;
4996 if (min_key.type > max_key.type)
4997 break;
4999 if (min_key.type == BTRFS_INODE_ITEM_KEY)
5000 need_log_inode_item = false;
5002 if ((min_key.type == BTRFS_INODE_REF_KEY ||
5003 min_key.type == BTRFS_INODE_EXTREF_KEY) &&
5004 inode->generation == trans->transid) {
5005 u64 other_ino = 0;
5007 ret = btrfs_check_ref_name_override(path->nodes[0],
5008 path->slots[0], &min_key, inode,
5009 &other_ino);
5010 if (ret < 0) {
5011 err = ret;
5012 goto out_unlock;
5013 } else if (ret > 0 && ctx &&
5014 other_ino != btrfs_ino(BTRFS_I(ctx->inode))) {
5015 struct btrfs_key inode_key;
5016 struct inode *other_inode;
5018 if (ins_nr > 0) {
5019 ins_nr++;
5020 } else {
5021 ins_nr = 1;
5022 ins_start_slot = path->slots[0];
5024 ret = copy_items(trans, inode, dst_path, path,
5025 &last_extent, ins_start_slot,
5026 ins_nr, inode_only,
5027 logged_isize);
5028 if (ret < 0) {
5029 err = ret;
5030 goto out_unlock;
5032 ins_nr = 0;
5033 btrfs_release_path(path);
5034 inode_key.objectid = other_ino;
5035 inode_key.type = BTRFS_INODE_ITEM_KEY;
5036 inode_key.offset = 0;
5037 other_inode = btrfs_iget(fs_info->sb,
5038 &inode_key, root,
5039 NULL);
5041 * If the other inode that had a conflicting dir
5042 * entry was deleted in the current transaction,
5043 * we don't need to do more work nor fallback to
5044 * a transaction commit.
5046 if (other_inode == ERR_PTR(-ENOENT)) {
5047 goto next_key;
5048 } else if (IS_ERR(other_inode)) {
5049 err = PTR_ERR(other_inode);
5050 goto out_unlock;
5053 * We are safe logging the other inode without
5054 * acquiring its i_mutex as long as we log with
5055 * the LOG_INODE_EXISTS mode. We're safe against
5056 * concurrent renames of the other inode as well
5057 * because during a rename we pin the log and
5058 * update the log with the new name before we
5059 * unpin it.
5061 err = btrfs_log_inode(trans, root,
5062 BTRFS_I(other_inode),
5063 LOG_OTHER_INODE, 0, LLONG_MAX,
5064 ctx);
5065 iput(other_inode);
5066 if (err)
5067 goto out_unlock;
5068 else
5069 goto next_key;
5073 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5074 if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
5075 if (ins_nr == 0)
5076 goto next_slot;
5077 ret = copy_items(trans, inode, dst_path, path,
5078 &last_extent, ins_start_slot,
5079 ins_nr, inode_only, logged_isize);
5080 if (ret < 0) {
5081 err = ret;
5082 goto out_unlock;
5084 ins_nr = 0;
5085 if (ret) {
5086 btrfs_release_path(path);
5087 continue;
5089 goto next_slot;
5092 if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
5093 ins_nr++;
5094 goto next_slot;
5095 } else if (!ins_nr) {
5096 ins_start_slot = path->slots[0];
5097 ins_nr = 1;
5098 goto next_slot;
5101 ret = copy_items(trans, inode, dst_path, path, &last_extent,
5102 ins_start_slot, ins_nr, inode_only,
5103 logged_isize);
5104 if (ret < 0) {
5105 err = ret;
5106 goto out_unlock;
5108 if (ret) {
5109 ins_nr = 0;
5110 btrfs_release_path(path);
5111 continue;
5113 ins_nr = 1;
5114 ins_start_slot = path->slots[0];
5115 next_slot:
5117 nritems = btrfs_header_nritems(path->nodes[0]);
5118 path->slots[0]++;
5119 if (path->slots[0] < nritems) {
5120 btrfs_item_key_to_cpu(path->nodes[0], &min_key,
5121 path->slots[0]);
5122 goto again;
5124 if (ins_nr) {
5125 ret = copy_items(trans, inode, dst_path, path,
5126 &last_extent, ins_start_slot,
5127 ins_nr, inode_only, logged_isize);
5128 if (ret < 0) {
5129 err = ret;
5130 goto out_unlock;
5132 ret = 0;
5133 ins_nr = 0;
5135 btrfs_release_path(path);
5136 next_key:
5137 if (min_key.offset < (u64)-1) {
5138 min_key.offset++;
5139 } else if (min_key.type < max_key.type) {
5140 min_key.type++;
5141 min_key.offset = 0;
5142 } else {
5143 break;
5146 if (ins_nr) {
5147 ret = copy_items(trans, inode, dst_path, path, &last_extent,
5148 ins_start_slot, ins_nr, inode_only,
5149 logged_isize);
5150 if (ret < 0) {
5151 err = ret;
5152 goto out_unlock;
5154 ret = 0;
5155 ins_nr = 0;
5158 btrfs_release_path(path);
5159 btrfs_release_path(dst_path);
5160 err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
5161 if (err)
5162 goto out_unlock;
5163 xattrs_logged = true;
5164 if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
5165 btrfs_release_path(path);
5166 btrfs_release_path(dst_path);
5167 err = btrfs_log_trailing_hole(trans, root, inode, path);
5168 if (err)
5169 goto out_unlock;
5171 log_extents:
5172 btrfs_release_path(path);
5173 btrfs_release_path(dst_path);
5174 if (need_log_inode_item) {
5175 err = log_inode_item(trans, log, dst_path, inode);
5176 if (!err && !xattrs_logged) {
5177 err = btrfs_log_all_xattrs(trans, root, inode, path,
5178 dst_path);
5179 btrfs_release_path(path);
5181 if (err)
5182 goto out_unlock;
5184 if (fast_search) {
5185 ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
5186 ctx, start, end);
5187 if (ret) {
5188 err = ret;
5189 goto out_unlock;
5191 } else if (inode_only == LOG_INODE_ALL) {
5192 struct extent_map *em, *n;
5194 write_lock(&em_tree->lock);
5196 * We can't just remove every em if we're called for a ranged
5197 * fsync - that is, one that doesn't cover the whole possible
5198 * file range (0 to LLONG_MAX). This is because we can have
5199 * em's that fall outside the range we're logging and therefore
5200 * their ordered operations haven't completed yet
5201 * (btrfs_finish_ordered_io() not invoked yet). This means we
5202 * didn't get their respective file extent item in the fs/subvol
5203 * tree yet, and need to let the next fast fsync (one which
5204 * consults the list of modified extent maps) find the em so
5205 * that it logs a matching file extent item and waits for the
5206 * respective ordered operation to complete (if it's still
5207 * running).
5209 * Removing every em outside the range we're logging would make
5210 * the next fast fsync not log their matching file extent items,
5211 * therefore making us lose data after a log replay.
5213 list_for_each_entry_safe(em, n, &em_tree->modified_extents,
5214 list) {
5215 const u64 mod_end = em->mod_start + em->mod_len - 1;
5217 if (em->mod_start >= start && mod_end <= end)
5218 list_del_init(&em->list);
5220 write_unlock(&em_tree->lock);
5223 if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->vfs_inode.i_mode)) {
5224 ret = log_directory_changes(trans, root, inode, path, dst_path,
5225 ctx);
5226 if (ret) {
5227 err = ret;
5228 goto out_unlock;
5232 spin_lock(&inode->lock);
5233 inode->logged_trans = trans->transid;
5234 inode->last_log_commit = inode->last_sub_trans;
5235 spin_unlock(&inode->lock);
5236 out_unlock:
5237 mutex_unlock(&inode->log_mutex);
5239 btrfs_free_path(path);
5240 btrfs_free_path(dst_path);
5241 return err;
5245 * Check if we must fallback to a transaction commit when logging an inode.
5246 * This must be called after logging the inode and is used only in the context
5247 * when fsyncing an inode requires the need to log some other inode - in which
5248 * case we can't lock the i_mutex of each other inode we need to log as that
5249 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5250 * log inodes up or down in the hierarchy) or rename operations for example. So
5251 * we take the log_mutex of the inode after we have logged it and then check for
5252 * its last_unlink_trans value - this is safe because any task setting
5253 * last_unlink_trans must take the log_mutex and it must do this before it does
5254 * the actual unlink operation, so if we do this check before a concurrent task
5255 * sets last_unlink_trans it means we've logged a consistent version/state of
5256 * all the inode items, otherwise we are not sure and must do a transaction
5257 * commit (the concurrent task might have only updated last_unlink_trans before
5258 * we logged the inode or it might have also done the unlink).
5260 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
5261 struct btrfs_inode *inode)
5263 struct btrfs_fs_info *fs_info = inode->root->fs_info;
5264 bool ret = false;
5266 mutex_lock(&inode->log_mutex);
5267 if (inode->last_unlink_trans > fs_info->last_trans_committed) {
5269 * Make sure any commits to the log are forced to be full
5270 * commits.
5272 btrfs_set_log_full_commit(fs_info, trans);
5273 ret = true;
5275 mutex_unlock(&inode->log_mutex);
5277 return ret;
5281 * follow the dentry parent pointers up the chain and see if any
5282 * of the directories in it require a full commit before they can
5283 * be logged. Returns zero if nothing special needs to be done or 1 if
5284 * a full commit is required.
5286 static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
5287 struct btrfs_inode *inode,
5288 struct dentry *parent,
5289 struct super_block *sb,
5290 u64 last_committed)
5292 int ret = 0;
5293 struct dentry *old_parent = NULL;
5294 struct btrfs_inode *orig_inode = inode;
5297 * for regular files, if its inode is already on disk, we don't
5298 * have to worry about the parents at all. This is because
5299 * we can use the last_unlink_trans field to record renames
5300 * and other fun in this file.
5302 if (S_ISREG(inode->vfs_inode.i_mode) &&
5303 inode->generation <= last_committed &&
5304 inode->last_unlink_trans <= last_committed)
5305 goto out;
5307 if (!S_ISDIR(inode->vfs_inode.i_mode)) {
5308 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5309 goto out;
5310 inode = BTRFS_I(d_inode(parent));
5313 while (1) {
5315 * If we are logging a directory then we start with our inode,
5316 * not our parent's inode, so we need to skip setting the
5317 * logged_trans so that further down in the log code we don't
5318 * think this inode has already been logged.
5320 if (inode != orig_inode)
5321 inode->logged_trans = trans->transid;
5322 smp_mb();
5324 if (btrfs_must_commit_transaction(trans, inode)) {
5325 ret = 1;
5326 break;
5329 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5330 break;
5332 if (IS_ROOT(parent)) {
5333 inode = BTRFS_I(d_inode(parent));
5334 if (btrfs_must_commit_transaction(trans, inode))
5335 ret = 1;
5336 break;
5339 parent = dget_parent(parent);
5340 dput(old_parent);
5341 old_parent = parent;
5342 inode = BTRFS_I(d_inode(parent));
5345 dput(old_parent);
5346 out:
5347 return ret;
5350 struct btrfs_dir_list {
5351 u64 ino;
5352 struct list_head list;
5356 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5357 * details about the why it is needed.
5358 * This is a recursive operation - if an existing dentry corresponds to a
5359 * directory, that directory's new entries are logged too (same behaviour as
5360 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5361 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5362 * complains about the following circular lock dependency / possible deadlock:
5364 * CPU0 CPU1
5365 * ---- ----
5366 * lock(&type->i_mutex_dir_key#3/2);
5367 * lock(sb_internal#2);
5368 * lock(&type->i_mutex_dir_key#3/2);
5369 * lock(&sb->s_type->i_mutex_key#14);
5371 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5372 * sb_start_intwrite() in btrfs_start_transaction().
5373 * Not locking i_mutex of the inodes is still safe because:
5375 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5376 * that while logging the inode new references (names) are added or removed
5377 * from the inode, leaving the logged inode item with a link count that does
5378 * not match the number of logged inode reference items. This is fine because
5379 * at log replay time we compute the real number of links and correct the
5380 * link count in the inode item (see replay_one_buffer() and
5381 * link_to_fixup_dir());
5383 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5384 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5385 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5386 * has a size that doesn't match the sum of the lengths of all the logged
5387 * names. This does not result in a problem because if a dir_item key is
5388 * logged but its matching dir_index key is not logged, at log replay time we
5389 * don't use it to replay the respective name (see replay_one_name()). On the
5390 * other hand if only the dir_index key ends up being logged, the respective
5391 * name is added to the fs/subvol tree with both the dir_item and dir_index
5392 * keys created (see replay_one_name()).
5393 * The directory's inode item with a wrong i_size is not a problem as well,
5394 * since we don't use it at log replay time to set the i_size in the inode
5395 * item of the fs/subvol tree (see overwrite_item()).
5397 static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
5398 struct btrfs_root *root,
5399 struct btrfs_inode *start_inode,
5400 struct btrfs_log_ctx *ctx)
5402 struct btrfs_fs_info *fs_info = root->fs_info;
5403 struct btrfs_root *log = root->log_root;
5404 struct btrfs_path *path;
5405 LIST_HEAD(dir_list);
5406 struct btrfs_dir_list *dir_elem;
5407 int ret = 0;
5409 path = btrfs_alloc_path();
5410 if (!path)
5411 return -ENOMEM;
5413 dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
5414 if (!dir_elem) {
5415 btrfs_free_path(path);
5416 return -ENOMEM;
5418 dir_elem->ino = btrfs_ino(start_inode);
5419 list_add_tail(&dir_elem->list, &dir_list);
5421 while (!list_empty(&dir_list)) {
5422 struct extent_buffer *leaf;
5423 struct btrfs_key min_key;
5424 int nritems;
5425 int i;
5427 dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
5428 list);
5429 if (ret)
5430 goto next_dir_inode;
5432 min_key.objectid = dir_elem->ino;
5433 min_key.type = BTRFS_DIR_ITEM_KEY;
5434 min_key.offset = 0;
5435 again:
5436 btrfs_release_path(path);
5437 ret = btrfs_search_forward(log, &min_key, path, trans->transid);
5438 if (ret < 0) {
5439 goto next_dir_inode;
5440 } else if (ret > 0) {
5441 ret = 0;
5442 goto next_dir_inode;
5445 process_leaf:
5446 leaf = path->nodes[0];
5447 nritems = btrfs_header_nritems(leaf);
5448 for (i = path->slots[0]; i < nritems; i++) {
5449 struct btrfs_dir_item *di;
5450 struct btrfs_key di_key;
5451 struct inode *di_inode;
5452 struct btrfs_dir_list *new_dir_elem;
5453 int log_mode = LOG_INODE_EXISTS;
5454 int type;
5456 btrfs_item_key_to_cpu(leaf, &min_key, i);
5457 if (min_key.objectid != dir_elem->ino ||
5458 min_key.type != BTRFS_DIR_ITEM_KEY)
5459 goto next_dir_inode;
5461 di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
5462 type = btrfs_dir_type(leaf, di);
5463 if (btrfs_dir_transid(leaf, di) < trans->transid &&
5464 type != BTRFS_FT_DIR)
5465 continue;
5466 btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
5467 if (di_key.type == BTRFS_ROOT_ITEM_KEY)
5468 continue;
5470 btrfs_release_path(path);
5471 di_inode = btrfs_iget(fs_info->sb, &di_key, root, NULL);
5472 if (IS_ERR(di_inode)) {
5473 ret = PTR_ERR(di_inode);
5474 goto next_dir_inode;
5477 if (btrfs_inode_in_log(BTRFS_I(di_inode), trans->transid)) {
5478 iput(di_inode);
5479 break;
5482 ctx->log_new_dentries = false;
5483 if (type == BTRFS_FT_DIR || type == BTRFS_FT_SYMLINK)
5484 log_mode = LOG_INODE_ALL;
5485 ret = btrfs_log_inode(trans, root, BTRFS_I(di_inode),
5486 log_mode, 0, LLONG_MAX, ctx);
5487 if (!ret &&
5488 btrfs_must_commit_transaction(trans, BTRFS_I(di_inode)))
5489 ret = 1;
5490 iput(di_inode);
5491 if (ret)
5492 goto next_dir_inode;
5493 if (ctx->log_new_dentries) {
5494 new_dir_elem = kmalloc(sizeof(*new_dir_elem),
5495 GFP_NOFS);
5496 if (!new_dir_elem) {
5497 ret = -ENOMEM;
5498 goto next_dir_inode;
5500 new_dir_elem->ino = di_key.objectid;
5501 list_add_tail(&new_dir_elem->list, &dir_list);
5503 break;
5505 if (i == nritems) {
5506 ret = btrfs_next_leaf(log, path);
5507 if (ret < 0) {
5508 goto next_dir_inode;
5509 } else if (ret > 0) {
5510 ret = 0;
5511 goto next_dir_inode;
5513 goto process_leaf;
5515 if (min_key.offset < (u64)-1) {
5516 min_key.offset++;
5517 goto again;
5519 next_dir_inode:
5520 list_del(&dir_elem->list);
5521 kfree(dir_elem);
5524 btrfs_free_path(path);
5525 return ret;
5528 static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
5529 struct btrfs_inode *inode,
5530 struct btrfs_log_ctx *ctx)
5532 struct btrfs_fs_info *fs_info = trans->fs_info;
5533 int ret;
5534 struct btrfs_path *path;
5535 struct btrfs_key key;
5536 struct btrfs_root *root = inode->root;
5537 const u64 ino = btrfs_ino(inode);
5539 path = btrfs_alloc_path();
5540 if (!path)
5541 return -ENOMEM;
5542 path->skip_locking = 1;
5543 path->search_commit_root = 1;
5545 key.objectid = ino;
5546 key.type = BTRFS_INODE_REF_KEY;
5547 key.offset = 0;
5548 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5549 if (ret < 0)
5550 goto out;
5552 while (true) {
5553 struct extent_buffer *leaf = path->nodes[0];
5554 int slot = path->slots[0];
5555 u32 cur_offset = 0;
5556 u32 item_size;
5557 unsigned long ptr;
5559 if (slot >= btrfs_header_nritems(leaf)) {
5560 ret = btrfs_next_leaf(root, path);
5561 if (ret < 0)
5562 goto out;
5563 else if (ret > 0)
5564 break;
5565 continue;
5568 btrfs_item_key_to_cpu(leaf, &key, slot);
5569 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5570 if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
5571 break;
5573 item_size = btrfs_item_size_nr(leaf, slot);
5574 ptr = btrfs_item_ptr_offset(leaf, slot);
5575 while (cur_offset < item_size) {
5576 struct btrfs_key inode_key;
5577 struct inode *dir_inode;
5579 inode_key.type = BTRFS_INODE_ITEM_KEY;
5580 inode_key.offset = 0;
5582 if (key.type == BTRFS_INODE_EXTREF_KEY) {
5583 struct btrfs_inode_extref *extref;
5585 extref = (struct btrfs_inode_extref *)
5586 (ptr + cur_offset);
5587 inode_key.objectid = btrfs_inode_extref_parent(
5588 leaf, extref);
5589 cur_offset += sizeof(*extref);
5590 cur_offset += btrfs_inode_extref_name_len(leaf,
5591 extref);
5592 } else {
5593 inode_key.objectid = key.offset;
5594 cur_offset = item_size;
5597 dir_inode = btrfs_iget(fs_info->sb, &inode_key,
5598 root, NULL);
5600 * If the parent inode was deleted, return an error to
5601 * fallback to a transaction commit. This is to prevent
5602 * getting an inode that was moved from one parent A to
5603 * a parent B, got its former parent A deleted and then
5604 * it got fsync'ed, from existing at both parents after
5605 * a log replay (and the old parent still existing).
5606 * Example:
5608 * mkdir /mnt/A
5609 * mkdir /mnt/B
5610 * touch /mnt/B/bar
5611 * sync
5612 * mv /mnt/B/bar /mnt/A/bar
5613 * mv -T /mnt/A /mnt/B
5614 * fsync /mnt/B/bar
5615 * <power fail>
5617 * If we ignore the old parent B which got deleted,
5618 * after a log replay we would have file bar linked
5619 * at both parents and the old parent B would still
5620 * exist.
5622 if (IS_ERR(dir_inode)) {
5623 ret = PTR_ERR(dir_inode);
5624 goto out;
5627 if (ctx)
5628 ctx->log_new_dentries = false;
5629 ret = btrfs_log_inode(trans, root, BTRFS_I(dir_inode),
5630 LOG_INODE_ALL, 0, LLONG_MAX, ctx);
5631 if (!ret &&
5632 btrfs_must_commit_transaction(trans, BTRFS_I(dir_inode)))
5633 ret = 1;
5634 if (!ret && ctx && ctx->log_new_dentries)
5635 ret = log_new_dir_dentries(trans, root,
5636 BTRFS_I(dir_inode), ctx);
5637 iput(dir_inode);
5638 if (ret)
5639 goto out;
5641 path->slots[0]++;
5643 ret = 0;
5644 out:
5645 btrfs_free_path(path);
5646 return ret;
5650 * helper function around btrfs_log_inode to make sure newly created
5651 * parent directories also end up in the log. A minimal inode and backref
5652 * only logging is done of any parent directories that are older than
5653 * the last committed transaction
5655 static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
5656 struct btrfs_inode *inode,
5657 struct dentry *parent,
5658 const loff_t start,
5659 const loff_t end,
5660 int inode_only,
5661 struct btrfs_log_ctx *ctx)
5663 struct btrfs_root *root = inode->root;
5664 struct btrfs_fs_info *fs_info = root->fs_info;
5665 struct super_block *sb;
5666 struct dentry *old_parent = NULL;
5667 int ret = 0;
5668 u64 last_committed = fs_info->last_trans_committed;
5669 bool log_dentries = false;
5670 struct btrfs_inode *orig_inode = inode;
5672 sb = inode->vfs_inode.i_sb;
5674 if (btrfs_test_opt(fs_info, NOTREELOG)) {
5675 ret = 1;
5676 goto end_no_trans;
5680 * The prev transaction commit doesn't complete, we need do
5681 * full commit by ourselves.
5683 if (fs_info->last_trans_log_full_commit >
5684 fs_info->last_trans_committed) {
5685 ret = 1;
5686 goto end_no_trans;
5689 if (btrfs_root_refs(&root->root_item) == 0) {
5690 ret = 1;
5691 goto end_no_trans;
5694 ret = check_parent_dirs_for_sync(trans, inode, parent, sb,
5695 last_committed);
5696 if (ret)
5697 goto end_no_trans;
5700 * Skip already logged inodes or inodes corresponding to tmpfiles
5701 * (since logging them is pointless, a link count of 0 means they
5702 * will never be accessible).
5704 if (btrfs_inode_in_log(inode, trans->transid) ||
5705 inode->vfs_inode.i_nlink == 0) {
5706 ret = BTRFS_NO_LOG_SYNC;
5707 goto end_no_trans;
5710 ret = start_log_trans(trans, root, ctx);
5711 if (ret)
5712 goto end_no_trans;
5714 ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
5715 if (ret)
5716 goto end_trans;
5719 * for regular files, if its inode is already on disk, we don't
5720 * have to worry about the parents at all. This is because
5721 * we can use the last_unlink_trans field to record renames
5722 * and other fun in this file.
5724 if (S_ISREG(inode->vfs_inode.i_mode) &&
5725 inode->generation <= last_committed &&
5726 inode->last_unlink_trans <= last_committed) {
5727 ret = 0;
5728 goto end_trans;
5731 if (S_ISDIR(inode->vfs_inode.i_mode) && ctx && ctx->log_new_dentries)
5732 log_dentries = true;
5735 * On unlink we must make sure all our current and old parent directory
5736 * inodes are fully logged. This is to prevent leaving dangling
5737 * directory index entries in directories that were our parents but are
5738 * not anymore. Not doing this results in old parent directory being
5739 * impossible to delete after log replay (rmdir will always fail with
5740 * error -ENOTEMPTY).
5742 * Example 1:
5744 * mkdir testdir
5745 * touch testdir/foo
5746 * ln testdir/foo testdir/bar
5747 * sync
5748 * unlink testdir/bar
5749 * xfs_io -c fsync testdir/foo
5750 * <power failure>
5751 * mount fs, triggers log replay
5753 * If we don't log the parent directory (testdir), after log replay the
5754 * directory still has an entry pointing to the file inode using the bar
5755 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
5756 * the file inode has a link count of 1.
5758 * Example 2:
5760 * mkdir testdir
5761 * touch foo
5762 * ln foo testdir/foo2
5763 * ln foo testdir/foo3
5764 * sync
5765 * unlink testdir/foo3
5766 * xfs_io -c fsync foo
5767 * <power failure>
5768 * mount fs, triggers log replay
5770 * Similar as the first example, after log replay the parent directory
5771 * testdir still has an entry pointing to the inode file with name foo3
5772 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
5773 * and has a link count of 2.
5775 if (inode->last_unlink_trans > last_committed) {
5776 ret = btrfs_log_all_parents(trans, orig_inode, ctx);
5777 if (ret)
5778 goto end_trans;
5781 while (1) {
5782 if (!parent || d_really_is_negative(parent) || sb != parent->d_sb)
5783 break;
5785 inode = BTRFS_I(d_inode(parent));
5786 if (root != inode->root)
5787 break;
5789 if (inode->generation > last_committed) {
5790 ret = btrfs_log_inode(trans, root, inode,
5791 LOG_INODE_EXISTS, 0, LLONG_MAX, ctx);
5792 if (ret)
5793 goto end_trans;
5795 if (IS_ROOT(parent))
5796 break;
5798 parent = dget_parent(parent);
5799 dput(old_parent);
5800 old_parent = parent;
5802 if (log_dentries)
5803 ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
5804 else
5805 ret = 0;
5806 end_trans:
5807 dput(old_parent);
5808 if (ret < 0) {
5809 btrfs_set_log_full_commit(fs_info, trans);
5810 ret = 1;
5813 if (ret)
5814 btrfs_remove_log_ctx(root, ctx);
5815 btrfs_end_log_trans(root);
5816 end_no_trans:
5817 return ret;
5821 * it is not safe to log dentry if the chunk root has added new
5822 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
5823 * If this returns 1, you must commit the transaction to safely get your
5824 * data on disk.
5826 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
5827 struct dentry *dentry,
5828 const loff_t start,
5829 const loff_t end,
5830 struct btrfs_log_ctx *ctx)
5832 struct dentry *parent = dget_parent(dentry);
5833 int ret;
5835 ret = btrfs_log_inode_parent(trans, BTRFS_I(d_inode(dentry)), parent,
5836 start, end, LOG_INODE_ALL, ctx);
5837 dput(parent);
5839 return ret;
5843 * should be called during mount to recover any replay any log trees
5844 * from the FS
5846 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
5848 int ret;
5849 struct btrfs_path *path;
5850 struct btrfs_trans_handle *trans;
5851 struct btrfs_key key;
5852 struct btrfs_key found_key;
5853 struct btrfs_key tmp_key;
5854 struct btrfs_root *log;
5855 struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
5856 struct walk_control wc = {
5857 .process_func = process_one_buffer,
5858 .stage = 0,
5861 path = btrfs_alloc_path();
5862 if (!path)
5863 return -ENOMEM;
5865 set_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5867 trans = btrfs_start_transaction(fs_info->tree_root, 0);
5868 if (IS_ERR(trans)) {
5869 ret = PTR_ERR(trans);
5870 goto error;
5873 wc.trans = trans;
5874 wc.pin = 1;
5876 ret = walk_log_tree(trans, log_root_tree, &wc);
5877 if (ret) {
5878 btrfs_handle_fs_error(fs_info, ret,
5879 "Failed to pin buffers while recovering log root tree.");
5880 goto error;
5883 again:
5884 key.objectid = BTRFS_TREE_LOG_OBJECTID;
5885 key.offset = (u64)-1;
5886 key.type = BTRFS_ROOT_ITEM_KEY;
5888 while (1) {
5889 ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
5891 if (ret < 0) {
5892 btrfs_handle_fs_error(fs_info, ret,
5893 "Couldn't find tree log root.");
5894 goto error;
5896 if (ret > 0) {
5897 if (path->slots[0] == 0)
5898 break;
5899 path->slots[0]--;
5901 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
5902 path->slots[0]);
5903 btrfs_release_path(path);
5904 if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
5905 break;
5907 log = btrfs_read_fs_root(log_root_tree, &found_key);
5908 if (IS_ERR(log)) {
5909 ret = PTR_ERR(log);
5910 btrfs_handle_fs_error(fs_info, ret,
5911 "Couldn't read tree log root.");
5912 goto error;
5915 tmp_key.objectid = found_key.offset;
5916 tmp_key.type = BTRFS_ROOT_ITEM_KEY;
5917 tmp_key.offset = (u64)-1;
5919 wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
5920 if (IS_ERR(wc.replay_dest)) {
5921 ret = PTR_ERR(wc.replay_dest);
5922 free_extent_buffer(log->node);
5923 free_extent_buffer(log->commit_root);
5924 kfree(log);
5925 btrfs_handle_fs_error(fs_info, ret,
5926 "Couldn't read target root for tree log recovery.");
5927 goto error;
5930 wc.replay_dest->log_root = log;
5931 btrfs_record_root_in_trans(trans, wc.replay_dest);
5932 ret = walk_log_tree(trans, log, &wc);
5934 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5935 ret = fixup_inode_link_counts(trans, wc.replay_dest,
5936 path);
5939 if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
5940 struct btrfs_root *root = wc.replay_dest;
5942 btrfs_release_path(path);
5945 * We have just replayed everything, and the highest
5946 * objectid of fs roots probably has changed in case
5947 * some inode_item's got replayed.
5949 * root->objectid_mutex is not acquired as log replay
5950 * could only happen during mount.
5952 ret = btrfs_find_highest_objectid(root,
5953 &root->highest_objectid);
5956 key.offset = found_key.offset - 1;
5957 wc.replay_dest->log_root = NULL;
5958 free_extent_buffer(log->node);
5959 free_extent_buffer(log->commit_root);
5960 kfree(log);
5962 if (ret)
5963 goto error;
5965 if (found_key.offset == 0)
5966 break;
5968 btrfs_release_path(path);
5970 /* step one is to pin it all, step two is to replay just inodes */
5971 if (wc.pin) {
5972 wc.pin = 0;
5973 wc.process_func = replay_one_buffer;
5974 wc.stage = LOG_WALK_REPLAY_INODES;
5975 goto again;
5977 /* step three is to replay everything */
5978 if (wc.stage < LOG_WALK_REPLAY_ALL) {
5979 wc.stage++;
5980 goto again;
5983 btrfs_free_path(path);
5985 /* step 4: commit the transaction, which also unpins the blocks */
5986 ret = btrfs_commit_transaction(trans);
5987 if (ret)
5988 return ret;
5990 free_extent_buffer(log_root_tree->node);
5991 log_root_tree->log_root = NULL;
5992 clear_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags);
5993 kfree(log_root_tree);
5995 return 0;
5996 error:
5997 if (wc.trans)
5998 btrfs_end_transaction(wc.trans);
5999 btrfs_free_path(path);
6000 return ret;
6004 * there are some corner cases where we want to force a full
6005 * commit instead of allowing a directory to be logged.
6007 * They revolve around files there were unlinked from the directory, and
6008 * this function updates the parent directory so that a full commit is
6009 * properly done if it is fsync'd later after the unlinks are done.
6011 * Must be called before the unlink operations (updates to the subvolume tree,
6012 * inodes, etc) are done.
6014 void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
6015 struct btrfs_inode *dir, struct btrfs_inode *inode,
6016 int for_rename)
6019 * when we're logging a file, if it hasn't been renamed
6020 * or unlinked, and its inode is fully committed on disk,
6021 * we don't have to worry about walking up the directory chain
6022 * to log its parents.
6024 * So, we use the last_unlink_trans field to put this transid
6025 * into the file. When the file is logged we check it and
6026 * don't log the parents if the file is fully on disk.
6028 mutex_lock(&inode->log_mutex);
6029 inode->last_unlink_trans = trans->transid;
6030 mutex_unlock(&inode->log_mutex);
6033 * if this directory was already logged any new
6034 * names for this file/dir will get recorded
6036 smp_mb();
6037 if (dir->logged_trans == trans->transid)
6038 return;
6041 * if the inode we're about to unlink was logged,
6042 * the log will be properly updated for any new names
6044 if (inode->logged_trans == trans->transid)
6045 return;
6048 * when renaming files across directories, if the directory
6049 * there we're unlinking from gets fsync'd later on, there's
6050 * no way to find the destination directory later and fsync it
6051 * properly. So, we have to be conservative and force commits
6052 * so the new name gets discovered.
6054 if (for_rename)
6055 goto record;
6057 /* we can safely do the unlink without any special recording */
6058 return;
6060 record:
6061 mutex_lock(&dir->log_mutex);
6062 dir->last_unlink_trans = trans->transid;
6063 mutex_unlock(&dir->log_mutex);
6067 * Make sure that if someone attempts to fsync the parent directory of a deleted
6068 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6069 * that after replaying the log tree of the parent directory's root we will not
6070 * see the snapshot anymore and at log replay time we will not see any log tree
6071 * corresponding to the deleted snapshot's root, which could lead to replaying
6072 * it after replaying the log tree of the parent directory (which would replay
6073 * the snapshot delete operation).
6075 * Must be called before the actual snapshot destroy operation (updates to the
6076 * parent root and tree of tree roots trees, etc) are done.
6078 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
6079 struct btrfs_inode *dir)
6081 mutex_lock(&dir->log_mutex);
6082 dir->last_unlink_trans = trans->transid;
6083 mutex_unlock(&dir->log_mutex);
6087 * Call this after adding a new name for a file and it will properly
6088 * update the log to reflect the new name.
6090 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6091 * true (because it's not used).
6093 * Return value depends on whether @sync_log is true or false.
6094 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6095 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6096 * otherwise.
6097 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6098 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6099 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6100 * committed (without attempting to sync the log).
6102 int btrfs_log_new_name(struct btrfs_trans_handle *trans,
6103 struct btrfs_inode *inode, struct btrfs_inode *old_dir,
6104 struct dentry *parent,
6105 bool sync_log, struct btrfs_log_ctx *ctx)
6107 struct btrfs_fs_info *fs_info = trans->fs_info;
6108 int ret;
6111 * this will force the logging code to walk the dentry chain
6112 * up for the file
6114 if (!S_ISDIR(inode->vfs_inode.i_mode))
6115 inode->last_unlink_trans = trans->transid;
6118 * if this inode hasn't been logged and directory we're renaming it
6119 * from hasn't been logged, we don't need to log it
6121 if (inode->logged_trans <= fs_info->last_trans_committed &&
6122 (!old_dir || old_dir->logged_trans <= fs_info->last_trans_committed))
6123 return sync_log ? BTRFS_DONT_NEED_TRANS_COMMIT :
6124 BTRFS_DONT_NEED_LOG_SYNC;
6126 if (sync_log) {
6127 struct btrfs_log_ctx ctx2;
6129 btrfs_init_log_ctx(&ctx2, &inode->vfs_inode);
6130 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6131 LOG_INODE_EXISTS, &ctx2);
6132 if (ret == BTRFS_NO_LOG_SYNC)
6133 return BTRFS_DONT_NEED_TRANS_COMMIT;
6134 else if (ret)
6135 return BTRFS_NEED_TRANS_COMMIT;
6137 ret = btrfs_sync_log(trans, inode->root, &ctx2);
6138 if (ret)
6139 return BTRFS_NEED_TRANS_COMMIT;
6140 return BTRFS_DONT_NEED_TRANS_COMMIT;
6143 ASSERT(ctx);
6144 ret = btrfs_log_inode_parent(trans, inode, parent, 0, LLONG_MAX,
6145 LOG_INODE_EXISTS, ctx);
6146 if (ret == BTRFS_NO_LOG_SYNC)
6147 return BTRFS_DONT_NEED_LOG_SYNC;
6148 else if (ret)
6149 return BTRFS_NEED_TRANS_COMMIT;
6151 return BTRFS_NEED_LOG_SYNC;