Merge tag 'xarray-4.20-rc7' of git://git.infradead.org/users/willy/linux-dax
[linux/fpc-iii.git] / include / crypto / aead.h
blob0d765d7bfb82715d381eb3c093452f1cd41572ba
1 /*
2 * AEAD: Authenticated Encryption with Associated Data
3 *
4 * Copyright (c) 2007-2015 Herbert Xu <herbert@gondor.apana.org.au>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License as published by the Free
8 * Software Foundation; either version 2 of the License, or (at your option)
9 * any later version.
13 #ifndef _CRYPTO_AEAD_H
14 #define _CRYPTO_AEAD_H
16 #include <linux/crypto.h>
17 #include <linux/kernel.h>
18 #include <linux/slab.h>
20 /**
21 * DOC: Authenticated Encryption With Associated Data (AEAD) Cipher API
23 * The AEAD cipher API is used with the ciphers of type CRYPTO_ALG_TYPE_AEAD
24 * (listed as type "aead" in /proc/crypto)
26 * The most prominent examples for this type of encryption is GCM and CCM.
27 * However, the kernel supports other types of AEAD ciphers which are defined
28 * with the following cipher string:
30 * authenc(keyed message digest, block cipher)
32 * For example: authenc(hmac(sha256), cbc(aes))
34 * The example code provided for the symmetric key cipher operation
35 * applies here as well. Naturally all *skcipher* symbols must be exchanged
36 * the *aead* pendants discussed in the following. In addition, for the AEAD
37 * operation, the aead_request_set_ad function must be used to set the
38 * pointer to the associated data memory location before performing the
39 * encryption or decryption operation. In case of an encryption, the associated
40 * data memory is filled during the encryption operation. For decryption, the
41 * associated data memory must contain data that is used to verify the integrity
42 * of the decrypted data. Another deviation from the asynchronous block cipher
43 * operation is that the caller should explicitly check for -EBADMSG of the
44 * crypto_aead_decrypt. That error indicates an authentication error, i.e.
45 * a breach in the integrity of the message. In essence, that -EBADMSG error
46 * code is the key bonus an AEAD cipher has over "standard" block chaining
47 * modes.
49 * Memory Structure:
51 * To support the needs of the most prominent user of AEAD ciphers, namely
52 * IPSEC, the AEAD ciphers have a special memory layout the caller must adhere
53 * to.
55 * The scatter list pointing to the input data must contain:
57 * * for RFC4106 ciphers, the concatenation of
58 * associated authentication data || IV || plaintext or ciphertext. Note, the
59 * same IV (buffer) is also set with the aead_request_set_crypt call. Note,
60 * the API call of aead_request_set_ad must provide the length of the AAD and
61 * the IV. The API call of aead_request_set_crypt only points to the size of
62 * the input plaintext or ciphertext.
64 * * for "normal" AEAD ciphers, the concatenation of
65 * associated authentication data || plaintext or ciphertext.
67 * It is important to note that if multiple scatter gather list entries form
68 * the input data mentioned above, the first entry must not point to a NULL
69 * buffer. If there is any potential where the AAD buffer can be NULL, the
70 * calling code must contain a precaution to ensure that this does not result
71 * in the first scatter gather list entry pointing to a NULL buffer.
74 struct crypto_aead;
76 /**
77 * struct aead_request - AEAD request
78 * @base: Common attributes for async crypto requests
79 * @assoclen: Length in bytes of associated data for authentication
80 * @cryptlen: Length of data to be encrypted or decrypted
81 * @iv: Initialisation vector
82 * @src: Source data
83 * @dst: Destination data
84 * @__ctx: Start of private context data
86 struct aead_request {
87 struct crypto_async_request base;
89 unsigned int assoclen;
90 unsigned int cryptlen;
92 u8 *iv;
94 struct scatterlist *src;
95 struct scatterlist *dst;
97 void *__ctx[] CRYPTO_MINALIGN_ATTR;
101 * struct aead_alg - AEAD cipher definition
102 * @maxauthsize: Set the maximum authentication tag size supported by the
103 * transformation. A transformation may support smaller tag sizes.
104 * As the authentication tag is a message digest to ensure the
105 * integrity of the encrypted data, a consumer typically wants the
106 * largest authentication tag possible as defined by this
107 * variable.
108 * @setauthsize: Set authentication size for the AEAD transformation. This
109 * function is used to specify the consumer requested size of the
110 * authentication tag to be either generated by the transformation
111 * during encryption or the size of the authentication tag to be
112 * supplied during the decryption operation. This function is also
113 * responsible for checking the authentication tag size for
114 * validity.
115 * @setkey: see struct skcipher_alg
116 * @encrypt: see struct skcipher_alg
117 * @decrypt: see struct skcipher_alg
118 * @geniv: see struct skcipher_alg
119 * @ivsize: see struct skcipher_alg
120 * @chunksize: see struct skcipher_alg
121 * @init: Initialize the cryptographic transformation object. This function
122 * is used to initialize the cryptographic transformation object.
123 * This function is called only once at the instantiation time, right
124 * after the transformation context was allocated. In case the
125 * cryptographic hardware has some special requirements which need to
126 * be handled by software, this function shall check for the precise
127 * requirement of the transformation and put any software fallbacks
128 * in place.
129 * @exit: Deinitialize the cryptographic transformation object. This is a
130 * counterpart to @init, used to remove various changes set in
131 * @init.
132 * @base: Definition of a generic crypto cipher algorithm.
134 * All fields except @ivsize is mandatory and must be filled.
136 struct aead_alg {
137 int (*setkey)(struct crypto_aead *tfm, const u8 *key,
138 unsigned int keylen);
139 int (*setauthsize)(struct crypto_aead *tfm, unsigned int authsize);
140 int (*encrypt)(struct aead_request *req);
141 int (*decrypt)(struct aead_request *req);
142 int (*init)(struct crypto_aead *tfm);
143 void (*exit)(struct crypto_aead *tfm);
145 const char *geniv;
147 unsigned int ivsize;
148 unsigned int maxauthsize;
149 unsigned int chunksize;
151 struct crypto_alg base;
154 struct crypto_aead {
155 unsigned int authsize;
156 unsigned int reqsize;
158 struct crypto_tfm base;
161 static inline struct crypto_aead *__crypto_aead_cast(struct crypto_tfm *tfm)
163 return container_of(tfm, struct crypto_aead, base);
167 * crypto_alloc_aead() - allocate AEAD cipher handle
168 * @alg_name: is the cra_name / name or cra_driver_name / driver name of the
169 * AEAD cipher
170 * @type: specifies the type of the cipher
171 * @mask: specifies the mask for the cipher
173 * Allocate a cipher handle for an AEAD. The returned struct
174 * crypto_aead is the cipher handle that is required for any subsequent
175 * API invocation for that AEAD.
177 * Return: allocated cipher handle in case of success; IS_ERR() is true in case
178 * of an error, PTR_ERR() returns the error code.
180 struct crypto_aead *crypto_alloc_aead(const char *alg_name, u32 type, u32 mask);
182 static inline struct crypto_tfm *crypto_aead_tfm(struct crypto_aead *tfm)
184 return &tfm->base;
188 * crypto_free_aead() - zeroize and free aead handle
189 * @tfm: cipher handle to be freed
191 static inline void crypto_free_aead(struct crypto_aead *tfm)
193 crypto_destroy_tfm(tfm, crypto_aead_tfm(tfm));
196 static inline struct aead_alg *crypto_aead_alg(struct crypto_aead *tfm)
198 return container_of(crypto_aead_tfm(tfm)->__crt_alg,
199 struct aead_alg, base);
202 static inline unsigned int crypto_aead_alg_ivsize(struct aead_alg *alg)
204 return alg->ivsize;
208 * crypto_aead_ivsize() - obtain IV size
209 * @tfm: cipher handle
211 * The size of the IV for the aead referenced by the cipher handle is
212 * returned. This IV size may be zero if the cipher does not need an IV.
214 * Return: IV size in bytes
216 static inline unsigned int crypto_aead_ivsize(struct crypto_aead *tfm)
218 return crypto_aead_alg_ivsize(crypto_aead_alg(tfm));
222 * crypto_aead_authsize() - obtain maximum authentication data size
223 * @tfm: cipher handle
225 * The maximum size of the authentication data for the AEAD cipher referenced
226 * by the AEAD cipher handle is returned. The authentication data size may be
227 * zero if the cipher implements a hard-coded maximum.
229 * The authentication data may also be known as "tag value".
231 * Return: authentication data size / tag size in bytes
233 static inline unsigned int crypto_aead_authsize(struct crypto_aead *tfm)
235 return tfm->authsize;
239 * crypto_aead_blocksize() - obtain block size of cipher
240 * @tfm: cipher handle
242 * The block size for the AEAD referenced with the cipher handle is returned.
243 * The caller may use that information to allocate appropriate memory for the
244 * data returned by the encryption or decryption operation
246 * Return: block size of cipher
248 static inline unsigned int crypto_aead_blocksize(struct crypto_aead *tfm)
250 return crypto_tfm_alg_blocksize(crypto_aead_tfm(tfm));
253 static inline unsigned int crypto_aead_alignmask(struct crypto_aead *tfm)
255 return crypto_tfm_alg_alignmask(crypto_aead_tfm(tfm));
258 static inline u32 crypto_aead_get_flags(struct crypto_aead *tfm)
260 return crypto_tfm_get_flags(crypto_aead_tfm(tfm));
263 static inline void crypto_aead_set_flags(struct crypto_aead *tfm, u32 flags)
265 crypto_tfm_set_flags(crypto_aead_tfm(tfm), flags);
268 static inline void crypto_aead_clear_flags(struct crypto_aead *tfm, u32 flags)
270 crypto_tfm_clear_flags(crypto_aead_tfm(tfm), flags);
274 * crypto_aead_setkey() - set key for cipher
275 * @tfm: cipher handle
276 * @key: buffer holding the key
277 * @keylen: length of the key in bytes
279 * The caller provided key is set for the AEAD referenced by the cipher
280 * handle.
282 * Note, the key length determines the cipher type. Many block ciphers implement
283 * different cipher modes depending on the key size, such as AES-128 vs AES-192
284 * vs. AES-256. When providing a 16 byte key for an AES cipher handle, AES-128
285 * is performed.
287 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
289 int crypto_aead_setkey(struct crypto_aead *tfm,
290 const u8 *key, unsigned int keylen);
293 * crypto_aead_setauthsize() - set authentication data size
294 * @tfm: cipher handle
295 * @authsize: size of the authentication data / tag in bytes
297 * Set the authentication data size / tag size. AEAD requires an authentication
298 * tag (or MAC) in addition to the associated data.
300 * Return: 0 if the setting of the key was successful; < 0 if an error occurred
302 int crypto_aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize);
304 static inline struct crypto_aead *crypto_aead_reqtfm(struct aead_request *req)
306 return __crypto_aead_cast(req->base.tfm);
309 static inline void crypto_stat_aead_encrypt(struct aead_request *req, int ret)
311 #ifdef CONFIG_CRYPTO_STATS
312 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
314 if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
315 atomic_inc(&tfm->base.__crt_alg->aead_err_cnt);
316 } else {
317 atomic_inc(&tfm->base.__crt_alg->encrypt_cnt);
318 atomic64_add(req->cryptlen, &tfm->base.__crt_alg->encrypt_tlen);
320 #endif
323 static inline void crypto_stat_aead_decrypt(struct aead_request *req, int ret)
325 #ifdef CONFIG_CRYPTO_STATS
326 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
328 if (ret && ret != -EINPROGRESS && ret != -EBUSY) {
329 atomic_inc(&tfm->base.__crt_alg->aead_err_cnt);
330 } else {
331 atomic_inc(&tfm->base.__crt_alg->decrypt_cnt);
332 atomic64_add(req->cryptlen, &tfm->base.__crt_alg->decrypt_tlen);
334 #endif
338 * crypto_aead_encrypt() - encrypt plaintext
339 * @req: reference to the aead_request handle that holds all information
340 * needed to perform the cipher operation
342 * Encrypt plaintext data using the aead_request handle. That data structure
343 * and how it is filled with data is discussed with the aead_request_*
344 * functions.
346 * IMPORTANT NOTE The encryption operation creates the authentication data /
347 * tag. That data is concatenated with the created ciphertext.
348 * The ciphertext memory size is therefore the given number of
349 * block cipher blocks + the size defined by the
350 * crypto_aead_setauthsize invocation. The caller must ensure
351 * that sufficient memory is available for the ciphertext and
352 * the authentication tag.
354 * Return: 0 if the cipher operation was successful; < 0 if an error occurred
356 static inline int crypto_aead_encrypt(struct aead_request *req)
358 struct crypto_aead *aead = crypto_aead_reqtfm(req);
359 int ret;
361 if (crypto_aead_get_flags(aead) & CRYPTO_TFM_NEED_KEY)
362 ret = -ENOKEY;
363 else
364 ret = crypto_aead_alg(aead)->encrypt(req);
365 crypto_stat_aead_encrypt(req, ret);
366 return ret;
370 * crypto_aead_decrypt() - decrypt ciphertext
371 * @req: reference to the ablkcipher_request handle that holds all information
372 * needed to perform the cipher operation
374 * Decrypt ciphertext data using the aead_request handle. That data structure
375 * and how it is filled with data is discussed with the aead_request_*
376 * functions.
378 * IMPORTANT NOTE The caller must concatenate the ciphertext followed by the
379 * authentication data / tag. That authentication data / tag
380 * must have the size defined by the crypto_aead_setauthsize
381 * invocation.
384 * Return: 0 if the cipher operation was successful; -EBADMSG: The AEAD
385 * cipher operation performs the authentication of the data during the
386 * decryption operation. Therefore, the function returns this error if
387 * the authentication of the ciphertext was unsuccessful (i.e. the
388 * integrity of the ciphertext or the associated data was violated);
389 * < 0 if an error occurred.
391 static inline int crypto_aead_decrypt(struct aead_request *req)
393 struct crypto_aead *aead = crypto_aead_reqtfm(req);
394 int ret;
396 if (crypto_aead_get_flags(aead) & CRYPTO_TFM_NEED_KEY)
397 ret = -ENOKEY;
398 else if (req->cryptlen < crypto_aead_authsize(aead))
399 ret = -EINVAL;
400 else
401 ret = crypto_aead_alg(aead)->decrypt(req);
402 crypto_stat_aead_decrypt(req, ret);
403 return ret;
407 * DOC: Asynchronous AEAD Request Handle
409 * The aead_request data structure contains all pointers to data required for
410 * the AEAD cipher operation. This includes the cipher handle (which can be
411 * used by multiple aead_request instances), pointer to plaintext and
412 * ciphertext, asynchronous callback function, etc. It acts as a handle to the
413 * aead_request_* API calls in a similar way as AEAD handle to the
414 * crypto_aead_* API calls.
418 * crypto_aead_reqsize() - obtain size of the request data structure
419 * @tfm: cipher handle
421 * Return: number of bytes
423 static inline unsigned int crypto_aead_reqsize(struct crypto_aead *tfm)
425 return tfm->reqsize;
429 * aead_request_set_tfm() - update cipher handle reference in request
430 * @req: request handle to be modified
431 * @tfm: cipher handle that shall be added to the request handle
433 * Allow the caller to replace the existing aead handle in the request
434 * data structure with a different one.
436 static inline void aead_request_set_tfm(struct aead_request *req,
437 struct crypto_aead *tfm)
439 req->base.tfm = crypto_aead_tfm(tfm);
443 * aead_request_alloc() - allocate request data structure
444 * @tfm: cipher handle to be registered with the request
445 * @gfp: memory allocation flag that is handed to kmalloc by the API call.
447 * Allocate the request data structure that must be used with the AEAD
448 * encrypt and decrypt API calls. During the allocation, the provided aead
449 * handle is registered in the request data structure.
451 * Return: allocated request handle in case of success, or NULL if out of memory
453 static inline struct aead_request *aead_request_alloc(struct crypto_aead *tfm,
454 gfp_t gfp)
456 struct aead_request *req;
458 req = kmalloc(sizeof(*req) + crypto_aead_reqsize(tfm), gfp);
460 if (likely(req))
461 aead_request_set_tfm(req, tfm);
463 return req;
467 * aead_request_free() - zeroize and free request data structure
468 * @req: request data structure cipher handle to be freed
470 static inline void aead_request_free(struct aead_request *req)
472 kzfree(req);
476 * aead_request_set_callback() - set asynchronous callback function
477 * @req: request handle
478 * @flags: specify zero or an ORing of the flags
479 * CRYPTO_TFM_REQ_MAY_BACKLOG the request queue may back log and
480 * increase the wait queue beyond the initial maximum size;
481 * CRYPTO_TFM_REQ_MAY_SLEEP the request processing may sleep
482 * @compl: callback function pointer to be registered with the request handle
483 * @data: The data pointer refers to memory that is not used by the kernel
484 * crypto API, but provided to the callback function for it to use. Here,
485 * the caller can provide a reference to memory the callback function can
486 * operate on. As the callback function is invoked asynchronously to the
487 * related functionality, it may need to access data structures of the
488 * related functionality which can be referenced using this pointer. The
489 * callback function can access the memory via the "data" field in the
490 * crypto_async_request data structure provided to the callback function.
492 * Setting the callback function that is triggered once the cipher operation
493 * completes
495 * The callback function is registered with the aead_request handle and
496 * must comply with the following template::
498 * void callback_function(struct crypto_async_request *req, int error)
500 static inline void aead_request_set_callback(struct aead_request *req,
501 u32 flags,
502 crypto_completion_t compl,
503 void *data)
505 req->base.complete = compl;
506 req->base.data = data;
507 req->base.flags = flags;
511 * aead_request_set_crypt - set data buffers
512 * @req: request handle
513 * @src: source scatter / gather list
514 * @dst: destination scatter / gather list
515 * @cryptlen: number of bytes to process from @src
516 * @iv: IV for the cipher operation which must comply with the IV size defined
517 * by crypto_aead_ivsize()
519 * Setting the source data and destination data scatter / gather lists which
520 * hold the associated data concatenated with the plaintext or ciphertext. See
521 * below for the authentication tag.
523 * For encryption, the source is treated as the plaintext and the
524 * destination is the ciphertext. For a decryption operation, the use is
525 * reversed - the source is the ciphertext and the destination is the plaintext.
527 * The memory structure for cipher operation has the following structure:
529 * - AEAD encryption input: assoc data || plaintext
530 * - AEAD encryption output: assoc data || cipherntext || auth tag
531 * - AEAD decryption input: assoc data || ciphertext || auth tag
532 * - AEAD decryption output: assoc data || plaintext
534 * Albeit the kernel requires the presence of the AAD buffer, however,
535 * the kernel does not fill the AAD buffer in the output case. If the
536 * caller wants to have that data buffer filled, the caller must either
537 * use an in-place cipher operation (i.e. same memory location for
538 * input/output memory location).
540 static inline void aead_request_set_crypt(struct aead_request *req,
541 struct scatterlist *src,
542 struct scatterlist *dst,
543 unsigned int cryptlen, u8 *iv)
545 req->src = src;
546 req->dst = dst;
547 req->cryptlen = cryptlen;
548 req->iv = iv;
552 * aead_request_set_ad - set associated data information
553 * @req: request handle
554 * @assoclen: number of bytes in associated data
556 * Setting the AD information. This function sets the length of
557 * the associated data.
559 static inline void aead_request_set_ad(struct aead_request *req,
560 unsigned int assoclen)
562 req->assoclen = assoclen;
565 #endif /* _CRYPTO_AEAD_H */