4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include <linux/ratelimit.h>
40 #include <linux/list_lru.h>
41 #include <linux/kasan.h>
48 * dcache->d_inode->i_lock protects:
49 * - i_dentry, d_u.d_alias, d_inode of aliases
50 * dcache_hash_bucket lock protects:
51 * - the dcache hash table
52 * s_anon bl list spinlock protects:
53 * - the s_anon list (see __d_drop)
54 * dentry->d_sb->s_dentry_lru_lock protects:
55 * - the dcache lru lists and counters
62 * - d_parent and d_subdirs
63 * - childrens' d_child and d_parent
64 * - d_u.d_alias, d_inode
67 * dentry->d_inode->i_lock
69 * dentry->d_sb->s_dentry_lru_lock
70 * dcache_hash_bucket lock
73 * If there is an ancestor relationship:
74 * dentry->d_parent->...->d_parent->d_lock
76 * dentry->d_parent->d_lock
79 * If no ancestor relationship:
80 * if (dentry1 < dentry2)
84 int sysctl_vfs_cache_pressure __read_mostly
= 100;
85 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
87 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
89 EXPORT_SYMBOL(rename_lock
);
91 static struct kmem_cache
*dentry_cache __read_mostly
;
94 * This is the single most critical data structure when it comes
95 * to the dcache: the hashtable for lookups. Somebody should try
96 * to make this good - I've just made it work.
98 * This hash-function tries to avoid losing too many bits of hash
99 * information, yet avoid using a prime hash-size or similar.
102 static unsigned int d_hash_mask __read_mostly
;
103 static unsigned int d_hash_shift __read_mostly
;
105 static struct hlist_bl_head
*dentry_hashtable __read_mostly
;
107 static inline struct hlist_bl_head
*d_hash(unsigned int hash
)
109 return dentry_hashtable
+ (hash
>> (32 - d_hash_shift
));
112 #define IN_LOOKUP_SHIFT 10
113 static struct hlist_bl_head in_lookup_hashtable
[1 << IN_LOOKUP_SHIFT
];
115 static inline struct hlist_bl_head
*in_lookup_hash(const struct dentry
*parent
,
118 hash
+= (unsigned long) parent
/ L1_CACHE_BYTES
;
119 return in_lookup_hashtable
+ hash_32(hash
, IN_LOOKUP_SHIFT
);
123 /* Statistics gathering. */
124 struct dentry_stat_t dentry_stat
= {
128 static DEFINE_PER_CPU(long, nr_dentry
);
129 static DEFINE_PER_CPU(long, nr_dentry_unused
);
131 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
134 * Here we resort to our own counters instead of using generic per-cpu counters
135 * for consistency with what the vfs inode code does. We are expected to harvest
136 * better code and performance by having our own specialized counters.
138 * Please note that the loop is done over all possible CPUs, not over all online
139 * CPUs. The reason for this is that we don't want to play games with CPUs going
140 * on and off. If one of them goes off, we will just keep their counters.
142 * glommer: See cffbc8a for details, and if you ever intend to change this,
143 * please update all vfs counters to match.
145 static long get_nr_dentry(void)
149 for_each_possible_cpu(i
)
150 sum
+= per_cpu(nr_dentry
, i
);
151 return sum
< 0 ? 0 : sum
;
154 static long get_nr_dentry_unused(void)
158 for_each_possible_cpu(i
)
159 sum
+= per_cpu(nr_dentry_unused
, i
);
160 return sum
< 0 ? 0 : sum
;
163 int proc_nr_dentry(struct ctl_table
*table
, int write
, void __user
*buffer
,
164 size_t *lenp
, loff_t
*ppos
)
166 dentry_stat
.nr_dentry
= get_nr_dentry();
167 dentry_stat
.nr_unused
= get_nr_dentry_unused();
168 return proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
173 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
174 * The strings are both count bytes long, and count is non-zero.
176 #ifdef CONFIG_DCACHE_WORD_ACCESS
178 #include <asm/word-at-a-time.h>
180 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
181 * aligned allocation for this particular component. We don't
182 * strictly need the load_unaligned_zeropad() safety, but it
183 * doesn't hurt either.
185 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
186 * need the careful unaligned handling.
188 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
190 unsigned long a
,b
,mask
;
193 a
= *(unsigned long *)cs
;
194 b
= load_unaligned_zeropad(ct
);
195 if (tcount
< sizeof(unsigned long))
197 if (unlikely(a
!= b
))
199 cs
+= sizeof(unsigned long);
200 ct
+= sizeof(unsigned long);
201 tcount
-= sizeof(unsigned long);
205 mask
= bytemask_from_count(tcount
);
206 return unlikely(!!((a
^ b
) & mask
));
211 static inline int dentry_string_cmp(const unsigned char *cs
, const unsigned char *ct
, unsigned tcount
)
225 static inline int dentry_cmp(const struct dentry
*dentry
, const unsigned char *ct
, unsigned tcount
)
228 * Be careful about RCU walk racing with rename:
229 * use 'lockless_dereference' to fetch the name pointer.
231 * NOTE! Even if a rename will mean that the length
232 * was not loaded atomically, we don't care. The
233 * RCU walk will check the sequence count eventually,
234 * and catch it. And we won't overrun the buffer,
235 * because we're reading the name pointer atomically,
236 * and a dentry name is guaranteed to be properly
237 * terminated with a NUL byte.
239 * End result: even if 'len' is wrong, we'll exit
240 * early because the data cannot match (there can
241 * be no NUL in the ct/tcount data)
243 const unsigned char *cs
= lockless_dereference(dentry
->d_name
.name
);
245 return dentry_string_cmp(cs
, ct
, tcount
);
248 struct external_name
{
251 struct rcu_head head
;
253 unsigned char name
[];
256 static inline struct external_name
*external_name(struct dentry
*dentry
)
258 return container_of(dentry
->d_name
.name
, struct external_name
, name
[0]);
261 static void __d_free(struct rcu_head
*head
)
263 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
265 kmem_cache_free(dentry_cache
, dentry
);
268 static void __d_free_external(struct rcu_head
*head
)
270 struct dentry
*dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
271 kfree(external_name(dentry
));
272 kmem_cache_free(dentry_cache
, dentry
);
275 static inline int dname_external(const struct dentry
*dentry
)
277 return dentry
->d_name
.name
!= dentry
->d_iname
;
280 static inline void __d_set_inode_and_type(struct dentry
*dentry
,
286 dentry
->d_inode
= inode
;
287 flags
= READ_ONCE(dentry
->d_flags
);
288 flags
&= ~(DCACHE_ENTRY_TYPE
| DCACHE_FALLTHRU
);
290 WRITE_ONCE(dentry
->d_flags
, flags
);
293 static inline void __d_clear_type_and_inode(struct dentry
*dentry
)
295 unsigned flags
= READ_ONCE(dentry
->d_flags
);
297 flags
&= ~(DCACHE_ENTRY_TYPE
| DCACHE_FALLTHRU
);
298 WRITE_ONCE(dentry
->d_flags
, flags
);
299 dentry
->d_inode
= NULL
;
302 static void dentry_free(struct dentry
*dentry
)
304 WARN_ON(!hlist_unhashed(&dentry
->d_u
.d_alias
));
305 if (unlikely(dname_external(dentry
))) {
306 struct external_name
*p
= external_name(dentry
);
307 if (likely(atomic_dec_and_test(&p
->u
.count
))) {
308 call_rcu(&dentry
->d_u
.d_rcu
, __d_free_external
);
312 /* if dentry was never visible to RCU, immediate free is OK */
313 if (!(dentry
->d_flags
& DCACHE_RCUACCESS
))
314 __d_free(&dentry
->d_u
.d_rcu
);
316 call_rcu(&dentry
->d_u
.d_rcu
, __d_free
);
320 * dentry_rcuwalk_invalidate - invalidate in-progress rcu-walk lookups
321 * @dentry: the target dentry
322 * After this call, in-progress rcu-walk path lookup will fail. This
323 * should be called after unhashing, and after changing d_inode (if
324 * the dentry has not already been unhashed).
326 static inline void dentry_rcuwalk_invalidate(struct dentry
*dentry
)
328 lockdep_assert_held(&dentry
->d_lock
);
329 /* Go through am invalidation barrier */
330 write_seqcount_invalidate(&dentry
->d_seq
);
334 * Release the dentry's inode, using the filesystem
335 * d_iput() operation if defined.
337 static void dentry_unlink_inode(struct dentry
* dentry
)
338 __releases(dentry
->d_lock
)
339 __releases(dentry
->d_inode
->i_lock
)
341 struct inode
*inode
= dentry
->d_inode
;
342 bool hashed
= !d_unhashed(dentry
);
345 raw_write_seqcount_begin(&dentry
->d_seq
);
346 __d_clear_type_and_inode(dentry
);
347 hlist_del_init(&dentry
->d_u
.d_alias
);
349 raw_write_seqcount_end(&dentry
->d_seq
);
350 spin_unlock(&dentry
->d_lock
);
351 spin_unlock(&inode
->i_lock
);
353 fsnotify_inoderemove(inode
);
354 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
355 dentry
->d_op
->d_iput(dentry
, inode
);
361 * The DCACHE_LRU_LIST bit is set whenever the 'd_lru' entry
362 * is in use - which includes both the "real" per-superblock
363 * LRU list _and_ the DCACHE_SHRINK_LIST use.
365 * The DCACHE_SHRINK_LIST bit is set whenever the dentry is
366 * on the shrink list (ie not on the superblock LRU list).
368 * The per-cpu "nr_dentry_unused" counters are updated with
369 * the DCACHE_LRU_LIST bit.
371 * These helper functions make sure we always follow the
372 * rules. d_lock must be held by the caller.
374 #define D_FLAG_VERIFY(dentry,x) WARN_ON_ONCE(((dentry)->d_flags & (DCACHE_LRU_LIST | DCACHE_SHRINK_LIST)) != (x))
375 static void d_lru_add(struct dentry
*dentry
)
377 D_FLAG_VERIFY(dentry
, 0);
378 dentry
->d_flags
|= DCACHE_LRU_LIST
;
379 this_cpu_inc(nr_dentry_unused
);
380 WARN_ON_ONCE(!list_lru_add(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
383 static void d_lru_del(struct dentry
*dentry
)
385 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
386 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
387 this_cpu_dec(nr_dentry_unused
);
388 WARN_ON_ONCE(!list_lru_del(&dentry
->d_sb
->s_dentry_lru
, &dentry
->d_lru
));
391 static void d_shrink_del(struct dentry
*dentry
)
393 D_FLAG_VERIFY(dentry
, DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
394 list_del_init(&dentry
->d_lru
);
395 dentry
->d_flags
&= ~(DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
);
396 this_cpu_dec(nr_dentry_unused
);
399 static void d_shrink_add(struct dentry
*dentry
, struct list_head
*list
)
401 D_FLAG_VERIFY(dentry
, 0);
402 list_add(&dentry
->d_lru
, list
);
403 dentry
->d_flags
|= DCACHE_SHRINK_LIST
| DCACHE_LRU_LIST
;
404 this_cpu_inc(nr_dentry_unused
);
408 * These can only be called under the global LRU lock, ie during the
409 * callback for freeing the LRU list. "isolate" removes it from the
410 * LRU lists entirely, while shrink_move moves it to the indicated
413 static void d_lru_isolate(struct list_lru_one
*lru
, struct dentry
*dentry
)
415 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
416 dentry
->d_flags
&= ~DCACHE_LRU_LIST
;
417 this_cpu_dec(nr_dentry_unused
);
418 list_lru_isolate(lru
, &dentry
->d_lru
);
421 static void d_lru_shrink_move(struct list_lru_one
*lru
, struct dentry
*dentry
,
422 struct list_head
*list
)
424 D_FLAG_VERIFY(dentry
, DCACHE_LRU_LIST
);
425 dentry
->d_flags
|= DCACHE_SHRINK_LIST
;
426 list_lru_isolate_move(lru
, &dentry
->d_lru
, list
);
430 * dentry_lru_(add|del)_list) must be called with d_lock held.
432 static void dentry_lru_add(struct dentry
*dentry
)
434 if (unlikely(!(dentry
->d_flags
& DCACHE_LRU_LIST
)))
439 * d_drop - drop a dentry
440 * @dentry: dentry to drop
442 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
443 * be found through a VFS lookup any more. Note that this is different from
444 * deleting the dentry - d_delete will try to mark the dentry negative if
445 * possible, giving a successful _negative_ lookup, while d_drop will
446 * just make the cache lookup fail.
448 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
449 * reason (NFS timeouts or autofs deletes).
451 * __d_drop requires dentry->d_lock.
453 void __d_drop(struct dentry
*dentry
)
455 if (!d_unhashed(dentry
)) {
456 struct hlist_bl_head
*b
;
458 * Hashed dentries are normally on the dentry hashtable,
459 * with the exception of those newly allocated by
460 * d_obtain_alias, which are always IS_ROOT:
462 if (unlikely(IS_ROOT(dentry
)))
463 b
= &dentry
->d_sb
->s_anon
;
465 b
= d_hash(dentry
->d_name
.hash
);
468 __hlist_bl_del(&dentry
->d_hash
);
469 dentry
->d_hash
.pprev
= NULL
;
471 dentry_rcuwalk_invalidate(dentry
);
474 EXPORT_SYMBOL(__d_drop
);
476 void d_drop(struct dentry
*dentry
)
478 spin_lock(&dentry
->d_lock
);
480 spin_unlock(&dentry
->d_lock
);
482 EXPORT_SYMBOL(d_drop
);
484 static inline void dentry_unlist(struct dentry
*dentry
, struct dentry
*parent
)
488 * Inform d_walk() and shrink_dentry_list() that we are no longer
489 * attached to the dentry tree
491 dentry
->d_flags
|= DCACHE_DENTRY_KILLED
;
492 if (unlikely(list_empty(&dentry
->d_child
)))
494 __list_del_entry(&dentry
->d_child
);
496 * Cursors can move around the list of children. While we'd been
497 * a normal list member, it didn't matter - ->d_child.next would've
498 * been updated. However, from now on it won't be and for the
499 * things like d_walk() it might end up with a nasty surprise.
500 * Normally d_walk() doesn't care about cursors moving around -
501 * ->d_lock on parent prevents that and since a cursor has no children
502 * of its own, we get through it without ever unlocking the parent.
503 * There is one exception, though - if we ascend from a child that
504 * gets killed as soon as we unlock it, the next sibling is found
505 * using the value left in its ->d_child.next. And if _that_
506 * pointed to a cursor, and cursor got moved (e.g. by lseek())
507 * before d_walk() regains parent->d_lock, we'll end up skipping
508 * everything the cursor had been moved past.
510 * Solution: make sure that the pointer left behind in ->d_child.next
511 * points to something that won't be moving around. I.e. skip the
514 while (dentry
->d_child
.next
!= &parent
->d_subdirs
) {
515 next
= list_entry(dentry
->d_child
.next
, struct dentry
, d_child
);
516 if (likely(!(next
->d_flags
& DCACHE_DENTRY_CURSOR
)))
518 dentry
->d_child
.next
= next
->d_child
.next
;
522 static void __dentry_kill(struct dentry
*dentry
)
524 struct dentry
*parent
= NULL
;
525 bool can_free
= true;
526 if (!IS_ROOT(dentry
))
527 parent
= dentry
->d_parent
;
530 * The dentry is now unrecoverably dead to the world.
532 lockref_mark_dead(&dentry
->d_lockref
);
535 * inform the fs via d_prune that this dentry is about to be
536 * unhashed and destroyed.
538 if (dentry
->d_flags
& DCACHE_OP_PRUNE
)
539 dentry
->d_op
->d_prune(dentry
);
541 if (dentry
->d_flags
& DCACHE_LRU_LIST
) {
542 if (!(dentry
->d_flags
& DCACHE_SHRINK_LIST
))
545 /* if it was on the hash then remove it */
547 dentry_unlist(dentry
, parent
);
549 spin_unlock(&parent
->d_lock
);
551 dentry_unlink_inode(dentry
);
553 spin_unlock(&dentry
->d_lock
);
554 this_cpu_dec(nr_dentry
);
555 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
556 dentry
->d_op
->d_release(dentry
);
558 spin_lock(&dentry
->d_lock
);
559 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
560 dentry
->d_flags
|= DCACHE_MAY_FREE
;
563 spin_unlock(&dentry
->d_lock
);
564 if (likely(can_free
))
569 * Finish off a dentry we've decided to kill.
570 * dentry->d_lock must be held, returns with it unlocked.
571 * If ref is non-zero, then decrement the refcount too.
572 * Returns dentry requiring refcount drop, or NULL if we're done.
574 static struct dentry
*dentry_kill(struct dentry
*dentry
)
575 __releases(dentry
->d_lock
)
577 struct inode
*inode
= dentry
->d_inode
;
578 struct dentry
*parent
= NULL
;
580 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
)))
583 if (!IS_ROOT(dentry
)) {
584 parent
= dentry
->d_parent
;
585 if (unlikely(!spin_trylock(&parent
->d_lock
))) {
587 spin_unlock(&inode
->i_lock
);
592 __dentry_kill(dentry
);
596 spin_unlock(&dentry
->d_lock
);
597 return dentry
; /* try again with same dentry */
600 static inline struct dentry
*lock_parent(struct dentry
*dentry
)
602 struct dentry
*parent
= dentry
->d_parent
;
605 if (unlikely(dentry
->d_lockref
.count
< 0))
607 if (likely(spin_trylock(&parent
->d_lock
)))
610 spin_unlock(&dentry
->d_lock
);
612 parent
= ACCESS_ONCE(dentry
->d_parent
);
613 spin_lock(&parent
->d_lock
);
615 * We can't blindly lock dentry until we are sure
616 * that we won't violate the locking order.
617 * Any changes of dentry->d_parent must have
618 * been done with parent->d_lock held, so
619 * spin_lock() above is enough of a barrier
620 * for checking if it's still our child.
622 if (unlikely(parent
!= dentry
->d_parent
)) {
623 spin_unlock(&parent
->d_lock
);
627 if (parent
!= dentry
)
628 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
635 * Try to do a lockless dput(), and return whether that was successful.
637 * If unsuccessful, we return false, having already taken the dentry lock.
639 * The caller needs to hold the RCU read lock, so that the dentry is
640 * guaranteed to stay around even if the refcount goes down to zero!
642 static inline bool fast_dput(struct dentry
*dentry
)
645 unsigned int d_flags
;
648 * If we have a d_op->d_delete() operation, we sould not
649 * let the dentry count go to zero, so use "put_or_lock".
651 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
))
652 return lockref_put_or_lock(&dentry
->d_lockref
);
655 * .. otherwise, we can try to just decrement the
656 * lockref optimistically.
658 ret
= lockref_put_return(&dentry
->d_lockref
);
661 * If the lockref_put_return() failed due to the lock being held
662 * by somebody else, the fast path has failed. We will need to
663 * get the lock, and then check the count again.
665 if (unlikely(ret
< 0)) {
666 spin_lock(&dentry
->d_lock
);
667 if (dentry
->d_lockref
.count
> 1) {
668 dentry
->d_lockref
.count
--;
669 spin_unlock(&dentry
->d_lock
);
676 * If we weren't the last ref, we're done.
682 * Careful, careful. The reference count went down
683 * to zero, but we don't hold the dentry lock, so
684 * somebody else could get it again, and do another
685 * dput(), and we need to not race with that.
687 * However, there is a very special and common case
688 * where we don't care, because there is nothing to
689 * do: the dentry is still hashed, it does not have
690 * a 'delete' op, and it's referenced and already on
693 * NOTE! Since we aren't locked, these values are
694 * not "stable". However, it is sufficient that at
695 * some point after we dropped the reference the
696 * dentry was hashed and the flags had the proper
697 * value. Other dentry users may have re-gotten
698 * a reference to the dentry and change that, but
699 * our work is done - we can leave the dentry
700 * around with a zero refcount.
703 d_flags
= ACCESS_ONCE(dentry
->d_flags
);
704 d_flags
&= DCACHE_REFERENCED
| DCACHE_LRU_LIST
| DCACHE_DISCONNECTED
;
706 /* Nothing to do? Dropping the reference was all we needed? */
707 if (d_flags
== (DCACHE_REFERENCED
| DCACHE_LRU_LIST
) && !d_unhashed(dentry
))
711 * Not the fast normal case? Get the lock. We've already decremented
712 * the refcount, but we'll need to re-check the situation after
715 spin_lock(&dentry
->d_lock
);
718 * Did somebody else grab a reference to it in the meantime, and
719 * we're no longer the last user after all? Alternatively, somebody
720 * else could have killed it and marked it dead. Either way, we
721 * don't need to do anything else.
723 if (dentry
->d_lockref
.count
) {
724 spin_unlock(&dentry
->d_lock
);
729 * Re-get the reference we optimistically dropped. We hold the
730 * lock, and we just tested that it was zero, so we can just
733 dentry
->d_lockref
.count
= 1;
741 * This is complicated by the fact that we do not want to put
742 * dentries that are no longer on any hash chain on the unused
743 * list: we'd much rather just get rid of them immediately.
745 * However, that implies that we have to traverse the dentry
746 * tree upwards to the parents which might _also_ now be
747 * scheduled for deletion (it may have been only waiting for
748 * its last child to go away).
750 * This tail recursion is done by hand as we don't want to depend
751 * on the compiler to always get this right (gcc generally doesn't).
752 * Real recursion would eat up our stack space.
756 * dput - release a dentry
757 * @dentry: dentry to release
759 * Release a dentry. This will drop the usage count and if appropriate
760 * call the dentry unlink method as well as removing it from the queues and
761 * releasing its resources. If the parent dentries were scheduled for release
762 * they too may now get deleted.
764 void dput(struct dentry
*dentry
)
766 if (unlikely(!dentry
))
773 if (likely(fast_dput(dentry
))) {
778 /* Slow case: now with the dentry lock held */
781 WARN_ON(d_in_lookup(dentry
));
783 /* Unreachable? Get rid of it */
784 if (unlikely(d_unhashed(dentry
)))
787 if (unlikely(dentry
->d_flags
& DCACHE_DISCONNECTED
))
790 if (unlikely(dentry
->d_flags
& DCACHE_OP_DELETE
)) {
791 if (dentry
->d_op
->d_delete(dentry
))
795 if (!(dentry
->d_flags
& DCACHE_REFERENCED
))
796 dentry
->d_flags
|= DCACHE_REFERENCED
;
797 dentry_lru_add(dentry
);
799 dentry
->d_lockref
.count
--;
800 spin_unlock(&dentry
->d_lock
);
804 dentry
= dentry_kill(dentry
);
813 /* This must be called with d_lock held */
814 static inline void __dget_dlock(struct dentry
*dentry
)
816 dentry
->d_lockref
.count
++;
819 static inline void __dget(struct dentry
*dentry
)
821 lockref_get(&dentry
->d_lockref
);
824 struct dentry
*dget_parent(struct dentry
*dentry
)
830 * Do optimistic parent lookup without any
834 ret
= ACCESS_ONCE(dentry
->d_parent
);
835 gotref
= lockref_get_not_zero(&ret
->d_lockref
);
837 if (likely(gotref
)) {
838 if (likely(ret
== ACCESS_ONCE(dentry
->d_parent
)))
845 * Don't need rcu_dereference because we re-check it was correct under
849 ret
= dentry
->d_parent
;
850 spin_lock(&ret
->d_lock
);
851 if (unlikely(ret
!= dentry
->d_parent
)) {
852 spin_unlock(&ret
->d_lock
);
857 BUG_ON(!ret
->d_lockref
.count
);
858 ret
->d_lockref
.count
++;
859 spin_unlock(&ret
->d_lock
);
862 EXPORT_SYMBOL(dget_parent
);
865 * d_find_alias - grab a hashed alias of inode
866 * @inode: inode in question
868 * If inode has a hashed alias, or is a directory and has any alias,
869 * acquire the reference to alias and return it. Otherwise return NULL.
870 * Notice that if inode is a directory there can be only one alias and
871 * it can be unhashed only if it has no children, or if it is the root
872 * of a filesystem, or if the directory was renamed and d_revalidate
873 * was the first vfs operation to notice.
875 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
876 * any other hashed alias over that one.
878 static struct dentry
*__d_find_alias(struct inode
*inode
)
880 struct dentry
*alias
, *discon_alias
;
884 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
885 spin_lock(&alias
->d_lock
);
886 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
887 if (IS_ROOT(alias
) &&
888 (alias
->d_flags
& DCACHE_DISCONNECTED
)) {
889 discon_alias
= alias
;
892 spin_unlock(&alias
->d_lock
);
896 spin_unlock(&alias
->d_lock
);
899 alias
= discon_alias
;
900 spin_lock(&alias
->d_lock
);
901 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
903 spin_unlock(&alias
->d_lock
);
906 spin_unlock(&alias
->d_lock
);
912 struct dentry
*d_find_alias(struct inode
*inode
)
914 struct dentry
*de
= NULL
;
916 if (!hlist_empty(&inode
->i_dentry
)) {
917 spin_lock(&inode
->i_lock
);
918 de
= __d_find_alias(inode
);
919 spin_unlock(&inode
->i_lock
);
923 EXPORT_SYMBOL(d_find_alias
);
926 * Try to kill dentries associated with this inode.
927 * WARNING: you must own a reference to inode.
929 void d_prune_aliases(struct inode
*inode
)
931 struct dentry
*dentry
;
933 spin_lock(&inode
->i_lock
);
934 hlist_for_each_entry(dentry
, &inode
->i_dentry
, d_u
.d_alias
) {
935 spin_lock(&dentry
->d_lock
);
936 if (!dentry
->d_lockref
.count
) {
937 struct dentry
*parent
= lock_parent(dentry
);
938 if (likely(!dentry
->d_lockref
.count
)) {
939 __dentry_kill(dentry
);
944 spin_unlock(&parent
->d_lock
);
946 spin_unlock(&dentry
->d_lock
);
948 spin_unlock(&inode
->i_lock
);
950 EXPORT_SYMBOL(d_prune_aliases
);
952 static void shrink_dentry_list(struct list_head
*list
)
954 struct dentry
*dentry
, *parent
;
956 while (!list_empty(list
)) {
958 dentry
= list_entry(list
->prev
, struct dentry
, d_lru
);
959 spin_lock(&dentry
->d_lock
);
960 parent
= lock_parent(dentry
);
963 * The dispose list is isolated and dentries are not accounted
964 * to the LRU here, so we can simply remove it from the list
965 * here regardless of whether it is referenced or not.
967 d_shrink_del(dentry
);
970 * We found an inuse dentry which was not removed from
971 * the LRU because of laziness during lookup. Do not free it.
973 if (dentry
->d_lockref
.count
> 0) {
974 spin_unlock(&dentry
->d_lock
);
976 spin_unlock(&parent
->d_lock
);
981 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_KILLED
)) {
982 bool can_free
= dentry
->d_flags
& DCACHE_MAY_FREE
;
983 spin_unlock(&dentry
->d_lock
);
985 spin_unlock(&parent
->d_lock
);
991 inode
= dentry
->d_inode
;
992 if (inode
&& unlikely(!spin_trylock(&inode
->i_lock
))) {
993 d_shrink_add(dentry
, list
);
994 spin_unlock(&dentry
->d_lock
);
996 spin_unlock(&parent
->d_lock
);
1000 __dentry_kill(dentry
);
1003 * We need to prune ancestors too. This is necessary to prevent
1004 * quadratic behavior of shrink_dcache_parent(), but is also
1005 * expected to be beneficial in reducing dentry cache
1009 while (dentry
&& !lockref_put_or_lock(&dentry
->d_lockref
)) {
1010 parent
= lock_parent(dentry
);
1011 if (dentry
->d_lockref
.count
!= 1) {
1012 dentry
->d_lockref
.count
--;
1013 spin_unlock(&dentry
->d_lock
);
1015 spin_unlock(&parent
->d_lock
);
1018 inode
= dentry
->d_inode
; /* can't be NULL */
1019 if (unlikely(!spin_trylock(&inode
->i_lock
))) {
1020 spin_unlock(&dentry
->d_lock
);
1022 spin_unlock(&parent
->d_lock
);
1026 __dentry_kill(dentry
);
1032 static enum lru_status
dentry_lru_isolate(struct list_head
*item
,
1033 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1035 struct list_head
*freeable
= arg
;
1036 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1040 * we are inverting the lru lock/dentry->d_lock here,
1041 * so use a trylock. If we fail to get the lock, just skip
1044 if (!spin_trylock(&dentry
->d_lock
))
1048 * Referenced dentries are still in use. If they have active
1049 * counts, just remove them from the LRU. Otherwise give them
1050 * another pass through the LRU.
1052 if (dentry
->d_lockref
.count
) {
1053 d_lru_isolate(lru
, dentry
);
1054 spin_unlock(&dentry
->d_lock
);
1058 if (dentry
->d_flags
& DCACHE_REFERENCED
) {
1059 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
1060 spin_unlock(&dentry
->d_lock
);
1063 * The list move itself will be made by the common LRU code. At
1064 * this point, we've dropped the dentry->d_lock but keep the
1065 * lru lock. This is safe to do, since every list movement is
1066 * protected by the lru lock even if both locks are held.
1068 * This is guaranteed by the fact that all LRU management
1069 * functions are intermediated by the LRU API calls like
1070 * list_lru_add and list_lru_del. List movement in this file
1071 * only ever occur through this functions or through callbacks
1072 * like this one, that are called from the LRU API.
1074 * The only exceptions to this are functions like
1075 * shrink_dentry_list, and code that first checks for the
1076 * DCACHE_SHRINK_LIST flag. Those are guaranteed to be
1077 * operating only with stack provided lists after they are
1078 * properly isolated from the main list. It is thus, always a
1084 d_lru_shrink_move(lru
, dentry
, freeable
);
1085 spin_unlock(&dentry
->d_lock
);
1091 * prune_dcache_sb - shrink the dcache
1093 * @sc: shrink control, passed to list_lru_shrink_walk()
1095 * Attempt to shrink the superblock dcache LRU by @sc->nr_to_scan entries. This
1096 * is done when we need more memory and called from the superblock shrinker
1099 * This function may fail to free any resources if all the dentries are in
1102 long prune_dcache_sb(struct super_block
*sb
, struct shrink_control
*sc
)
1107 freed
= list_lru_shrink_walk(&sb
->s_dentry_lru
, sc
,
1108 dentry_lru_isolate
, &dispose
);
1109 shrink_dentry_list(&dispose
);
1113 static enum lru_status
dentry_lru_isolate_shrink(struct list_head
*item
,
1114 struct list_lru_one
*lru
, spinlock_t
*lru_lock
, void *arg
)
1116 struct list_head
*freeable
= arg
;
1117 struct dentry
*dentry
= container_of(item
, struct dentry
, d_lru
);
1120 * we are inverting the lru lock/dentry->d_lock here,
1121 * so use a trylock. If we fail to get the lock, just skip
1124 if (!spin_trylock(&dentry
->d_lock
))
1127 d_lru_shrink_move(lru
, dentry
, freeable
);
1128 spin_unlock(&dentry
->d_lock
);
1135 * shrink_dcache_sb - shrink dcache for a superblock
1138 * Shrink the dcache for the specified super block. This is used to free
1139 * the dcache before unmounting a file system.
1141 void shrink_dcache_sb(struct super_block
*sb
)
1148 freed
= list_lru_walk(&sb
->s_dentry_lru
,
1149 dentry_lru_isolate_shrink
, &dispose
, UINT_MAX
);
1151 this_cpu_sub(nr_dentry_unused
, freed
);
1152 shrink_dentry_list(&dispose
);
1153 } while (freed
> 0);
1155 EXPORT_SYMBOL(shrink_dcache_sb
);
1158 * enum d_walk_ret - action to talke during tree walk
1159 * @D_WALK_CONTINUE: contrinue walk
1160 * @D_WALK_QUIT: quit walk
1161 * @D_WALK_NORETRY: quit when retry is needed
1162 * @D_WALK_SKIP: skip this dentry and its children
1172 * d_walk - walk the dentry tree
1173 * @parent: start of walk
1174 * @data: data passed to @enter() and @finish()
1175 * @enter: callback when first entering the dentry
1176 * @finish: callback when successfully finished the walk
1178 * The @enter() and @finish() callbacks are called with d_lock held.
1180 static void d_walk(struct dentry
*parent
, void *data
,
1181 enum d_walk_ret (*enter
)(void *, struct dentry
*),
1182 void (*finish
)(void *))
1184 struct dentry
*this_parent
;
1185 struct list_head
*next
;
1187 enum d_walk_ret ret
;
1191 read_seqbegin_or_lock(&rename_lock
, &seq
);
1192 this_parent
= parent
;
1193 spin_lock(&this_parent
->d_lock
);
1195 ret
= enter(data
, this_parent
);
1197 case D_WALK_CONTINUE
:
1202 case D_WALK_NORETRY
:
1207 next
= this_parent
->d_subdirs
.next
;
1209 while (next
!= &this_parent
->d_subdirs
) {
1210 struct list_head
*tmp
= next
;
1211 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_child
);
1214 if (unlikely(dentry
->d_flags
& DCACHE_DENTRY_CURSOR
))
1217 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1219 ret
= enter(data
, dentry
);
1221 case D_WALK_CONTINUE
:
1224 spin_unlock(&dentry
->d_lock
);
1226 case D_WALK_NORETRY
:
1230 spin_unlock(&dentry
->d_lock
);
1234 if (!list_empty(&dentry
->d_subdirs
)) {
1235 spin_unlock(&this_parent
->d_lock
);
1236 spin_release(&dentry
->d_lock
.dep_map
, 1, _RET_IP_
);
1237 this_parent
= dentry
;
1238 spin_acquire(&this_parent
->d_lock
.dep_map
, 0, 1, _RET_IP_
);
1241 spin_unlock(&dentry
->d_lock
);
1244 * All done at this level ... ascend and resume the search.
1248 if (this_parent
!= parent
) {
1249 struct dentry
*child
= this_parent
;
1250 this_parent
= child
->d_parent
;
1252 spin_unlock(&child
->d_lock
);
1253 spin_lock(&this_parent
->d_lock
);
1255 /* might go back up the wrong parent if we have had a rename. */
1256 if (need_seqretry(&rename_lock
, seq
))
1258 /* go into the first sibling still alive */
1260 next
= child
->d_child
.next
;
1261 if (next
== &this_parent
->d_subdirs
)
1263 child
= list_entry(next
, struct dentry
, d_child
);
1264 } while (unlikely(child
->d_flags
& DCACHE_DENTRY_KILLED
));
1268 if (need_seqretry(&rename_lock
, seq
))
1275 spin_unlock(&this_parent
->d_lock
);
1276 done_seqretry(&rename_lock
, seq
);
1280 spin_unlock(&this_parent
->d_lock
);
1290 * Search for at least 1 mount point in the dentry's subdirs.
1291 * We descend to the next level whenever the d_subdirs
1292 * list is non-empty and continue searching.
1295 static enum d_walk_ret
check_mount(void *data
, struct dentry
*dentry
)
1298 if (d_mountpoint(dentry
)) {
1302 return D_WALK_CONTINUE
;
1306 * have_submounts - check for mounts over a dentry
1307 * @parent: dentry to check.
1309 * Return true if the parent or its subdirectories contain
1312 int have_submounts(struct dentry
*parent
)
1316 d_walk(parent
, &ret
, check_mount
, NULL
);
1320 EXPORT_SYMBOL(have_submounts
);
1323 * Called by mount code to set a mountpoint and check if the mountpoint is
1324 * reachable (e.g. NFS can unhash a directory dentry and then the complete
1325 * subtree can become unreachable).
1327 * Only one of d_invalidate() and d_set_mounted() must succeed. For
1328 * this reason take rename_lock and d_lock on dentry and ancestors.
1330 int d_set_mounted(struct dentry
*dentry
)
1334 write_seqlock(&rename_lock
);
1335 for (p
= dentry
->d_parent
; !IS_ROOT(p
); p
= p
->d_parent
) {
1336 /* Need exclusion wrt. d_invalidate() */
1337 spin_lock(&p
->d_lock
);
1338 if (unlikely(d_unhashed(p
))) {
1339 spin_unlock(&p
->d_lock
);
1342 spin_unlock(&p
->d_lock
);
1344 spin_lock(&dentry
->d_lock
);
1345 if (!d_unlinked(dentry
)) {
1346 dentry
->d_flags
|= DCACHE_MOUNTED
;
1349 spin_unlock(&dentry
->d_lock
);
1351 write_sequnlock(&rename_lock
);
1356 * Search the dentry child list of the specified parent,
1357 * and move any unused dentries to the end of the unused
1358 * list for prune_dcache(). We descend to the next level
1359 * whenever the d_subdirs list is non-empty and continue
1362 * It returns zero iff there are no unused children,
1363 * otherwise it returns the number of children moved to
1364 * the end of the unused list. This may not be the total
1365 * number of unused children, because select_parent can
1366 * drop the lock and return early due to latency
1370 struct select_data
{
1371 struct dentry
*start
;
1372 struct list_head dispose
;
1376 static enum d_walk_ret
select_collect(void *_data
, struct dentry
*dentry
)
1378 struct select_data
*data
= _data
;
1379 enum d_walk_ret ret
= D_WALK_CONTINUE
;
1381 if (data
->start
== dentry
)
1384 if (dentry
->d_flags
& DCACHE_SHRINK_LIST
) {
1387 if (dentry
->d_flags
& DCACHE_LRU_LIST
)
1389 if (!dentry
->d_lockref
.count
) {
1390 d_shrink_add(dentry
, &data
->dispose
);
1395 * We can return to the caller if we have found some (this
1396 * ensures forward progress). We'll be coming back to find
1399 if (!list_empty(&data
->dispose
))
1400 ret
= need_resched() ? D_WALK_QUIT
: D_WALK_NORETRY
;
1406 * shrink_dcache_parent - prune dcache
1407 * @parent: parent of entries to prune
1409 * Prune the dcache to remove unused children of the parent dentry.
1411 void shrink_dcache_parent(struct dentry
*parent
)
1414 struct select_data data
;
1416 INIT_LIST_HEAD(&data
.dispose
);
1417 data
.start
= parent
;
1420 d_walk(parent
, &data
, select_collect
, NULL
);
1424 shrink_dentry_list(&data
.dispose
);
1428 EXPORT_SYMBOL(shrink_dcache_parent
);
1430 static enum d_walk_ret
umount_check(void *_data
, struct dentry
*dentry
)
1432 /* it has busy descendents; complain about those instead */
1433 if (!list_empty(&dentry
->d_subdirs
))
1434 return D_WALK_CONTINUE
;
1436 /* root with refcount 1 is fine */
1437 if (dentry
== _data
&& dentry
->d_lockref
.count
== 1)
1438 return D_WALK_CONTINUE
;
1440 printk(KERN_ERR
"BUG: Dentry %p{i=%lx,n=%pd} "
1441 " still in use (%d) [unmount of %s %s]\n",
1444 dentry
->d_inode
->i_ino
: 0UL,
1446 dentry
->d_lockref
.count
,
1447 dentry
->d_sb
->s_type
->name
,
1448 dentry
->d_sb
->s_id
);
1450 return D_WALK_CONTINUE
;
1453 static void do_one_tree(struct dentry
*dentry
)
1455 shrink_dcache_parent(dentry
);
1456 d_walk(dentry
, dentry
, umount_check
, NULL
);
1462 * destroy the dentries attached to a superblock on unmounting
1464 void shrink_dcache_for_umount(struct super_block
*sb
)
1466 struct dentry
*dentry
;
1468 WARN(down_read_trylock(&sb
->s_umount
), "s_umount should've been locked");
1470 dentry
= sb
->s_root
;
1472 do_one_tree(dentry
);
1474 while (!hlist_bl_empty(&sb
->s_anon
)) {
1475 dentry
= dget(hlist_bl_entry(hlist_bl_first(&sb
->s_anon
), struct dentry
, d_hash
));
1476 do_one_tree(dentry
);
1480 struct detach_data
{
1481 struct select_data select
;
1482 struct dentry
*mountpoint
;
1484 static enum d_walk_ret
detach_and_collect(void *_data
, struct dentry
*dentry
)
1486 struct detach_data
*data
= _data
;
1488 if (d_mountpoint(dentry
)) {
1489 __dget_dlock(dentry
);
1490 data
->mountpoint
= dentry
;
1494 return select_collect(&data
->select
, dentry
);
1497 static void check_and_drop(void *_data
)
1499 struct detach_data
*data
= _data
;
1501 if (!data
->mountpoint
&& !data
->select
.found
)
1502 __d_drop(data
->select
.start
);
1506 * d_invalidate - detach submounts, prune dcache, and drop
1507 * @dentry: dentry to invalidate (aka detach, prune and drop)
1511 * The final d_drop is done as an atomic operation relative to
1512 * rename_lock ensuring there are no races with d_set_mounted. This
1513 * ensures there are no unhashed dentries on the path to a mountpoint.
1515 void d_invalidate(struct dentry
*dentry
)
1518 * If it's already been dropped, return OK.
1520 spin_lock(&dentry
->d_lock
);
1521 if (d_unhashed(dentry
)) {
1522 spin_unlock(&dentry
->d_lock
);
1525 spin_unlock(&dentry
->d_lock
);
1527 /* Negative dentries can be dropped without further checks */
1528 if (!dentry
->d_inode
) {
1534 struct detach_data data
;
1536 data
.mountpoint
= NULL
;
1537 INIT_LIST_HEAD(&data
.select
.dispose
);
1538 data
.select
.start
= dentry
;
1539 data
.select
.found
= 0;
1541 d_walk(dentry
, &data
, detach_and_collect
, check_and_drop
);
1543 if (data
.select
.found
)
1544 shrink_dentry_list(&data
.select
.dispose
);
1546 if (data
.mountpoint
) {
1547 detach_mounts(data
.mountpoint
);
1548 dput(data
.mountpoint
);
1551 if (!data
.mountpoint
&& !data
.select
.found
)
1557 EXPORT_SYMBOL(d_invalidate
);
1560 * __d_alloc - allocate a dcache entry
1561 * @sb: filesystem it will belong to
1562 * @name: qstr of the name
1564 * Allocates a dentry. It returns %NULL if there is insufficient memory
1565 * available. On a success the dentry is returned. The name passed in is
1566 * copied and the copy passed in may be reused after this call.
1569 struct dentry
*__d_alloc(struct super_block
*sb
, const struct qstr
*name
)
1571 struct dentry
*dentry
;
1575 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
1580 * We guarantee that the inline name is always NUL-terminated.
1581 * This way the memcpy() done by the name switching in rename
1582 * will still always have a NUL at the end, even if we might
1583 * be overwriting an internal NUL character
1585 dentry
->d_iname
[DNAME_INLINE_LEN
-1] = 0;
1586 if (unlikely(!name
)) {
1587 static const struct qstr anon
= QSTR_INIT("/", 1);
1589 dname
= dentry
->d_iname
;
1590 } else if (name
->len
> DNAME_INLINE_LEN
-1) {
1591 size_t size
= offsetof(struct external_name
, name
[1]);
1592 struct external_name
*p
= kmalloc(size
+ name
->len
,
1593 GFP_KERNEL_ACCOUNT
);
1595 kmem_cache_free(dentry_cache
, dentry
);
1598 atomic_set(&p
->u
.count
, 1);
1600 if (IS_ENABLED(CONFIG_DCACHE_WORD_ACCESS
))
1601 kasan_unpoison_shadow(dname
,
1602 round_up(name
->len
+ 1, sizeof(unsigned long)));
1604 dname
= dentry
->d_iname
;
1607 dentry
->d_name
.len
= name
->len
;
1608 dentry
->d_name
.hash
= name
->hash
;
1609 memcpy(dname
, name
->name
, name
->len
);
1610 dname
[name
->len
] = 0;
1612 /* Make sure we always see the terminating NUL character */
1614 dentry
->d_name
.name
= dname
;
1616 dentry
->d_lockref
.count
= 1;
1617 dentry
->d_flags
= 0;
1618 spin_lock_init(&dentry
->d_lock
);
1619 seqcount_init(&dentry
->d_seq
);
1620 dentry
->d_inode
= NULL
;
1621 dentry
->d_parent
= dentry
;
1623 dentry
->d_op
= NULL
;
1624 dentry
->d_fsdata
= NULL
;
1625 INIT_HLIST_BL_NODE(&dentry
->d_hash
);
1626 INIT_LIST_HEAD(&dentry
->d_lru
);
1627 INIT_LIST_HEAD(&dentry
->d_subdirs
);
1628 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
1629 INIT_LIST_HEAD(&dentry
->d_child
);
1630 d_set_d_op(dentry
, dentry
->d_sb
->s_d_op
);
1632 if (dentry
->d_op
&& dentry
->d_op
->d_init
) {
1633 err
= dentry
->d_op
->d_init(dentry
);
1635 if (dname_external(dentry
))
1636 kfree(external_name(dentry
));
1637 kmem_cache_free(dentry_cache
, dentry
);
1642 this_cpu_inc(nr_dentry
);
1648 * d_alloc - allocate a dcache entry
1649 * @parent: parent of entry to allocate
1650 * @name: qstr of the name
1652 * Allocates a dentry. It returns %NULL if there is insufficient memory
1653 * available. On a success the dentry is returned. The name passed in is
1654 * copied and the copy passed in may be reused after this call.
1656 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
1658 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, name
);
1661 dentry
->d_flags
|= DCACHE_RCUACCESS
;
1662 spin_lock(&parent
->d_lock
);
1664 * don't need child lock because it is not subject
1665 * to concurrency here
1667 __dget_dlock(parent
);
1668 dentry
->d_parent
= parent
;
1669 list_add(&dentry
->d_child
, &parent
->d_subdirs
);
1670 spin_unlock(&parent
->d_lock
);
1674 EXPORT_SYMBOL(d_alloc
);
1676 struct dentry
*d_alloc_cursor(struct dentry
* parent
)
1678 struct dentry
*dentry
= __d_alloc(parent
->d_sb
, NULL
);
1680 dentry
->d_flags
|= DCACHE_RCUACCESS
| DCACHE_DENTRY_CURSOR
;
1681 dentry
->d_parent
= dget(parent
);
1687 * d_alloc_pseudo - allocate a dentry (for lookup-less filesystems)
1688 * @sb: the superblock
1689 * @name: qstr of the name
1691 * For a filesystem that just pins its dentries in memory and never
1692 * performs lookups at all, return an unhashed IS_ROOT dentry.
1694 struct dentry
*d_alloc_pseudo(struct super_block
*sb
, const struct qstr
*name
)
1696 return __d_alloc(sb
, name
);
1698 EXPORT_SYMBOL(d_alloc_pseudo
);
1700 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
1705 q
.hash_len
= hashlen_string(parent
, name
);
1706 return d_alloc(parent
, &q
);
1708 EXPORT_SYMBOL(d_alloc_name
);
1710 void d_set_d_op(struct dentry
*dentry
, const struct dentry_operations
*op
)
1712 WARN_ON_ONCE(dentry
->d_op
);
1713 WARN_ON_ONCE(dentry
->d_flags
& (DCACHE_OP_HASH
|
1715 DCACHE_OP_REVALIDATE
|
1716 DCACHE_OP_WEAK_REVALIDATE
|
1723 dentry
->d_flags
|= DCACHE_OP_HASH
;
1725 dentry
->d_flags
|= DCACHE_OP_COMPARE
;
1726 if (op
->d_revalidate
)
1727 dentry
->d_flags
|= DCACHE_OP_REVALIDATE
;
1728 if (op
->d_weak_revalidate
)
1729 dentry
->d_flags
|= DCACHE_OP_WEAK_REVALIDATE
;
1731 dentry
->d_flags
|= DCACHE_OP_DELETE
;
1733 dentry
->d_flags
|= DCACHE_OP_PRUNE
;
1735 dentry
->d_flags
|= DCACHE_OP_REAL
;
1738 EXPORT_SYMBOL(d_set_d_op
);
1742 * d_set_fallthru - Mark a dentry as falling through to a lower layer
1743 * @dentry - The dentry to mark
1745 * Mark a dentry as falling through to the lower layer (as set with
1746 * d_pin_lower()). This flag may be recorded on the medium.
1748 void d_set_fallthru(struct dentry
*dentry
)
1750 spin_lock(&dentry
->d_lock
);
1751 dentry
->d_flags
|= DCACHE_FALLTHRU
;
1752 spin_unlock(&dentry
->d_lock
);
1754 EXPORT_SYMBOL(d_set_fallthru
);
1756 static unsigned d_flags_for_inode(struct inode
*inode
)
1758 unsigned add_flags
= DCACHE_REGULAR_TYPE
;
1761 return DCACHE_MISS_TYPE
;
1763 if (S_ISDIR(inode
->i_mode
)) {
1764 add_flags
= DCACHE_DIRECTORY_TYPE
;
1765 if (unlikely(!(inode
->i_opflags
& IOP_LOOKUP
))) {
1766 if (unlikely(!inode
->i_op
->lookup
))
1767 add_flags
= DCACHE_AUTODIR_TYPE
;
1769 inode
->i_opflags
|= IOP_LOOKUP
;
1771 goto type_determined
;
1774 if (unlikely(!(inode
->i_opflags
& IOP_NOFOLLOW
))) {
1775 if (unlikely(inode
->i_op
->get_link
)) {
1776 add_flags
= DCACHE_SYMLINK_TYPE
;
1777 goto type_determined
;
1779 inode
->i_opflags
|= IOP_NOFOLLOW
;
1782 if (unlikely(!S_ISREG(inode
->i_mode
)))
1783 add_flags
= DCACHE_SPECIAL_TYPE
;
1786 if (unlikely(IS_AUTOMOUNT(inode
)))
1787 add_flags
|= DCACHE_NEED_AUTOMOUNT
;
1791 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
1793 unsigned add_flags
= d_flags_for_inode(inode
);
1794 WARN_ON(d_in_lookup(dentry
));
1796 spin_lock(&dentry
->d_lock
);
1797 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
1798 raw_write_seqcount_begin(&dentry
->d_seq
);
1799 __d_set_inode_and_type(dentry
, inode
, add_flags
);
1800 raw_write_seqcount_end(&dentry
->d_seq
);
1801 fsnotify_update_flags(dentry
);
1802 spin_unlock(&dentry
->d_lock
);
1806 * d_instantiate - fill in inode information for a dentry
1807 * @entry: dentry to complete
1808 * @inode: inode to attach to this dentry
1810 * Fill in inode information in the entry.
1812 * This turns negative dentries into productive full members
1815 * NOTE! This assumes that the inode count has been incremented
1816 * (or otherwise set) by the caller to indicate that it is now
1817 * in use by the dcache.
1820 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1822 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1824 security_d_instantiate(entry
, inode
);
1825 spin_lock(&inode
->i_lock
);
1826 __d_instantiate(entry
, inode
);
1827 spin_unlock(&inode
->i_lock
);
1830 EXPORT_SYMBOL(d_instantiate
);
1833 * d_instantiate_no_diralias - instantiate a non-aliased dentry
1834 * @entry: dentry to complete
1835 * @inode: inode to attach to this dentry
1837 * Fill in inode information in the entry. If a directory alias is found, then
1838 * return an error (and drop inode). Together with d_materialise_unique() this
1839 * guarantees that a directory inode may never have more than one alias.
1841 int d_instantiate_no_diralias(struct dentry
*entry
, struct inode
*inode
)
1843 BUG_ON(!hlist_unhashed(&entry
->d_u
.d_alias
));
1845 security_d_instantiate(entry
, inode
);
1846 spin_lock(&inode
->i_lock
);
1847 if (S_ISDIR(inode
->i_mode
) && !hlist_empty(&inode
->i_dentry
)) {
1848 spin_unlock(&inode
->i_lock
);
1852 __d_instantiate(entry
, inode
);
1853 spin_unlock(&inode
->i_lock
);
1857 EXPORT_SYMBOL(d_instantiate_no_diralias
);
1859 struct dentry
*d_make_root(struct inode
*root_inode
)
1861 struct dentry
*res
= NULL
;
1864 res
= __d_alloc(root_inode
->i_sb
, NULL
);
1866 d_instantiate(res
, root_inode
);
1872 EXPORT_SYMBOL(d_make_root
);
1874 static struct dentry
* __d_find_any_alias(struct inode
*inode
)
1876 struct dentry
*alias
;
1878 if (hlist_empty(&inode
->i_dentry
))
1880 alias
= hlist_entry(inode
->i_dentry
.first
, struct dentry
, d_u
.d_alias
);
1886 * d_find_any_alias - find any alias for a given inode
1887 * @inode: inode to find an alias for
1889 * If any aliases exist for the given inode, take and return a
1890 * reference for one of them. If no aliases exist, return %NULL.
1892 struct dentry
*d_find_any_alias(struct inode
*inode
)
1896 spin_lock(&inode
->i_lock
);
1897 de
= __d_find_any_alias(inode
);
1898 spin_unlock(&inode
->i_lock
);
1901 EXPORT_SYMBOL(d_find_any_alias
);
1903 static struct dentry
*__d_obtain_alias(struct inode
*inode
, int disconnected
)
1910 return ERR_PTR(-ESTALE
);
1912 return ERR_CAST(inode
);
1914 res
= d_find_any_alias(inode
);
1918 tmp
= __d_alloc(inode
->i_sb
, NULL
);
1920 res
= ERR_PTR(-ENOMEM
);
1924 security_d_instantiate(tmp
, inode
);
1925 spin_lock(&inode
->i_lock
);
1926 res
= __d_find_any_alias(inode
);
1928 spin_unlock(&inode
->i_lock
);
1933 /* attach a disconnected dentry */
1934 add_flags
= d_flags_for_inode(inode
);
1937 add_flags
|= DCACHE_DISCONNECTED
;
1939 spin_lock(&tmp
->d_lock
);
1940 __d_set_inode_and_type(tmp
, inode
, add_flags
);
1941 hlist_add_head(&tmp
->d_u
.d_alias
, &inode
->i_dentry
);
1942 hlist_bl_lock(&tmp
->d_sb
->s_anon
);
1943 hlist_bl_add_head(&tmp
->d_hash
, &tmp
->d_sb
->s_anon
);
1944 hlist_bl_unlock(&tmp
->d_sb
->s_anon
);
1945 spin_unlock(&tmp
->d_lock
);
1946 spin_unlock(&inode
->i_lock
);
1956 * d_obtain_alias - find or allocate a DISCONNECTED dentry for a given inode
1957 * @inode: inode to allocate the dentry for
1959 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1960 * similar open by handle operations. The returned dentry may be anonymous,
1961 * or may have a full name (if the inode was already in the cache).
1963 * When called on a directory inode, we must ensure that the inode only ever
1964 * has one dentry. If a dentry is found, that is returned instead of
1965 * allocating a new one.
1967 * On successful return, the reference to the inode has been transferred
1968 * to the dentry. In case of an error the reference on the inode is released.
1969 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1970 * be passed in and the error will be propagated to the return value,
1971 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1973 struct dentry
*d_obtain_alias(struct inode
*inode
)
1975 return __d_obtain_alias(inode
, 1);
1977 EXPORT_SYMBOL(d_obtain_alias
);
1980 * d_obtain_root - find or allocate a dentry for a given inode
1981 * @inode: inode to allocate the dentry for
1983 * Obtain an IS_ROOT dentry for the root of a filesystem.
1985 * We must ensure that directory inodes only ever have one dentry. If a
1986 * dentry is found, that is returned instead of allocating a new one.
1988 * On successful return, the reference to the inode has been transferred
1989 * to the dentry. In case of an error the reference on the inode is
1990 * released. A %NULL or IS_ERR inode may be passed in and will be the
1991 * error will be propagate to the return value, with a %NULL @inode
1992 * replaced by ERR_PTR(-ESTALE).
1994 struct dentry
*d_obtain_root(struct inode
*inode
)
1996 return __d_obtain_alias(inode
, 0);
1998 EXPORT_SYMBOL(d_obtain_root
);
2001 * d_add_ci - lookup or allocate new dentry with case-exact name
2002 * @inode: the inode case-insensitive lookup has found
2003 * @dentry: the negative dentry that was passed to the parent's lookup func
2004 * @name: the case-exact name to be associated with the returned dentry
2006 * This is to avoid filling the dcache with case-insensitive names to the
2007 * same inode, only the actual correct case is stored in the dcache for
2008 * case-insensitive filesystems.
2010 * For a case-insensitive lookup match and if the the case-exact dentry
2011 * already exists in in the dcache, use it and return it.
2013 * If no entry exists with the exact case name, allocate new dentry with
2014 * the exact case, and return the spliced entry.
2016 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
2019 struct dentry
*found
, *res
;
2022 * First check if a dentry matching the name already exists,
2023 * if not go ahead and create it now.
2025 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
2030 if (d_in_lookup(dentry
)) {
2031 found
= d_alloc_parallel(dentry
->d_parent
, name
,
2033 if (IS_ERR(found
) || !d_in_lookup(found
)) {
2038 found
= d_alloc(dentry
->d_parent
, name
);
2041 return ERR_PTR(-ENOMEM
);
2044 res
= d_splice_alias(inode
, found
);
2051 EXPORT_SYMBOL(d_add_ci
);
2054 static inline bool d_same_name(const struct dentry
*dentry
,
2055 const struct dentry
*parent
,
2056 const struct qstr
*name
)
2058 if (likely(!(parent
->d_flags
& DCACHE_OP_COMPARE
))) {
2059 if (dentry
->d_name
.len
!= name
->len
)
2061 return dentry_cmp(dentry
, name
->name
, name
->len
) == 0;
2063 return parent
->d_op
->d_compare(parent
, dentry
,
2064 dentry
->d_name
.len
, dentry
->d_name
.name
,
2069 * __d_lookup_rcu - search for a dentry (racy, store-free)
2070 * @parent: parent dentry
2071 * @name: qstr of name we wish to find
2072 * @seqp: returns d_seq value at the point where the dentry was found
2073 * Returns: dentry, or NULL
2075 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
2076 * resolution (store-free path walking) design described in
2077 * Documentation/filesystems/path-lookup.txt.
2079 * This is not to be used outside core vfs.
2081 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
2082 * held, and rcu_read_lock held. The returned dentry must not be stored into
2083 * without taking d_lock and checking d_seq sequence count against @seq
2086 * A refcount may be taken on the found dentry with the d_rcu_to_refcount
2089 * Alternatively, __d_lookup_rcu may be called again to look up the child of
2090 * the returned dentry, so long as its parent's seqlock is checked after the
2091 * child is looked up. Thus, an interlocking stepping of sequence lock checks
2092 * is formed, giving integrity down the path walk.
2094 * NOTE! The caller *has* to check the resulting dentry against the sequence
2095 * number we've returned before using any of the resulting dentry state!
2097 struct dentry
*__d_lookup_rcu(const struct dentry
*parent
,
2098 const struct qstr
*name
,
2101 u64 hashlen
= name
->hash_len
;
2102 const unsigned char *str
= name
->name
;
2103 struct hlist_bl_head
*b
= d_hash(hashlen_hash(hashlen
));
2104 struct hlist_bl_node
*node
;
2105 struct dentry
*dentry
;
2108 * Note: There is significant duplication with __d_lookup_rcu which is
2109 * required to prevent single threaded performance regressions
2110 * especially on architectures where smp_rmb (in seqcounts) are costly.
2111 * Keep the two functions in sync.
2115 * The hash list is protected using RCU.
2117 * Carefully use d_seq when comparing a candidate dentry, to avoid
2118 * races with d_move().
2120 * It is possible that concurrent renames can mess up our list
2121 * walk here and result in missing our dentry, resulting in the
2122 * false-negative result. d_lookup() protects against concurrent
2123 * renames using rename_lock seqlock.
2125 * See Documentation/filesystems/path-lookup.txt for more details.
2127 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2132 * The dentry sequence count protects us from concurrent
2133 * renames, and thus protects parent and name fields.
2135 * The caller must perform a seqcount check in order
2136 * to do anything useful with the returned dentry.
2138 * NOTE! We do a "raw" seqcount_begin here. That means that
2139 * we don't wait for the sequence count to stabilize if it
2140 * is in the middle of a sequence change. If we do the slow
2141 * dentry compare, we will do seqretries until it is stable,
2142 * and if we end up with a successful lookup, we actually
2143 * want to exit RCU lookup anyway.
2145 * Note that raw_seqcount_begin still *does* smp_rmb(), so
2146 * we are still guaranteed NUL-termination of ->d_name.name.
2148 seq
= raw_seqcount_begin(&dentry
->d_seq
);
2149 if (dentry
->d_parent
!= parent
)
2151 if (d_unhashed(dentry
))
2154 if (unlikely(parent
->d_flags
& DCACHE_OP_COMPARE
)) {
2157 if (dentry
->d_name
.hash
!= hashlen_hash(hashlen
))
2159 tlen
= dentry
->d_name
.len
;
2160 tname
= dentry
->d_name
.name
;
2161 /* we want a consistent (name,len) pair */
2162 if (read_seqcount_retry(&dentry
->d_seq
, seq
)) {
2166 if (parent
->d_op
->d_compare(parent
, dentry
,
2167 tlen
, tname
, name
) != 0)
2170 if (dentry
->d_name
.hash_len
!= hashlen
)
2172 if (dentry_cmp(dentry
, str
, hashlen_len(hashlen
)) != 0)
2182 * d_lookup - search for a dentry
2183 * @parent: parent dentry
2184 * @name: qstr of name we wish to find
2185 * Returns: dentry, or NULL
2187 * d_lookup searches the children of the parent dentry for the name in
2188 * question. If the dentry is found its reference count is incremented and the
2189 * dentry is returned. The caller must use dput to free the entry when it has
2190 * finished using it. %NULL is returned if the dentry does not exist.
2192 struct dentry
*d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2194 struct dentry
*dentry
;
2198 seq
= read_seqbegin(&rename_lock
);
2199 dentry
= __d_lookup(parent
, name
);
2202 } while (read_seqretry(&rename_lock
, seq
));
2205 EXPORT_SYMBOL(d_lookup
);
2208 * __d_lookup - search for a dentry (racy)
2209 * @parent: parent dentry
2210 * @name: qstr of name we wish to find
2211 * Returns: dentry, or NULL
2213 * __d_lookup is like d_lookup, however it may (rarely) return a
2214 * false-negative result due to unrelated rename activity.
2216 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
2217 * however it must be used carefully, eg. with a following d_lookup in
2218 * the case of failure.
2220 * __d_lookup callers must be commented.
2222 struct dentry
*__d_lookup(const struct dentry
*parent
, const struct qstr
*name
)
2224 unsigned int hash
= name
->hash
;
2225 struct hlist_bl_head
*b
= d_hash(hash
);
2226 struct hlist_bl_node
*node
;
2227 struct dentry
*found
= NULL
;
2228 struct dentry
*dentry
;
2231 * Note: There is significant duplication with __d_lookup_rcu which is
2232 * required to prevent single threaded performance regressions
2233 * especially on architectures where smp_rmb (in seqcounts) are costly.
2234 * Keep the two functions in sync.
2238 * The hash list is protected using RCU.
2240 * Take d_lock when comparing a candidate dentry, to avoid races
2243 * It is possible that concurrent renames can mess up our list
2244 * walk here and result in missing our dentry, resulting in the
2245 * false-negative result. d_lookup() protects against concurrent
2246 * renames using rename_lock seqlock.
2248 * See Documentation/filesystems/path-lookup.txt for more details.
2252 hlist_bl_for_each_entry_rcu(dentry
, node
, b
, d_hash
) {
2254 if (dentry
->d_name
.hash
!= hash
)
2257 spin_lock(&dentry
->d_lock
);
2258 if (dentry
->d_parent
!= parent
)
2260 if (d_unhashed(dentry
))
2263 if (!d_same_name(dentry
, parent
, name
))
2266 dentry
->d_lockref
.count
++;
2268 spin_unlock(&dentry
->d_lock
);
2271 spin_unlock(&dentry
->d_lock
);
2279 * d_hash_and_lookup - hash the qstr then search for a dentry
2280 * @dir: Directory to search in
2281 * @name: qstr of name we wish to find
2283 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
2285 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
2288 * Check for a fs-specific hash function. Note that we must
2289 * calculate the standard hash first, as the d_op->d_hash()
2290 * routine may choose to leave the hash value unchanged.
2292 name
->hash
= full_name_hash(dir
, name
->name
, name
->len
);
2293 if (dir
->d_flags
& DCACHE_OP_HASH
) {
2294 int err
= dir
->d_op
->d_hash(dir
, name
);
2295 if (unlikely(err
< 0))
2296 return ERR_PTR(err
);
2298 return d_lookup(dir
, name
);
2300 EXPORT_SYMBOL(d_hash_and_lookup
);
2303 * When a file is deleted, we have two options:
2304 * - turn this dentry into a negative dentry
2305 * - unhash this dentry and free it.
2307 * Usually, we want to just turn this into
2308 * a negative dentry, but if anybody else is
2309 * currently using the dentry or the inode
2310 * we can't do that and we fall back on removing
2311 * it from the hash queues and waiting for
2312 * it to be deleted later when it has no users
2316 * d_delete - delete a dentry
2317 * @dentry: The dentry to delete
2319 * Turn the dentry into a negative dentry if possible, otherwise
2320 * remove it from the hash queues so it can be deleted later
2323 void d_delete(struct dentry
* dentry
)
2325 struct inode
*inode
;
2328 * Are we the only user?
2331 spin_lock(&dentry
->d_lock
);
2332 inode
= dentry
->d_inode
;
2333 isdir
= S_ISDIR(inode
->i_mode
);
2334 if (dentry
->d_lockref
.count
== 1) {
2335 if (!spin_trylock(&inode
->i_lock
)) {
2336 spin_unlock(&dentry
->d_lock
);
2340 dentry
->d_flags
&= ~DCACHE_CANT_MOUNT
;
2341 dentry_unlink_inode(dentry
);
2342 fsnotify_nameremove(dentry
, isdir
);
2346 if (!d_unhashed(dentry
))
2349 spin_unlock(&dentry
->d_lock
);
2351 fsnotify_nameremove(dentry
, isdir
);
2353 EXPORT_SYMBOL(d_delete
);
2355 static void __d_rehash(struct dentry
* entry
, struct hlist_bl_head
*b
)
2357 BUG_ON(!d_unhashed(entry
));
2359 hlist_bl_add_head_rcu(&entry
->d_hash
, b
);
2363 static void _d_rehash(struct dentry
* entry
)
2365 __d_rehash(entry
, d_hash(entry
->d_name
.hash
));
2369 * d_rehash - add an entry back to the hash
2370 * @entry: dentry to add to the hash
2372 * Adds a dentry to the hash according to its name.
2375 void d_rehash(struct dentry
* entry
)
2377 spin_lock(&entry
->d_lock
);
2379 spin_unlock(&entry
->d_lock
);
2381 EXPORT_SYMBOL(d_rehash
);
2383 static inline unsigned start_dir_add(struct inode
*dir
)
2387 unsigned n
= dir
->i_dir_seq
;
2388 if (!(n
& 1) && cmpxchg(&dir
->i_dir_seq
, n
, n
+ 1) == n
)
2394 static inline void end_dir_add(struct inode
*dir
, unsigned n
)
2396 smp_store_release(&dir
->i_dir_seq
, n
+ 2);
2399 static void d_wait_lookup(struct dentry
*dentry
)
2401 if (d_in_lookup(dentry
)) {
2402 DECLARE_WAITQUEUE(wait
, current
);
2403 add_wait_queue(dentry
->d_wait
, &wait
);
2405 set_current_state(TASK_UNINTERRUPTIBLE
);
2406 spin_unlock(&dentry
->d_lock
);
2408 spin_lock(&dentry
->d_lock
);
2409 } while (d_in_lookup(dentry
));
2413 struct dentry
*d_alloc_parallel(struct dentry
*parent
,
2414 const struct qstr
*name
,
2415 wait_queue_head_t
*wq
)
2417 unsigned int hash
= name
->hash
;
2418 struct hlist_bl_head
*b
= in_lookup_hash(parent
, hash
);
2419 struct hlist_bl_node
*node
;
2420 struct dentry
*new = d_alloc(parent
, name
);
2421 struct dentry
*dentry
;
2422 unsigned seq
, r_seq
, d_seq
;
2425 return ERR_PTR(-ENOMEM
);
2429 seq
= smp_load_acquire(&parent
->d_inode
->i_dir_seq
) & ~1;
2430 r_seq
= read_seqbegin(&rename_lock
);
2431 dentry
= __d_lookup_rcu(parent
, name
, &d_seq
);
2432 if (unlikely(dentry
)) {
2433 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2437 if (read_seqcount_retry(&dentry
->d_seq
, d_seq
)) {
2446 if (unlikely(read_seqretry(&rename_lock
, r_seq
))) {
2451 if (unlikely(parent
->d_inode
->i_dir_seq
!= seq
)) {
2457 * No changes for the parent since the beginning of d_lookup().
2458 * Since all removals from the chain happen with hlist_bl_lock(),
2459 * any potential in-lookup matches are going to stay here until
2460 * we unlock the chain. All fields are stable in everything
2463 hlist_bl_for_each_entry(dentry
, node
, b
, d_u
.d_in_lookup_hash
) {
2464 if (dentry
->d_name
.hash
!= hash
)
2466 if (dentry
->d_parent
!= parent
)
2468 if (!d_same_name(dentry
, parent
, name
))
2471 /* now we can try to grab a reference */
2472 if (!lockref_get_not_dead(&dentry
->d_lockref
)) {
2479 * somebody is likely to be still doing lookup for it;
2480 * wait for them to finish
2482 spin_lock(&dentry
->d_lock
);
2483 d_wait_lookup(dentry
);
2485 * it's not in-lookup anymore; in principle we should repeat
2486 * everything from dcache lookup, but it's likely to be what
2487 * d_lookup() would've found anyway. If it is, just return it;
2488 * otherwise we really have to repeat the whole thing.
2490 if (unlikely(dentry
->d_name
.hash
!= hash
))
2492 if (unlikely(dentry
->d_parent
!= parent
))
2494 if (unlikely(d_unhashed(dentry
)))
2496 if (unlikely(!d_same_name(dentry
, parent
, name
)))
2498 /* OK, it *is* a hashed match; return it */
2499 spin_unlock(&dentry
->d_lock
);
2504 /* we can't take ->d_lock here; it's OK, though. */
2505 new->d_flags
|= DCACHE_PAR_LOOKUP
;
2507 hlist_bl_add_head_rcu(&new->d_u
.d_in_lookup_hash
, b
);
2511 spin_unlock(&dentry
->d_lock
);
2515 EXPORT_SYMBOL(d_alloc_parallel
);
2517 void __d_lookup_done(struct dentry
*dentry
)
2519 struct hlist_bl_head
*b
= in_lookup_hash(dentry
->d_parent
,
2520 dentry
->d_name
.hash
);
2522 dentry
->d_flags
&= ~DCACHE_PAR_LOOKUP
;
2523 __hlist_bl_del(&dentry
->d_u
.d_in_lookup_hash
);
2524 wake_up_all(dentry
->d_wait
);
2525 dentry
->d_wait
= NULL
;
2527 INIT_HLIST_NODE(&dentry
->d_u
.d_alias
);
2528 INIT_LIST_HEAD(&dentry
->d_lru
);
2530 EXPORT_SYMBOL(__d_lookup_done
);
2532 /* inode->i_lock held if inode is non-NULL */
2534 static inline void __d_add(struct dentry
*dentry
, struct inode
*inode
)
2536 struct inode
*dir
= NULL
;
2538 spin_lock(&dentry
->d_lock
);
2539 if (unlikely(d_in_lookup(dentry
))) {
2540 dir
= dentry
->d_parent
->d_inode
;
2541 n
= start_dir_add(dir
);
2542 __d_lookup_done(dentry
);
2545 unsigned add_flags
= d_flags_for_inode(inode
);
2546 hlist_add_head(&dentry
->d_u
.d_alias
, &inode
->i_dentry
);
2547 raw_write_seqcount_begin(&dentry
->d_seq
);
2548 __d_set_inode_and_type(dentry
, inode
, add_flags
);
2549 raw_write_seqcount_end(&dentry
->d_seq
);
2550 fsnotify_update_flags(dentry
);
2554 end_dir_add(dir
, n
);
2555 spin_unlock(&dentry
->d_lock
);
2557 spin_unlock(&inode
->i_lock
);
2561 * d_add - add dentry to hash queues
2562 * @entry: dentry to add
2563 * @inode: The inode to attach to this dentry
2565 * This adds the entry to the hash queues and initializes @inode.
2566 * The entry was actually filled in earlier during d_alloc().
2569 void d_add(struct dentry
*entry
, struct inode
*inode
)
2572 security_d_instantiate(entry
, inode
);
2573 spin_lock(&inode
->i_lock
);
2575 __d_add(entry
, inode
);
2577 EXPORT_SYMBOL(d_add
);
2580 * d_exact_alias - find and hash an exact unhashed alias
2581 * @entry: dentry to add
2582 * @inode: The inode to go with this dentry
2584 * If an unhashed dentry with the same name/parent and desired
2585 * inode already exists, hash and return it. Otherwise, return
2588 * Parent directory should be locked.
2590 struct dentry
*d_exact_alias(struct dentry
*entry
, struct inode
*inode
)
2592 struct dentry
*alias
;
2593 unsigned int hash
= entry
->d_name
.hash
;
2595 spin_lock(&inode
->i_lock
);
2596 hlist_for_each_entry(alias
, &inode
->i_dentry
, d_u
.d_alias
) {
2598 * Don't need alias->d_lock here, because aliases with
2599 * d_parent == entry->d_parent are not subject to name or
2600 * parent changes, because the parent inode i_mutex is held.
2602 if (alias
->d_name
.hash
!= hash
)
2604 if (alias
->d_parent
!= entry
->d_parent
)
2606 if (!d_same_name(alias
, entry
->d_parent
, &entry
->d_name
))
2608 spin_lock(&alias
->d_lock
);
2609 if (!d_unhashed(alias
)) {
2610 spin_unlock(&alias
->d_lock
);
2613 __dget_dlock(alias
);
2615 spin_unlock(&alias
->d_lock
);
2617 spin_unlock(&inode
->i_lock
);
2620 spin_unlock(&inode
->i_lock
);
2623 EXPORT_SYMBOL(d_exact_alias
);
2626 * dentry_update_name_case - update case insensitive dentry with a new name
2627 * @dentry: dentry to be updated
2630 * Update a case insensitive dentry with new case of name.
2632 * dentry must have been returned by d_lookup with name @name. Old and new
2633 * name lengths must match (ie. no d_compare which allows mismatched name
2636 * Parent inode i_mutex must be held over d_lookup and into this call (to
2637 * keep renames and concurrent inserts, and readdir(2) away).
2639 void dentry_update_name_case(struct dentry
*dentry
, struct qstr
*name
)
2641 BUG_ON(!inode_is_locked(dentry
->d_parent
->d_inode
));
2642 BUG_ON(dentry
->d_name
.len
!= name
->len
); /* d_lookup gives this */
2644 spin_lock(&dentry
->d_lock
);
2645 write_seqcount_begin(&dentry
->d_seq
);
2646 memcpy((unsigned char *)dentry
->d_name
.name
, name
->name
, name
->len
);
2647 write_seqcount_end(&dentry
->d_seq
);
2648 spin_unlock(&dentry
->d_lock
);
2650 EXPORT_SYMBOL(dentry_update_name_case
);
2652 static void swap_names(struct dentry
*dentry
, struct dentry
*target
)
2654 if (unlikely(dname_external(target
))) {
2655 if (unlikely(dname_external(dentry
))) {
2657 * Both external: swap the pointers
2659 swap(target
->d_name
.name
, dentry
->d_name
.name
);
2662 * dentry:internal, target:external. Steal target's
2663 * storage and make target internal.
2665 memcpy(target
->d_iname
, dentry
->d_name
.name
,
2666 dentry
->d_name
.len
+ 1);
2667 dentry
->d_name
.name
= target
->d_name
.name
;
2668 target
->d_name
.name
= target
->d_iname
;
2671 if (unlikely(dname_external(dentry
))) {
2673 * dentry:external, target:internal. Give dentry's
2674 * storage to target and make dentry internal
2676 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2677 target
->d_name
.len
+ 1);
2678 target
->d_name
.name
= dentry
->d_name
.name
;
2679 dentry
->d_name
.name
= dentry
->d_iname
;
2682 * Both are internal.
2685 BUILD_BUG_ON(!IS_ALIGNED(DNAME_INLINE_LEN
, sizeof(long)));
2686 kmemcheck_mark_initialized(dentry
->d_iname
, DNAME_INLINE_LEN
);
2687 kmemcheck_mark_initialized(target
->d_iname
, DNAME_INLINE_LEN
);
2688 for (i
= 0; i
< DNAME_INLINE_LEN
/ sizeof(long); i
++) {
2689 swap(((long *) &dentry
->d_iname
)[i
],
2690 ((long *) &target
->d_iname
)[i
]);
2694 swap(dentry
->d_name
.hash_len
, target
->d_name
.hash_len
);
2697 static void copy_name(struct dentry
*dentry
, struct dentry
*target
)
2699 struct external_name
*old_name
= NULL
;
2700 if (unlikely(dname_external(dentry
)))
2701 old_name
= external_name(dentry
);
2702 if (unlikely(dname_external(target
))) {
2703 atomic_inc(&external_name(target
)->u
.count
);
2704 dentry
->d_name
= target
->d_name
;
2706 memcpy(dentry
->d_iname
, target
->d_name
.name
,
2707 target
->d_name
.len
+ 1);
2708 dentry
->d_name
.name
= dentry
->d_iname
;
2709 dentry
->d_name
.hash_len
= target
->d_name
.hash_len
;
2711 if (old_name
&& likely(atomic_dec_and_test(&old_name
->u
.count
)))
2712 kfree_rcu(old_name
, u
.head
);
2715 static void dentry_lock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2718 * XXXX: do we really need to take target->d_lock?
2720 if (IS_ROOT(dentry
) || dentry
->d_parent
== target
->d_parent
)
2721 spin_lock(&target
->d_parent
->d_lock
);
2723 if (d_ancestor(dentry
->d_parent
, target
->d_parent
)) {
2724 spin_lock(&dentry
->d_parent
->d_lock
);
2725 spin_lock_nested(&target
->d_parent
->d_lock
,
2726 DENTRY_D_LOCK_NESTED
);
2728 spin_lock(&target
->d_parent
->d_lock
);
2729 spin_lock_nested(&dentry
->d_parent
->d_lock
,
2730 DENTRY_D_LOCK_NESTED
);
2733 if (target
< dentry
) {
2734 spin_lock_nested(&target
->d_lock
, 2);
2735 spin_lock_nested(&dentry
->d_lock
, 3);
2737 spin_lock_nested(&dentry
->d_lock
, 2);
2738 spin_lock_nested(&target
->d_lock
, 3);
2742 static void dentry_unlock_for_move(struct dentry
*dentry
, struct dentry
*target
)
2744 if (target
->d_parent
!= dentry
->d_parent
)
2745 spin_unlock(&dentry
->d_parent
->d_lock
);
2746 if (target
->d_parent
!= target
)
2747 spin_unlock(&target
->d_parent
->d_lock
);
2748 spin_unlock(&target
->d_lock
);
2749 spin_unlock(&dentry
->d_lock
);
2753 * When switching names, the actual string doesn't strictly have to
2754 * be preserved in the target - because we're dropping the target
2755 * anyway. As such, we can just do a simple memcpy() to copy over
2756 * the new name before we switch, unless we are going to rehash
2757 * it. Note that if we *do* unhash the target, we are not allowed
2758 * to rehash it without giving it a new name/hash key - whether
2759 * we swap or overwrite the names here, resulting name won't match
2760 * the reality in filesystem; it's only there for d_path() purposes.
2761 * Note that all of this is happening under rename_lock, so the
2762 * any hash lookup seeing it in the middle of manipulations will
2763 * be discarded anyway. So we do not care what happens to the hash
2767 * __d_move - move a dentry
2768 * @dentry: entry to move
2769 * @target: new dentry
2770 * @exchange: exchange the two dentries
2772 * Update the dcache to reflect the move of a file name. Negative
2773 * dcache entries should not be moved in this way. Caller must hold
2774 * rename_lock, the i_mutex of the source and target directories,
2775 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
2777 static void __d_move(struct dentry
*dentry
, struct dentry
*target
,
2780 struct inode
*dir
= NULL
;
2782 if (!dentry
->d_inode
)
2783 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
2785 BUG_ON(d_ancestor(dentry
, target
));
2786 BUG_ON(d_ancestor(target
, dentry
));
2788 dentry_lock_for_move(dentry
, target
);
2789 if (unlikely(d_in_lookup(target
))) {
2790 dir
= target
->d_parent
->d_inode
;
2791 n
= start_dir_add(dir
);
2792 __d_lookup_done(target
);
2795 write_seqcount_begin(&dentry
->d_seq
);
2796 write_seqcount_begin_nested(&target
->d_seq
, DENTRY_D_LOCK_NESTED
);
2798 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2801 * Move the dentry to the target hash queue. Don't bother checking
2802 * for the same hash queue because of how unlikely it is.
2805 __d_rehash(dentry
, d_hash(target
->d_name
.hash
));
2808 * Unhash the target (d_delete() is not usable here). If exchanging
2809 * the two dentries, then rehash onto the other's hash queue.
2813 __d_rehash(target
, d_hash(dentry
->d_name
.hash
));
2816 /* Switch the names.. */
2818 swap_names(dentry
, target
);
2820 copy_name(dentry
, target
);
2822 /* ... and switch them in the tree */
2823 if (IS_ROOT(dentry
)) {
2824 /* splicing a tree */
2825 dentry
->d_flags
|= DCACHE_RCUACCESS
;
2826 dentry
->d_parent
= target
->d_parent
;
2827 target
->d_parent
= target
;
2828 list_del_init(&target
->d_child
);
2829 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2831 /* swapping two dentries */
2832 swap(dentry
->d_parent
, target
->d_parent
);
2833 list_move(&target
->d_child
, &target
->d_parent
->d_subdirs
);
2834 list_move(&dentry
->d_child
, &dentry
->d_parent
->d_subdirs
);
2836 fsnotify_update_flags(target
);
2837 fsnotify_update_flags(dentry
);
2840 write_seqcount_end(&target
->d_seq
);
2841 write_seqcount_end(&dentry
->d_seq
);
2844 end_dir_add(dir
, n
);
2845 dentry_unlock_for_move(dentry
, target
);
2849 * d_move - move a dentry
2850 * @dentry: entry to move
2851 * @target: new dentry
2853 * Update the dcache to reflect the move of a file name. Negative
2854 * dcache entries should not be moved in this way. See the locking
2855 * requirements for __d_move.
2857 void d_move(struct dentry
*dentry
, struct dentry
*target
)
2859 write_seqlock(&rename_lock
);
2860 __d_move(dentry
, target
, false);
2861 write_sequnlock(&rename_lock
);
2863 EXPORT_SYMBOL(d_move
);
2866 * d_exchange - exchange two dentries
2867 * @dentry1: first dentry
2868 * @dentry2: second dentry
2870 void d_exchange(struct dentry
*dentry1
, struct dentry
*dentry2
)
2872 write_seqlock(&rename_lock
);
2874 WARN_ON(!dentry1
->d_inode
);
2875 WARN_ON(!dentry2
->d_inode
);
2876 WARN_ON(IS_ROOT(dentry1
));
2877 WARN_ON(IS_ROOT(dentry2
));
2879 __d_move(dentry1
, dentry2
, true);
2881 write_sequnlock(&rename_lock
);
2885 * d_ancestor - search for an ancestor
2886 * @p1: ancestor dentry
2889 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2890 * an ancestor of p2, else NULL.
2892 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
2896 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
2897 if (p
->d_parent
== p1
)
2904 * This helper attempts to cope with remotely renamed directories
2906 * It assumes that the caller is already holding
2907 * dentry->d_parent->d_inode->i_mutex, and rename_lock
2909 * Note: If ever the locking in lock_rename() changes, then please
2910 * remember to update this too...
2912 static int __d_unalias(struct inode
*inode
,
2913 struct dentry
*dentry
, struct dentry
*alias
)
2915 struct mutex
*m1
= NULL
;
2916 struct rw_semaphore
*m2
= NULL
;
2919 /* If alias and dentry share a parent, then no extra locks required */
2920 if (alias
->d_parent
== dentry
->d_parent
)
2923 /* See lock_rename() */
2924 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
2926 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
2927 if (!inode_trylock_shared(alias
->d_parent
->d_inode
))
2929 m2
= &alias
->d_parent
->d_inode
->i_rwsem
;
2931 __d_move(alias
, dentry
, false);
2942 * d_splice_alias - splice a disconnected dentry into the tree if one exists
2943 * @inode: the inode which may have a disconnected dentry
2944 * @dentry: a negative dentry which we want to point to the inode.
2946 * If inode is a directory and has an IS_ROOT alias, then d_move that in
2947 * place of the given dentry and return it, else simply d_add the inode
2948 * to the dentry and return NULL.
2950 * If a non-IS_ROOT directory is found, the filesystem is corrupt, and
2951 * we should error out: directories can't have multiple aliases.
2953 * This is needed in the lookup routine of any filesystem that is exportable
2954 * (via knfsd) so that we can build dcache paths to directories effectively.
2956 * If a dentry was found and moved, then it is returned. Otherwise NULL
2957 * is returned. This matches the expected return value of ->lookup.
2959 * Cluster filesystems may call this function with a negative, hashed dentry.
2960 * In that case, we know that the inode will be a regular file, and also this
2961 * will only occur during atomic_open. So we need to check for the dentry
2962 * being already hashed only in the final case.
2964 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
2967 return ERR_CAST(inode
);
2969 BUG_ON(!d_unhashed(dentry
));
2974 security_d_instantiate(dentry
, inode
);
2975 spin_lock(&inode
->i_lock
);
2976 if (S_ISDIR(inode
->i_mode
)) {
2977 struct dentry
*new = __d_find_any_alias(inode
);
2978 if (unlikely(new)) {
2979 /* The reference to new ensures it remains an alias */
2980 spin_unlock(&inode
->i_lock
);
2981 write_seqlock(&rename_lock
);
2982 if (unlikely(d_ancestor(new, dentry
))) {
2983 write_sequnlock(&rename_lock
);
2985 new = ERR_PTR(-ELOOP
);
2986 pr_warn_ratelimited(
2987 "VFS: Lookup of '%s' in %s %s"
2988 " would have caused loop\n",
2989 dentry
->d_name
.name
,
2990 inode
->i_sb
->s_type
->name
,
2992 } else if (!IS_ROOT(new)) {
2993 int err
= __d_unalias(inode
, dentry
, new);
2994 write_sequnlock(&rename_lock
);
3000 __d_move(new, dentry
, false);
3001 write_sequnlock(&rename_lock
);
3008 __d_add(dentry
, inode
);
3011 EXPORT_SYMBOL(d_splice_alias
);
3013 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
3017 return -ENAMETOOLONG
;
3019 memcpy(*buffer
, str
, namelen
);
3024 * prepend_name - prepend a pathname in front of current buffer pointer
3025 * @buffer: buffer pointer
3026 * @buflen: allocated length of the buffer
3027 * @name: name string and length qstr structure
3029 * With RCU path tracing, it may race with d_move(). Use ACCESS_ONCE() to
3030 * make sure that either the old or the new name pointer and length are
3031 * fetched. However, there may be mismatch between length and pointer.
3032 * The length cannot be trusted, we need to copy it byte-by-byte until
3033 * the length is reached or a null byte is found. It also prepends "/" at
3034 * the beginning of the name. The sequence number check at the caller will
3035 * retry it again when a d_move() does happen. So any garbage in the buffer
3036 * due to mismatched pointer and length will be discarded.
3038 * Data dependency barrier is needed to make sure that we see that terminating
3039 * NUL. Alpha strikes again, film at 11...
3041 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
3043 const char *dname
= ACCESS_ONCE(name
->name
);
3044 u32 dlen
= ACCESS_ONCE(name
->len
);
3047 smp_read_barrier_depends();
3049 *buflen
-= dlen
+ 1;
3051 return -ENAMETOOLONG
;
3052 p
= *buffer
-= dlen
+ 1;
3064 * prepend_path - Prepend path string to a buffer
3065 * @path: the dentry/vfsmount to report
3066 * @root: root vfsmnt/dentry
3067 * @buffer: pointer to the end of the buffer
3068 * @buflen: pointer to buffer length
3070 * The function will first try to write out the pathname without taking any
3071 * lock other than the RCU read lock to make sure that dentries won't go away.
3072 * It only checks the sequence number of the global rename_lock as any change
3073 * in the dentry's d_seq will be preceded by changes in the rename_lock
3074 * sequence number. If the sequence number had been changed, it will restart
3075 * the whole pathname back-tracing sequence again by taking the rename_lock.
3076 * In this case, there is no need to take the RCU read lock as the recursive
3077 * parent pointer references will keep the dentry chain alive as long as no
3078 * rename operation is performed.
3080 static int prepend_path(const struct path
*path
,
3081 const struct path
*root
,
3082 char **buffer
, int *buflen
)
3084 struct dentry
*dentry
;
3085 struct vfsmount
*vfsmnt
;
3088 unsigned seq
, m_seq
= 0;
3094 read_seqbegin_or_lock(&mount_lock
, &m_seq
);
3101 dentry
= path
->dentry
;
3103 mnt
= real_mount(vfsmnt
);
3104 read_seqbegin_or_lock(&rename_lock
, &seq
);
3105 while (dentry
!= root
->dentry
|| vfsmnt
!= root
->mnt
) {
3106 struct dentry
* parent
;
3108 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
3109 struct mount
*parent
= ACCESS_ONCE(mnt
->mnt_parent
);
3111 if (dentry
!= vfsmnt
->mnt_root
) {
3118 if (mnt
!= parent
) {
3119 dentry
= ACCESS_ONCE(mnt
->mnt_mountpoint
);
3125 error
= is_mounted(vfsmnt
) ? 1 : 2;
3128 parent
= dentry
->d_parent
;
3130 error
= prepend_name(&bptr
, &blen
, &dentry
->d_name
);
3138 if (need_seqretry(&rename_lock
, seq
)) {
3142 done_seqretry(&rename_lock
, seq
);
3146 if (need_seqretry(&mount_lock
, m_seq
)) {
3150 done_seqretry(&mount_lock
, m_seq
);
3152 if (error
>= 0 && bptr
== *buffer
) {
3154 error
= -ENAMETOOLONG
;
3164 * __d_path - return the path of a dentry
3165 * @path: the dentry/vfsmount to report
3166 * @root: root vfsmnt/dentry
3167 * @buf: buffer to return value in
3168 * @buflen: buffer length
3170 * Convert a dentry into an ASCII path name.
3172 * Returns a pointer into the buffer or an error code if the
3173 * path was too long.
3175 * "buflen" should be positive.
3177 * If the path is not reachable from the supplied root, return %NULL.
3179 char *__d_path(const struct path
*path
,
3180 const struct path
*root
,
3181 char *buf
, int buflen
)
3183 char *res
= buf
+ buflen
;
3186 prepend(&res
, &buflen
, "\0", 1);
3187 error
= prepend_path(path
, root
, &res
, &buflen
);
3190 return ERR_PTR(error
);
3196 char *d_absolute_path(const struct path
*path
,
3197 char *buf
, int buflen
)
3199 struct path root
= {};
3200 char *res
= buf
+ buflen
;
3203 prepend(&res
, &buflen
, "\0", 1);
3204 error
= prepend_path(path
, &root
, &res
, &buflen
);
3209 return ERR_PTR(error
);
3214 * same as __d_path but appends "(deleted)" for unlinked files.
3216 static int path_with_deleted(const struct path
*path
,
3217 const struct path
*root
,
3218 char **buf
, int *buflen
)
3220 prepend(buf
, buflen
, "\0", 1);
3221 if (d_unlinked(path
->dentry
)) {
3222 int error
= prepend(buf
, buflen
, " (deleted)", 10);
3227 return prepend_path(path
, root
, buf
, buflen
);
3230 static int prepend_unreachable(char **buffer
, int *buflen
)
3232 return prepend(buffer
, buflen
, "(unreachable)", 13);
3235 static void get_fs_root_rcu(struct fs_struct
*fs
, struct path
*root
)
3240 seq
= read_seqcount_begin(&fs
->seq
);
3242 } while (read_seqcount_retry(&fs
->seq
, seq
));
3246 * d_path - return the path of a dentry
3247 * @path: path to report
3248 * @buf: buffer to return value in
3249 * @buflen: buffer length
3251 * Convert a dentry into an ASCII path name. If the entry has been deleted
3252 * the string " (deleted)" is appended. Note that this is ambiguous.
3254 * Returns a pointer into the buffer or an error code if the path was
3255 * too long. Note: Callers should use the returned pointer, not the passed
3256 * in buffer, to use the name! The implementation often starts at an offset
3257 * into the buffer, and may leave 0 bytes at the start.
3259 * "buflen" should be positive.
3261 char *d_path(const struct path
*path
, char *buf
, int buflen
)
3263 char *res
= buf
+ buflen
;
3268 * We have various synthetic filesystems that never get mounted. On
3269 * these filesystems dentries are never used for lookup purposes, and
3270 * thus don't need to be hashed. They also don't need a name until a
3271 * user wants to identify the object in /proc/pid/fd/. The little hack
3272 * below allows us to generate a name for these objects on demand:
3274 * Some pseudo inodes are mountable. When they are mounted
3275 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
3276 * and instead have d_path return the mounted path.
3278 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
&&
3279 (!IS_ROOT(path
->dentry
) || path
->dentry
!= path
->mnt
->mnt_root
))
3280 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
3283 get_fs_root_rcu(current
->fs
, &root
);
3284 error
= path_with_deleted(path
, &root
, &res
, &buflen
);
3288 res
= ERR_PTR(error
);
3291 EXPORT_SYMBOL(d_path
);
3294 * Helper function for dentry_operations.d_dname() members
3296 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
3297 const char *fmt
, ...)
3303 va_start(args
, fmt
);
3304 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
3307 if (sz
> sizeof(temp
) || sz
> buflen
)
3308 return ERR_PTR(-ENAMETOOLONG
);
3310 buffer
+= buflen
- sz
;
3311 return memcpy(buffer
, temp
, sz
);
3314 char *simple_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
3316 char *end
= buffer
+ buflen
;
3317 /* these dentries are never renamed, so d_lock is not needed */
3318 if (prepend(&end
, &buflen
, " (deleted)", 11) ||
3319 prepend(&end
, &buflen
, dentry
->d_name
.name
, dentry
->d_name
.len
) ||
3320 prepend(&end
, &buflen
, "/", 1))
3321 end
= ERR_PTR(-ENAMETOOLONG
);
3324 EXPORT_SYMBOL(simple_dname
);
3327 * Write full pathname from the root of the filesystem into the buffer.
3329 static char *__dentry_path(struct dentry
*d
, char *buf
, int buflen
)
3331 struct dentry
*dentry
;
3344 prepend(&end
, &len
, "\0", 1);
3348 read_seqbegin_or_lock(&rename_lock
, &seq
);
3349 while (!IS_ROOT(dentry
)) {
3350 struct dentry
*parent
= dentry
->d_parent
;
3353 error
= prepend_name(&end
, &len
, &dentry
->d_name
);
3362 if (need_seqretry(&rename_lock
, seq
)) {
3366 done_seqretry(&rename_lock
, seq
);
3371 return ERR_PTR(-ENAMETOOLONG
);
3374 char *dentry_path_raw(struct dentry
*dentry
, char *buf
, int buflen
)
3376 return __dentry_path(dentry
, buf
, buflen
);
3378 EXPORT_SYMBOL(dentry_path_raw
);
3380 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
3385 if (d_unlinked(dentry
)) {
3387 if (prepend(&p
, &buflen
, "//deleted", 10) != 0)
3391 retval
= __dentry_path(dentry
, buf
, buflen
);
3392 if (!IS_ERR(retval
) && p
)
3393 *p
= '/'; /* restore '/' overriden with '\0' */
3396 return ERR_PTR(-ENAMETOOLONG
);
3399 static void get_fs_root_and_pwd_rcu(struct fs_struct
*fs
, struct path
*root
,
3405 seq
= read_seqcount_begin(&fs
->seq
);
3408 } while (read_seqcount_retry(&fs
->seq
, seq
));
3412 * NOTE! The user-level library version returns a
3413 * character pointer. The kernel system call just
3414 * returns the length of the buffer filled (which
3415 * includes the ending '\0' character), or a negative
3416 * error value. So libc would do something like
3418 * char *getcwd(char * buf, size_t size)
3422 * retval = sys_getcwd(buf, size);
3429 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
3432 struct path pwd
, root
;
3433 char *page
= __getname();
3439 get_fs_root_and_pwd_rcu(current
->fs
, &root
, &pwd
);
3442 if (!d_unlinked(pwd
.dentry
)) {
3444 char *cwd
= page
+ PATH_MAX
;
3445 int buflen
= PATH_MAX
;
3447 prepend(&cwd
, &buflen
, "\0", 1);
3448 error
= prepend_path(&pwd
, &root
, &cwd
, &buflen
);
3454 /* Unreachable from current root */
3456 error
= prepend_unreachable(&cwd
, &buflen
);
3462 len
= PATH_MAX
+ page
- cwd
;
3465 if (copy_to_user(buf
, cwd
, len
))
3478 * Test whether new_dentry is a subdirectory of old_dentry.
3480 * Trivially implemented using the dcache structure
3484 * is_subdir - is new dentry a subdirectory of old_dentry
3485 * @new_dentry: new dentry
3486 * @old_dentry: old dentry
3488 * Returns true if new_dentry is a subdirectory of the parent (at any depth).
3489 * Returns false otherwise.
3490 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
3493 bool is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
3498 if (new_dentry
== old_dentry
)
3502 /* for restarting inner loop in case of seq retry */
3503 seq
= read_seqbegin(&rename_lock
);
3505 * Need rcu_readlock to protect against the d_parent trashing
3509 if (d_ancestor(old_dentry
, new_dentry
))
3514 } while (read_seqretry(&rename_lock
, seq
));
3519 static enum d_walk_ret
d_genocide_kill(void *data
, struct dentry
*dentry
)
3521 struct dentry
*root
= data
;
3522 if (dentry
!= root
) {
3523 if (d_unhashed(dentry
) || !dentry
->d_inode
)
3526 if (!(dentry
->d_flags
& DCACHE_GENOCIDE
)) {
3527 dentry
->d_flags
|= DCACHE_GENOCIDE
;
3528 dentry
->d_lockref
.count
--;
3531 return D_WALK_CONTINUE
;
3534 void d_genocide(struct dentry
*parent
)
3536 d_walk(parent
, parent
, d_genocide_kill
, NULL
);
3539 void d_tmpfile(struct dentry
*dentry
, struct inode
*inode
)
3541 inode_dec_link_count(inode
);
3542 BUG_ON(dentry
->d_name
.name
!= dentry
->d_iname
||
3543 !hlist_unhashed(&dentry
->d_u
.d_alias
) ||
3544 !d_unlinked(dentry
));
3545 spin_lock(&dentry
->d_parent
->d_lock
);
3546 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
3547 dentry
->d_name
.len
= sprintf(dentry
->d_iname
, "#%llu",
3548 (unsigned long long)inode
->i_ino
);
3549 spin_unlock(&dentry
->d_lock
);
3550 spin_unlock(&dentry
->d_parent
->d_lock
);
3551 d_instantiate(dentry
, inode
);
3553 EXPORT_SYMBOL(d_tmpfile
);
3555 static __initdata
unsigned long dhash_entries
;
3556 static int __init
set_dhash_entries(char *str
)
3560 dhash_entries
= simple_strtoul(str
, &str
, 0);
3563 __setup("dhash_entries=", set_dhash_entries
);
3565 static void __init
dcache_init_early(void)
3569 /* If hashes are distributed across NUMA nodes, defer
3570 * hash allocation until vmalloc space is available.
3576 alloc_large_system_hash("Dentry cache",
3577 sizeof(struct hlist_bl_head
),
3586 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3587 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3590 static void __init
dcache_init(void)
3595 * A constructor could be added for stable state like the lists,
3596 * but it is probably not worth it because of the cache nature
3599 dentry_cache
= KMEM_CACHE(dentry
,
3600 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
|SLAB_ACCOUNT
);
3602 /* Hash may have been set up in dcache_init_early */
3607 alloc_large_system_hash("Dentry cache",
3608 sizeof(struct hlist_bl_head
),
3617 for (loop
= 0; loop
< (1U << d_hash_shift
); loop
++)
3618 INIT_HLIST_BL_HEAD(dentry_hashtable
+ loop
);
3621 /* SLAB cache for __getname() consumers */
3622 struct kmem_cache
*names_cachep __read_mostly
;
3623 EXPORT_SYMBOL(names_cachep
);
3625 EXPORT_SYMBOL(d_genocide
);
3627 void __init
vfs_caches_init_early(void)
3629 dcache_init_early();
3633 void __init
vfs_caches_init(void)
3635 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
3636 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
3641 files_maxfiles_init();