6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/slab.h>
13 #include <linux/backing-dev.h>
15 #include <linux/vmacache.h>
16 #include <linux/shm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/syscalls.h>
21 #include <linux/capability.h>
22 #include <linux/init.h>
23 #include <linux/file.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/hugetlb.h>
28 #include <linux/profile.h>
29 #include <linux/export.h>
30 #include <linux/mount.h>
31 #include <linux/mempolicy.h>
32 #include <linux/rmap.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/perf_event.h>
35 #include <linux/audit.h>
36 #include <linux/khugepaged.h>
37 #include <linux/uprobes.h>
38 #include <linux/rbtree_augmented.h>
39 #include <linux/sched/sysctl.h>
40 #include <linux/notifier.h>
41 #include <linux/memory.h>
42 #include <linux/printk.h>
44 #include <asm/uaccess.h>
45 #include <asm/cacheflush.h>
47 #include <asm/mmu_context.h>
51 #ifndef arch_mmap_check
52 #define arch_mmap_check(addr, len, flags) (0)
55 #ifndef arch_rebalance_pgtables
56 #define arch_rebalance_pgtables(addr, len) (addr)
59 static void unmap_region(struct mm_struct
*mm
,
60 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
61 unsigned long start
, unsigned long end
);
63 /* description of effects of mapping type and prot in current implementation.
64 * this is due to the limited x86 page protection hardware. The expected
65 * behavior is in parens:
68 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
69 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
70 * w: (no) no w: (no) no w: (yes) yes w: (no) no
71 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
73 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
74 * w: (no) no w: (no) no w: (copy) copy w: (no) no
75 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
78 pgprot_t protection_map
[16] = {
79 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
80 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
83 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
85 return __pgprot(pgprot_val(protection_map
[vm_flags
&
86 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
87 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
89 EXPORT_SYMBOL(vm_get_page_prot
);
91 int sysctl_overcommit_memory __read_mostly
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
92 int sysctl_overcommit_ratio __read_mostly
= 50; /* default is 50% */
93 unsigned long sysctl_overcommit_kbytes __read_mostly
;
94 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
95 unsigned long sysctl_user_reserve_kbytes __read_mostly
= 1UL << 17; /* 128MB */
96 unsigned long sysctl_admin_reserve_kbytes __read_mostly
= 1UL << 13; /* 8MB */
98 * Make sure vm_committed_as in one cacheline and not cacheline shared with
99 * other variables. It can be updated by several CPUs frequently.
101 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp
;
104 * The global memory commitment made in the system can be a metric
105 * that can be used to drive ballooning decisions when Linux is hosted
106 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
107 * balancing memory across competing virtual machines that are hosted.
108 * Several metrics drive this policy engine including the guest reported
111 unsigned long vm_memory_committed(void)
113 return percpu_counter_read_positive(&vm_committed_as
);
115 EXPORT_SYMBOL_GPL(vm_memory_committed
);
118 * Check that a process has enough memory to allocate a new virtual
119 * mapping. 0 means there is enough memory for the allocation to
120 * succeed and -ENOMEM implies there is not.
122 * We currently support three overcommit policies, which are set via the
123 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
125 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
126 * Additional code 2002 Jul 20 by Robert Love.
128 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
130 * Note this is a helper function intended to be used by LSMs which
131 * wish to use this logic.
133 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
135 unsigned long free
, allowed
, reserve
;
137 vm_acct_memory(pages
);
140 * Sometimes we want to use more memory than we have
142 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
145 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
146 free
= global_page_state(NR_FREE_PAGES
);
147 free
+= global_page_state(NR_FILE_PAGES
);
150 * shmem pages shouldn't be counted as free in this
151 * case, they can't be purged, only swapped out, and
152 * that won't affect the overall amount of available
153 * memory in the system.
155 free
-= global_page_state(NR_SHMEM
);
157 free
+= get_nr_swap_pages();
160 * Any slabs which are created with the
161 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
162 * which are reclaimable, under pressure. The dentry
163 * cache and most inode caches should fall into this
165 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
168 * Leave reserved pages. The pages are not for anonymous pages.
170 if (free
<= totalreserve_pages
)
173 free
-= totalreserve_pages
;
176 * Reserve some for root
179 free
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
187 allowed
= vm_commit_limit();
189 * Reserve some for root
192 allowed
-= sysctl_admin_reserve_kbytes
>> (PAGE_SHIFT
- 10);
195 * Don't let a single process grow so big a user can't recover
198 reserve
= sysctl_user_reserve_kbytes
>> (PAGE_SHIFT
- 10);
199 allowed
-= min(mm
->total_vm
/ 32, reserve
);
202 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
205 vm_unacct_memory(pages
);
211 * Requires inode->i_mapping->i_mmap_mutex
213 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
214 struct file
*file
, struct address_space
*mapping
)
216 if (vma
->vm_flags
& VM_DENYWRITE
)
217 atomic_inc(&file_inode(file
)->i_writecount
);
218 if (vma
->vm_flags
& VM_SHARED
)
219 mapping
->i_mmap_writable
--;
221 flush_dcache_mmap_lock(mapping
);
222 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
223 list_del_init(&vma
->shared
.nonlinear
);
225 vma_interval_tree_remove(vma
, &mapping
->i_mmap
);
226 flush_dcache_mmap_unlock(mapping
);
230 * Unlink a file-based vm structure from its interval tree, to hide
231 * vma from rmap and vmtruncate before freeing its page tables.
233 void unlink_file_vma(struct vm_area_struct
*vma
)
235 struct file
*file
= vma
->vm_file
;
238 struct address_space
*mapping
= file
->f_mapping
;
239 mutex_lock(&mapping
->i_mmap_mutex
);
240 __remove_shared_vm_struct(vma
, file
, mapping
);
241 mutex_unlock(&mapping
->i_mmap_mutex
);
246 * Close a vm structure and free it, returning the next.
248 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
250 struct vm_area_struct
*next
= vma
->vm_next
;
253 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
254 vma
->vm_ops
->close(vma
);
257 mpol_put(vma_policy(vma
));
258 kmem_cache_free(vm_area_cachep
, vma
);
262 static unsigned long do_brk(unsigned long addr
, unsigned long len
);
264 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
266 unsigned long rlim
, retval
;
267 unsigned long newbrk
, oldbrk
;
268 struct mm_struct
*mm
= current
->mm
;
269 unsigned long min_brk
;
272 down_write(&mm
->mmap_sem
);
274 #ifdef CONFIG_COMPAT_BRK
276 * CONFIG_COMPAT_BRK can still be overridden by setting
277 * randomize_va_space to 2, which will still cause mm->start_brk
278 * to be arbitrarily shifted
280 if (current
->brk_randomized
)
281 min_brk
= mm
->start_brk
;
283 min_brk
= mm
->end_data
;
285 min_brk
= mm
->start_brk
;
291 * Check against rlimit here. If this check is done later after the test
292 * of oldbrk with newbrk then it can escape the test and let the data
293 * segment grow beyond its set limit the in case where the limit is
294 * not page aligned -Ram Gupta
296 rlim
= rlimit(RLIMIT_DATA
);
297 if (rlim
< RLIM_INFINITY
&& (brk
- mm
->start_brk
) +
298 (mm
->end_data
- mm
->start_data
) > rlim
)
301 newbrk
= PAGE_ALIGN(brk
);
302 oldbrk
= PAGE_ALIGN(mm
->brk
);
303 if (oldbrk
== newbrk
)
306 /* Always allow shrinking brk. */
307 if (brk
<= mm
->brk
) {
308 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
313 /* Check against existing mmap mappings. */
314 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
317 /* Ok, looks good - let it rip. */
318 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
323 populate
= newbrk
> oldbrk
&& (mm
->def_flags
& VM_LOCKED
) != 0;
324 up_write(&mm
->mmap_sem
);
326 mm_populate(oldbrk
, newbrk
- oldbrk
);
331 up_write(&mm
->mmap_sem
);
335 static long vma_compute_subtree_gap(struct vm_area_struct
*vma
)
337 unsigned long max
, subtree_gap
;
340 max
-= vma
->vm_prev
->vm_end
;
341 if (vma
->vm_rb
.rb_left
) {
342 subtree_gap
= rb_entry(vma
->vm_rb
.rb_left
,
343 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
344 if (subtree_gap
> max
)
347 if (vma
->vm_rb
.rb_right
) {
348 subtree_gap
= rb_entry(vma
->vm_rb
.rb_right
,
349 struct vm_area_struct
, vm_rb
)->rb_subtree_gap
;
350 if (subtree_gap
> max
)
356 #ifdef CONFIG_DEBUG_VM_RB
357 static int browse_rb(struct rb_root
*root
)
359 int i
= 0, j
, bug
= 0;
360 struct rb_node
*nd
, *pn
= NULL
;
361 unsigned long prev
= 0, pend
= 0;
363 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
364 struct vm_area_struct
*vma
;
365 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
366 if (vma
->vm_start
< prev
) {
367 pr_info("vm_start %lx prev %lx\n", vma
->vm_start
, prev
);
370 if (vma
->vm_start
< pend
) {
371 pr_info("vm_start %lx pend %lx\n", vma
->vm_start
, pend
);
374 if (vma
->vm_start
> vma
->vm_end
) {
375 pr_info("vm_end %lx < vm_start %lx\n",
376 vma
->vm_end
, vma
->vm_start
);
379 if (vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
)) {
380 pr_info("free gap %lx, correct %lx\n",
382 vma_compute_subtree_gap(vma
));
387 prev
= vma
->vm_start
;
391 for (nd
= pn
; nd
; nd
= rb_prev(nd
))
394 pr_info("backwards %d, forwards %d\n", j
, i
);
400 static void validate_mm_rb(struct rb_root
*root
, struct vm_area_struct
*ignore
)
404 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
405 struct vm_area_struct
*vma
;
406 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
407 BUG_ON(vma
!= ignore
&&
408 vma
->rb_subtree_gap
!= vma_compute_subtree_gap(vma
));
412 static void validate_mm(struct mm_struct
*mm
)
416 unsigned long highest_address
= 0;
417 struct vm_area_struct
*vma
= mm
->mmap
;
419 struct anon_vma_chain
*avc
;
420 vma_lock_anon_vma(vma
);
421 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
422 anon_vma_interval_tree_verify(avc
);
423 vma_unlock_anon_vma(vma
);
424 highest_address
= vma
->vm_end
;
428 if (i
!= mm
->map_count
) {
429 pr_info("map_count %d vm_next %d\n", mm
->map_count
, i
);
432 if (highest_address
!= mm
->highest_vm_end
) {
433 pr_info("mm->highest_vm_end %lx, found %lx\n",
434 mm
->highest_vm_end
, highest_address
);
437 i
= browse_rb(&mm
->mm_rb
);
438 if (i
!= mm
->map_count
) {
439 pr_info("map_count %d rb %d\n", mm
->map_count
, i
);
445 #define validate_mm_rb(root, ignore) do { } while (0)
446 #define validate_mm(mm) do { } while (0)
449 RB_DECLARE_CALLBACKS(static, vma_gap_callbacks
, struct vm_area_struct
, vm_rb
,
450 unsigned long, rb_subtree_gap
, vma_compute_subtree_gap
)
453 * Update augmented rbtree rb_subtree_gap values after vma->vm_start or
454 * vma->vm_prev->vm_end values changed, without modifying the vma's position
457 static void vma_gap_update(struct vm_area_struct
*vma
)
460 * As it turns out, RB_DECLARE_CALLBACKS() already created a callback
461 * function that does exacltly what we want.
463 vma_gap_callbacks_propagate(&vma
->vm_rb
, NULL
);
466 static inline void vma_rb_insert(struct vm_area_struct
*vma
,
467 struct rb_root
*root
)
469 /* All rb_subtree_gap values must be consistent prior to insertion */
470 validate_mm_rb(root
, NULL
);
472 rb_insert_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
475 static void vma_rb_erase(struct vm_area_struct
*vma
, struct rb_root
*root
)
478 * All rb_subtree_gap values must be consistent prior to erase,
479 * with the possible exception of the vma being erased.
481 validate_mm_rb(root
, vma
);
484 * Note rb_erase_augmented is a fairly large inline function,
485 * so make sure we instantiate it only once with our desired
486 * augmented rbtree callbacks.
488 rb_erase_augmented(&vma
->vm_rb
, root
, &vma_gap_callbacks
);
492 * vma has some anon_vma assigned, and is already inserted on that
493 * anon_vma's interval trees.
495 * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
496 * vma must be removed from the anon_vma's interval trees using
497 * anon_vma_interval_tree_pre_update_vma().
499 * After the update, the vma will be reinserted using
500 * anon_vma_interval_tree_post_update_vma().
502 * The entire update must be protected by exclusive mmap_sem and by
503 * the root anon_vma's mutex.
506 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct
*vma
)
508 struct anon_vma_chain
*avc
;
510 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
511 anon_vma_interval_tree_remove(avc
, &avc
->anon_vma
->rb_root
);
515 anon_vma_interval_tree_post_update_vma(struct vm_area_struct
*vma
)
517 struct anon_vma_chain
*avc
;
519 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
520 anon_vma_interval_tree_insert(avc
, &avc
->anon_vma
->rb_root
);
523 static int find_vma_links(struct mm_struct
*mm
, unsigned long addr
,
524 unsigned long end
, struct vm_area_struct
**pprev
,
525 struct rb_node
***rb_link
, struct rb_node
**rb_parent
)
527 struct rb_node
**__rb_link
, *__rb_parent
, *rb_prev
;
529 __rb_link
= &mm
->mm_rb
.rb_node
;
530 rb_prev
= __rb_parent
= NULL
;
533 struct vm_area_struct
*vma_tmp
;
535 __rb_parent
= *__rb_link
;
536 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
538 if (vma_tmp
->vm_end
> addr
) {
539 /* Fail if an existing vma overlaps the area */
540 if (vma_tmp
->vm_start
< end
)
542 __rb_link
= &__rb_parent
->rb_left
;
544 rb_prev
= __rb_parent
;
545 __rb_link
= &__rb_parent
->rb_right
;
551 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
552 *rb_link
= __rb_link
;
553 *rb_parent
= __rb_parent
;
557 static unsigned long count_vma_pages_range(struct mm_struct
*mm
,
558 unsigned long addr
, unsigned long end
)
560 unsigned long nr_pages
= 0;
561 struct vm_area_struct
*vma
;
563 /* Find first overlaping mapping */
564 vma
= find_vma_intersection(mm
, addr
, end
);
568 nr_pages
= (min(end
, vma
->vm_end
) -
569 max(addr
, vma
->vm_start
)) >> PAGE_SHIFT
;
571 /* Iterate over the rest of the overlaps */
572 for (vma
= vma
->vm_next
; vma
; vma
= vma
->vm_next
) {
573 unsigned long overlap_len
;
575 if (vma
->vm_start
> end
)
578 overlap_len
= min(end
, vma
->vm_end
) - vma
->vm_start
;
579 nr_pages
+= overlap_len
>> PAGE_SHIFT
;
585 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
586 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
588 /* Update tracking information for the gap following the new vma. */
590 vma_gap_update(vma
->vm_next
);
592 mm
->highest_vm_end
= vma
->vm_end
;
595 * vma->vm_prev wasn't known when we followed the rbtree to find the
596 * correct insertion point for that vma. As a result, we could not
597 * update the vma vm_rb parents rb_subtree_gap values on the way down.
598 * So, we first insert the vma with a zero rb_subtree_gap value
599 * (to be consistent with what we did on the way down), and then
600 * immediately update the gap to the correct value. Finally we
601 * rebalance the rbtree after all augmented values have been set.
603 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
604 vma
->rb_subtree_gap
= 0;
606 vma_rb_insert(vma
, &mm
->mm_rb
);
609 static void __vma_link_file(struct vm_area_struct
*vma
)
615 struct address_space
*mapping
= file
->f_mapping
;
617 if (vma
->vm_flags
& VM_DENYWRITE
)
618 atomic_dec(&file_inode(file
)->i_writecount
);
619 if (vma
->vm_flags
& VM_SHARED
)
620 mapping
->i_mmap_writable
++;
622 flush_dcache_mmap_lock(mapping
);
623 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
624 vma_nonlinear_insert(vma
, &mapping
->i_mmap_nonlinear
);
626 vma_interval_tree_insert(vma
, &mapping
->i_mmap
);
627 flush_dcache_mmap_unlock(mapping
);
632 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
633 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
634 struct rb_node
*rb_parent
)
636 __vma_link_list(mm
, vma
, prev
, rb_parent
);
637 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
640 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
641 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
642 struct rb_node
*rb_parent
)
644 struct address_space
*mapping
= NULL
;
647 mapping
= vma
->vm_file
->f_mapping
;
648 mutex_lock(&mapping
->i_mmap_mutex
);
651 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
652 __vma_link_file(vma
);
655 mutex_unlock(&mapping
->i_mmap_mutex
);
662 * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
663 * mm's list and rbtree. It has already been inserted into the interval tree.
665 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
667 struct vm_area_struct
*prev
;
668 struct rb_node
**rb_link
, *rb_parent
;
670 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
671 &prev
, &rb_link
, &rb_parent
))
673 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
678 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
679 struct vm_area_struct
*prev
)
681 struct vm_area_struct
*next
;
683 vma_rb_erase(vma
, &mm
->mm_rb
);
684 prev
->vm_next
= next
= vma
->vm_next
;
686 next
->vm_prev
= prev
;
689 vmacache_invalidate(mm
);
693 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
694 * is already present in an i_mmap tree without adjusting the tree.
695 * The following helper function should be used when such adjustments
696 * are necessary. The "insert" vma (if any) is to be inserted
697 * before we drop the necessary locks.
699 int vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
700 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
702 struct mm_struct
*mm
= vma
->vm_mm
;
703 struct vm_area_struct
*next
= vma
->vm_next
;
704 struct vm_area_struct
*importer
= NULL
;
705 struct address_space
*mapping
= NULL
;
706 struct rb_root
*root
= NULL
;
707 struct anon_vma
*anon_vma
= NULL
;
708 struct file
*file
= vma
->vm_file
;
709 bool start_changed
= false, end_changed
= false;
710 long adjust_next
= 0;
713 if (next
&& !insert
) {
714 struct vm_area_struct
*exporter
= NULL
;
716 if (end
>= next
->vm_end
) {
718 * vma expands, overlapping all the next, and
719 * perhaps the one after too (mprotect case 6).
721 again
: remove_next
= 1 + (end
> next
->vm_end
);
725 } else if (end
> next
->vm_start
) {
727 * vma expands, overlapping part of the next:
728 * mprotect case 5 shifting the boundary up.
730 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
733 } else if (end
< vma
->vm_end
) {
735 * vma shrinks, and !insert tells it's not
736 * split_vma inserting another: so it must be
737 * mprotect case 4 shifting the boundary down.
739 adjust_next
= - ((vma
->vm_end
- end
) >> PAGE_SHIFT
);
745 * Easily overlooked: when mprotect shifts the boundary,
746 * make sure the expanding vma has anon_vma set if the
747 * shrinking vma had, to cover any anon pages imported.
749 if (exporter
&& exporter
->anon_vma
&& !importer
->anon_vma
) {
750 if (anon_vma_clone(importer
, exporter
))
752 importer
->anon_vma
= exporter
->anon_vma
;
757 mapping
= file
->f_mapping
;
758 if (!(vma
->vm_flags
& VM_NONLINEAR
)) {
759 root
= &mapping
->i_mmap
;
760 uprobe_munmap(vma
, vma
->vm_start
, vma
->vm_end
);
763 uprobe_munmap(next
, next
->vm_start
,
767 mutex_lock(&mapping
->i_mmap_mutex
);
770 * Put into interval tree now, so instantiated pages
771 * are visible to arm/parisc __flush_dcache_page
772 * throughout; but we cannot insert into address
773 * space until vma start or end is updated.
775 __vma_link_file(insert
);
779 vma_adjust_trans_huge(vma
, start
, end
, adjust_next
);
781 anon_vma
= vma
->anon_vma
;
782 if (!anon_vma
&& adjust_next
)
783 anon_vma
= next
->anon_vma
;
785 VM_BUG_ON(adjust_next
&& next
->anon_vma
&&
786 anon_vma
!= next
->anon_vma
);
787 anon_vma_lock_write(anon_vma
);
788 anon_vma_interval_tree_pre_update_vma(vma
);
790 anon_vma_interval_tree_pre_update_vma(next
);
794 flush_dcache_mmap_lock(mapping
);
795 vma_interval_tree_remove(vma
, root
);
797 vma_interval_tree_remove(next
, root
);
800 if (start
!= vma
->vm_start
) {
801 vma
->vm_start
= start
;
802 start_changed
= true;
804 if (end
!= vma
->vm_end
) {
808 vma
->vm_pgoff
= pgoff
;
810 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
811 next
->vm_pgoff
+= adjust_next
;
816 vma_interval_tree_insert(next
, root
);
817 vma_interval_tree_insert(vma
, root
);
818 flush_dcache_mmap_unlock(mapping
);
823 * vma_merge has merged next into vma, and needs
824 * us to remove next before dropping the locks.
826 __vma_unlink(mm
, next
, vma
);
828 __remove_shared_vm_struct(next
, file
, mapping
);
831 * split_vma has split insert from vma, and needs
832 * us to insert it before dropping the locks
833 * (it may either follow vma or precede it).
835 __insert_vm_struct(mm
, insert
);
841 mm
->highest_vm_end
= end
;
842 else if (!adjust_next
)
843 vma_gap_update(next
);
848 anon_vma_interval_tree_post_update_vma(vma
);
850 anon_vma_interval_tree_post_update_vma(next
);
851 anon_vma_unlock_write(anon_vma
);
854 mutex_unlock(&mapping
->i_mmap_mutex
);
865 uprobe_munmap(next
, next
->vm_start
, next
->vm_end
);
869 anon_vma_merge(vma
, next
);
871 mpol_put(vma_policy(next
));
872 kmem_cache_free(vm_area_cachep
, next
);
874 * In mprotect's case 6 (see comments on vma_merge),
875 * we must remove another next too. It would clutter
876 * up the code too much to do both in one go.
879 if (remove_next
== 2)
882 vma_gap_update(next
);
884 mm
->highest_vm_end
= end
;
895 * If the vma has a ->close operation then the driver probably needs to release
896 * per-vma resources, so we don't attempt to merge those.
898 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
899 struct file
*file
, unsigned long vm_flags
)
902 * VM_SOFTDIRTY should not prevent from VMA merging, if we
903 * match the flags but dirty bit -- the caller should mark
904 * merged VMA as dirty. If dirty bit won't be excluded from
905 * comparison, we increase pressue on the memory system forcing
906 * the kernel to generate new VMAs when old one could be
909 if ((vma
->vm_flags
^ vm_flags
) & ~VM_SOFTDIRTY
)
911 if (vma
->vm_file
!= file
)
913 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
918 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
919 struct anon_vma
*anon_vma2
,
920 struct vm_area_struct
*vma
)
923 * The list_is_singular() test is to avoid merging VMA cloned from
924 * parents. This can improve scalability caused by anon_vma lock.
926 if ((!anon_vma1
|| !anon_vma2
) && (!vma
||
927 list_is_singular(&vma
->anon_vma_chain
)))
929 return anon_vma1
== anon_vma2
;
933 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
934 * in front of (at a lower virtual address and file offset than) the vma.
936 * We cannot merge two vmas if they have differently assigned (non-NULL)
937 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
939 * We don't check here for the merged mmap wrapping around the end of pagecache
940 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
941 * wrap, nor mmaps which cover the final page at index -1UL.
944 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
945 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
947 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
948 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
949 if (vma
->vm_pgoff
== vm_pgoff
)
956 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
957 * beyond (at a higher virtual address and file offset than) the vma.
959 * We cannot merge two vmas if they have differently assigned (non-NULL)
960 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
963 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
964 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
966 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
967 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
, vma
)) {
969 vm_pglen
= vma_pages(vma
);
970 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
977 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
978 * whether that can be merged with its predecessor or its successor.
979 * Or both (it neatly fills a hole).
981 * In most cases - when called for mmap, brk or mremap - [addr,end) is
982 * certain not to be mapped by the time vma_merge is called; but when
983 * called for mprotect, it is certain to be already mapped (either at
984 * an offset within prev, or at the start of next), and the flags of
985 * this area are about to be changed to vm_flags - and the no-change
986 * case has already been eliminated.
988 * The following mprotect cases have to be considered, where AAAA is
989 * the area passed down from mprotect_fixup, never extending beyond one
990 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
992 * AAAA AAAA AAAA AAAA
993 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
994 * cannot merge might become might become might become
995 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
996 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
997 * mremap move: PPPPNNNNNNNN 8
999 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
1000 * might become case 1 below case 2 below case 3 below
1002 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
1003 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
1005 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
1006 struct vm_area_struct
*prev
, unsigned long addr
,
1007 unsigned long end
, unsigned long vm_flags
,
1008 struct anon_vma
*anon_vma
, struct file
*file
,
1009 pgoff_t pgoff
, struct mempolicy
*policy
)
1011 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
1012 struct vm_area_struct
*area
, *next
;
1016 * We later require that vma->vm_flags == vm_flags,
1017 * so this tests vma->vm_flags & VM_SPECIAL, too.
1019 if (vm_flags
& VM_SPECIAL
)
1023 next
= prev
->vm_next
;
1027 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
1028 next
= next
->vm_next
;
1031 * Can it merge with the predecessor?
1033 if (prev
&& prev
->vm_end
== addr
&&
1034 mpol_equal(vma_policy(prev
), policy
) &&
1035 can_vma_merge_after(prev
, vm_flags
,
1036 anon_vma
, file
, pgoff
)) {
1038 * OK, it can. Can we now merge in the successor as well?
1040 if (next
&& end
== next
->vm_start
&&
1041 mpol_equal(policy
, vma_policy(next
)) &&
1042 can_vma_merge_before(next
, vm_flags
,
1043 anon_vma
, file
, pgoff
+pglen
) &&
1044 is_mergeable_anon_vma(prev
->anon_vma
,
1045 next
->anon_vma
, NULL
)) {
1047 err
= vma_adjust(prev
, prev
->vm_start
,
1048 next
->vm_end
, prev
->vm_pgoff
, NULL
);
1049 } else /* cases 2, 5, 7 */
1050 err
= vma_adjust(prev
, prev
->vm_start
,
1051 end
, prev
->vm_pgoff
, NULL
);
1054 khugepaged_enter_vma_merge(prev
);
1059 * Can this new request be merged in front of next?
1061 if (next
&& end
== next
->vm_start
&&
1062 mpol_equal(policy
, vma_policy(next
)) &&
1063 can_vma_merge_before(next
, vm_flags
,
1064 anon_vma
, file
, pgoff
+pglen
)) {
1065 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
1066 err
= vma_adjust(prev
, prev
->vm_start
,
1067 addr
, prev
->vm_pgoff
, NULL
);
1068 else /* cases 3, 8 */
1069 err
= vma_adjust(area
, addr
, next
->vm_end
,
1070 next
->vm_pgoff
- pglen
, NULL
);
1073 khugepaged_enter_vma_merge(area
);
1081 * Rough compatbility check to quickly see if it's even worth looking
1082 * at sharing an anon_vma.
1084 * They need to have the same vm_file, and the flags can only differ
1085 * in things that mprotect may change.
1087 * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1088 * we can merge the two vma's. For example, we refuse to merge a vma if
1089 * there is a vm_ops->close() function, because that indicates that the
1090 * driver is doing some kind of reference counting. But that doesn't
1091 * really matter for the anon_vma sharing case.
1093 static int anon_vma_compatible(struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1095 return a
->vm_end
== b
->vm_start
&&
1096 mpol_equal(vma_policy(a
), vma_policy(b
)) &&
1097 a
->vm_file
== b
->vm_file
&&
1098 !((a
->vm_flags
^ b
->vm_flags
) & ~(VM_READ
|VM_WRITE
|VM_EXEC
|VM_SOFTDIRTY
)) &&
1099 b
->vm_pgoff
== a
->vm_pgoff
+ ((b
->vm_start
- a
->vm_start
) >> PAGE_SHIFT
);
1103 * Do some basic sanity checking to see if we can re-use the anon_vma
1104 * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1105 * the same as 'old', the other will be the new one that is trying
1106 * to share the anon_vma.
1108 * NOTE! This runs with mm_sem held for reading, so it is possible that
1109 * the anon_vma of 'old' is concurrently in the process of being set up
1110 * by another page fault trying to merge _that_. But that's ok: if it
1111 * is being set up, that automatically means that it will be a singleton
1112 * acceptable for merging, so we can do all of this optimistically. But
1113 * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
1115 * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1116 * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1117 * is to return an anon_vma that is "complex" due to having gone through
1120 * We also make sure that the two vma's are compatible (adjacent,
1121 * and with the same memory policies). That's all stable, even with just
1122 * a read lock on the mm_sem.
1124 static struct anon_vma
*reusable_anon_vma(struct vm_area_struct
*old
, struct vm_area_struct
*a
, struct vm_area_struct
*b
)
1126 if (anon_vma_compatible(a
, b
)) {
1127 struct anon_vma
*anon_vma
= ACCESS_ONCE(old
->anon_vma
);
1129 if (anon_vma
&& list_is_singular(&old
->anon_vma_chain
))
1136 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1137 * neighbouring vmas for a suitable anon_vma, before it goes off
1138 * to allocate a new anon_vma. It checks because a repetitive
1139 * sequence of mprotects and faults may otherwise lead to distinct
1140 * anon_vmas being allocated, preventing vma merge in subsequent
1143 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
1145 struct anon_vma
*anon_vma
;
1146 struct vm_area_struct
*near
;
1148 near
= vma
->vm_next
;
1152 anon_vma
= reusable_anon_vma(near
, vma
, near
);
1156 near
= vma
->vm_prev
;
1160 anon_vma
= reusable_anon_vma(near
, near
, vma
);
1165 * There's no absolute need to look only at touching neighbours:
1166 * we could search further afield for "compatible" anon_vmas.
1167 * But it would probably just be a waste of time searching,
1168 * or lead to too many vmas hanging off the same anon_vma.
1169 * We're trying to allow mprotect remerging later on,
1170 * not trying to minimize memory used for anon_vmas.
1175 #ifdef CONFIG_PROC_FS
1176 void vm_stat_account(struct mm_struct
*mm
, unsigned long flags
,
1177 struct file
*file
, long pages
)
1179 const unsigned long stack_flags
1180 = VM_STACK_FLAGS
& (VM_GROWSUP
|VM_GROWSDOWN
);
1182 mm
->total_vm
+= pages
;
1185 mm
->shared_vm
+= pages
;
1186 if ((flags
& (VM_EXEC
|VM_WRITE
)) == VM_EXEC
)
1187 mm
->exec_vm
+= pages
;
1188 } else if (flags
& stack_flags
)
1189 mm
->stack_vm
+= pages
;
1191 #endif /* CONFIG_PROC_FS */
1194 * If a hint addr is less than mmap_min_addr change hint to be as
1195 * low as possible but still greater than mmap_min_addr
1197 static inline unsigned long round_hint_to_min(unsigned long hint
)
1200 if (((void *)hint
!= NULL
) &&
1201 (hint
< mmap_min_addr
))
1202 return PAGE_ALIGN(mmap_min_addr
);
1206 static inline int mlock_future_check(struct mm_struct
*mm
,
1207 unsigned long flags
,
1210 unsigned long locked
, lock_limit
;
1212 /* mlock MCL_FUTURE? */
1213 if (flags
& VM_LOCKED
) {
1214 locked
= len
>> PAGE_SHIFT
;
1215 locked
+= mm
->locked_vm
;
1216 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
1217 lock_limit
>>= PAGE_SHIFT
;
1218 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
1225 * The caller must hold down_write(¤t->mm->mmap_sem).
1228 unsigned long do_mmap_pgoff(struct file
*file
, unsigned long addr
,
1229 unsigned long len
, unsigned long prot
,
1230 unsigned long flags
, unsigned long pgoff
,
1231 unsigned long *populate
)
1233 struct mm_struct
* mm
= current
->mm
;
1234 vm_flags_t vm_flags
;
1239 * Does the application expect PROT_READ to imply PROT_EXEC?
1241 * (the exception is when the underlying filesystem is noexec
1242 * mounted, in which case we dont add PROT_EXEC.)
1244 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
1245 if (!(file
&& (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)))
1251 if (!(flags
& MAP_FIXED
))
1252 addr
= round_hint_to_min(addr
);
1254 /* Careful about overflows.. */
1255 len
= PAGE_ALIGN(len
);
1259 /* offset overflow? */
1260 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
1263 /* Too many mappings? */
1264 if (mm
->map_count
> sysctl_max_map_count
)
1267 /* Obtain the address to map to. we verify (or select) it and ensure
1268 * that it represents a valid section of the address space.
1270 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
1271 if (addr
& ~PAGE_MASK
)
1274 /* Do simple checking here so the lower-level routines won't have
1275 * to. we assume access permissions have been handled by the open
1276 * of the memory object, so we don't do any here.
1278 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
) |
1279 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
1281 if (flags
& MAP_LOCKED
)
1282 if (!can_do_mlock())
1285 if (mlock_future_check(mm
, vm_flags
, len
))
1289 struct inode
*inode
= file_inode(file
);
1291 switch (flags
& MAP_TYPE
) {
1293 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
1297 * Make sure we don't allow writing to an append-only
1300 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
1304 * Make sure there are no mandatory locks on the file.
1306 if (locks_verify_locked(file
))
1309 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1310 if (!(file
->f_mode
& FMODE_WRITE
))
1311 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1315 if (!(file
->f_mode
& FMODE_READ
))
1317 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1318 if (vm_flags
& VM_EXEC
)
1320 vm_flags
&= ~VM_MAYEXEC
;
1323 if (!file
->f_op
->mmap
)
1325 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1333 switch (flags
& MAP_TYPE
) {
1335 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1341 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1345 * Set pgoff according to addr for anon_vma.
1347 pgoff
= addr
>> PAGE_SHIFT
;
1355 * Set 'VM_NORESERVE' if we should not account for the
1356 * memory use of this mapping.
1358 if (flags
& MAP_NORESERVE
) {
1359 /* We honor MAP_NORESERVE if allowed to overcommit */
1360 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1361 vm_flags
|= VM_NORESERVE
;
1363 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1364 if (file
&& is_file_hugepages(file
))
1365 vm_flags
|= VM_NORESERVE
;
1368 addr
= mmap_region(file
, addr
, len
, vm_flags
, pgoff
);
1369 if (!IS_ERR_VALUE(addr
) &&
1370 ((vm_flags
& VM_LOCKED
) ||
1371 (flags
& (MAP_POPULATE
| MAP_NONBLOCK
)) == MAP_POPULATE
))
1376 SYSCALL_DEFINE6(mmap_pgoff
, unsigned long, addr
, unsigned long, len
,
1377 unsigned long, prot
, unsigned long, flags
,
1378 unsigned long, fd
, unsigned long, pgoff
)
1380 struct file
*file
= NULL
;
1381 unsigned long retval
= -EBADF
;
1383 if (!(flags
& MAP_ANONYMOUS
)) {
1384 audit_mmap_fd(fd
, flags
);
1388 if (is_file_hugepages(file
))
1389 len
= ALIGN(len
, huge_page_size(hstate_file(file
)));
1391 if (unlikely(flags
& MAP_HUGETLB
&& !is_file_hugepages(file
)))
1393 } else if (flags
& MAP_HUGETLB
) {
1394 struct user_struct
*user
= NULL
;
1397 hs
= hstate_sizelog((flags
>> MAP_HUGE_SHIFT
) & SHM_HUGE_MASK
);
1401 len
= ALIGN(len
, huge_page_size(hs
));
1403 * VM_NORESERVE is used because the reservations will be
1404 * taken when vm_ops->mmap() is called
1405 * A dummy user value is used because we are not locking
1406 * memory so no accounting is necessary
1408 file
= hugetlb_file_setup(HUGETLB_ANON_FILE
, len
,
1410 &user
, HUGETLB_ANONHUGE_INODE
,
1411 (flags
>> MAP_HUGE_SHIFT
) & MAP_HUGE_MASK
);
1413 return PTR_ERR(file
);
1416 flags
&= ~(MAP_EXECUTABLE
| MAP_DENYWRITE
);
1418 retval
= vm_mmap_pgoff(file
, addr
, len
, prot
, flags
, pgoff
);
1426 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1427 struct mmap_arg_struct
{
1431 unsigned long flags
;
1433 unsigned long offset
;
1436 SYSCALL_DEFINE1(old_mmap
, struct mmap_arg_struct __user
*, arg
)
1438 struct mmap_arg_struct a
;
1440 if (copy_from_user(&a
, arg
, sizeof(a
)))
1442 if (a
.offset
& ~PAGE_MASK
)
1445 return sys_mmap_pgoff(a
.addr
, a
.len
, a
.prot
, a
.flags
, a
.fd
,
1446 a
.offset
>> PAGE_SHIFT
);
1448 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1451 * Some shared mappigns will want the pages marked read-only
1452 * to track write events. If so, we'll downgrade vm_page_prot
1453 * to the private version (using protection_map[] without the
1456 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1458 vm_flags_t vm_flags
= vma
->vm_flags
;
1460 /* If it was private or non-writable, the write bit is already clear */
1461 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1464 /* The backer wishes to know when pages are first written to? */
1465 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
)
1468 /* The open routine did something to the protections already? */
1469 if (pgprot_val(vma
->vm_page_prot
) !=
1470 pgprot_val(vm_get_page_prot(vm_flags
)))
1473 /* Specialty mapping? */
1474 if (vm_flags
& VM_PFNMAP
)
1477 /* Can the mapping track the dirty pages? */
1478 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1479 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1483 * We account for memory if it's a private writeable mapping,
1484 * not hugepages and VM_NORESERVE wasn't set.
1486 static inline int accountable_mapping(struct file
*file
, vm_flags_t vm_flags
)
1489 * hugetlb has its own accounting separate from the core VM
1490 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1492 if (file
&& is_file_hugepages(file
))
1495 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1498 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1499 unsigned long len
, vm_flags_t vm_flags
, unsigned long pgoff
)
1501 struct mm_struct
*mm
= current
->mm
;
1502 struct vm_area_struct
*vma
, *prev
;
1504 struct rb_node
**rb_link
, *rb_parent
;
1505 unsigned long charged
= 0;
1507 /* Check against address space limit. */
1508 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
)) {
1509 unsigned long nr_pages
;
1512 * MAP_FIXED may remove pages of mappings that intersects with
1513 * requested mapping. Account for the pages it would unmap.
1515 if (!(vm_flags
& MAP_FIXED
))
1518 nr_pages
= count_vma_pages_range(mm
, addr
, addr
+ len
);
1520 if (!may_expand_vm(mm
, (len
>> PAGE_SHIFT
) - nr_pages
))
1524 /* Clear old maps */
1527 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
)) {
1528 if (do_munmap(mm
, addr
, len
))
1534 * Private writable mapping: check memory availability
1536 if (accountable_mapping(file
, vm_flags
)) {
1537 charged
= len
>> PAGE_SHIFT
;
1538 if (security_vm_enough_memory_mm(mm
, charged
))
1540 vm_flags
|= VM_ACCOUNT
;
1544 * Can we just expand an old mapping?
1546 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
, NULL
, file
, pgoff
, NULL
);
1551 * Determine the object being mapped and call the appropriate
1552 * specific mapper. the address has already been validated, but
1553 * not unmapped, but the maps are removed from the list.
1555 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1562 vma
->vm_start
= addr
;
1563 vma
->vm_end
= addr
+ len
;
1564 vma
->vm_flags
= vm_flags
;
1565 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1566 vma
->vm_pgoff
= pgoff
;
1567 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
1570 if (vm_flags
& VM_DENYWRITE
) {
1571 error
= deny_write_access(file
);
1575 vma
->vm_file
= get_file(file
);
1576 error
= file
->f_op
->mmap(file
, vma
);
1578 goto unmap_and_free_vma
;
1580 /* Can addr have changed??
1582 * Answer: Yes, several device drivers can do it in their
1583 * f_op->mmap method. -DaveM
1584 * Bug: If addr is changed, prev, rb_link, rb_parent should
1585 * be updated for vma_link()
1587 WARN_ON_ONCE(addr
!= vma
->vm_start
);
1589 addr
= vma
->vm_start
;
1590 vm_flags
= vma
->vm_flags
;
1591 } else if (vm_flags
& VM_SHARED
) {
1592 error
= shmem_zero_setup(vma
);
1597 if (vma_wants_writenotify(vma
)) {
1598 pgprot_t pprot
= vma
->vm_page_prot
;
1600 /* Can vma->vm_page_prot have changed??
1602 * Answer: Yes, drivers may have changed it in their
1603 * f_op->mmap method.
1605 * Ensures that vmas marked as uncached stay that way.
1607 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
& ~VM_SHARED
);
1608 if (pgprot_val(pprot
) == pgprot_val(pgprot_noncached(pprot
)))
1609 vma
->vm_page_prot
= pgprot_noncached(vma
->vm_page_prot
);
1612 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1613 /* Once vma denies write, undo our temporary denial count */
1614 if (vm_flags
& VM_DENYWRITE
)
1615 allow_write_access(file
);
1616 file
= vma
->vm_file
;
1618 perf_event_mmap(vma
);
1620 vm_stat_account(mm
, vm_flags
, file
, len
>> PAGE_SHIFT
);
1621 if (vm_flags
& VM_LOCKED
) {
1622 if (!((vm_flags
& VM_SPECIAL
) || is_vm_hugetlb_page(vma
) ||
1623 vma
== get_gate_vma(current
->mm
)))
1624 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
1626 vma
->vm_flags
&= ~VM_LOCKED
;
1633 * New (or expanded) vma always get soft dirty status.
1634 * Otherwise user-space soft-dirty page tracker won't
1635 * be able to distinguish situation when vma area unmapped,
1636 * then new mapped in-place (which must be aimed as
1637 * a completely new data area).
1639 vma
->vm_flags
|= VM_SOFTDIRTY
;
1644 if (vm_flags
& VM_DENYWRITE
)
1645 allow_write_access(file
);
1646 vma
->vm_file
= NULL
;
1649 /* Undo any partial mapping done by a device driver. */
1650 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1653 kmem_cache_free(vm_area_cachep
, vma
);
1656 vm_unacct_memory(charged
);
1660 unsigned long unmapped_area(struct vm_unmapped_area_info
*info
)
1663 * We implement the search by looking for an rbtree node that
1664 * immediately follows a suitable gap. That is,
1665 * - gap_start = vma->vm_prev->vm_end <= info->high_limit - length;
1666 * - gap_end = vma->vm_start >= info->low_limit + length;
1667 * - gap_end - gap_start >= length
1670 struct mm_struct
*mm
= current
->mm
;
1671 struct vm_area_struct
*vma
;
1672 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1674 /* Adjust search length to account for worst case alignment overhead */
1675 length
= info
->length
+ info
->align_mask
;
1676 if (length
< info
->length
)
1679 /* Adjust search limits by the desired length */
1680 if (info
->high_limit
< length
)
1682 high_limit
= info
->high_limit
- length
;
1684 if (info
->low_limit
> high_limit
)
1686 low_limit
= info
->low_limit
+ length
;
1688 /* Check if rbtree root looks promising */
1689 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1691 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1692 if (vma
->rb_subtree_gap
< length
)
1696 /* Visit left subtree if it looks promising */
1697 gap_end
= vma
->vm_start
;
1698 if (gap_end
>= low_limit
&& vma
->vm_rb
.rb_left
) {
1699 struct vm_area_struct
*left
=
1700 rb_entry(vma
->vm_rb
.rb_left
,
1701 struct vm_area_struct
, vm_rb
);
1702 if (left
->rb_subtree_gap
>= length
) {
1708 gap_start
= vma
->vm_prev
? vma
->vm_prev
->vm_end
: 0;
1710 /* Check if current node has a suitable gap */
1711 if (gap_start
> high_limit
)
1713 if (gap_end
>= low_limit
&& gap_end
- gap_start
>= length
)
1716 /* Visit right subtree if it looks promising */
1717 if (vma
->vm_rb
.rb_right
) {
1718 struct vm_area_struct
*right
=
1719 rb_entry(vma
->vm_rb
.rb_right
,
1720 struct vm_area_struct
, vm_rb
);
1721 if (right
->rb_subtree_gap
>= length
) {
1727 /* Go back up the rbtree to find next candidate node */
1729 struct rb_node
*prev
= &vma
->vm_rb
;
1730 if (!rb_parent(prev
))
1732 vma
= rb_entry(rb_parent(prev
),
1733 struct vm_area_struct
, vm_rb
);
1734 if (prev
== vma
->vm_rb
.rb_left
) {
1735 gap_start
= vma
->vm_prev
->vm_end
;
1736 gap_end
= vma
->vm_start
;
1743 /* Check highest gap, which does not precede any rbtree node */
1744 gap_start
= mm
->highest_vm_end
;
1745 gap_end
= ULONG_MAX
; /* Only for VM_BUG_ON below */
1746 if (gap_start
> high_limit
)
1750 /* We found a suitable gap. Clip it with the original low_limit. */
1751 if (gap_start
< info
->low_limit
)
1752 gap_start
= info
->low_limit
;
1754 /* Adjust gap address to the desired alignment */
1755 gap_start
+= (info
->align_offset
- gap_start
) & info
->align_mask
;
1757 VM_BUG_ON(gap_start
+ info
->length
> info
->high_limit
);
1758 VM_BUG_ON(gap_start
+ info
->length
> gap_end
);
1762 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info
*info
)
1764 struct mm_struct
*mm
= current
->mm
;
1765 struct vm_area_struct
*vma
;
1766 unsigned long length
, low_limit
, high_limit
, gap_start
, gap_end
;
1768 /* Adjust search length to account for worst case alignment overhead */
1769 length
= info
->length
+ info
->align_mask
;
1770 if (length
< info
->length
)
1774 * Adjust search limits by the desired length.
1775 * See implementation comment at top of unmapped_area().
1777 gap_end
= info
->high_limit
;
1778 if (gap_end
< length
)
1780 high_limit
= gap_end
- length
;
1782 if (info
->low_limit
> high_limit
)
1784 low_limit
= info
->low_limit
+ length
;
1786 /* Check highest gap, which does not precede any rbtree node */
1787 gap_start
= mm
->highest_vm_end
;
1788 if (gap_start
<= high_limit
)
1791 /* Check if rbtree root looks promising */
1792 if (RB_EMPTY_ROOT(&mm
->mm_rb
))
1794 vma
= rb_entry(mm
->mm_rb
.rb_node
, struct vm_area_struct
, vm_rb
);
1795 if (vma
->rb_subtree_gap
< length
)
1799 /* Visit right subtree if it looks promising */
1800 gap_start
= vma
->vm_prev
? vma
->vm_prev
->vm_end
: 0;
1801 if (gap_start
<= high_limit
&& vma
->vm_rb
.rb_right
) {
1802 struct vm_area_struct
*right
=
1803 rb_entry(vma
->vm_rb
.rb_right
,
1804 struct vm_area_struct
, vm_rb
);
1805 if (right
->rb_subtree_gap
>= length
) {
1812 /* Check if current node has a suitable gap */
1813 gap_end
= vma
->vm_start
;
1814 if (gap_end
< low_limit
)
1816 if (gap_start
<= high_limit
&& gap_end
- gap_start
>= length
)
1819 /* Visit left subtree if it looks promising */
1820 if (vma
->vm_rb
.rb_left
) {
1821 struct vm_area_struct
*left
=
1822 rb_entry(vma
->vm_rb
.rb_left
,
1823 struct vm_area_struct
, vm_rb
);
1824 if (left
->rb_subtree_gap
>= length
) {
1830 /* Go back up the rbtree to find next candidate node */
1832 struct rb_node
*prev
= &vma
->vm_rb
;
1833 if (!rb_parent(prev
))
1835 vma
= rb_entry(rb_parent(prev
),
1836 struct vm_area_struct
, vm_rb
);
1837 if (prev
== vma
->vm_rb
.rb_right
) {
1838 gap_start
= vma
->vm_prev
?
1839 vma
->vm_prev
->vm_end
: 0;
1846 /* We found a suitable gap. Clip it with the original high_limit. */
1847 if (gap_end
> info
->high_limit
)
1848 gap_end
= info
->high_limit
;
1851 /* Compute highest gap address at the desired alignment */
1852 gap_end
-= info
->length
;
1853 gap_end
-= (gap_end
- info
->align_offset
) & info
->align_mask
;
1855 VM_BUG_ON(gap_end
< info
->low_limit
);
1856 VM_BUG_ON(gap_end
< gap_start
);
1860 /* Get an address range which is currently unmapped.
1861 * For shmat() with addr=0.
1863 * Ugly calling convention alert:
1864 * Return value with the low bits set means error value,
1866 * if (ret & ~PAGE_MASK)
1869 * This function "knows" that -ENOMEM has the bits set.
1871 #ifndef HAVE_ARCH_UNMAPPED_AREA
1873 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1874 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1876 struct mm_struct
*mm
= current
->mm
;
1877 struct vm_area_struct
*vma
;
1878 struct vm_unmapped_area_info info
;
1880 if (len
> TASK_SIZE
- mmap_min_addr
)
1883 if (flags
& MAP_FIXED
)
1887 addr
= PAGE_ALIGN(addr
);
1888 vma
= find_vma(mm
, addr
);
1889 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
1890 (!vma
|| addr
+ len
<= vma
->vm_start
))
1896 info
.low_limit
= mm
->mmap_base
;
1897 info
.high_limit
= TASK_SIZE
;
1898 info
.align_mask
= 0;
1899 return vm_unmapped_area(&info
);
1904 * This mmap-allocator allocates new areas top-down from below the
1905 * stack's low limit (the base):
1907 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1909 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1910 const unsigned long len
, const unsigned long pgoff
,
1911 const unsigned long flags
)
1913 struct vm_area_struct
*vma
;
1914 struct mm_struct
*mm
= current
->mm
;
1915 unsigned long addr
= addr0
;
1916 struct vm_unmapped_area_info info
;
1918 /* requested length too big for entire address space */
1919 if (len
> TASK_SIZE
- mmap_min_addr
)
1922 if (flags
& MAP_FIXED
)
1925 /* requesting a specific address */
1927 addr
= PAGE_ALIGN(addr
);
1928 vma
= find_vma(mm
, addr
);
1929 if (TASK_SIZE
- len
>= addr
&& addr
>= mmap_min_addr
&&
1930 (!vma
|| addr
+ len
<= vma
->vm_start
))
1934 info
.flags
= VM_UNMAPPED_AREA_TOPDOWN
;
1936 info
.low_limit
= max(PAGE_SIZE
, mmap_min_addr
);
1937 info
.high_limit
= mm
->mmap_base
;
1938 info
.align_mask
= 0;
1939 addr
= vm_unmapped_area(&info
);
1942 * A failed mmap() very likely causes application failure,
1943 * so fall back to the bottom-up function here. This scenario
1944 * can happen with large stack limits and large mmap()
1947 if (addr
& ~PAGE_MASK
) {
1948 VM_BUG_ON(addr
!= -ENOMEM
);
1950 info
.low_limit
= TASK_UNMAPPED_BASE
;
1951 info
.high_limit
= TASK_SIZE
;
1952 addr
= vm_unmapped_area(&info
);
1960 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1961 unsigned long pgoff
, unsigned long flags
)
1963 unsigned long (*get_area
)(struct file
*, unsigned long,
1964 unsigned long, unsigned long, unsigned long);
1966 unsigned long error
= arch_mmap_check(addr
, len
, flags
);
1970 /* Careful about overflows.. */
1971 if (len
> TASK_SIZE
)
1974 get_area
= current
->mm
->get_unmapped_area
;
1975 if (file
&& file
->f_op
->get_unmapped_area
)
1976 get_area
= file
->f_op
->get_unmapped_area
;
1977 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
1978 if (IS_ERR_VALUE(addr
))
1981 if (addr
> TASK_SIZE
- len
)
1983 if (addr
& ~PAGE_MASK
)
1986 addr
= arch_rebalance_pgtables(addr
, len
);
1987 error
= security_mmap_addr(addr
);
1988 return error
? error
: addr
;
1991 EXPORT_SYMBOL(get_unmapped_area
);
1993 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1994 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
1996 struct rb_node
*rb_node
;
1997 struct vm_area_struct
*vma
;
1999 /* Check the cache first. */
2000 vma
= vmacache_find(mm
, addr
);
2004 rb_node
= mm
->mm_rb
.rb_node
;
2008 struct vm_area_struct
*tmp
;
2010 tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2012 if (tmp
->vm_end
> addr
) {
2014 if (tmp
->vm_start
<= addr
)
2016 rb_node
= rb_node
->rb_left
;
2018 rb_node
= rb_node
->rb_right
;
2022 vmacache_update(addr
, vma
);
2026 EXPORT_SYMBOL(find_vma
);
2029 * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
2031 struct vm_area_struct
*
2032 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
2033 struct vm_area_struct
**pprev
)
2035 struct vm_area_struct
*vma
;
2037 vma
= find_vma(mm
, addr
);
2039 *pprev
= vma
->vm_prev
;
2041 struct rb_node
*rb_node
= mm
->mm_rb
.rb_node
;
2044 *pprev
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
2045 rb_node
= rb_node
->rb_right
;
2052 * Verify that the stack growth is acceptable and
2053 * update accounting. This is shared with both the
2054 * grow-up and grow-down cases.
2056 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
2058 struct mm_struct
*mm
= vma
->vm_mm
;
2059 struct rlimit
*rlim
= current
->signal
->rlim
;
2060 unsigned long new_start
;
2062 /* address space limit tests */
2063 if (!may_expand_vm(mm
, grow
))
2066 /* Stack limit test */
2067 if (size
> ACCESS_ONCE(rlim
[RLIMIT_STACK
].rlim_cur
))
2070 /* mlock limit tests */
2071 if (vma
->vm_flags
& VM_LOCKED
) {
2072 unsigned long locked
;
2073 unsigned long limit
;
2074 locked
= mm
->locked_vm
+ grow
;
2075 limit
= ACCESS_ONCE(rlim
[RLIMIT_MEMLOCK
].rlim_cur
);
2076 limit
>>= PAGE_SHIFT
;
2077 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
2081 /* Check to ensure the stack will not grow into a hugetlb-only region */
2082 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
2084 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
2088 * Overcommit.. This must be the final test, as it will
2089 * update security statistics.
2091 if (security_vm_enough_memory_mm(mm
, grow
))
2094 /* Ok, everything looks good - let it rip */
2095 if (vma
->vm_flags
& VM_LOCKED
)
2096 mm
->locked_vm
+= grow
;
2097 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, grow
);
2101 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
2103 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
2104 * vma is the last one with address > vma->vm_end. Have to extend vma.
2106 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
2110 if (!(vma
->vm_flags
& VM_GROWSUP
))
2114 * We must make sure the anon_vma is allocated
2115 * so that the anon_vma locking is not a noop.
2117 if (unlikely(anon_vma_prepare(vma
)))
2119 vma_lock_anon_vma(vma
);
2122 * vma->vm_start/vm_end cannot change under us because the caller
2123 * is required to hold the mmap_sem in read mode. We need the
2124 * anon_vma lock to serialize against concurrent expand_stacks.
2125 * Also guard against wrapping around to address 0.
2127 if (address
< PAGE_ALIGN(address
+4))
2128 address
= PAGE_ALIGN(address
+4);
2130 vma_unlock_anon_vma(vma
);
2135 /* Somebody else might have raced and expanded it already */
2136 if (address
> vma
->vm_end
) {
2137 unsigned long size
, grow
;
2139 size
= address
- vma
->vm_start
;
2140 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
2143 if (vma
->vm_pgoff
+ (size
>> PAGE_SHIFT
) >= vma
->vm_pgoff
) {
2144 error
= acct_stack_growth(vma
, size
, grow
);
2147 * vma_gap_update() doesn't support concurrent
2148 * updates, but we only hold a shared mmap_sem
2149 * lock here, so we need to protect against
2150 * concurrent vma expansions.
2151 * vma_lock_anon_vma() doesn't help here, as
2152 * we don't guarantee that all growable vmas
2153 * in a mm share the same root anon vma.
2154 * So, we reuse mm->page_table_lock to guard
2155 * against concurrent vma expansions.
2157 spin_lock(&vma
->vm_mm
->page_table_lock
);
2158 anon_vma_interval_tree_pre_update_vma(vma
);
2159 vma
->vm_end
= address
;
2160 anon_vma_interval_tree_post_update_vma(vma
);
2162 vma_gap_update(vma
->vm_next
);
2164 vma
->vm_mm
->highest_vm_end
= address
;
2165 spin_unlock(&vma
->vm_mm
->page_table_lock
);
2167 perf_event_mmap(vma
);
2171 vma_unlock_anon_vma(vma
);
2172 khugepaged_enter_vma_merge(vma
);
2173 validate_mm(vma
->vm_mm
);
2176 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
2179 * vma is the first one with address < vma->vm_start. Have to extend vma.
2181 int expand_downwards(struct vm_area_struct
*vma
,
2182 unsigned long address
)
2187 * We must make sure the anon_vma is allocated
2188 * so that the anon_vma locking is not a noop.
2190 if (unlikely(anon_vma_prepare(vma
)))
2193 address
&= PAGE_MASK
;
2194 error
= security_mmap_addr(address
);
2198 vma_lock_anon_vma(vma
);
2201 * vma->vm_start/vm_end cannot change under us because the caller
2202 * is required to hold the mmap_sem in read mode. We need the
2203 * anon_vma lock to serialize against concurrent expand_stacks.
2206 /* Somebody else might have raced and expanded it already */
2207 if (address
< vma
->vm_start
) {
2208 unsigned long size
, grow
;
2210 size
= vma
->vm_end
- address
;
2211 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
2214 if (grow
<= vma
->vm_pgoff
) {
2215 error
= acct_stack_growth(vma
, size
, grow
);
2218 * vma_gap_update() doesn't support concurrent
2219 * updates, but we only hold a shared mmap_sem
2220 * lock here, so we need to protect against
2221 * concurrent vma expansions.
2222 * vma_lock_anon_vma() doesn't help here, as
2223 * we don't guarantee that all growable vmas
2224 * in a mm share the same root anon vma.
2225 * So, we reuse mm->page_table_lock to guard
2226 * against concurrent vma expansions.
2228 spin_lock(&vma
->vm_mm
->page_table_lock
);
2229 anon_vma_interval_tree_pre_update_vma(vma
);
2230 vma
->vm_start
= address
;
2231 vma
->vm_pgoff
-= grow
;
2232 anon_vma_interval_tree_post_update_vma(vma
);
2233 vma_gap_update(vma
);
2234 spin_unlock(&vma
->vm_mm
->page_table_lock
);
2236 perf_event_mmap(vma
);
2240 vma_unlock_anon_vma(vma
);
2241 khugepaged_enter_vma_merge(vma
);
2242 validate_mm(vma
->vm_mm
);
2247 * Note how expand_stack() refuses to expand the stack all the way to
2248 * abut the next virtual mapping, *unless* that mapping itself is also
2249 * a stack mapping. We want to leave room for a guard page, after all
2250 * (the guard page itself is not added here, that is done by the
2251 * actual page faulting logic)
2253 * This matches the behavior of the guard page logic (see mm/memory.c:
2254 * check_stack_guard_page()), which only allows the guard page to be
2255 * removed under these circumstances.
2257 #ifdef CONFIG_STACK_GROWSUP
2258 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2260 struct vm_area_struct
*next
;
2262 address
&= PAGE_MASK
;
2263 next
= vma
->vm_next
;
2264 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
) {
2265 if (!(next
->vm_flags
& VM_GROWSUP
))
2268 return expand_upwards(vma
, address
);
2271 struct vm_area_struct
*
2272 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
2274 struct vm_area_struct
*vma
, *prev
;
2277 vma
= find_vma_prev(mm
, addr
, &prev
);
2278 if (vma
&& (vma
->vm_start
<= addr
))
2280 if (!prev
|| expand_stack(prev
, addr
))
2282 if (prev
->vm_flags
& VM_LOCKED
)
2283 __mlock_vma_pages_range(prev
, addr
, prev
->vm_end
, NULL
);
2287 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
2289 struct vm_area_struct
*prev
;
2291 address
&= PAGE_MASK
;
2292 prev
= vma
->vm_prev
;
2293 if (prev
&& prev
->vm_end
== address
) {
2294 if (!(prev
->vm_flags
& VM_GROWSDOWN
))
2297 return expand_downwards(vma
, address
);
2300 struct vm_area_struct
*
2301 find_extend_vma(struct mm_struct
* mm
, unsigned long addr
)
2303 struct vm_area_struct
* vma
;
2304 unsigned long start
;
2307 vma
= find_vma(mm
,addr
);
2310 if (vma
->vm_start
<= addr
)
2312 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
2314 start
= vma
->vm_start
;
2315 if (expand_stack(vma
, addr
))
2317 if (vma
->vm_flags
& VM_LOCKED
)
2318 __mlock_vma_pages_range(vma
, addr
, start
, NULL
);
2324 * Ok - we have the memory areas we should free on the vma list,
2325 * so release them, and do the vma updates.
2327 * Called with the mm semaphore held.
2329 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2331 unsigned long nr_accounted
= 0;
2333 /* Update high watermark before we lower total_vm */
2334 update_hiwater_vm(mm
);
2336 long nrpages
= vma_pages(vma
);
2338 if (vma
->vm_flags
& VM_ACCOUNT
)
2339 nr_accounted
+= nrpages
;
2340 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, -nrpages
);
2341 vma
= remove_vma(vma
);
2343 vm_unacct_memory(nr_accounted
);
2348 * Get rid of page table information in the indicated region.
2350 * Called with the mm semaphore held.
2352 static void unmap_region(struct mm_struct
*mm
,
2353 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
2354 unsigned long start
, unsigned long end
)
2356 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
2357 struct mmu_gather tlb
;
2360 tlb_gather_mmu(&tlb
, mm
, start
, end
);
2361 update_hiwater_rss(mm
);
2362 unmap_vmas(&tlb
, vma
, start
, end
);
2363 free_pgtables(&tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
2364 next
? next
->vm_start
: USER_PGTABLES_CEILING
);
2365 tlb_finish_mmu(&tlb
, start
, end
);
2369 * Create a list of vma's touched by the unmap, removing them from the mm's
2370 * vma list as we go..
2373 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2374 struct vm_area_struct
*prev
, unsigned long end
)
2376 struct vm_area_struct
**insertion_point
;
2377 struct vm_area_struct
*tail_vma
= NULL
;
2379 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
2380 vma
->vm_prev
= NULL
;
2382 vma_rb_erase(vma
, &mm
->mm_rb
);
2386 } while (vma
&& vma
->vm_start
< end
);
2387 *insertion_point
= vma
;
2389 vma
->vm_prev
= prev
;
2390 vma_gap_update(vma
);
2392 mm
->highest_vm_end
= prev
? prev
->vm_end
: 0;
2393 tail_vma
->vm_next
= NULL
;
2395 /* Kill the cache */
2396 vmacache_invalidate(mm
);
2400 * __split_vma() bypasses sysctl_max_map_count checking. We use this on the
2401 * munmap path where it doesn't make sense to fail.
2403 static int __split_vma(struct mm_struct
* mm
, struct vm_area_struct
* vma
,
2404 unsigned long addr
, int new_below
)
2406 struct vm_area_struct
*new;
2409 if (is_vm_hugetlb_page(vma
) && (addr
&
2410 ~(huge_page_mask(hstate_vma(vma
)))))
2413 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2417 /* most fields are the same, copy all, and then fixup */
2420 INIT_LIST_HEAD(&new->anon_vma_chain
);
2425 new->vm_start
= addr
;
2426 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
2429 err
= vma_dup_policy(vma
, new);
2433 if (anon_vma_clone(new, vma
))
2437 get_file(new->vm_file
);
2439 if (new->vm_ops
&& new->vm_ops
->open
)
2440 new->vm_ops
->open(new);
2443 err
= vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
2444 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
2446 err
= vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
2452 /* Clean everything up if vma_adjust failed. */
2453 if (new->vm_ops
&& new->vm_ops
->close
)
2454 new->vm_ops
->close(new);
2457 unlink_anon_vmas(new);
2459 mpol_put(vma_policy(new));
2461 kmem_cache_free(vm_area_cachep
, new);
2467 * Split a vma into two pieces at address 'addr', a new vma is allocated
2468 * either for the first part or the tail.
2470 int split_vma(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2471 unsigned long addr
, int new_below
)
2473 if (mm
->map_count
>= sysctl_max_map_count
)
2476 return __split_vma(mm
, vma
, addr
, new_below
);
2479 /* Munmap is split into 2 main parts -- this part which finds
2480 * what needs doing, and the areas themselves, which do the
2481 * work. This now handles partial unmappings.
2482 * Jeremy Fitzhardinge <jeremy@goop.org>
2484 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
2487 struct vm_area_struct
*vma
, *prev
, *last
;
2489 if ((start
& ~PAGE_MASK
) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
2492 if ((len
= PAGE_ALIGN(len
)) == 0)
2495 /* Find the first overlapping VMA */
2496 vma
= find_vma(mm
, start
);
2499 prev
= vma
->vm_prev
;
2500 /* we have start < vma->vm_end */
2502 /* if it doesn't overlap, we have nothing.. */
2504 if (vma
->vm_start
>= end
)
2508 * If we need to split any vma, do it now to save pain later.
2510 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2511 * unmapped vm_area_struct will remain in use: so lower split_vma
2512 * places tmp vma above, and higher split_vma places tmp vma below.
2514 if (start
> vma
->vm_start
) {
2518 * Make sure that map_count on return from munmap() will
2519 * not exceed its limit; but let map_count go just above
2520 * its limit temporarily, to help free resources as expected.
2522 if (end
< vma
->vm_end
&& mm
->map_count
>= sysctl_max_map_count
)
2525 error
= __split_vma(mm
, vma
, start
, 0);
2531 /* Does it split the last one? */
2532 last
= find_vma(mm
, end
);
2533 if (last
&& end
> last
->vm_start
) {
2534 int error
= __split_vma(mm
, last
, end
, 1);
2538 vma
= prev
? prev
->vm_next
: mm
->mmap
;
2541 * unlock any mlock()ed ranges before detaching vmas
2543 if (mm
->locked_vm
) {
2544 struct vm_area_struct
*tmp
= vma
;
2545 while (tmp
&& tmp
->vm_start
< end
) {
2546 if (tmp
->vm_flags
& VM_LOCKED
) {
2547 mm
->locked_vm
-= vma_pages(tmp
);
2548 munlock_vma_pages_all(tmp
);
2555 * Remove the vma's, and unmap the actual pages
2557 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
2558 unmap_region(mm
, vma
, prev
, start
, end
);
2560 /* Fix up all other VM information */
2561 remove_vma_list(mm
, vma
);
2566 int vm_munmap(unsigned long start
, size_t len
)
2569 struct mm_struct
*mm
= current
->mm
;
2571 down_write(&mm
->mmap_sem
);
2572 ret
= do_munmap(mm
, start
, len
);
2573 up_write(&mm
->mmap_sem
);
2576 EXPORT_SYMBOL(vm_munmap
);
2578 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
2580 profile_munmap(addr
);
2581 return vm_munmap(addr
, len
);
2584 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
2586 #ifdef CONFIG_DEBUG_VM
2587 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
2589 up_read(&mm
->mmap_sem
);
2595 * this is really a simplified "do_mmap". it only handles
2596 * anonymous maps. eventually we may be able to do some
2597 * brk-specific accounting here.
2599 static unsigned long do_brk(unsigned long addr
, unsigned long len
)
2601 struct mm_struct
* mm
= current
->mm
;
2602 struct vm_area_struct
* vma
, * prev
;
2603 unsigned long flags
;
2604 struct rb_node
** rb_link
, * rb_parent
;
2605 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
2608 len
= PAGE_ALIGN(len
);
2612 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
2614 error
= get_unmapped_area(NULL
, addr
, len
, 0, MAP_FIXED
);
2615 if (error
& ~PAGE_MASK
)
2618 error
= mlock_future_check(mm
, mm
->def_flags
, len
);
2623 * mm->mmap_sem is required to protect against another thread
2624 * changing the mappings in case we sleep.
2626 verify_mm_writelocked(mm
);
2629 * Clear old maps. this also does some error checking for us
2632 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
)) {
2633 if (do_munmap(mm
, addr
, len
))
2638 /* Check against address space limits *after* clearing old maps... */
2639 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
2642 if (mm
->map_count
> sysctl_max_map_count
)
2645 if (security_vm_enough_memory_mm(mm
, len
>> PAGE_SHIFT
))
2648 /* Can we just expand an old private anonymous mapping? */
2649 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2650 NULL
, NULL
, pgoff
, NULL
);
2655 * create a vma struct for an anonymous mapping
2657 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2659 vm_unacct_memory(len
>> PAGE_SHIFT
);
2663 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2665 vma
->vm_start
= addr
;
2666 vma
->vm_end
= addr
+ len
;
2667 vma
->vm_pgoff
= pgoff
;
2668 vma
->vm_flags
= flags
;
2669 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2670 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2672 perf_event_mmap(vma
);
2673 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2674 if (flags
& VM_LOCKED
)
2675 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2676 vma
->vm_flags
|= VM_SOFTDIRTY
;
2680 unsigned long vm_brk(unsigned long addr
, unsigned long len
)
2682 struct mm_struct
*mm
= current
->mm
;
2686 down_write(&mm
->mmap_sem
);
2687 ret
= do_brk(addr
, len
);
2688 populate
= ((mm
->def_flags
& VM_LOCKED
) != 0);
2689 up_write(&mm
->mmap_sem
);
2691 mm_populate(addr
, len
);
2694 EXPORT_SYMBOL(vm_brk
);
2696 /* Release all mmaps. */
2697 void exit_mmap(struct mm_struct
*mm
)
2699 struct mmu_gather tlb
;
2700 struct vm_area_struct
*vma
;
2701 unsigned long nr_accounted
= 0;
2703 /* mm's last user has gone, and its about to be pulled down */
2704 mmu_notifier_release(mm
);
2706 if (mm
->locked_vm
) {
2709 if (vma
->vm_flags
& VM_LOCKED
)
2710 munlock_vma_pages_all(vma
);
2718 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2723 tlb_gather_mmu(&tlb
, mm
, 0, -1);
2724 /* update_hiwater_rss(mm) here? but nobody should be looking */
2725 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2726 unmap_vmas(&tlb
, vma
, 0, -1);
2728 free_pgtables(&tlb
, vma
, FIRST_USER_ADDRESS
, USER_PGTABLES_CEILING
);
2729 tlb_finish_mmu(&tlb
, 0, -1);
2732 * Walk the list again, actually closing and freeing it,
2733 * with preemption enabled, without holding any MM locks.
2736 if (vma
->vm_flags
& VM_ACCOUNT
)
2737 nr_accounted
+= vma_pages(vma
);
2738 vma
= remove_vma(vma
);
2740 vm_unacct_memory(nr_accounted
);
2742 WARN_ON(atomic_long_read(&mm
->nr_ptes
) >
2743 (FIRST_USER_ADDRESS
+PMD_SIZE
-1)>>PMD_SHIFT
);
2746 /* Insert vm structure into process list sorted by address
2747 * and into the inode's i_mmap tree. If vm_file is non-NULL
2748 * then i_mmap_mutex is taken here.
2750 int insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
2752 struct vm_area_struct
*prev
;
2753 struct rb_node
**rb_link
, *rb_parent
;
2756 * The vm_pgoff of a purely anonymous vma should be irrelevant
2757 * until its first write fault, when page's anon_vma and index
2758 * are set. But now set the vm_pgoff it will almost certainly
2759 * end up with (unless mremap moves it elsewhere before that
2760 * first wfault), so /proc/pid/maps tells a consistent story.
2762 * By setting it to reflect the virtual start address of the
2763 * vma, merges and splits can happen in a seamless way, just
2764 * using the existing file pgoff checks and manipulations.
2765 * Similarly in do_mmap_pgoff and in do_brk.
2767 if (!vma
->vm_file
) {
2768 BUG_ON(vma
->anon_vma
);
2769 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2771 if (find_vma_links(mm
, vma
->vm_start
, vma
->vm_end
,
2772 &prev
, &rb_link
, &rb_parent
))
2774 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2775 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2778 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2783 * Copy the vma structure to a new location in the same mm,
2784 * prior to moving page table entries, to effect an mremap move.
2786 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2787 unsigned long addr
, unsigned long len
, pgoff_t pgoff
,
2788 bool *need_rmap_locks
)
2790 struct vm_area_struct
*vma
= *vmap
;
2791 unsigned long vma_start
= vma
->vm_start
;
2792 struct mm_struct
*mm
= vma
->vm_mm
;
2793 struct vm_area_struct
*new_vma
, *prev
;
2794 struct rb_node
**rb_link
, *rb_parent
;
2795 bool faulted_in_anon_vma
= true;
2798 * If anonymous vma has not yet been faulted, update new pgoff
2799 * to match new location, to increase its chance of merging.
2801 if (unlikely(!vma
->vm_file
&& !vma
->anon_vma
)) {
2802 pgoff
= addr
>> PAGE_SHIFT
;
2803 faulted_in_anon_vma
= false;
2806 if (find_vma_links(mm
, addr
, addr
+ len
, &prev
, &rb_link
, &rb_parent
))
2807 return NULL
; /* should never get here */
2808 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2809 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
));
2812 * Source vma may have been merged into new_vma
2814 if (unlikely(vma_start
>= new_vma
->vm_start
&&
2815 vma_start
< new_vma
->vm_end
)) {
2817 * The only way we can get a vma_merge with
2818 * self during an mremap is if the vma hasn't
2819 * been faulted in yet and we were allowed to
2820 * reset the dst vma->vm_pgoff to the
2821 * destination address of the mremap to allow
2822 * the merge to happen. mremap must change the
2823 * vm_pgoff linearity between src and dst vmas
2824 * (in turn preventing a vma_merge) to be
2825 * safe. It is only safe to keep the vm_pgoff
2826 * linear if there are no pages mapped yet.
2828 VM_BUG_ON(faulted_in_anon_vma
);
2829 *vmap
= vma
= new_vma
;
2831 *need_rmap_locks
= (new_vma
->vm_pgoff
<= vma
->vm_pgoff
);
2833 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2836 new_vma
->vm_start
= addr
;
2837 new_vma
->vm_end
= addr
+ len
;
2838 new_vma
->vm_pgoff
= pgoff
;
2839 if (vma_dup_policy(vma
, new_vma
))
2841 INIT_LIST_HEAD(&new_vma
->anon_vma_chain
);
2842 if (anon_vma_clone(new_vma
, vma
))
2843 goto out_free_mempol
;
2844 if (new_vma
->vm_file
)
2845 get_file(new_vma
->vm_file
);
2846 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2847 new_vma
->vm_ops
->open(new_vma
);
2848 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2849 *need_rmap_locks
= false;
2855 mpol_put(vma_policy(new_vma
));
2857 kmem_cache_free(vm_area_cachep
, new_vma
);
2862 * Return true if the calling process may expand its vm space by the passed
2865 int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
)
2867 unsigned long cur
= mm
->total_vm
; /* pages */
2870 lim
= rlimit(RLIMIT_AS
) >> PAGE_SHIFT
;
2872 if (cur
+ npages
> lim
)
2877 static int special_mapping_fault(struct vm_area_struct
*vma
,
2878 struct vm_fault
*vmf
);
2881 * Having a close hook prevents vma merging regardless of flags.
2883 static void special_mapping_close(struct vm_area_struct
*vma
)
2887 static const char *special_mapping_name(struct vm_area_struct
*vma
)
2889 return ((struct vm_special_mapping
*)vma
->vm_private_data
)->name
;
2892 static const struct vm_operations_struct special_mapping_vmops
= {
2893 .close
= special_mapping_close
,
2894 .fault
= special_mapping_fault
,
2895 .name
= special_mapping_name
,
2898 static const struct vm_operations_struct legacy_special_mapping_vmops
= {
2899 .close
= special_mapping_close
,
2900 .fault
= special_mapping_fault
,
2903 static int special_mapping_fault(struct vm_area_struct
*vma
,
2904 struct vm_fault
*vmf
)
2907 struct page
**pages
;
2910 * special mappings have no vm_file, and in that case, the mm
2911 * uses vm_pgoff internally. So we have to subtract it from here.
2912 * We are allowed to do this because we are the mm; do not copy
2913 * this code into drivers!
2915 pgoff
= vmf
->pgoff
- vma
->vm_pgoff
;
2917 if (vma
->vm_ops
== &legacy_special_mapping_vmops
)
2918 pages
= vma
->vm_private_data
;
2920 pages
= ((struct vm_special_mapping
*)vma
->vm_private_data
)->
2923 for (; pgoff
&& *pages
; ++pages
)
2927 struct page
*page
= *pages
;
2933 return VM_FAULT_SIGBUS
;
2936 static struct vm_area_struct
*__install_special_mapping(
2937 struct mm_struct
*mm
,
2938 unsigned long addr
, unsigned long len
,
2939 unsigned long vm_flags
, const struct vm_operations_struct
*ops
,
2943 struct vm_area_struct
*vma
;
2945 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2946 if (unlikely(vma
== NULL
))
2947 return ERR_PTR(-ENOMEM
);
2949 INIT_LIST_HEAD(&vma
->anon_vma_chain
);
2951 vma
->vm_start
= addr
;
2952 vma
->vm_end
= addr
+ len
;
2954 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
| VM_SOFTDIRTY
;
2955 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
2958 vma
->vm_private_data
= priv
;
2960 ret
= insert_vm_struct(mm
, vma
);
2964 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2966 perf_event_mmap(vma
);
2971 kmem_cache_free(vm_area_cachep
, vma
);
2972 return ERR_PTR(ret
);
2976 * Called with mm->mmap_sem held for writing.
2977 * Insert a new vma covering the given region, with the given flags.
2978 * Its pages are supplied by the given array of struct page *.
2979 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2980 * The region past the last page supplied will always produce SIGBUS.
2981 * The array pointer and the pages it points to are assumed to stay alive
2982 * for as long as this mapping might exist.
2984 struct vm_area_struct
*_install_special_mapping(
2985 struct mm_struct
*mm
,
2986 unsigned long addr
, unsigned long len
,
2987 unsigned long vm_flags
, const struct vm_special_mapping
*spec
)
2989 return __install_special_mapping(mm
, addr
, len
, vm_flags
,
2990 &special_mapping_vmops
, (void *)spec
);
2993 int install_special_mapping(struct mm_struct
*mm
,
2994 unsigned long addr
, unsigned long len
,
2995 unsigned long vm_flags
, struct page
**pages
)
2997 struct vm_area_struct
*vma
= __install_special_mapping(
2998 mm
, addr
, len
, vm_flags
, &legacy_special_mapping_vmops
,
3001 return PTR_ERR_OR_ZERO(vma
);
3004 static DEFINE_MUTEX(mm_all_locks_mutex
);
3006 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
3008 if (!test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3010 * The LSB of head.next can't change from under us
3011 * because we hold the mm_all_locks_mutex.
3013 down_write_nest_lock(&anon_vma
->root
->rwsem
, &mm
->mmap_sem
);
3015 * We can safely modify head.next after taking the
3016 * anon_vma->root->rwsem. If some other vma in this mm shares
3017 * the same anon_vma we won't take it again.
3019 * No need of atomic instructions here, head.next
3020 * can't change from under us thanks to the
3021 * anon_vma->root->rwsem.
3023 if (__test_and_set_bit(0, (unsigned long *)
3024 &anon_vma
->root
->rb_root
.rb_node
))
3029 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
3031 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3033 * AS_MM_ALL_LOCKS can't change from under us because
3034 * we hold the mm_all_locks_mutex.
3036 * Operations on ->flags have to be atomic because
3037 * even if AS_MM_ALL_LOCKS is stable thanks to the
3038 * mm_all_locks_mutex, there may be other cpus
3039 * changing other bitflags in parallel to us.
3041 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
3043 mutex_lock_nest_lock(&mapping
->i_mmap_mutex
, &mm
->mmap_sem
);
3048 * This operation locks against the VM for all pte/vma/mm related
3049 * operations that could ever happen on a certain mm. This includes
3050 * vmtruncate, try_to_unmap, and all page faults.
3052 * The caller must take the mmap_sem in write mode before calling
3053 * mm_take_all_locks(). The caller isn't allowed to release the
3054 * mmap_sem until mm_drop_all_locks() returns.
3056 * mmap_sem in write mode is required in order to block all operations
3057 * that could modify pagetables and free pages without need of
3058 * altering the vma layout (for example populate_range() with
3059 * nonlinear vmas). It's also needed in write mode to avoid new
3060 * anon_vmas to be associated with existing vmas.
3062 * A single task can't take more than one mm_take_all_locks() in a row
3063 * or it would deadlock.
3065 * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
3066 * mapping->flags avoid to take the same lock twice, if more than one
3067 * vma in this mm is backed by the same anon_vma or address_space.
3069 * We can take all the locks in random order because the VM code
3070 * taking i_mmap_mutex or anon_vma->rwsem outside the mmap_sem never
3071 * takes more than one of them in a row. Secondly we're protected
3072 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
3074 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
3075 * that may have to take thousand of locks.
3077 * mm_take_all_locks() can fail if it's interrupted by signals.
3079 int mm_take_all_locks(struct mm_struct
*mm
)
3081 struct vm_area_struct
*vma
;
3082 struct anon_vma_chain
*avc
;
3084 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3086 mutex_lock(&mm_all_locks_mutex
);
3088 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3089 if (signal_pending(current
))
3091 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3092 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
3095 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3096 if (signal_pending(current
))
3099 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3100 vm_lock_anon_vma(mm
, avc
->anon_vma
);
3106 mm_drop_all_locks(mm
);
3110 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
3112 if (test_bit(0, (unsigned long *) &anon_vma
->root
->rb_root
.rb_node
)) {
3114 * The LSB of head.next can't change to 0 from under
3115 * us because we hold the mm_all_locks_mutex.
3117 * We must however clear the bitflag before unlocking
3118 * the vma so the users using the anon_vma->rb_root will
3119 * never see our bitflag.
3121 * No need of atomic instructions here, head.next
3122 * can't change from under us until we release the
3123 * anon_vma->root->rwsem.
3125 if (!__test_and_clear_bit(0, (unsigned long *)
3126 &anon_vma
->root
->rb_root
.rb_node
))
3128 anon_vma_unlock_write(anon_vma
);
3132 static void vm_unlock_mapping(struct address_space
*mapping
)
3134 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
3136 * AS_MM_ALL_LOCKS can't change to 0 from under us
3137 * because we hold the mm_all_locks_mutex.
3139 mutex_unlock(&mapping
->i_mmap_mutex
);
3140 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
3147 * The mmap_sem cannot be released by the caller until
3148 * mm_drop_all_locks() returns.
3150 void mm_drop_all_locks(struct mm_struct
*mm
)
3152 struct vm_area_struct
*vma
;
3153 struct anon_vma_chain
*avc
;
3155 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
3156 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
3158 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
3160 list_for_each_entry(avc
, &vma
->anon_vma_chain
, same_vma
)
3161 vm_unlock_anon_vma(avc
->anon_vma
);
3162 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
3163 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
3166 mutex_unlock(&mm_all_locks_mutex
);
3170 * initialise the VMA slab
3172 void __init
mmap_init(void)
3176 ret
= percpu_counter_init(&vm_committed_as
, 0);
3181 * Initialise sysctl_user_reserve_kbytes.
3183 * This is intended to prevent a user from starting a single memory hogging
3184 * process, such that they cannot recover (kill the hog) in OVERCOMMIT_NEVER
3187 * The default value is min(3% of free memory, 128MB)
3188 * 128MB is enough to recover with sshd/login, bash, and top/kill.
3190 static int init_user_reserve(void)
3192 unsigned long free_kbytes
;
3194 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3196 sysctl_user_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 17);
3199 subsys_initcall(init_user_reserve
);
3202 * Initialise sysctl_admin_reserve_kbytes.
3204 * The purpose of sysctl_admin_reserve_kbytes is to allow the sys admin
3205 * to log in and kill a memory hogging process.
3207 * Systems with more than 256MB will reserve 8MB, enough to recover
3208 * with sshd, bash, and top in OVERCOMMIT_GUESS. Smaller systems will
3209 * only reserve 3% of free pages by default.
3211 static int init_admin_reserve(void)
3213 unsigned long free_kbytes
;
3215 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3217 sysctl_admin_reserve_kbytes
= min(free_kbytes
/ 32, 1UL << 13);
3220 subsys_initcall(init_admin_reserve
);
3223 * Reinititalise user and admin reserves if memory is added or removed.
3225 * The default user reserve max is 128MB, and the default max for the
3226 * admin reserve is 8MB. These are usually, but not always, enough to
3227 * enable recovery from a memory hogging process using login/sshd, a shell,
3228 * and tools like top. It may make sense to increase or even disable the
3229 * reserve depending on the existence of swap or variations in the recovery
3230 * tools. So, the admin may have changed them.
3232 * If memory is added and the reserves have been eliminated or increased above
3233 * the default max, then we'll trust the admin.
3235 * If memory is removed and there isn't enough free memory, then we
3236 * need to reset the reserves.
3238 * Otherwise keep the reserve set by the admin.
3240 static int reserve_mem_notifier(struct notifier_block
*nb
,
3241 unsigned long action
, void *data
)
3243 unsigned long tmp
, free_kbytes
;
3247 /* Default max is 128MB. Leave alone if modified by operator. */
3248 tmp
= sysctl_user_reserve_kbytes
;
3249 if (0 < tmp
&& tmp
< (1UL << 17))
3250 init_user_reserve();
3252 /* Default max is 8MB. Leave alone if modified by operator. */
3253 tmp
= sysctl_admin_reserve_kbytes
;
3254 if (0 < tmp
&& tmp
< (1UL << 13))
3255 init_admin_reserve();
3259 free_kbytes
= global_page_state(NR_FREE_PAGES
) << (PAGE_SHIFT
- 10);
3261 if (sysctl_user_reserve_kbytes
> free_kbytes
) {
3262 init_user_reserve();
3263 pr_info("vm.user_reserve_kbytes reset to %lu\n",
3264 sysctl_user_reserve_kbytes
);
3267 if (sysctl_admin_reserve_kbytes
> free_kbytes
) {
3268 init_admin_reserve();
3269 pr_info("vm.admin_reserve_kbytes reset to %lu\n",
3270 sysctl_admin_reserve_kbytes
);
3279 static struct notifier_block reserve_mem_nb
= {
3280 .notifier_call
= reserve_mem_notifier
,
3283 static int __meminit
init_reserve_notifier(void)
3285 if (register_hotmemory_notifier(&reserve_mem_nb
))
3286 pr_err("Failed registering memory add/remove notifier for admin reserve\n");
3290 subsys_initcall(init_reserve_notifier
);