ARM: imx: update the cpu power up timing setting on i.mx6sx
[linux/fpc-iii.git] / mm / filemap.c
blob21e750b6e810ff7a6541c3131c69c7b4fb8c11d7
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/capability.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/gfp.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/cpuset.h>
32 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
33 #include <linux/hugetlb.h>
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
43 * FIXME: remove all knowledge of the buffer layer from the core VM
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 #include <asm/mman.h>
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
53 * Shared mappings now work. 15.8.1995 Bruno.
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
62 * Lock ordering:
64 * ->i_mmap_rwsem (truncate_pagecache)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
69 * ->i_mutex
70 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
72 * ->mmap_sem
73 * ->i_mmap_rwsem
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
80 * ->i_mutex (generic_perform_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 * bdi->wb.list_lock
84 * sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
87 * ->i_mmap_rwsem
88 * ->anon_vma.lock (vma_adjust)
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
103 * ->memcg->move_lock (page_remove_rmap->mem_cgroup_begin_page_stat)
104 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
105 * ->inode->i_lock (zap_pte_range->set_page_dirty)
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 * ->i_mmap_rwsem
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
112 static int page_cache_tree_insert(struct address_space *mapping,
113 struct page *page, void **shadowp)
115 struct radix_tree_node *node;
116 void **slot;
117 int error;
119 error = __radix_tree_create(&mapping->page_tree, page->index,
120 &node, &slot);
121 if (error)
122 return error;
123 if (*slot) {
124 void *p;
126 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
127 if (!radix_tree_exceptional_entry(p))
128 return -EEXIST;
129 if (shadowp)
130 *shadowp = p;
131 mapping->nrshadows--;
132 if (node)
133 workingset_node_shadows_dec(node);
135 radix_tree_replace_slot(slot, page);
136 mapping->nrpages++;
137 if (node) {
138 workingset_node_pages_inc(node);
140 * Don't track node that contains actual pages.
142 * Avoid acquiring the list_lru lock if already
143 * untracked. The list_empty() test is safe as
144 * node->private_list is protected by
145 * mapping->tree_lock.
147 if (!list_empty(&node->private_list))
148 list_lru_del(&workingset_shadow_nodes,
149 &node->private_list);
151 return 0;
154 static void page_cache_tree_delete(struct address_space *mapping,
155 struct page *page, void *shadow)
157 struct radix_tree_node *node;
158 unsigned long index;
159 unsigned int offset;
160 unsigned int tag;
161 void **slot;
163 VM_BUG_ON(!PageLocked(page));
165 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
167 if (!node) {
169 * We need a node to properly account shadow
170 * entries. Don't plant any without. XXX
172 shadow = NULL;
175 if (shadow) {
176 mapping->nrshadows++;
178 * Make sure the nrshadows update is committed before
179 * the nrpages update so that final truncate racing
180 * with reclaim does not see both counters 0 at the
181 * same time and miss a shadow entry.
183 smp_wmb();
185 mapping->nrpages--;
187 if (!node) {
188 /* Clear direct pointer tags in root node */
189 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
190 radix_tree_replace_slot(slot, shadow);
191 return;
194 /* Clear tree tags for the removed page */
195 index = page->index;
196 offset = index & RADIX_TREE_MAP_MASK;
197 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
198 if (test_bit(offset, node->tags[tag]))
199 radix_tree_tag_clear(&mapping->page_tree, index, tag);
202 /* Delete page, swap shadow entry */
203 radix_tree_replace_slot(slot, shadow);
204 workingset_node_pages_dec(node);
205 if (shadow)
206 workingset_node_shadows_inc(node);
207 else
208 if (__radix_tree_delete_node(&mapping->page_tree, node))
209 return;
212 * Track node that only contains shadow entries.
214 * Avoid acquiring the list_lru lock if already tracked. The
215 * list_empty() test is safe as node->private_list is
216 * protected by mapping->tree_lock.
218 if (!workingset_node_pages(node) &&
219 list_empty(&node->private_list)) {
220 node->private_data = mapping;
221 list_lru_add(&workingset_shadow_nodes, &node->private_list);
226 * Delete a page from the page cache and free it. Caller has to make
227 * sure the page is locked and that nobody else uses it - or that usage
228 * is safe. The caller must hold the mapping's tree_lock and
229 * mem_cgroup_begin_page_stat().
231 void __delete_from_page_cache(struct page *page, void *shadow,
232 struct mem_cgroup *memcg)
234 struct address_space *mapping = page->mapping;
236 trace_mm_filemap_delete_from_page_cache(page);
238 * if we're uptodate, flush out into the cleancache, otherwise
239 * invalidate any existing cleancache entries. We can't leave
240 * stale data around in the cleancache once our page is gone
242 if (PageUptodate(page) && PageMappedToDisk(page))
243 cleancache_put_page(page);
244 else
245 cleancache_invalidate_page(mapping, page);
247 page_cache_tree_delete(mapping, page, shadow);
249 page->mapping = NULL;
250 /* Leave page->index set: truncation lookup relies upon it */
252 /* hugetlb pages do not participate in page cache accounting. */
253 if (!PageHuge(page))
254 __dec_zone_page_state(page, NR_FILE_PAGES);
255 if (PageSwapBacked(page))
256 __dec_zone_page_state(page, NR_SHMEM);
257 BUG_ON(page_mapped(page));
260 * At this point page must be either written or cleaned by truncate.
261 * Dirty page here signals a bug and loss of unwritten data.
263 * This fixes dirty accounting after removing the page entirely but
264 * leaves PageDirty set: it has no effect for truncated page and
265 * anyway will be cleared before returning page into buddy allocator.
267 if (WARN_ON_ONCE(PageDirty(page)))
268 account_page_cleaned(page, mapping, memcg,
269 inode_to_wb(mapping->host));
273 * delete_from_page_cache - delete page from page cache
274 * @page: the page which the kernel is trying to remove from page cache
276 * This must be called only on pages that have been verified to be in the page
277 * cache and locked. It will never put the page into the free list, the caller
278 * has a reference on the page.
280 void delete_from_page_cache(struct page *page)
282 struct address_space *mapping = page->mapping;
283 struct mem_cgroup *memcg;
284 unsigned long flags;
286 void (*freepage)(struct page *);
288 BUG_ON(!PageLocked(page));
290 freepage = mapping->a_ops->freepage;
292 memcg = mem_cgroup_begin_page_stat(page);
293 spin_lock_irqsave(&mapping->tree_lock, flags);
294 __delete_from_page_cache(page, NULL, memcg);
295 spin_unlock_irqrestore(&mapping->tree_lock, flags);
296 mem_cgroup_end_page_stat(memcg);
298 if (freepage)
299 freepage(page);
300 page_cache_release(page);
302 EXPORT_SYMBOL(delete_from_page_cache);
304 static int filemap_check_errors(struct address_space *mapping)
306 int ret = 0;
307 /* Check for outstanding write errors */
308 if (test_bit(AS_ENOSPC, &mapping->flags) &&
309 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
310 ret = -ENOSPC;
311 if (test_bit(AS_EIO, &mapping->flags) &&
312 test_and_clear_bit(AS_EIO, &mapping->flags))
313 ret = -EIO;
314 return ret;
318 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
319 * @mapping: address space structure to write
320 * @start: offset in bytes where the range starts
321 * @end: offset in bytes where the range ends (inclusive)
322 * @sync_mode: enable synchronous operation
324 * Start writeback against all of a mapping's dirty pages that lie
325 * within the byte offsets <start, end> inclusive.
327 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
328 * opposed to a regular memory cleansing writeback. The difference between
329 * these two operations is that if a dirty page/buffer is encountered, it must
330 * be waited upon, and not just skipped over.
332 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
333 loff_t end, int sync_mode)
335 int ret;
336 struct writeback_control wbc = {
337 .sync_mode = sync_mode,
338 .nr_to_write = LONG_MAX,
339 .range_start = start,
340 .range_end = end,
343 if (!mapping_cap_writeback_dirty(mapping))
344 return 0;
346 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
347 ret = do_writepages(mapping, &wbc);
348 wbc_detach_inode(&wbc);
349 return ret;
352 static inline int __filemap_fdatawrite(struct address_space *mapping,
353 int sync_mode)
355 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
358 int filemap_fdatawrite(struct address_space *mapping)
360 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
362 EXPORT_SYMBOL(filemap_fdatawrite);
364 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
365 loff_t end)
367 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
369 EXPORT_SYMBOL(filemap_fdatawrite_range);
372 * filemap_flush - mostly a non-blocking flush
373 * @mapping: target address_space
375 * This is a mostly non-blocking flush. Not suitable for data-integrity
376 * purposes - I/O may not be started against all dirty pages.
378 int filemap_flush(struct address_space *mapping)
380 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
382 EXPORT_SYMBOL(filemap_flush);
384 static int __filemap_fdatawait_range(struct address_space *mapping,
385 loff_t start_byte, loff_t end_byte)
387 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
388 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
389 struct pagevec pvec;
390 int nr_pages;
391 int ret = 0;
393 if (end_byte < start_byte)
394 goto out;
396 pagevec_init(&pvec, 0);
397 while ((index <= end) &&
398 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
399 PAGECACHE_TAG_WRITEBACK,
400 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
401 unsigned i;
403 for (i = 0; i < nr_pages; i++) {
404 struct page *page = pvec.pages[i];
406 /* until radix tree lookup accepts end_index */
407 if (page->index > end)
408 continue;
410 wait_on_page_writeback(page);
411 if (TestClearPageError(page))
412 ret = -EIO;
414 pagevec_release(&pvec);
415 cond_resched();
417 out:
418 return ret;
422 * filemap_fdatawait_range - wait for writeback to complete
423 * @mapping: address space structure to wait for
424 * @start_byte: offset in bytes where the range starts
425 * @end_byte: offset in bytes where the range ends (inclusive)
427 * Walk the list of under-writeback pages of the given address space
428 * in the given range and wait for all of them. Check error status of
429 * the address space and return it.
431 * Since the error status of the address space is cleared by this function,
432 * callers are responsible for checking the return value and handling and/or
433 * reporting the error.
435 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
436 loff_t end_byte)
438 int ret, ret2;
440 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
441 ret2 = filemap_check_errors(mapping);
442 if (!ret)
443 ret = ret2;
445 return ret;
447 EXPORT_SYMBOL(filemap_fdatawait_range);
450 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
451 * @mapping: address space structure to wait for
453 * Walk the list of under-writeback pages of the given address space
454 * and wait for all of them. Unlike filemap_fdatawait(), this function
455 * does not clear error status of the address space.
457 * Use this function if callers don't handle errors themselves. Expected
458 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
459 * fsfreeze(8)
461 void filemap_fdatawait_keep_errors(struct address_space *mapping)
463 loff_t i_size = i_size_read(mapping->host);
465 if (i_size == 0)
466 return;
468 __filemap_fdatawait_range(mapping, 0, i_size - 1);
472 * filemap_fdatawait - wait for all under-writeback pages to complete
473 * @mapping: address space structure to wait for
475 * Walk the list of under-writeback pages of the given address space
476 * and wait for all of them. Check error status of the address space
477 * and return it.
479 * Since the error status of the address space is cleared by this function,
480 * callers are responsible for checking the return value and handling and/or
481 * reporting the error.
483 int filemap_fdatawait(struct address_space *mapping)
485 loff_t i_size = i_size_read(mapping->host);
487 if (i_size == 0)
488 return 0;
490 return filemap_fdatawait_range(mapping, 0, i_size - 1);
492 EXPORT_SYMBOL(filemap_fdatawait);
494 int filemap_write_and_wait(struct address_space *mapping)
496 int err = 0;
498 if (mapping->nrpages) {
499 err = filemap_fdatawrite(mapping);
501 * Even if the above returned error, the pages may be
502 * written partially (e.g. -ENOSPC), so we wait for it.
503 * But the -EIO is special case, it may indicate the worst
504 * thing (e.g. bug) happened, so we avoid waiting for it.
506 if (err != -EIO) {
507 int err2 = filemap_fdatawait(mapping);
508 if (!err)
509 err = err2;
511 } else {
512 err = filemap_check_errors(mapping);
514 return err;
516 EXPORT_SYMBOL(filemap_write_and_wait);
519 * filemap_write_and_wait_range - write out & wait on a file range
520 * @mapping: the address_space for the pages
521 * @lstart: offset in bytes where the range starts
522 * @lend: offset in bytes where the range ends (inclusive)
524 * Write out and wait upon file offsets lstart->lend, inclusive.
526 * Note that `lend' is inclusive (describes the last byte to be written) so
527 * that this function can be used to write to the very end-of-file (end = -1).
529 int filemap_write_and_wait_range(struct address_space *mapping,
530 loff_t lstart, loff_t lend)
532 int err = 0;
534 if (mapping->nrpages) {
535 err = __filemap_fdatawrite_range(mapping, lstart, lend,
536 WB_SYNC_ALL);
537 /* See comment of filemap_write_and_wait() */
538 if (err != -EIO) {
539 int err2 = filemap_fdatawait_range(mapping,
540 lstart, lend);
541 if (!err)
542 err = err2;
544 } else {
545 err = filemap_check_errors(mapping);
547 return err;
549 EXPORT_SYMBOL(filemap_write_and_wait_range);
552 * replace_page_cache_page - replace a pagecache page with a new one
553 * @old: page to be replaced
554 * @new: page to replace with
555 * @gfp_mask: allocation mode
557 * This function replaces a page in the pagecache with a new one. On
558 * success it acquires the pagecache reference for the new page and
559 * drops it for the old page. Both the old and new pages must be
560 * locked. This function does not add the new page to the LRU, the
561 * caller must do that.
563 * The remove + add is atomic. The only way this function can fail is
564 * memory allocation failure.
566 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
568 int error;
570 VM_BUG_ON_PAGE(!PageLocked(old), old);
571 VM_BUG_ON_PAGE(!PageLocked(new), new);
572 VM_BUG_ON_PAGE(new->mapping, new);
574 error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
575 if (!error) {
576 struct address_space *mapping = old->mapping;
577 void (*freepage)(struct page *);
578 struct mem_cgroup *memcg;
579 unsigned long flags;
581 pgoff_t offset = old->index;
582 freepage = mapping->a_ops->freepage;
584 page_cache_get(new);
585 new->mapping = mapping;
586 new->index = offset;
588 memcg = mem_cgroup_begin_page_stat(old);
589 spin_lock_irqsave(&mapping->tree_lock, flags);
590 __delete_from_page_cache(old, NULL, memcg);
591 error = page_cache_tree_insert(mapping, new, NULL);
592 BUG_ON(error);
595 * hugetlb pages do not participate in page cache accounting.
597 if (!PageHuge(new))
598 __inc_zone_page_state(new, NR_FILE_PAGES);
599 if (PageSwapBacked(new))
600 __inc_zone_page_state(new, NR_SHMEM);
601 spin_unlock_irqrestore(&mapping->tree_lock, flags);
602 mem_cgroup_end_page_stat(memcg);
603 mem_cgroup_replace_page(old, new);
604 radix_tree_preload_end();
605 if (freepage)
606 freepage(old);
607 page_cache_release(old);
610 return error;
612 EXPORT_SYMBOL_GPL(replace_page_cache_page);
614 static int __add_to_page_cache_locked(struct page *page,
615 struct address_space *mapping,
616 pgoff_t offset, gfp_t gfp_mask,
617 void **shadowp)
619 int huge = PageHuge(page);
620 struct mem_cgroup *memcg;
621 int error;
623 VM_BUG_ON_PAGE(!PageLocked(page), page);
624 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
626 if (!huge) {
627 error = mem_cgroup_try_charge(page, current->mm,
628 gfp_mask, &memcg);
629 if (error)
630 return error;
633 error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
634 if (error) {
635 if (!huge)
636 mem_cgroup_cancel_charge(page, memcg);
637 return error;
640 page_cache_get(page);
641 page->mapping = mapping;
642 page->index = offset;
644 spin_lock_irq(&mapping->tree_lock);
645 error = page_cache_tree_insert(mapping, page, shadowp);
646 radix_tree_preload_end();
647 if (unlikely(error))
648 goto err_insert;
650 /* hugetlb pages do not participate in page cache accounting. */
651 if (!huge)
652 __inc_zone_page_state(page, NR_FILE_PAGES);
653 spin_unlock_irq(&mapping->tree_lock);
654 if (!huge)
655 mem_cgroup_commit_charge(page, memcg, false);
656 trace_mm_filemap_add_to_page_cache(page);
657 return 0;
658 err_insert:
659 page->mapping = NULL;
660 /* Leave page->index set: truncation relies upon it */
661 spin_unlock_irq(&mapping->tree_lock);
662 if (!huge)
663 mem_cgroup_cancel_charge(page, memcg);
664 page_cache_release(page);
665 return error;
669 * add_to_page_cache_locked - add a locked page to the pagecache
670 * @page: page to add
671 * @mapping: the page's address_space
672 * @offset: page index
673 * @gfp_mask: page allocation mode
675 * This function is used to add a page to the pagecache. It must be locked.
676 * This function does not add the page to the LRU. The caller must do that.
678 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
679 pgoff_t offset, gfp_t gfp_mask)
681 return __add_to_page_cache_locked(page, mapping, offset,
682 gfp_mask, NULL);
684 EXPORT_SYMBOL(add_to_page_cache_locked);
686 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
687 pgoff_t offset, gfp_t gfp_mask)
689 void *shadow = NULL;
690 int ret;
692 __set_page_locked(page);
693 ret = __add_to_page_cache_locked(page, mapping, offset,
694 gfp_mask, &shadow);
695 if (unlikely(ret))
696 __clear_page_locked(page);
697 else {
699 * The page might have been evicted from cache only
700 * recently, in which case it should be activated like
701 * any other repeatedly accessed page.
703 if (shadow && workingset_refault(shadow)) {
704 SetPageActive(page);
705 workingset_activation(page);
706 } else
707 ClearPageActive(page);
708 lru_cache_add(page);
710 return ret;
712 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
714 #ifdef CONFIG_NUMA
715 struct page *__page_cache_alloc(gfp_t gfp)
717 int n;
718 struct page *page;
720 if (cpuset_do_page_mem_spread()) {
721 unsigned int cpuset_mems_cookie;
722 do {
723 cpuset_mems_cookie = read_mems_allowed_begin();
724 n = cpuset_mem_spread_node();
725 page = __alloc_pages_node(n, gfp, 0);
726 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
728 return page;
730 return alloc_pages(gfp, 0);
732 EXPORT_SYMBOL(__page_cache_alloc);
733 #endif
736 * In order to wait for pages to become available there must be
737 * waitqueues associated with pages. By using a hash table of
738 * waitqueues where the bucket discipline is to maintain all
739 * waiters on the same queue and wake all when any of the pages
740 * become available, and for the woken contexts to check to be
741 * sure the appropriate page became available, this saves space
742 * at a cost of "thundering herd" phenomena during rare hash
743 * collisions.
745 wait_queue_head_t *page_waitqueue(struct page *page)
747 const struct zone *zone = page_zone(page);
749 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
751 EXPORT_SYMBOL(page_waitqueue);
753 void wait_on_page_bit(struct page *page, int bit_nr)
755 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
757 if (test_bit(bit_nr, &page->flags))
758 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
759 TASK_UNINTERRUPTIBLE);
761 EXPORT_SYMBOL(wait_on_page_bit);
763 int wait_on_page_bit_killable(struct page *page, int bit_nr)
765 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
767 if (!test_bit(bit_nr, &page->flags))
768 return 0;
770 return __wait_on_bit(page_waitqueue(page), &wait,
771 bit_wait_io, TASK_KILLABLE);
774 int wait_on_page_bit_killable_timeout(struct page *page,
775 int bit_nr, unsigned long timeout)
777 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
779 wait.key.timeout = jiffies + timeout;
780 if (!test_bit(bit_nr, &page->flags))
781 return 0;
782 return __wait_on_bit(page_waitqueue(page), &wait,
783 bit_wait_io_timeout, TASK_KILLABLE);
785 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
788 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
789 * @page: Page defining the wait queue of interest
790 * @waiter: Waiter to add to the queue
792 * Add an arbitrary @waiter to the wait queue for the nominated @page.
794 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
796 wait_queue_head_t *q = page_waitqueue(page);
797 unsigned long flags;
799 spin_lock_irqsave(&q->lock, flags);
800 __add_wait_queue(q, waiter);
801 spin_unlock_irqrestore(&q->lock, flags);
803 EXPORT_SYMBOL_GPL(add_page_wait_queue);
806 * unlock_page - unlock a locked page
807 * @page: the page
809 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
810 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
811 * mechanism between PageLocked pages and PageWriteback pages is shared.
812 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
814 * The mb is necessary to enforce ordering between the clear_bit and the read
815 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
817 void unlock_page(struct page *page)
819 VM_BUG_ON_PAGE(!PageLocked(page), page);
820 clear_bit_unlock(PG_locked, &page->flags);
821 smp_mb__after_atomic();
822 wake_up_page(page, PG_locked);
824 EXPORT_SYMBOL(unlock_page);
827 * end_page_writeback - end writeback against a page
828 * @page: the page
830 void end_page_writeback(struct page *page)
833 * TestClearPageReclaim could be used here but it is an atomic
834 * operation and overkill in this particular case. Failing to
835 * shuffle a page marked for immediate reclaim is too mild to
836 * justify taking an atomic operation penalty at the end of
837 * ever page writeback.
839 if (PageReclaim(page)) {
840 ClearPageReclaim(page);
841 rotate_reclaimable_page(page);
844 if (!test_clear_page_writeback(page))
845 BUG();
847 smp_mb__after_atomic();
848 wake_up_page(page, PG_writeback);
850 EXPORT_SYMBOL(end_page_writeback);
853 * After completing I/O on a page, call this routine to update the page
854 * flags appropriately
856 void page_endio(struct page *page, int rw, int err)
858 if (rw == READ) {
859 if (!err) {
860 SetPageUptodate(page);
861 } else {
862 ClearPageUptodate(page);
863 SetPageError(page);
865 unlock_page(page);
866 } else { /* rw == WRITE */
867 if (err) {
868 struct address_space *mapping;
870 SetPageError(page);
871 mapping = page_mapping(page);
872 if (mapping)
873 mapping_set_error(mapping, err);
875 end_page_writeback(page);
878 EXPORT_SYMBOL_GPL(page_endio);
881 * __lock_page - get a lock on the page, assuming we need to sleep to get it
882 * @page: the page to lock
884 void __lock_page(struct page *page)
886 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
888 __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
889 TASK_UNINTERRUPTIBLE);
891 EXPORT_SYMBOL(__lock_page);
893 int __lock_page_killable(struct page *page)
895 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
897 return __wait_on_bit_lock(page_waitqueue(page), &wait,
898 bit_wait_io, TASK_KILLABLE);
900 EXPORT_SYMBOL_GPL(__lock_page_killable);
903 * Return values:
904 * 1 - page is locked; mmap_sem is still held.
905 * 0 - page is not locked.
906 * mmap_sem has been released (up_read()), unless flags had both
907 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
908 * which case mmap_sem is still held.
910 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
911 * with the page locked and the mmap_sem unperturbed.
913 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
914 unsigned int flags)
916 if (flags & FAULT_FLAG_ALLOW_RETRY) {
918 * CAUTION! In this case, mmap_sem is not released
919 * even though return 0.
921 if (flags & FAULT_FLAG_RETRY_NOWAIT)
922 return 0;
924 up_read(&mm->mmap_sem);
925 if (flags & FAULT_FLAG_KILLABLE)
926 wait_on_page_locked_killable(page);
927 else
928 wait_on_page_locked(page);
929 return 0;
930 } else {
931 if (flags & FAULT_FLAG_KILLABLE) {
932 int ret;
934 ret = __lock_page_killable(page);
935 if (ret) {
936 up_read(&mm->mmap_sem);
937 return 0;
939 } else
940 __lock_page(page);
941 return 1;
946 * page_cache_next_hole - find the next hole (not-present entry)
947 * @mapping: mapping
948 * @index: index
949 * @max_scan: maximum range to search
951 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
952 * lowest indexed hole.
954 * Returns: the index of the hole if found, otherwise returns an index
955 * outside of the set specified (in which case 'return - index >=
956 * max_scan' will be true). In rare cases of index wrap-around, 0 will
957 * be returned.
959 * page_cache_next_hole may be called under rcu_read_lock. However,
960 * like radix_tree_gang_lookup, this will not atomically search a
961 * snapshot of the tree at a single point in time. For example, if a
962 * hole is created at index 5, then subsequently a hole is created at
963 * index 10, page_cache_next_hole covering both indexes may return 10
964 * if called under rcu_read_lock.
966 pgoff_t page_cache_next_hole(struct address_space *mapping,
967 pgoff_t index, unsigned long max_scan)
969 unsigned long i;
971 for (i = 0; i < max_scan; i++) {
972 struct page *page;
974 page = radix_tree_lookup(&mapping->page_tree, index);
975 if (!page || radix_tree_exceptional_entry(page))
976 break;
977 index++;
978 if (index == 0)
979 break;
982 return index;
984 EXPORT_SYMBOL(page_cache_next_hole);
987 * page_cache_prev_hole - find the prev hole (not-present entry)
988 * @mapping: mapping
989 * @index: index
990 * @max_scan: maximum range to search
992 * Search backwards in the range [max(index-max_scan+1, 0), index] for
993 * the first hole.
995 * Returns: the index of the hole if found, otherwise returns an index
996 * outside of the set specified (in which case 'index - return >=
997 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
998 * will be returned.
1000 * page_cache_prev_hole may be called under rcu_read_lock. However,
1001 * like radix_tree_gang_lookup, this will not atomically search a
1002 * snapshot of the tree at a single point in time. For example, if a
1003 * hole is created at index 10, then subsequently a hole is created at
1004 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1005 * called under rcu_read_lock.
1007 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1008 pgoff_t index, unsigned long max_scan)
1010 unsigned long i;
1012 for (i = 0; i < max_scan; i++) {
1013 struct page *page;
1015 page = radix_tree_lookup(&mapping->page_tree, index);
1016 if (!page || radix_tree_exceptional_entry(page))
1017 break;
1018 index--;
1019 if (index == ULONG_MAX)
1020 break;
1023 return index;
1025 EXPORT_SYMBOL(page_cache_prev_hole);
1028 * find_get_entry - find and get a page cache entry
1029 * @mapping: the address_space to search
1030 * @offset: the page cache index
1032 * Looks up the page cache slot at @mapping & @offset. If there is a
1033 * page cache page, it is returned with an increased refcount.
1035 * If the slot holds a shadow entry of a previously evicted page, or a
1036 * swap entry from shmem/tmpfs, it is returned.
1038 * Otherwise, %NULL is returned.
1040 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1042 void **pagep;
1043 struct page *page;
1045 rcu_read_lock();
1046 repeat:
1047 page = NULL;
1048 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1049 if (pagep) {
1050 page = radix_tree_deref_slot(pagep);
1051 if (unlikely(!page))
1052 goto out;
1053 if (radix_tree_exception(page)) {
1054 if (radix_tree_deref_retry(page))
1055 goto repeat;
1057 * A shadow entry of a recently evicted page,
1058 * or a swap entry from shmem/tmpfs. Return
1059 * it without attempting to raise page count.
1061 goto out;
1063 if (!page_cache_get_speculative(page))
1064 goto repeat;
1067 * Has the page moved?
1068 * This is part of the lockless pagecache protocol. See
1069 * include/linux/pagemap.h for details.
1071 if (unlikely(page != *pagep)) {
1072 page_cache_release(page);
1073 goto repeat;
1076 out:
1077 rcu_read_unlock();
1079 return page;
1081 EXPORT_SYMBOL(find_get_entry);
1084 * find_lock_entry - locate, pin and lock a page cache entry
1085 * @mapping: the address_space to search
1086 * @offset: the page cache index
1088 * Looks up the page cache slot at @mapping & @offset. If there is a
1089 * page cache page, it is returned locked and with an increased
1090 * refcount.
1092 * If the slot holds a shadow entry of a previously evicted page, or a
1093 * swap entry from shmem/tmpfs, it is returned.
1095 * Otherwise, %NULL is returned.
1097 * find_lock_entry() may sleep.
1099 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1101 struct page *page;
1103 repeat:
1104 page = find_get_entry(mapping, offset);
1105 if (page && !radix_tree_exception(page)) {
1106 lock_page(page);
1107 /* Has the page been truncated? */
1108 if (unlikely(page->mapping != mapping)) {
1109 unlock_page(page);
1110 page_cache_release(page);
1111 goto repeat;
1113 VM_BUG_ON_PAGE(page->index != offset, page);
1115 return page;
1117 EXPORT_SYMBOL(find_lock_entry);
1120 * pagecache_get_page - find and get a page reference
1121 * @mapping: the address_space to search
1122 * @offset: the page index
1123 * @fgp_flags: PCG flags
1124 * @gfp_mask: gfp mask to use for the page cache data page allocation
1126 * Looks up the page cache slot at @mapping & @offset.
1128 * PCG flags modify how the page is returned.
1130 * FGP_ACCESSED: the page will be marked accessed
1131 * FGP_LOCK: Page is return locked
1132 * FGP_CREAT: If page is not present then a new page is allocated using
1133 * @gfp_mask and added to the page cache and the VM's LRU
1134 * list. The page is returned locked and with an increased
1135 * refcount. Otherwise, %NULL is returned.
1137 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1138 * if the GFP flags specified for FGP_CREAT are atomic.
1140 * If there is a page cache page, it is returned with an increased refcount.
1142 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1143 int fgp_flags, gfp_t gfp_mask)
1145 struct page *page;
1147 repeat:
1148 page = find_get_entry(mapping, offset);
1149 if (radix_tree_exceptional_entry(page))
1150 page = NULL;
1151 if (!page)
1152 goto no_page;
1154 if (fgp_flags & FGP_LOCK) {
1155 if (fgp_flags & FGP_NOWAIT) {
1156 if (!trylock_page(page)) {
1157 page_cache_release(page);
1158 return NULL;
1160 } else {
1161 lock_page(page);
1164 /* Has the page been truncated? */
1165 if (unlikely(page->mapping != mapping)) {
1166 unlock_page(page);
1167 page_cache_release(page);
1168 goto repeat;
1170 VM_BUG_ON_PAGE(page->index != offset, page);
1173 if (page && (fgp_flags & FGP_ACCESSED))
1174 mark_page_accessed(page);
1176 no_page:
1177 if (!page && (fgp_flags & FGP_CREAT)) {
1178 int err;
1179 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1180 gfp_mask |= __GFP_WRITE;
1181 if (fgp_flags & FGP_NOFS)
1182 gfp_mask &= ~__GFP_FS;
1184 page = __page_cache_alloc(gfp_mask);
1185 if (!page)
1186 return NULL;
1188 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1189 fgp_flags |= FGP_LOCK;
1191 /* Init accessed so avoid atomic mark_page_accessed later */
1192 if (fgp_flags & FGP_ACCESSED)
1193 __SetPageReferenced(page);
1195 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1196 if (unlikely(err)) {
1197 page_cache_release(page);
1198 page = NULL;
1199 if (err == -EEXIST)
1200 goto repeat;
1204 return page;
1206 EXPORT_SYMBOL(pagecache_get_page);
1209 * find_get_entries - gang pagecache lookup
1210 * @mapping: The address_space to search
1211 * @start: The starting page cache index
1212 * @nr_entries: The maximum number of entries
1213 * @entries: Where the resulting entries are placed
1214 * @indices: The cache indices corresponding to the entries in @entries
1216 * find_get_entries() will search for and return a group of up to
1217 * @nr_entries entries in the mapping. The entries are placed at
1218 * @entries. find_get_entries() takes a reference against any actual
1219 * pages it returns.
1221 * The search returns a group of mapping-contiguous page cache entries
1222 * with ascending indexes. There may be holes in the indices due to
1223 * not-present pages.
1225 * Any shadow entries of evicted pages, or swap entries from
1226 * shmem/tmpfs, are included in the returned array.
1228 * find_get_entries() returns the number of pages and shadow entries
1229 * which were found.
1231 unsigned find_get_entries(struct address_space *mapping,
1232 pgoff_t start, unsigned int nr_entries,
1233 struct page **entries, pgoff_t *indices)
1235 void **slot;
1236 unsigned int ret = 0;
1237 struct radix_tree_iter iter;
1239 if (!nr_entries)
1240 return 0;
1242 rcu_read_lock();
1243 restart:
1244 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1245 struct page *page;
1246 repeat:
1247 page = radix_tree_deref_slot(slot);
1248 if (unlikely(!page))
1249 continue;
1250 if (radix_tree_exception(page)) {
1251 if (radix_tree_deref_retry(page))
1252 goto restart;
1254 * A shadow entry of a recently evicted page,
1255 * or a swap entry from shmem/tmpfs. Return
1256 * it without attempting to raise page count.
1258 goto export;
1260 if (!page_cache_get_speculative(page))
1261 goto repeat;
1263 /* Has the page moved? */
1264 if (unlikely(page != *slot)) {
1265 page_cache_release(page);
1266 goto repeat;
1268 export:
1269 indices[ret] = iter.index;
1270 entries[ret] = page;
1271 if (++ret == nr_entries)
1272 break;
1274 rcu_read_unlock();
1275 return ret;
1279 * find_get_pages - gang pagecache lookup
1280 * @mapping: The address_space to search
1281 * @start: The starting page index
1282 * @nr_pages: The maximum number of pages
1283 * @pages: Where the resulting pages are placed
1285 * find_get_pages() will search for and return a group of up to
1286 * @nr_pages pages in the mapping. The pages are placed at @pages.
1287 * find_get_pages() takes a reference against the returned pages.
1289 * The search returns a group of mapping-contiguous pages with ascending
1290 * indexes. There may be holes in the indices due to not-present pages.
1292 * find_get_pages() returns the number of pages which were found.
1294 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1295 unsigned int nr_pages, struct page **pages)
1297 struct radix_tree_iter iter;
1298 void **slot;
1299 unsigned ret = 0;
1301 if (unlikely(!nr_pages))
1302 return 0;
1304 rcu_read_lock();
1305 restart:
1306 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1307 struct page *page;
1308 repeat:
1309 page = radix_tree_deref_slot(slot);
1310 if (unlikely(!page))
1311 continue;
1313 if (radix_tree_exception(page)) {
1314 if (radix_tree_deref_retry(page)) {
1316 * Transient condition which can only trigger
1317 * when entry at index 0 moves out of or back
1318 * to root: none yet gotten, safe to restart.
1320 WARN_ON(iter.index);
1321 goto restart;
1324 * A shadow entry of a recently evicted page,
1325 * or a swap entry from shmem/tmpfs. Skip
1326 * over it.
1328 continue;
1331 if (!page_cache_get_speculative(page))
1332 goto repeat;
1334 /* Has the page moved? */
1335 if (unlikely(page != *slot)) {
1336 page_cache_release(page);
1337 goto repeat;
1340 pages[ret] = page;
1341 if (++ret == nr_pages)
1342 break;
1345 rcu_read_unlock();
1346 return ret;
1350 * find_get_pages_contig - gang contiguous pagecache lookup
1351 * @mapping: The address_space to search
1352 * @index: The starting page index
1353 * @nr_pages: The maximum number of pages
1354 * @pages: Where the resulting pages are placed
1356 * find_get_pages_contig() works exactly like find_get_pages(), except
1357 * that the returned number of pages are guaranteed to be contiguous.
1359 * find_get_pages_contig() returns the number of pages which were found.
1361 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1362 unsigned int nr_pages, struct page **pages)
1364 struct radix_tree_iter iter;
1365 void **slot;
1366 unsigned int ret = 0;
1368 if (unlikely(!nr_pages))
1369 return 0;
1371 rcu_read_lock();
1372 restart:
1373 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1374 struct page *page;
1375 repeat:
1376 page = radix_tree_deref_slot(slot);
1377 /* The hole, there no reason to continue */
1378 if (unlikely(!page))
1379 break;
1381 if (radix_tree_exception(page)) {
1382 if (radix_tree_deref_retry(page)) {
1384 * Transient condition which can only trigger
1385 * when entry at index 0 moves out of or back
1386 * to root: none yet gotten, safe to restart.
1388 goto restart;
1391 * A shadow entry of a recently evicted page,
1392 * or a swap entry from shmem/tmpfs. Stop
1393 * looking for contiguous pages.
1395 break;
1398 if (!page_cache_get_speculative(page))
1399 goto repeat;
1401 /* Has the page moved? */
1402 if (unlikely(page != *slot)) {
1403 page_cache_release(page);
1404 goto repeat;
1408 * must check mapping and index after taking the ref.
1409 * otherwise we can get both false positives and false
1410 * negatives, which is just confusing to the caller.
1412 if (page->mapping == NULL || page->index != iter.index) {
1413 page_cache_release(page);
1414 break;
1417 pages[ret] = page;
1418 if (++ret == nr_pages)
1419 break;
1421 rcu_read_unlock();
1422 return ret;
1424 EXPORT_SYMBOL(find_get_pages_contig);
1427 * find_get_pages_tag - find and return pages that match @tag
1428 * @mapping: the address_space to search
1429 * @index: the starting page index
1430 * @tag: the tag index
1431 * @nr_pages: the maximum number of pages
1432 * @pages: where the resulting pages are placed
1434 * Like find_get_pages, except we only return pages which are tagged with
1435 * @tag. We update @index to index the next page for the traversal.
1437 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1438 int tag, unsigned int nr_pages, struct page **pages)
1440 struct radix_tree_iter iter;
1441 void **slot;
1442 unsigned ret = 0;
1444 if (unlikely(!nr_pages))
1445 return 0;
1447 rcu_read_lock();
1448 restart:
1449 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1450 &iter, *index, tag) {
1451 struct page *page;
1452 repeat:
1453 page = radix_tree_deref_slot(slot);
1454 if (unlikely(!page))
1455 continue;
1457 if (radix_tree_exception(page)) {
1458 if (radix_tree_deref_retry(page)) {
1460 * Transient condition which can only trigger
1461 * when entry at index 0 moves out of or back
1462 * to root: none yet gotten, safe to restart.
1464 goto restart;
1467 * A shadow entry of a recently evicted page.
1469 * Those entries should never be tagged, but
1470 * this tree walk is lockless and the tags are
1471 * looked up in bulk, one radix tree node at a
1472 * time, so there is a sizable window for page
1473 * reclaim to evict a page we saw tagged.
1475 * Skip over it.
1477 continue;
1480 if (!page_cache_get_speculative(page))
1481 goto repeat;
1483 /* Has the page moved? */
1484 if (unlikely(page != *slot)) {
1485 page_cache_release(page);
1486 goto repeat;
1489 pages[ret] = page;
1490 if (++ret == nr_pages)
1491 break;
1494 rcu_read_unlock();
1496 if (ret)
1497 *index = pages[ret - 1]->index + 1;
1499 return ret;
1501 EXPORT_SYMBOL(find_get_pages_tag);
1504 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1505 * a _large_ part of the i/o request. Imagine the worst scenario:
1507 * ---R__________________________________________B__________
1508 * ^ reading here ^ bad block(assume 4k)
1510 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1511 * => failing the whole request => read(R) => read(R+1) =>
1512 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1513 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1514 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1516 * It is going insane. Fix it by quickly scaling down the readahead size.
1518 static void shrink_readahead_size_eio(struct file *filp,
1519 struct file_ra_state *ra)
1521 ra->ra_pages /= 4;
1525 * do_generic_file_read - generic file read routine
1526 * @filp: the file to read
1527 * @ppos: current file position
1528 * @iter: data destination
1529 * @written: already copied
1531 * This is a generic file read routine, and uses the
1532 * mapping->a_ops->readpage() function for the actual low-level stuff.
1534 * This is really ugly. But the goto's actually try to clarify some
1535 * of the logic when it comes to error handling etc.
1537 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1538 struct iov_iter *iter, ssize_t written)
1540 struct address_space *mapping = filp->f_mapping;
1541 struct inode *inode = mapping->host;
1542 struct file_ra_state *ra = &filp->f_ra;
1543 pgoff_t index;
1544 pgoff_t last_index;
1545 pgoff_t prev_index;
1546 unsigned long offset; /* offset into pagecache page */
1547 unsigned int prev_offset;
1548 int error = 0;
1550 index = *ppos >> PAGE_CACHE_SHIFT;
1551 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1552 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1553 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1554 offset = *ppos & ~PAGE_CACHE_MASK;
1556 for (;;) {
1557 struct page *page;
1558 pgoff_t end_index;
1559 loff_t isize;
1560 unsigned long nr, ret;
1562 cond_resched();
1563 find_page:
1564 if (fatal_signal_pending(current)) {
1565 error = -EINTR;
1566 goto out;
1569 page = find_get_page(mapping, index);
1570 if (!page) {
1571 page_cache_sync_readahead(mapping,
1572 ra, filp,
1573 index, last_index - index);
1574 page = find_get_page(mapping, index);
1575 if (unlikely(page == NULL))
1576 goto no_cached_page;
1578 if (PageReadahead(page)) {
1579 page_cache_async_readahead(mapping,
1580 ra, filp, page,
1581 index, last_index - index);
1583 if (!PageUptodate(page)) {
1585 * See comment in do_read_cache_page on why
1586 * wait_on_page_locked is used to avoid unnecessarily
1587 * serialisations and why it's safe.
1589 wait_on_page_locked_killable(page);
1590 if (PageUptodate(page))
1591 goto page_ok;
1593 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1594 !mapping->a_ops->is_partially_uptodate)
1595 goto page_not_up_to_date;
1596 if (!trylock_page(page))
1597 goto page_not_up_to_date;
1598 /* Did it get truncated before we got the lock? */
1599 if (!page->mapping)
1600 goto page_not_up_to_date_locked;
1601 if (!mapping->a_ops->is_partially_uptodate(page,
1602 offset, iter->count))
1603 goto page_not_up_to_date_locked;
1604 unlock_page(page);
1606 page_ok:
1608 * i_size must be checked after we know the page is Uptodate.
1610 * Checking i_size after the check allows us to calculate
1611 * the correct value for "nr", which means the zero-filled
1612 * part of the page is not copied back to userspace (unless
1613 * another truncate extends the file - this is desired though).
1616 isize = i_size_read(inode);
1617 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1618 if (unlikely(!isize || index > end_index)) {
1619 page_cache_release(page);
1620 goto out;
1623 /* nr is the maximum number of bytes to copy from this page */
1624 nr = PAGE_CACHE_SIZE;
1625 if (index == end_index) {
1626 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1627 if (nr <= offset) {
1628 page_cache_release(page);
1629 goto out;
1632 nr = nr - offset;
1634 /* If users can be writing to this page using arbitrary
1635 * virtual addresses, take care about potential aliasing
1636 * before reading the page on the kernel side.
1638 if (mapping_writably_mapped(mapping))
1639 flush_dcache_page(page);
1642 * When a sequential read accesses a page several times,
1643 * only mark it as accessed the first time.
1645 if (prev_index != index || offset != prev_offset)
1646 mark_page_accessed(page);
1647 prev_index = index;
1650 * Ok, we have the page, and it's up-to-date, so
1651 * now we can copy it to user space...
1654 ret = copy_page_to_iter(page, offset, nr, iter);
1655 offset += ret;
1656 index += offset >> PAGE_CACHE_SHIFT;
1657 offset &= ~PAGE_CACHE_MASK;
1658 prev_offset = offset;
1660 page_cache_release(page);
1661 written += ret;
1662 if (!iov_iter_count(iter))
1663 goto out;
1664 if (ret < nr) {
1665 error = -EFAULT;
1666 goto out;
1668 continue;
1670 page_not_up_to_date:
1671 /* Get exclusive access to the page ... */
1672 error = lock_page_killable(page);
1673 if (unlikely(error))
1674 goto readpage_error;
1676 page_not_up_to_date_locked:
1677 /* Did it get truncated before we got the lock? */
1678 if (!page->mapping) {
1679 unlock_page(page);
1680 page_cache_release(page);
1681 continue;
1684 /* Did somebody else fill it already? */
1685 if (PageUptodate(page)) {
1686 unlock_page(page);
1687 goto page_ok;
1690 readpage:
1692 * A previous I/O error may have been due to temporary
1693 * failures, eg. multipath errors.
1694 * PG_error will be set again if readpage fails.
1696 ClearPageError(page);
1697 /* Start the actual read. The read will unlock the page. */
1698 error = mapping->a_ops->readpage(filp, page);
1700 if (unlikely(error)) {
1701 if (error == AOP_TRUNCATED_PAGE) {
1702 page_cache_release(page);
1703 error = 0;
1704 goto find_page;
1706 goto readpage_error;
1709 if (!PageUptodate(page)) {
1710 error = lock_page_killable(page);
1711 if (unlikely(error))
1712 goto readpage_error;
1713 if (!PageUptodate(page)) {
1714 if (page->mapping == NULL) {
1716 * invalidate_mapping_pages got it
1718 unlock_page(page);
1719 page_cache_release(page);
1720 goto find_page;
1722 unlock_page(page);
1723 shrink_readahead_size_eio(filp, ra);
1724 error = -EIO;
1725 goto readpage_error;
1727 unlock_page(page);
1730 goto page_ok;
1732 readpage_error:
1733 /* UHHUH! A synchronous read error occurred. Report it */
1734 page_cache_release(page);
1735 goto out;
1737 no_cached_page:
1739 * Ok, it wasn't cached, so we need to create a new
1740 * page..
1742 page = page_cache_alloc_cold(mapping);
1743 if (!page) {
1744 error = -ENOMEM;
1745 goto out;
1747 error = add_to_page_cache_lru(page, mapping, index,
1748 mapping_gfp_constraint(mapping, GFP_KERNEL));
1749 if (error) {
1750 page_cache_release(page);
1751 if (error == -EEXIST) {
1752 error = 0;
1753 goto find_page;
1755 goto out;
1757 goto readpage;
1760 out:
1761 ra->prev_pos = prev_index;
1762 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1763 ra->prev_pos |= prev_offset;
1765 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1766 file_accessed(filp);
1767 return written ? written : error;
1771 * generic_file_read_iter - generic filesystem read routine
1772 * @iocb: kernel I/O control block
1773 * @iter: destination for the data read
1775 * This is the "read_iter()" routine for all filesystems
1776 * that can use the page cache directly.
1778 ssize_t
1779 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1781 struct file *file = iocb->ki_filp;
1782 ssize_t retval = 0;
1783 loff_t *ppos = &iocb->ki_pos;
1784 loff_t pos = *ppos;
1786 if (iocb->ki_flags & IOCB_DIRECT) {
1787 struct address_space *mapping = file->f_mapping;
1788 struct inode *inode = mapping->host;
1789 size_t count = iov_iter_count(iter);
1790 loff_t size;
1792 if (!count)
1793 goto out; /* skip atime */
1794 size = i_size_read(inode);
1795 retval = filemap_write_and_wait_range(mapping, pos,
1796 pos + count - 1);
1797 if (!retval) {
1798 struct iov_iter data = *iter;
1799 retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1802 if (retval > 0) {
1803 *ppos = pos + retval;
1804 iov_iter_advance(iter, retval);
1808 * Btrfs can have a short DIO read if we encounter
1809 * compressed extents, so if there was an error, or if
1810 * we've already read everything we wanted to, or if
1811 * there was a short read because we hit EOF, go ahead
1812 * and return. Otherwise fallthrough to buffered io for
1813 * the rest of the read. Buffered reads will not work for
1814 * DAX files, so don't bother trying.
1816 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1817 IS_DAX(inode)) {
1818 file_accessed(file);
1819 goto out;
1823 retval = do_generic_file_read(file, ppos, iter, retval);
1824 out:
1825 return retval;
1827 EXPORT_SYMBOL(generic_file_read_iter);
1829 #ifdef CONFIG_MMU
1831 * page_cache_read - adds requested page to the page cache if not already there
1832 * @file: file to read
1833 * @offset: page index
1835 * This adds the requested page to the page cache if it isn't already there,
1836 * and schedules an I/O to read in its contents from disk.
1838 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1840 struct address_space *mapping = file->f_mapping;
1841 struct page *page;
1842 int ret;
1844 do {
1845 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1846 if (!page)
1847 return -ENOMEM;
1849 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1850 if (ret == 0)
1851 ret = mapping->a_ops->readpage(file, page);
1852 else if (ret == -EEXIST)
1853 ret = 0; /* losing race to add is OK */
1855 page_cache_release(page);
1857 } while (ret == AOP_TRUNCATED_PAGE);
1859 return ret;
1862 #define MMAP_LOTSAMISS (100)
1865 * Synchronous readahead happens when we don't even find
1866 * a page in the page cache at all.
1868 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1869 struct file_ra_state *ra,
1870 struct file *file,
1871 pgoff_t offset)
1873 struct address_space *mapping = file->f_mapping;
1875 /* If we don't want any read-ahead, don't bother */
1876 if (vma->vm_flags & VM_RAND_READ)
1877 return;
1878 if (!ra->ra_pages)
1879 return;
1881 if (vma->vm_flags & VM_SEQ_READ) {
1882 page_cache_sync_readahead(mapping, ra, file, offset,
1883 ra->ra_pages);
1884 return;
1887 /* Avoid banging the cache line if not needed */
1888 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1889 ra->mmap_miss++;
1892 * Do we miss much more than hit in this file? If so,
1893 * stop bothering with read-ahead. It will only hurt.
1895 if (ra->mmap_miss > MMAP_LOTSAMISS)
1896 return;
1899 * mmap read-around
1901 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1902 ra->size = ra->ra_pages;
1903 ra->async_size = ra->ra_pages / 4;
1904 ra_submit(ra, mapping, file);
1908 * Asynchronous readahead happens when we find the page and PG_readahead,
1909 * so we want to possibly extend the readahead further..
1911 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1912 struct file_ra_state *ra,
1913 struct file *file,
1914 struct page *page,
1915 pgoff_t offset)
1917 struct address_space *mapping = file->f_mapping;
1919 /* If we don't want any read-ahead, don't bother */
1920 if (vma->vm_flags & VM_RAND_READ)
1921 return;
1922 if (ra->mmap_miss > 0)
1923 ra->mmap_miss--;
1924 if (PageReadahead(page))
1925 page_cache_async_readahead(mapping, ra, file,
1926 page, offset, ra->ra_pages);
1930 * filemap_fault - read in file data for page fault handling
1931 * @vma: vma in which the fault was taken
1932 * @vmf: struct vm_fault containing details of the fault
1934 * filemap_fault() is invoked via the vma operations vector for a
1935 * mapped memory region to read in file data during a page fault.
1937 * The goto's are kind of ugly, but this streamlines the normal case of having
1938 * it in the page cache, and handles the special cases reasonably without
1939 * having a lot of duplicated code.
1941 * vma->vm_mm->mmap_sem must be held on entry.
1943 * If our return value has VM_FAULT_RETRY set, it's because
1944 * lock_page_or_retry() returned 0.
1945 * The mmap_sem has usually been released in this case.
1946 * See __lock_page_or_retry() for the exception.
1948 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1949 * has not been released.
1951 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1953 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1955 int error;
1956 struct file *file = vma->vm_file;
1957 struct address_space *mapping = file->f_mapping;
1958 struct file_ra_state *ra = &file->f_ra;
1959 struct inode *inode = mapping->host;
1960 pgoff_t offset = vmf->pgoff;
1961 struct page *page;
1962 loff_t size;
1963 int ret = 0;
1965 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1966 if (offset >= size >> PAGE_CACHE_SHIFT)
1967 return VM_FAULT_SIGBUS;
1970 * Do we have something in the page cache already?
1972 page = find_get_page(mapping, offset);
1973 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1975 * We found the page, so try async readahead before
1976 * waiting for the lock.
1978 do_async_mmap_readahead(vma, ra, file, page, offset);
1979 } else if (!page) {
1980 /* No page in the page cache at all */
1981 do_sync_mmap_readahead(vma, ra, file, offset);
1982 count_vm_event(PGMAJFAULT);
1983 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1984 ret = VM_FAULT_MAJOR;
1985 retry_find:
1986 page = find_get_page(mapping, offset);
1987 if (!page)
1988 goto no_cached_page;
1991 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1992 page_cache_release(page);
1993 return ret | VM_FAULT_RETRY;
1996 /* Did it get truncated? */
1997 if (unlikely(page->mapping != mapping)) {
1998 unlock_page(page);
1999 put_page(page);
2000 goto retry_find;
2002 VM_BUG_ON_PAGE(page->index != offset, page);
2005 * We have a locked page in the page cache, now we need to check
2006 * that it's up-to-date. If not, it is going to be due to an error.
2008 if (unlikely(!PageUptodate(page)))
2009 goto page_not_uptodate;
2012 * Found the page and have a reference on it.
2013 * We must recheck i_size under page lock.
2015 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2016 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
2017 unlock_page(page);
2018 page_cache_release(page);
2019 return VM_FAULT_SIGBUS;
2022 vmf->page = page;
2023 return ret | VM_FAULT_LOCKED;
2025 no_cached_page:
2027 * We're only likely to ever get here if MADV_RANDOM is in
2028 * effect.
2030 error = page_cache_read(file, offset, vmf->gfp_mask);
2033 * The page we want has now been added to the page cache.
2034 * In the unlikely event that someone removed it in the
2035 * meantime, we'll just come back here and read it again.
2037 if (error >= 0)
2038 goto retry_find;
2041 * An error return from page_cache_read can result if the
2042 * system is low on memory, or a problem occurs while trying
2043 * to schedule I/O.
2045 if (error == -ENOMEM)
2046 return VM_FAULT_OOM;
2047 return VM_FAULT_SIGBUS;
2049 page_not_uptodate:
2051 * Umm, take care of errors if the page isn't up-to-date.
2052 * Try to re-read it _once_. We do this synchronously,
2053 * because there really aren't any performance issues here
2054 * and we need to check for errors.
2056 ClearPageError(page);
2057 error = mapping->a_ops->readpage(file, page);
2058 if (!error) {
2059 wait_on_page_locked(page);
2060 if (!PageUptodate(page))
2061 error = -EIO;
2063 page_cache_release(page);
2065 if (!error || error == AOP_TRUNCATED_PAGE)
2066 goto retry_find;
2068 /* Things didn't work out. Return zero to tell the mm layer so. */
2069 shrink_readahead_size_eio(file, ra);
2070 return VM_FAULT_SIGBUS;
2072 EXPORT_SYMBOL(filemap_fault);
2074 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2076 struct radix_tree_iter iter;
2077 void **slot;
2078 struct file *file = vma->vm_file;
2079 struct address_space *mapping = file->f_mapping;
2080 loff_t size;
2081 struct page *page;
2082 unsigned long address = (unsigned long) vmf->virtual_address;
2083 unsigned long addr;
2084 pte_t *pte;
2086 rcu_read_lock();
2087 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2088 if (iter.index > vmf->max_pgoff)
2089 break;
2090 repeat:
2091 page = radix_tree_deref_slot(slot);
2092 if (unlikely(!page))
2093 goto next;
2094 if (radix_tree_exception(page)) {
2095 if (radix_tree_deref_retry(page))
2096 break;
2097 else
2098 goto next;
2101 if (!page_cache_get_speculative(page))
2102 goto repeat;
2104 /* Has the page moved? */
2105 if (unlikely(page != *slot)) {
2106 page_cache_release(page);
2107 goto repeat;
2110 if (!PageUptodate(page) ||
2111 PageReadahead(page) ||
2112 PageHWPoison(page))
2113 goto skip;
2114 if (!trylock_page(page))
2115 goto skip;
2117 if (page->mapping != mapping || !PageUptodate(page))
2118 goto unlock;
2120 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2121 if (page->index >= size >> PAGE_CACHE_SHIFT)
2122 goto unlock;
2124 pte = vmf->pte + page->index - vmf->pgoff;
2125 if (!pte_none(*pte))
2126 goto unlock;
2128 if (file->f_ra.mmap_miss > 0)
2129 file->f_ra.mmap_miss--;
2130 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2131 do_set_pte(vma, addr, page, pte, false, false);
2132 unlock_page(page);
2133 goto next;
2134 unlock:
2135 unlock_page(page);
2136 skip:
2137 page_cache_release(page);
2138 next:
2139 if (iter.index == vmf->max_pgoff)
2140 break;
2142 rcu_read_unlock();
2144 EXPORT_SYMBOL(filemap_map_pages);
2146 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2148 struct page *page = vmf->page;
2149 struct inode *inode = file_inode(vma->vm_file);
2150 int ret = VM_FAULT_LOCKED;
2152 sb_start_pagefault(inode->i_sb);
2153 file_update_time(vma->vm_file);
2154 lock_page(page);
2155 if (page->mapping != inode->i_mapping) {
2156 unlock_page(page);
2157 ret = VM_FAULT_NOPAGE;
2158 goto out;
2161 * We mark the page dirty already here so that when freeze is in
2162 * progress, we are guaranteed that writeback during freezing will
2163 * see the dirty page and writeprotect it again.
2165 set_page_dirty(page);
2166 wait_for_stable_page(page);
2167 out:
2168 sb_end_pagefault(inode->i_sb);
2169 return ret;
2171 EXPORT_SYMBOL(filemap_page_mkwrite);
2173 const struct vm_operations_struct generic_file_vm_ops = {
2174 .fault = filemap_fault,
2175 .map_pages = filemap_map_pages,
2176 .page_mkwrite = filemap_page_mkwrite,
2179 /* This is used for a general mmap of a disk file */
2181 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2183 struct address_space *mapping = file->f_mapping;
2185 if (!mapping->a_ops->readpage)
2186 return -ENOEXEC;
2187 file_accessed(file);
2188 vma->vm_ops = &generic_file_vm_ops;
2189 return 0;
2193 * This is for filesystems which do not implement ->writepage.
2195 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2197 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2198 return -EINVAL;
2199 return generic_file_mmap(file, vma);
2201 #else
2202 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2204 return -ENOSYS;
2206 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2208 return -ENOSYS;
2210 #endif /* CONFIG_MMU */
2212 EXPORT_SYMBOL(generic_file_mmap);
2213 EXPORT_SYMBOL(generic_file_readonly_mmap);
2215 static struct page *wait_on_page_read(struct page *page)
2217 if (!IS_ERR(page)) {
2218 wait_on_page_locked(page);
2219 if (!PageUptodate(page)) {
2220 page_cache_release(page);
2221 page = ERR_PTR(-EIO);
2224 return page;
2227 static struct page *do_read_cache_page(struct address_space *mapping,
2228 pgoff_t index,
2229 int (*filler)(void *, struct page *),
2230 void *data,
2231 gfp_t gfp)
2233 struct page *page;
2234 int err;
2235 repeat:
2236 page = find_get_page(mapping, index);
2237 if (!page) {
2238 page = __page_cache_alloc(gfp | __GFP_COLD);
2239 if (!page)
2240 return ERR_PTR(-ENOMEM);
2241 err = add_to_page_cache_lru(page, mapping, index, gfp);
2242 if (unlikely(err)) {
2243 page_cache_release(page);
2244 if (err == -EEXIST)
2245 goto repeat;
2246 /* Presumably ENOMEM for radix tree node */
2247 return ERR_PTR(err);
2250 filler:
2251 err = filler(data, page);
2252 if (err < 0) {
2253 page_cache_release(page);
2254 return ERR_PTR(err);
2257 page = wait_on_page_read(page);
2258 if (IS_ERR(page))
2259 return page;
2260 goto out;
2262 if (PageUptodate(page))
2263 goto out;
2266 * Page is not up to date and may be locked due one of the following
2267 * case a: Page is being filled and the page lock is held
2268 * case b: Read/write error clearing the page uptodate status
2269 * case c: Truncation in progress (page locked)
2270 * case d: Reclaim in progress
2272 * Case a, the page will be up to date when the page is unlocked.
2273 * There is no need to serialise on the page lock here as the page
2274 * is pinned so the lock gives no additional protection. Even if the
2275 * the page is truncated, the data is still valid if PageUptodate as
2276 * it's a race vs truncate race.
2277 * Case b, the page will not be up to date
2278 * Case c, the page may be truncated but in itself, the data may still
2279 * be valid after IO completes as it's a read vs truncate race. The
2280 * operation must restart if the page is not uptodate on unlock but
2281 * otherwise serialising on page lock to stabilise the mapping gives
2282 * no additional guarantees to the caller as the page lock is
2283 * released before return.
2284 * Case d, similar to truncation. If reclaim holds the page lock, it
2285 * will be a race with remove_mapping that determines if the mapping
2286 * is valid on unlock but otherwise the data is valid and there is
2287 * no need to serialise with page lock.
2289 * As the page lock gives no additional guarantee, we optimistically
2290 * wait on the page to be unlocked and check if it's up to date and
2291 * use the page if it is. Otherwise, the page lock is required to
2292 * distinguish between the different cases. The motivation is that we
2293 * avoid spurious serialisations and wakeups when multiple processes
2294 * wait on the same page for IO to complete.
2296 wait_on_page_locked(page);
2297 if (PageUptodate(page))
2298 goto out;
2300 /* Distinguish between all the cases under the safety of the lock */
2301 lock_page(page);
2303 /* Case c or d, restart the operation */
2304 if (!page->mapping) {
2305 unlock_page(page);
2306 page_cache_release(page);
2307 goto repeat;
2310 /* Someone else locked and filled the page in a very small window */
2311 if (PageUptodate(page)) {
2312 unlock_page(page);
2313 goto out;
2315 goto filler;
2317 out:
2318 mark_page_accessed(page);
2319 return page;
2323 * read_cache_page - read into page cache, fill it if needed
2324 * @mapping: the page's address_space
2325 * @index: the page index
2326 * @filler: function to perform the read
2327 * @data: first arg to filler(data, page) function, often left as NULL
2329 * Read into the page cache. If a page already exists, and PageUptodate() is
2330 * not set, try to fill the page and wait for it to become unlocked.
2332 * If the page does not get brought uptodate, return -EIO.
2334 struct page *read_cache_page(struct address_space *mapping,
2335 pgoff_t index,
2336 int (*filler)(void *, struct page *),
2337 void *data)
2339 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2341 EXPORT_SYMBOL(read_cache_page);
2344 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2345 * @mapping: the page's address_space
2346 * @index: the page index
2347 * @gfp: the page allocator flags to use if allocating
2349 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2350 * any new page allocations done using the specified allocation flags.
2352 * If the page does not get brought uptodate, return -EIO.
2354 struct page *read_cache_page_gfp(struct address_space *mapping,
2355 pgoff_t index,
2356 gfp_t gfp)
2358 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2360 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2362 EXPORT_SYMBOL(read_cache_page_gfp);
2365 * Performs necessary checks before doing a write
2367 * Can adjust writing position or amount of bytes to write.
2368 * Returns appropriate error code that caller should return or
2369 * zero in case that write should be allowed.
2371 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2373 struct file *file = iocb->ki_filp;
2374 struct inode *inode = file->f_mapping->host;
2375 unsigned long limit = rlimit(RLIMIT_FSIZE);
2376 loff_t pos;
2378 if (!iov_iter_count(from))
2379 return 0;
2381 /* FIXME: this is for backwards compatibility with 2.4 */
2382 if (iocb->ki_flags & IOCB_APPEND)
2383 iocb->ki_pos = i_size_read(inode);
2385 pos = iocb->ki_pos;
2387 if (limit != RLIM_INFINITY) {
2388 if (iocb->ki_pos >= limit) {
2389 send_sig(SIGXFSZ, current, 0);
2390 return -EFBIG;
2392 iov_iter_truncate(from, limit - (unsigned long)pos);
2396 * LFS rule
2398 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2399 !(file->f_flags & O_LARGEFILE))) {
2400 if (pos >= MAX_NON_LFS)
2401 return -EFBIG;
2402 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2406 * Are we about to exceed the fs block limit ?
2408 * If we have written data it becomes a short write. If we have
2409 * exceeded without writing data we send a signal and return EFBIG.
2410 * Linus frestrict idea will clean these up nicely..
2412 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2413 return -EFBIG;
2415 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2416 return iov_iter_count(from);
2418 EXPORT_SYMBOL(generic_write_checks);
2420 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2421 loff_t pos, unsigned len, unsigned flags,
2422 struct page **pagep, void **fsdata)
2424 const struct address_space_operations *aops = mapping->a_ops;
2426 return aops->write_begin(file, mapping, pos, len, flags,
2427 pagep, fsdata);
2429 EXPORT_SYMBOL(pagecache_write_begin);
2431 int pagecache_write_end(struct file *file, struct address_space *mapping,
2432 loff_t pos, unsigned len, unsigned copied,
2433 struct page *page, void *fsdata)
2435 const struct address_space_operations *aops = mapping->a_ops;
2437 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2439 EXPORT_SYMBOL(pagecache_write_end);
2441 ssize_t
2442 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2444 struct file *file = iocb->ki_filp;
2445 struct address_space *mapping = file->f_mapping;
2446 struct inode *inode = mapping->host;
2447 ssize_t written;
2448 size_t write_len;
2449 pgoff_t end;
2450 struct iov_iter data;
2452 write_len = iov_iter_count(from);
2453 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2455 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2456 if (written)
2457 goto out;
2460 * After a write we want buffered reads to be sure to go to disk to get
2461 * the new data. We invalidate clean cached page from the region we're
2462 * about to write. We do this *before* the write so that we can return
2463 * without clobbering -EIOCBQUEUED from ->direct_IO().
2465 if (mapping->nrpages) {
2466 written = invalidate_inode_pages2_range(mapping,
2467 pos >> PAGE_CACHE_SHIFT, end);
2469 * If a page can not be invalidated, return 0 to fall back
2470 * to buffered write.
2472 if (written) {
2473 if (written == -EBUSY)
2474 return 0;
2475 goto out;
2479 data = *from;
2480 written = mapping->a_ops->direct_IO(iocb, &data, pos);
2483 * Finally, try again to invalidate clean pages which might have been
2484 * cached by non-direct readahead, or faulted in by get_user_pages()
2485 * if the source of the write was an mmap'ed region of the file
2486 * we're writing. Either one is a pretty crazy thing to do,
2487 * so we don't support it 100%. If this invalidation
2488 * fails, tough, the write still worked...
2490 if (mapping->nrpages) {
2491 invalidate_inode_pages2_range(mapping,
2492 pos >> PAGE_CACHE_SHIFT, end);
2495 if (written > 0) {
2496 pos += written;
2497 iov_iter_advance(from, written);
2498 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2499 i_size_write(inode, pos);
2500 mark_inode_dirty(inode);
2502 iocb->ki_pos = pos;
2504 out:
2505 return written;
2507 EXPORT_SYMBOL(generic_file_direct_write);
2510 * Find or create a page at the given pagecache position. Return the locked
2511 * page. This function is specifically for buffered writes.
2513 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2514 pgoff_t index, unsigned flags)
2516 struct page *page;
2517 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2519 if (flags & AOP_FLAG_NOFS)
2520 fgp_flags |= FGP_NOFS;
2522 page = pagecache_get_page(mapping, index, fgp_flags,
2523 mapping_gfp_mask(mapping));
2524 if (page)
2525 wait_for_stable_page(page);
2527 return page;
2529 EXPORT_SYMBOL(grab_cache_page_write_begin);
2531 ssize_t generic_perform_write(struct file *file,
2532 struct iov_iter *i, loff_t pos)
2534 struct address_space *mapping = file->f_mapping;
2535 const struct address_space_operations *a_ops = mapping->a_ops;
2536 long status = 0;
2537 ssize_t written = 0;
2538 unsigned int flags = 0;
2541 * Copies from kernel address space cannot fail (NFSD is a big user).
2543 if (!iter_is_iovec(i))
2544 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2546 do {
2547 struct page *page;
2548 unsigned long offset; /* Offset into pagecache page */
2549 unsigned long bytes; /* Bytes to write to page */
2550 size_t copied; /* Bytes copied from user */
2551 void *fsdata;
2553 offset = (pos & (PAGE_CACHE_SIZE - 1));
2554 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2555 iov_iter_count(i));
2557 again:
2559 * Bring in the user page that we will copy from _first_.
2560 * Otherwise there's a nasty deadlock on copying from the
2561 * same page as we're writing to, without it being marked
2562 * up-to-date.
2564 * Not only is this an optimisation, but it is also required
2565 * to check that the address is actually valid, when atomic
2566 * usercopies are used, below.
2568 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2569 status = -EFAULT;
2570 break;
2573 if (fatal_signal_pending(current)) {
2574 status = -EINTR;
2575 break;
2578 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2579 &page, &fsdata);
2580 if (unlikely(status < 0))
2581 break;
2583 if (mapping_writably_mapped(mapping))
2584 flush_dcache_page(page);
2586 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2587 flush_dcache_page(page);
2589 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2590 page, fsdata);
2591 if (unlikely(status < 0))
2592 break;
2593 copied = status;
2595 cond_resched();
2597 iov_iter_advance(i, copied);
2598 if (unlikely(copied == 0)) {
2600 * If we were unable to copy any data at all, we must
2601 * fall back to a single segment length write.
2603 * If we didn't fallback here, we could livelock
2604 * because not all segments in the iov can be copied at
2605 * once without a pagefault.
2607 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2608 iov_iter_single_seg_count(i));
2609 goto again;
2611 pos += copied;
2612 written += copied;
2614 balance_dirty_pages_ratelimited(mapping);
2615 } while (iov_iter_count(i));
2617 return written ? written : status;
2619 EXPORT_SYMBOL(generic_perform_write);
2622 * __generic_file_write_iter - write data to a file
2623 * @iocb: IO state structure (file, offset, etc.)
2624 * @from: iov_iter with data to write
2626 * This function does all the work needed for actually writing data to a
2627 * file. It does all basic checks, removes SUID from the file, updates
2628 * modification times and calls proper subroutines depending on whether we
2629 * do direct IO or a standard buffered write.
2631 * It expects i_mutex to be grabbed unless we work on a block device or similar
2632 * object which does not need locking at all.
2634 * This function does *not* take care of syncing data in case of O_SYNC write.
2635 * A caller has to handle it. This is mainly due to the fact that we want to
2636 * avoid syncing under i_mutex.
2638 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2640 struct file *file = iocb->ki_filp;
2641 struct address_space * mapping = file->f_mapping;
2642 struct inode *inode = mapping->host;
2643 ssize_t written = 0;
2644 ssize_t err;
2645 ssize_t status;
2647 /* We can write back this queue in page reclaim */
2648 current->backing_dev_info = inode_to_bdi(inode);
2649 err = file_remove_privs(file);
2650 if (err)
2651 goto out;
2653 err = file_update_time(file);
2654 if (err)
2655 goto out;
2657 if (iocb->ki_flags & IOCB_DIRECT) {
2658 loff_t pos, endbyte;
2660 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2662 * If the write stopped short of completing, fall back to
2663 * buffered writes. Some filesystems do this for writes to
2664 * holes, for example. For DAX files, a buffered write will
2665 * not succeed (even if it did, DAX does not handle dirty
2666 * page-cache pages correctly).
2668 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2669 goto out;
2671 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2673 * If generic_perform_write() returned a synchronous error
2674 * then we want to return the number of bytes which were
2675 * direct-written, or the error code if that was zero. Note
2676 * that this differs from normal direct-io semantics, which
2677 * will return -EFOO even if some bytes were written.
2679 if (unlikely(status < 0)) {
2680 err = status;
2681 goto out;
2684 * We need to ensure that the page cache pages are written to
2685 * disk and invalidated to preserve the expected O_DIRECT
2686 * semantics.
2688 endbyte = pos + status - 1;
2689 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2690 if (err == 0) {
2691 iocb->ki_pos = endbyte + 1;
2692 written += status;
2693 invalidate_mapping_pages(mapping,
2694 pos >> PAGE_CACHE_SHIFT,
2695 endbyte >> PAGE_CACHE_SHIFT);
2696 } else {
2698 * We don't know how much we wrote, so just return
2699 * the number of bytes which were direct-written
2702 } else {
2703 written = generic_perform_write(file, from, iocb->ki_pos);
2704 if (likely(written > 0))
2705 iocb->ki_pos += written;
2707 out:
2708 current->backing_dev_info = NULL;
2709 return written ? written : err;
2711 EXPORT_SYMBOL(__generic_file_write_iter);
2714 * generic_file_write_iter - write data to a file
2715 * @iocb: IO state structure
2716 * @from: iov_iter with data to write
2718 * This is a wrapper around __generic_file_write_iter() to be used by most
2719 * filesystems. It takes care of syncing the file in case of O_SYNC file
2720 * and acquires i_mutex as needed.
2722 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2724 struct file *file = iocb->ki_filp;
2725 struct inode *inode = file->f_mapping->host;
2726 ssize_t ret;
2728 mutex_lock(&inode->i_mutex);
2729 ret = generic_write_checks(iocb, from);
2730 if (ret > 0)
2731 ret = __generic_file_write_iter(iocb, from);
2732 mutex_unlock(&inode->i_mutex);
2734 if (ret > 0) {
2735 ssize_t err;
2737 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2738 if (err < 0)
2739 ret = err;
2741 return ret;
2743 EXPORT_SYMBOL(generic_file_write_iter);
2746 * try_to_release_page() - release old fs-specific metadata on a page
2748 * @page: the page which the kernel is trying to free
2749 * @gfp_mask: memory allocation flags (and I/O mode)
2751 * The address_space is to try to release any data against the page
2752 * (presumably at page->private). If the release was successful, return `1'.
2753 * Otherwise return zero.
2755 * This may also be called if PG_fscache is set on a page, indicating that the
2756 * page is known to the local caching routines.
2758 * The @gfp_mask argument specifies whether I/O may be performed to release
2759 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2762 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2764 struct address_space * const mapping = page->mapping;
2766 BUG_ON(!PageLocked(page));
2767 if (PageWriteback(page))
2768 return 0;
2770 if (mapping && mapping->a_ops->releasepage)
2771 return mapping->a_ops->releasepage(page, gfp_mask);
2772 return try_to_free_buffers(page);
2775 EXPORT_SYMBOL(try_to_release_page);