drm/i915: Move unload time GTT, MSI IRQ cleanup later
[linux/fpc-iii.git] / Documentation / cgroup-v1 / cgroups.txt
blobc6256ae9885b8ac7445f6d10066ee541ebb388b8
1                                 CGROUPS
2                                 -------
4 Written by Paul Menage <menage@google.com> based on
5 Documentation/cgroups/cpusets.txt
7 Original copyright statements from cpusets.txt:
8 Portions Copyright (C) 2004 BULL SA.
9 Portions Copyright (c) 2004-2006 Silicon Graphics, Inc.
10 Modified by Paul Jackson <pj@sgi.com>
11 Modified by Christoph Lameter <clameter@sgi.com>
13 CONTENTS:
14 =========
16 1. Control Groups
17   1.1 What are cgroups ?
18   1.2 Why are cgroups needed ?
19   1.3 How are cgroups implemented ?
20   1.4 What does notify_on_release do ?
21   1.5 What does clone_children do ?
22   1.6 How do I use cgroups ?
23 2. Usage Examples and Syntax
24   2.1 Basic Usage
25   2.2 Attaching processes
26   2.3 Mounting hierarchies by name
27 3. Kernel API
28   3.1 Overview
29   3.2 Synchronization
30   3.3 Subsystem API
31 4. Extended attributes usage
32 5. Questions
34 1. Control Groups
35 =================
37 1.1 What are cgroups ?
38 ----------------------
40 Control Groups provide a mechanism for aggregating/partitioning sets of
41 tasks, and all their future children, into hierarchical groups with
42 specialized behaviour.
44 Definitions:
46 A *cgroup* associates a set of tasks with a set of parameters for one
47 or more subsystems.
49 A *subsystem* is a module that makes use of the task grouping
50 facilities provided by cgroups to treat groups of tasks in
51 particular ways. A subsystem is typically a "resource controller" that
52 schedules a resource or applies per-cgroup limits, but it may be
53 anything that wants to act on a group of processes, e.g. a
54 virtualization subsystem.
56 A *hierarchy* is a set of cgroups arranged in a tree, such that
57 every task in the system is in exactly one of the cgroups in the
58 hierarchy, and a set of subsystems; each subsystem has system-specific
59 state attached to each cgroup in the hierarchy.  Each hierarchy has
60 an instance of the cgroup virtual filesystem associated with it.
62 At any one time there may be multiple active hierarchies of task
63 cgroups. Each hierarchy is a partition of all tasks in the system.
65 User-level code may create and destroy cgroups by name in an
66 instance of the cgroup virtual file system, specify and query to
67 which cgroup a task is assigned, and list the task PIDs assigned to
68 a cgroup. Those creations and assignments only affect the hierarchy
69 associated with that instance of the cgroup file system.
71 On their own, the only use for cgroups is for simple job
72 tracking. The intention is that other subsystems hook into the generic
73 cgroup support to provide new attributes for cgroups, such as
74 accounting/limiting the resources which processes in a cgroup can
75 access. For example, cpusets (see Documentation/cgroups/cpusets.txt) allow
76 you to associate a set of CPUs and a set of memory nodes with the
77 tasks in each cgroup.
79 1.2 Why are cgroups needed ?
80 ----------------------------
82 There are multiple efforts to provide process aggregations in the
83 Linux kernel, mainly for resource-tracking purposes. Such efforts
84 include cpusets, CKRM/ResGroups, UserBeanCounters, and virtual server
85 namespaces. These all require the basic notion of a
86 grouping/partitioning of processes, with newly forked processes ending
87 up in the same group (cgroup) as their parent process.
89 The kernel cgroup patch provides the minimum essential kernel
90 mechanisms required to efficiently implement such groups. It has
91 minimal impact on the system fast paths, and provides hooks for
92 specific subsystems such as cpusets to provide additional behaviour as
93 desired.
95 Multiple hierarchy support is provided to allow for situations where
96 the division of tasks into cgroups is distinctly different for
97 different subsystems - having parallel hierarchies allows each
98 hierarchy to be a natural division of tasks, without having to handle
99 complex combinations of tasks that would be present if several
100 unrelated subsystems needed to be forced into the same tree of
101 cgroups.
103 At one extreme, each resource controller or subsystem could be in a
104 separate hierarchy; at the other extreme, all subsystems
105 would be attached to the same hierarchy.
107 As an example of a scenario (originally proposed by vatsa@in.ibm.com)
108 that can benefit from multiple hierarchies, consider a large
109 university server with various users - students, professors, system
110 tasks etc. The resource planning for this server could be along the
111 following lines:
113        CPU :          "Top cpuset"
114                        /       \
115                CPUSet1         CPUSet2
116                   |               |
117                (Professors)    (Students)
119                In addition (system tasks) are attached to topcpuset (so
120                that they can run anywhere) with a limit of 20%
122        Memory : Professors (50%), Students (30%), system (20%)
124        Disk : Professors (50%), Students (30%), system (20%)
126        Network : WWW browsing (20%), Network File System (60%), others (20%)
127                                / \
128                Professors (15%)  students (5%)
130 Browsers like Firefox/Lynx go into the WWW network class, while (k)nfsd goes
131 into the NFS network class.
133 At the same time Firefox/Lynx will share an appropriate CPU/Memory class
134 depending on who launched it (prof/student).
136 With the ability to classify tasks differently for different resources
137 (by putting those resource subsystems in different hierarchies),
138 the admin can easily set up a script which receives exec notifications
139 and depending on who is launching the browser he can
141     # echo browser_pid > /sys/fs/cgroup/<restype>/<userclass>/tasks
143 With only a single hierarchy, he now would potentially have to create
144 a separate cgroup for every browser launched and associate it with
145 appropriate network and other resource class.  This may lead to
146 proliferation of such cgroups.
148 Also let's say that the administrator would like to give enhanced network
149 access temporarily to a student's browser (since it is night and the user
150 wants to do online gaming :))  OR give one of the student's simulation
151 apps enhanced CPU power.
153 With ability to write PIDs directly to resource classes, it's just a
154 matter of:
156        # echo pid > /sys/fs/cgroup/network/<new_class>/tasks
157        (after some time)
158        # echo pid > /sys/fs/cgroup/network/<orig_class>/tasks
160 Without this ability, the administrator would have to split the cgroup into
161 multiple separate ones and then associate the new cgroups with the
162 new resource classes.
166 1.3 How are cgroups implemented ?
167 ---------------------------------
169 Control Groups extends the kernel as follows:
171  - Each task in the system has a reference-counted pointer to a
172    css_set.
174  - A css_set contains a set of reference-counted pointers to
175    cgroup_subsys_state objects, one for each cgroup subsystem
176    registered in the system. There is no direct link from a task to
177    the cgroup of which it's a member in each hierarchy, but this
178    can be determined by following pointers through the
179    cgroup_subsys_state objects. This is because accessing the
180    subsystem state is something that's expected to happen frequently
181    and in performance-critical code, whereas operations that require a
182    task's actual cgroup assignments (in particular, moving between
183    cgroups) are less common. A linked list runs through the cg_list
184    field of each task_struct using the css_set, anchored at
185    css_set->tasks.
187  - A cgroup hierarchy filesystem can be mounted for browsing and
188    manipulation from user space.
190  - You can list all the tasks (by PID) attached to any cgroup.
192 The implementation of cgroups requires a few, simple hooks
193 into the rest of the kernel, none in performance-critical paths:
195  - in init/main.c, to initialize the root cgroups and initial
196    css_set at system boot.
198  - in fork and exit, to attach and detach a task from its css_set.
200 In addition, a new file system of type "cgroup" may be mounted, to
201 enable browsing and modifying the cgroups presently known to the
202 kernel.  When mounting a cgroup hierarchy, you may specify a
203 comma-separated list of subsystems to mount as the filesystem mount
204 options.  By default, mounting the cgroup filesystem attempts to
205 mount a hierarchy containing all registered subsystems.
207 If an active hierarchy with exactly the same set of subsystems already
208 exists, it will be reused for the new mount. If no existing hierarchy
209 matches, and any of the requested subsystems are in use in an existing
210 hierarchy, the mount will fail with -EBUSY. Otherwise, a new hierarchy
211 is activated, associated with the requested subsystems.
213 It's not currently possible to bind a new subsystem to an active
214 cgroup hierarchy, or to unbind a subsystem from an active cgroup
215 hierarchy. This may be possible in future, but is fraught with nasty
216 error-recovery issues.
218 When a cgroup filesystem is unmounted, if there are any
219 child cgroups created below the top-level cgroup, that hierarchy
220 will remain active even though unmounted; if there are no
221 child cgroups then the hierarchy will be deactivated.
223 No new system calls are added for cgroups - all support for
224 querying and modifying cgroups is via this cgroup file system.
226 Each task under /proc has an added file named 'cgroup' displaying,
227 for each active hierarchy, the subsystem names and the cgroup name
228 as the path relative to the root of the cgroup file system.
230 Each cgroup is represented by a directory in the cgroup file system
231 containing the following files describing that cgroup:
233  - tasks: list of tasks (by PID) attached to that cgroup.  This list
234    is not guaranteed to be sorted.  Writing a thread ID into this file
235    moves the thread into this cgroup.
236  - cgroup.procs: list of thread group IDs in the cgroup.  This list is
237    not guaranteed to be sorted or free of duplicate TGIDs, and userspace
238    should sort/uniquify the list if this property is required.
239    Writing a thread group ID into this file moves all threads in that
240    group into this cgroup.
241  - notify_on_release flag: run the release agent on exit?
242  - release_agent: the path to use for release notifications (this file
243    exists in the top cgroup only)
245 Other subsystems such as cpusets may add additional files in each
246 cgroup dir.
248 New cgroups are created using the mkdir system call or shell
249 command.  The properties of a cgroup, such as its flags, are
250 modified by writing to the appropriate file in that cgroups
251 directory, as listed above.
253 The named hierarchical structure of nested cgroups allows partitioning
254 a large system into nested, dynamically changeable, "soft-partitions".
256 The attachment of each task, automatically inherited at fork by any
257 children of that task, to a cgroup allows organizing the work load
258 on a system into related sets of tasks.  A task may be re-attached to
259 any other cgroup, if allowed by the permissions on the necessary
260 cgroup file system directories.
262 When a task is moved from one cgroup to another, it gets a new
263 css_set pointer - if there's an already existing css_set with the
264 desired collection of cgroups then that group is reused, otherwise a new
265 css_set is allocated. The appropriate existing css_set is located by
266 looking into a hash table.
268 To allow access from a cgroup to the css_sets (and hence tasks)
269 that comprise it, a set of cg_cgroup_link objects form a lattice;
270 each cg_cgroup_link is linked into a list of cg_cgroup_links for
271 a single cgroup on its cgrp_link_list field, and a list of
272 cg_cgroup_links for a single css_set on its cg_link_list.
274 Thus the set of tasks in a cgroup can be listed by iterating over
275 each css_set that references the cgroup, and sub-iterating over
276 each css_set's task set.
278 The use of a Linux virtual file system (vfs) to represent the
279 cgroup hierarchy provides for a familiar permission and name space
280 for cgroups, with a minimum of additional kernel code.
282 1.4 What does notify_on_release do ?
283 ------------------------------------
285 If the notify_on_release flag is enabled (1) in a cgroup, then
286 whenever the last task in the cgroup leaves (exits or attaches to
287 some other cgroup) and the last child cgroup of that cgroup
288 is removed, then the kernel runs the command specified by the contents
289 of the "release_agent" file in that hierarchy's root directory,
290 supplying the pathname (relative to the mount point of the cgroup
291 file system) of the abandoned cgroup.  This enables automatic
292 removal of abandoned cgroups.  The default value of
293 notify_on_release in the root cgroup at system boot is disabled
294 (0).  The default value of other cgroups at creation is the current
295 value of their parents' notify_on_release settings. The default value of
296 a cgroup hierarchy's release_agent path is empty.
298 1.5 What does clone_children do ?
299 ---------------------------------
301 This flag only affects the cpuset controller. If the clone_children
302 flag is enabled (1) in a cgroup, a new cpuset cgroup will copy its
303 configuration from the parent during initialization.
305 1.6 How do I use cgroups ?
306 --------------------------
308 To start a new job that is to be contained within a cgroup, using
309 the "cpuset" cgroup subsystem, the steps are something like:
311  1) mount -t tmpfs cgroup_root /sys/fs/cgroup
312  2) mkdir /sys/fs/cgroup/cpuset
313  3) mount -t cgroup -ocpuset cpuset /sys/fs/cgroup/cpuset
314  4) Create the new cgroup by doing mkdir's and write's (or echo's) in
315     the /sys/fs/cgroup/cpuset virtual file system.
316  5) Start a task that will be the "founding father" of the new job.
317  6) Attach that task to the new cgroup by writing its PID to the
318     /sys/fs/cgroup/cpuset tasks file for that cgroup.
319  7) fork, exec or clone the job tasks from this founding father task.
321 For example, the following sequence of commands will setup a cgroup
322 named "Charlie", containing just CPUs 2 and 3, and Memory Node 1,
323 and then start a subshell 'sh' in that cgroup:
325   mount -t tmpfs cgroup_root /sys/fs/cgroup
326   mkdir /sys/fs/cgroup/cpuset
327   mount -t cgroup cpuset -ocpuset /sys/fs/cgroup/cpuset
328   cd /sys/fs/cgroup/cpuset
329   mkdir Charlie
330   cd Charlie
331   /bin/echo 2-3 > cpuset.cpus
332   /bin/echo 1 > cpuset.mems
333   /bin/echo $$ > tasks
334   sh
335   # The subshell 'sh' is now running in cgroup Charlie
336   # The next line should display '/Charlie'
337   cat /proc/self/cgroup
339 2. Usage Examples and Syntax
340 ============================
342 2.1 Basic Usage
343 ---------------
345 Creating, modifying, using cgroups can be done through the cgroup
346 virtual filesystem.
348 To mount a cgroup hierarchy with all available subsystems, type:
349 # mount -t cgroup xxx /sys/fs/cgroup
351 The "xxx" is not interpreted by the cgroup code, but will appear in
352 /proc/mounts so may be any useful identifying string that you like.
354 Note: Some subsystems do not work without some user input first.  For instance,
355 if cpusets are enabled the user will have to populate the cpus and mems files
356 for each new cgroup created before that group can be used.
358 As explained in section `1.2 Why are cgroups needed?' you should create
359 different hierarchies of cgroups for each single resource or group of
360 resources you want to control. Therefore, you should mount a tmpfs on
361 /sys/fs/cgroup and create directories for each cgroup resource or resource
362 group.
364 # mount -t tmpfs cgroup_root /sys/fs/cgroup
365 # mkdir /sys/fs/cgroup/rg1
367 To mount a cgroup hierarchy with just the cpuset and memory
368 subsystems, type:
369 # mount -t cgroup -o cpuset,memory hier1 /sys/fs/cgroup/rg1
371 While remounting cgroups is currently supported, it is not recommend
372 to use it. Remounting allows changing bound subsystems and
373 release_agent. Rebinding is hardly useful as it only works when the
374 hierarchy is empty and release_agent itself should be replaced with
375 conventional fsnotify. The support for remounting will be removed in
376 the future.
378 To Specify a hierarchy's release_agent:
379 # mount -t cgroup -o cpuset,release_agent="/sbin/cpuset_release_agent" \
380   xxx /sys/fs/cgroup/rg1
382 Note that specifying 'release_agent' more than once will return failure.
384 Note that changing the set of subsystems is currently only supported
385 when the hierarchy consists of a single (root) cgroup. Supporting
386 the ability to arbitrarily bind/unbind subsystems from an existing
387 cgroup hierarchy is intended to be implemented in the future.
389 Then under /sys/fs/cgroup/rg1 you can find a tree that corresponds to the
390 tree of the cgroups in the system. For instance, /sys/fs/cgroup/rg1
391 is the cgroup that holds the whole system.
393 If you want to change the value of release_agent:
394 # echo "/sbin/new_release_agent" > /sys/fs/cgroup/rg1/release_agent
396 It can also be changed via remount.
398 If you want to create a new cgroup under /sys/fs/cgroup/rg1:
399 # cd /sys/fs/cgroup/rg1
400 # mkdir my_cgroup
402 Now you want to do something with this cgroup.
403 # cd my_cgroup
405 In this directory you can find several files:
406 # ls
407 cgroup.procs notify_on_release tasks
408 (plus whatever files added by the attached subsystems)
410 Now attach your shell to this cgroup:
411 # /bin/echo $$ > tasks
413 You can also create cgroups inside your cgroup by using mkdir in this
414 directory.
415 # mkdir my_sub_cs
417 To remove a cgroup, just use rmdir:
418 # rmdir my_sub_cs
420 This will fail if the cgroup is in use (has cgroups inside, or
421 has processes attached, or is held alive by other subsystem-specific
422 reference).
424 2.2 Attaching processes
425 -----------------------
427 # /bin/echo PID > tasks
429 Note that it is PID, not PIDs. You can only attach ONE task at a time.
430 If you have several tasks to attach, you have to do it one after another:
432 # /bin/echo PID1 > tasks
433 # /bin/echo PID2 > tasks
434         ...
435 # /bin/echo PIDn > tasks
437 You can attach the current shell task by echoing 0:
439 # echo 0 > tasks
441 You can use the cgroup.procs file instead of the tasks file to move all
442 threads in a threadgroup at once. Echoing the PID of any task in a
443 threadgroup to cgroup.procs causes all tasks in that threadgroup to be
444 attached to the cgroup. Writing 0 to cgroup.procs moves all tasks
445 in the writing task's threadgroup.
447 Note: Since every task is always a member of exactly one cgroup in each
448 mounted hierarchy, to remove a task from its current cgroup you must
449 move it into a new cgroup (possibly the root cgroup) by writing to the
450 new cgroup's tasks file.
452 Note: Due to some restrictions enforced by some cgroup subsystems, moving
453 a process to another cgroup can fail.
455 2.3 Mounting hierarchies by name
456 --------------------------------
458 Passing the name=<x> option when mounting a cgroups hierarchy
459 associates the given name with the hierarchy.  This can be used when
460 mounting a pre-existing hierarchy, in order to refer to it by name
461 rather than by its set of active subsystems.  Each hierarchy is either
462 nameless, or has a unique name.
464 The name should match [\w.-]+
466 When passing a name=<x> option for a new hierarchy, you need to
467 specify subsystems manually; the legacy behaviour of mounting all
468 subsystems when none are explicitly specified is not supported when
469 you give a subsystem a name.
471 The name of the subsystem appears as part of the hierarchy description
472 in /proc/mounts and /proc/<pid>/cgroups.
475 3. Kernel API
476 =============
478 3.1 Overview
479 ------------
481 Each kernel subsystem that wants to hook into the generic cgroup
482 system needs to create a cgroup_subsys object. This contains
483 various methods, which are callbacks from the cgroup system, along
484 with a subsystem ID which will be assigned by the cgroup system.
486 Other fields in the cgroup_subsys object include:
488 - subsys_id: a unique array index for the subsystem, indicating which
489   entry in cgroup->subsys[] this subsystem should be managing.
491 - name: should be initialized to a unique subsystem name. Should be
492   no longer than MAX_CGROUP_TYPE_NAMELEN.
494 - early_init: indicate if the subsystem needs early initialization
495   at system boot.
497 Each cgroup object created by the system has an array of pointers,
498 indexed by subsystem ID; this pointer is entirely managed by the
499 subsystem; the generic cgroup code will never touch this pointer.
501 3.2 Synchronization
502 -------------------
504 There is a global mutex, cgroup_mutex, used by the cgroup
505 system. This should be taken by anything that wants to modify a
506 cgroup. It may also be taken to prevent cgroups from being
507 modified, but more specific locks may be more appropriate in that
508 situation.
510 See kernel/cgroup.c for more details.
512 Subsystems can take/release the cgroup_mutex via the functions
513 cgroup_lock()/cgroup_unlock().
515 Accessing a task's cgroup pointer may be done in the following ways:
516 - while holding cgroup_mutex
517 - while holding the task's alloc_lock (via task_lock())
518 - inside an rcu_read_lock() section via rcu_dereference()
520 3.3 Subsystem API
521 -----------------
523 Each subsystem should:
525 - add an entry in linux/cgroup_subsys.h
526 - define a cgroup_subsys object called <name>_subsys
528 If a subsystem can be compiled as a module, it should also have in its
529 module initcall a call to cgroup_load_subsys(), and in its exitcall a
530 call to cgroup_unload_subsys(). It should also set its_subsys.module =
531 THIS_MODULE in its .c file.
533 Each subsystem may export the following methods. The only mandatory
534 methods are css_alloc/free. Any others that are null are presumed to
535 be successful no-ops.
537 struct cgroup_subsys_state *css_alloc(struct cgroup *cgrp)
538 (cgroup_mutex held by caller)
540 Called to allocate a subsystem state object for a cgroup. The
541 subsystem should allocate its subsystem state object for the passed
542 cgroup, returning a pointer to the new object on success or a
543 ERR_PTR() value. On success, the subsystem pointer should point to
544 a structure of type cgroup_subsys_state (typically embedded in a
545 larger subsystem-specific object), which will be initialized by the
546 cgroup system. Note that this will be called at initialization to
547 create the root subsystem state for this subsystem; this case can be
548 identified by the passed cgroup object having a NULL parent (since
549 it's the root of the hierarchy) and may be an appropriate place for
550 initialization code.
552 int css_online(struct cgroup *cgrp)
553 (cgroup_mutex held by caller)
555 Called after @cgrp successfully completed all allocations and made
556 visible to cgroup_for_each_child/descendant_*() iterators. The
557 subsystem may choose to fail creation by returning -errno. This
558 callback can be used to implement reliable state sharing and
559 propagation along the hierarchy. See the comment on
560 cgroup_for_each_descendant_pre() for details.
562 void css_offline(struct cgroup *cgrp);
563 (cgroup_mutex held by caller)
565 This is the counterpart of css_online() and called iff css_online()
566 has succeeded on @cgrp. This signifies the beginning of the end of
567 @cgrp. @cgrp is being removed and the subsystem should start dropping
568 all references it's holding on @cgrp. When all references are dropped,
569 cgroup removal will proceed to the next step - css_free(). After this
570 callback, @cgrp should be considered dead to the subsystem.
572 void css_free(struct cgroup *cgrp)
573 (cgroup_mutex held by caller)
575 The cgroup system is about to free @cgrp; the subsystem should free
576 its subsystem state object. By the time this method is called, @cgrp
577 is completely unused; @cgrp->parent is still valid. (Note - can also
578 be called for a newly-created cgroup if an error occurs after this
579 subsystem's create() method has been called for the new cgroup).
581 int can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
582 (cgroup_mutex held by caller)
584 Called prior to moving one or more tasks into a cgroup; if the
585 subsystem returns an error, this will abort the attach operation.
586 @tset contains the tasks to be attached and is guaranteed to have at
587 least one task in it.
589 If there are multiple tasks in the taskset, then:
590   - it's guaranteed that all are from the same thread group
591   - @tset contains all tasks from the thread group whether or not
592     they're switching cgroups
593   - the first task is the leader
595 Each @tset entry also contains the task's old cgroup and tasks which
596 aren't switching cgroup can be skipped easily using the
597 cgroup_taskset_for_each() iterator. Note that this isn't called on a
598 fork. If this method returns 0 (success) then this should remain valid
599 while the caller holds cgroup_mutex and it is ensured that either
600 attach() or cancel_attach() will be called in future.
602 void css_reset(struct cgroup_subsys_state *css)
603 (cgroup_mutex held by caller)
605 An optional operation which should restore @css's configuration to the
606 initial state.  This is currently only used on the unified hierarchy
607 when a subsystem is disabled on a cgroup through
608 "cgroup.subtree_control" but should remain enabled because other
609 subsystems depend on it.  cgroup core makes such a css invisible by
610 removing the associated interface files and invokes this callback so
611 that the hidden subsystem can return to the initial neutral state.
612 This prevents unexpected resource control from a hidden css and
613 ensures that the configuration is in the initial state when it is made
614 visible again later.
616 void cancel_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
617 (cgroup_mutex held by caller)
619 Called when a task attach operation has failed after can_attach() has succeeded.
620 A subsystem whose can_attach() has some side-effects should provide this
621 function, so that the subsystem can implement a rollback. If not, not necessary.
622 This will be called only about subsystems whose can_attach() operation have
623 succeeded. The parameters are identical to can_attach().
625 void attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
626 (cgroup_mutex held by caller)
628 Called after the task has been attached to the cgroup, to allow any
629 post-attachment activity that requires memory allocations or blocking.
630 The parameters are identical to can_attach().
632 void fork(struct task_struct *task)
634 Called when a task is forked into a cgroup.
636 void exit(struct task_struct *task)
638 Called during task exit.
640 void free(struct task_struct *task)
642 Called when the task_struct is freed.
644 void bind(struct cgroup *root)
645 (cgroup_mutex held by caller)
647 Called when a cgroup subsystem is rebound to a different hierarchy
648 and root cgroup. Currently this will only involve movement between
649 the default hierarchy (which never has sub-cgroups) and a hierarchy
650 that is being created/destroyed (and hence has no sub-cgroups).
652 4. Extended attribute usage
653 ===========================
655 cgroup filesystem supports certain types of extended attributes in its
656 directories and files.  The current supported types are:
657         - Trusted (XATTR_TRUSTED)
658         - Security (XATTR_SECURITY)
660 Both require CAP_SYS_ADMIN capability to set.
662 Like in tmpfs, the extended attributes in cgroup filesystem are stored
663 using kernel memory and it's advised to keep the usage at minimum.  This
664 is the reason why user defined extended attributes are not supported, since
665 any user can do it and there's no limit in the value size.
667 The current known users for this feature are SELinux to limit cgroup usage
668 in containers and systemd for assorted meta data like main PID in a cgroup
669 (systemd creates a cgroup per service).
671 5. Questions
672 ============
674 Q: what's up with this '/bin/echo' ?
675 A: bash's builtin 'echo' command does not check calls to write() against
676    errors. If you use it in the cgroup file system, you won't be
677    able to tell whether a command succeeded or failed.
679 Q: When I attach processes, only the first of the line gets really attached !
680 A: We can only return one error code per call to write(). So you should also
681    put only ONE PID.