2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/ktime.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
17 #include <linux/blk-cgroup.h>
23 /* max queue in one round of service */
24 static const int cfq_quantum
= 8;
25 static const u64 cfq_fifo_expire
[2] = { NSEC_PER_SEC
/ 4, NSEC_PER_SEC
/ 8 };
26 /* maximum backwards seek, in KiB */
27 static const int cfq_back_max
= 16 * 1024;
28 /* penalty of a backwards seek */
29 static const int cfq_back_penalty
= 2;
30 static const u64 cfq_slice_sync
= NSEC_PER_SEC
/ 10;
31 static u64 cfq_slice_async
= NSEC_PER_SEC
/ 25;
32 static const int cfq_slice_async_rq
= 2;
33 static u64 cfq_slice_idle
= NSEC_PER_SEC
/ 125;
34 static u64 cfq_group_idle
= NSEC_PER_SEC
/ 125;
35 static const u64 cfq_target_latency
= (u64
)NSEC_PER_SEC
* 3/10; /* 300 ms */
36 static const int cfq_hist_divisor
= 4;
39 * offset from end of queue service tree for idle class
41 #define CFQ_IDLE_DELAY (NSEC_PER_SEC / 5)
42 /* offset from end of group service tree under time slice mode */
43 #define CFQ_SLICE_MODE_GROUP_DELAY (NSEC_PER_SEC / 5)
44 /* offset from end of group service under IOPS mode */
45 #define CFQ_IOPS_MODE_GROUP_DELAY (HZ / 5)
48 * below this threshold, we consider thinktime immediate
50 #define CFQ_MIN_TT (2 * NSEC_PER_SEC / HZ)
52 #define CFQ_SLICE_SCALE (5)
53 #define CFQ_HW_QUEUE_MIN (5)
54 #define CFQ_SERVICE_SHIFT 12
56 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
57 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
58 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
59 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
61 #define RQ_CIC(rq) icq_to_cic((rq)->elv.icq)
62 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elv.priv[0])
63 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elv.priv[1])
65 static struct kmem_cache
*cfq_pool
;
67 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
68 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
69 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
71 #define sample_valid(samples) ((samples) > 80)
72 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
74 /* blkio-related constants */
75 #define CFQ_WEIGHT_LEGACY_MIN 10
76 #define CFQ_WEIGHT_LEGACY_DFL 500
77 #define CFQ_WEIGHT_LEGACY_MAX 1000
84 unsigned long ttime_samples
;
88 * Most of our rbtree usage is for sorting with min extraction, so
89 * if we cache the leftmost node we don't have to walk down the tree
90 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
91 * move this into the elevator for the rq sorting as well.
98 struct cfq_ttime ttime
;
100 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
101 .ttime = {.last_end_request = ktime_get_ns(),},}
104 * Per process-grouping structure
107 /* reference count */
109 /* various state flags, see below */
111 /* parent cfq_data */
112 struct cfq_data
*cfqd
;
113 /* service_tree member */
114 struct rb_node rb_node
;
115 /* service_tree key */
117 /* prio tree member */
118 struct rb_node p_node
;
119 /* prio tree root we belong to, if any */
120 struct rb_root
*p_root
;
121 /* sorted list of pending requests */
122 struct rb_root sort_list
;
123 /* if fifo isn't expired, next request to serve */
124 struct request
*next_rq
;
125 /* requests queued in sort_list */
127 /* currently allocated requests */
129 /* fifo list of requests in sort_list */
130 struct list_head fifo
;
132 /* time when queue got scheduled in to dispatch first request. */
136 /* time when first request from queue completed and slice started. */
141 /* pending priority requests */
143 /* number of requests that are on the dispatch list or inside driver */
146 /* io prio of this group */
147 unsigned short ioprio
, org_ioprio
;
148 unsigned short ioprio_class
, org_ioprio_class
;
153 sector_t last_request_pos
;
155 struct cfq_rb_root
*service_tree
;
156 struct cfq_queue
*new_cfqq
;
157 struct cfq_group
*cfqg
;
158 /* Number of sectors dispatched from queue in single dispatch round */
159 unsigned long nr_sectors
;
163 * First index in the service_trees.
164 * IDLE is handled separately, so it has negative index
174 * Second index in the service_trees.
178 SYNC_NOIDLE_WORKLOAD
= 1,
183 #ifdef CONFIG_CFQ_GROUP_IOSCHED
184 /* number of ios merged */
185 struct blkg_rwstat merged
;
186 /* total time spent on device in ns, may not be accurate w/ queueing */
187 struct blkg_rwstat service_time
;
188 /* total time spent waiting in scheduler queue in ns */
189 struct blkg_rwstat wait_time
;
190 /* number of IOs queued up */
191 struct blkg_rwstat queued
;
192 /* total disk time and nr sectors dispatched by this group */
193 struct blkg_stat time
;
194 #ifdef CONFIG_DEBUG_BLK_CGROUP
195 /* time not charged to this cgroup */
196 struct blkg_stat unaccounted_time
;
197 /* sum of number of ios queued across all samples */
198 struct blkg_stat avg_queue_size_sum
;
199 /* count of samples taken for average */
200 struct blkg_stat avg_queue_size_samples
;
201 /* how many times this group has been removed from service tree */
202 struct blkg_stat dequeue
;
203 /* total time spent waiting for it to be assigned a timeslice. */
204 struct blkg_stat group_wait_time
;
205 /* time spent idling for this blkcg_gq */
206 struct blkg_stat idle_time
;
207 /* total time with empty current active q with other requests queued */
208 struct blkg_stat empty_time
;
209 /* fields after this shouldn't be cleared on stat reset */
210 uint64_t start_group_wait_time
;
211 uint64_t start_idle_time
;
212 uint64_t start_empty_time
;
214 #endif /* CONFIG_DEBUG_BLK_CGROUP */
215 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
218 /* Per-cgroup data */
219 struct cfq_group_data
{
220 /* must be the first member */
221 struct blkcg_policy_data cpd
;
224 unsigned int leaf_weight
;
227 /* This is per cgroup per device grouping structure */
229 /* must be the first member */
230 struct blkg_policy_data pd
;
232 /* group service_tree member */
233 struct rb_node rb_node
;
235 /* group service_tree key */
239 * The number of active cfqgs and sum of their weights under this
240 * cfqg. This covers this cfqg's leaf_weight and all children's
241 * weights, but does not cover weights of further descendants.
243 * If a cfqg is on the service tree, it's active. An active cfqg
244 * also activates its parent and contributes to the children_weight
248 unsigned int children_weight
;
251 * vfraction is the fraction of vdisktime that the tasks in this
252 * cfqg are entitled to. This is determined by compounding the
253 * ratios walking up from this cfqg to the root.
255 * It is in fixed point w/ CFQ_SERVICE_SHIFT and the sum of all
256 * vfractions on a service tree is approximately 1. The sum may
257 * deviate a bit due to rounding errors and fluctuations caused by
258 * cfqgs entering and leaving the service tree.
260 unsigned int vfraction
;
263 * There are two weights - (internal) weight is the weight of this
264 * cfqg against the sibling cfqgs. leaf_weight is the wight of
265 * this cfqg against the child cfqgs. For the root cfqg, both
266 * weights are kept in sync for backward compatibility.
269 unsigned int new_weight
;
270 unsigned int dev_weight
;
272 unsigned int leaf_weight
;
273 unsigned int new_leaf_weight
;
274 unsigned int dev_leaf_weight
;
276 /* number of cfqq currently on this group */
280 * Per group busy queues average. Useful for workload slice calc. We
281 * create the array for each prio class but at run time it is used
282 * only for RT and BE class and slot for IDLE class remains unused.
283 * This is primarily done to avoid confusion and a gcc warning.
285 unsigned int busy_queues_avg
[CFQ_PRIO_NR
];
287 * rr lists of queues with requests. We maintain service trees for
288 * RT and BE classes. These trees are subdivided in subclasses
289 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
290 * class there is no subclassification and all the cfq queues go on
291 * a single tree service_tree_idle.
292 * Counts are embedded in the cfq_rb_root
294 struct cfq_rb_root service_trees
[2][3];
295 struct cfq_rb_root service_tree_idle
;
298 enum wl_type_t saved_wl_type
;
299 enum wl_class_t saved_wl_class
;
301 /* number of requests that are on the dispatch list or inside driver */
303 struct cfq_ttime ttime
;
304 struct cfqg_stats stats
; /* stats for this cfqg */
306 /* async queue for each priority case */
307 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
308 struct cfq_queue
*async_idle_cfqq
;
313 struct io_cq icq
; /* must be the first member */
314 struct cfq_queue
*cfqq
[2];
315 struct cfq_ttime ttime
;
316 int ioprio
; /* the current ioprio */
317 #ifdef CONFIG_CFQ_GROUP_IOSCHED
318 uint64_t blkcg_serial_nr
; /* the current blkcg serial */
323 * Per block device queue structure
326 struct request_queue
*queue
;
327 /* Root service tree for cfq_groups */
328 struct cfq_rb_root grp_service_tree
;
329 struct cfq_group
*root_group
;
332 * The priority currently being served
334 enum wl_class_t serving_wl_class
;
335 enum wl_type_t serving_wl_type
;
336 u64 workload_expires
;
337 struct cfq_group
*serving_group
;
340 * Each priority tree is sorted by next_request position. These
341 * trees are used when determining if two or more queues are
342 * interleaving requests (see cfq_close_cooperator).
344 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
346 unsigned int busy_queues
;
347 unsigned int busy_sync_queues
;
353 * queue-depth detection
359 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
360 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
363 int hw_tag_est_depth
;
364 unsigned int hw_tag_samples
;
367 * idle window management
369 struct hrtimer idle_slice_timer
;
370 struct work_struct unplug_work
;
372 struct cfq_queue
*active_queue
;
373 struct cfq_io_cq
*active_cic
;
375 sector_t last_position
;
378 * tunables, see top of file
380 unsigned int cfq_quantum
;
381 unsigned int cfq_back_penalty
;
382 unsigned int cfq_back_max
;
383 unsigned int cfq_slice_async_rq
;
384 unsigned int cfq_latency
;
385 u64 cfq_fifo_expire
[2];
389 u64 cfq_target_latency
;
392 * Fallback dummy cfqq for extreme OOM conditions
394 struct cfq_queue oom_cfqq
;
396 u64 last_delayed_sync
;
399 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
400 static void cfq_put_queue(struct cfq_queue
*cfqq
);
402 static struct cfq_rb_root
*st_for(struct cfq_group
*cfqg
,
403 enum wl_class_t
class,
409 if (class == IDLE_WORKLOAD
)
410 return &cfqg
->service_tree_idle
;
412 return &cfqg
->service_trees
[class][type
];
415 enum cfqq_state_flags
{
416 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
417 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
418 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
419 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
420 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
421 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
422 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
423 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
424 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
425 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
426 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
427 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
428 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
431 #define CFQ_CFQQ_FNS(name) \
432 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
434 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
436 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
438 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
440 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
442 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
446 CFQ_CFQQ_FNS(wait_request
);
447 CFQ_CFQQ_FNS(must_dispatch
);
448 CFQ_CFQQ_FNS(must_alloc_slice
);
449 CFQ_CFQQ_FNS(fifo_expire
);
450 CFQ_CFQQ_FNS(idle_window
);
451 CFQ_CFQQ_FNS(prio_changed
);
452 CFQ_CFQQ_FNS(slice_new
);
455 CFQ_CFQQ_FNS(split_coop
);
457 CFQ_CFQQ_FNS(wait_busy
);
460 #if defined(CONFIG_CFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
462 /* cfqg stats flags */
463 enum cfqg_stats_flags
{
464 CFQG_stats_waiting
= 0,
469 #define CFQG_FLAG_FNS(name) \
470 static inline void cfqg_stats_mark_##name(struct cfqg_stats *stats) \
472 stats->flags |= (1 << CFQG_stats_##name); \
474 static inline void cfqg_stats_clear_##name(struct cfqg_stats *stats) \
476 stats->flags &= ~(1 << CFQG_stats_##name); \
478 static inline int cfqg_stats_##name(struct cfqg_stats *stats) \
480 return (stats->flags & (1 << CFQG_stats_##name)) != 0; \
483 CFQG_FLAG_FNS(waiting)
484 CFQG_FLAG_FNS(idling
)
488 /* This should be called with the queue_lock held. */
489 static void cfqg_stats_update_group_wait_time(struct cfqg_stats
*stats
)
491 unsigned long long now
;
493 if (!cfqg_stats_waiting(stats
))
497 if (time_after64(now
, stats
->start_group_wait_time
))
498 blkg_stat_add(&stats
->group_wait_time
,
499 now
- stats
->start_group_wait_time
);
500 cfqg_stats_clear_waiting(stats
);
503 /* This should be called with the queue_lock held. */
504 static void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
,
505 struct cfq_group
*curr_cfqg
)
507 struct cfqg_stats
*stats
= &cfqg
->stats
;
509 if (cfqg_stats_waiting(stats
))
511 if (cfqg
== curr_cfqg
)
513 stats
->start_group_wait_time
= sched_clock();
514 cfqg_stats_mark_waiting(stats
);
517 /* This should be called with the queue_lock held. */
518 static void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
)
520 unsigned long long now
;
522 if (!cfqg_stats_empty(stats
))
526 if (time_after64(now
, stats
->start_empty_time
))
527 blkg_stat_add(&stats
->empty_time
,
528 now
- stats
->start_empty_time
);
529 cfqg_stats_clear_empty(stats
);
532 static void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
)
534 blkg_stat_add(&cfqg
->stats
.dequeue
, 1);
537 static void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
)
539 struct cfqg_stats
*stats
= &cfqg
->stats
;
541 if (blkg_rwstat_total(&stats
->queued
))
545 * group is already marked empty. This can happen if cfqq got new
546 * request in parent group and moved to this group while being added
547 * to service tree. Just ignore the event and move on.
549 if (cfqg_stats_empty(stats
))
552 stats
->start_empty_time
= sched_clock();
553 cfqg_stats_mark_empty(stats
);
556 static void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
)
558 struct cfqg_stats
*stats
= &cfqg
->stats
;
560 if (cfqg_stats_idling(stats
)) {
561 unsigned long long now
= sched_clock();
563 if (time_after64(now
, stats
->start_idle_time
))
564 blkg_stat_add(&stats
->idle_time
,
565 now
- stats
->start_idle_time
);
566 cfqg_stats_clear_idling(stats
);
570 static void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
)
572 struct cfqg_stats
*stats
= &cfqg
->stats
;
574 BUG_ON(cfqg_stats_idling(stats
));
576 stats
->start_idle_time
= sched_clock();
577 cfqg_stats_mark_idling(stats
);
580 static void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
)
582 struct cfqg_stats
*stats
= &cfqg
->stats
;
584 blkg_stat_add(&stats
->avg_queue_size_sum
,
585 blkg_rwstat_total(&stats
->queued
));
586 blkg_stat_add(&stats
->avg_queue_size_samples
, 1);
587 cfqg_stats_update_group_wait_time(stats
);
590 #else /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
592 static inline void cfqg_stats_set_start_group_wait_time(struct cfq_group
*cfqg
, struct cfq_group
*curr_cfqg
) { }
593 static inline void cfqg_stats_end_empty_time(struct cfqg_stats
*stats
) { }
594 static inline void cfqg_stats_update_dequeue(struct cfq_group
*cfqg
) { }
595 static inline void cfqg_stats_set_start_empty_time(struct cfq_group
*cfqg
) { }
596 static inline void cfqg_stats_update_idle_time(struct cfq_group
*cfqg
) { }
597 static inline void cfqg_stats_set_start_idle_time(struct cfq_group
*cfqg
) { }
598 static inline void cfqg_stats_update_avg_queue_size(struct cfq_group
*cfqg
) { }
600 #endif /* CONFIG_CFQ_GROUP_IOSCHED && CONFIG_DEBUG_BLK_CGROUP */
602 #ifdef CONFIG_CFQ_GROUP_IOSCHED
604 static inline struct cfq_group
*pd_to_cfqg(struct blkg_policy_data
*pd
)
606 return pd
? container_of(pd
, struct cfq_group
, pd
) : NULL
;
609 static struct cfq_group_data
610 *cpd_to_cfqgd(struct blkcg_policy_data
*cpd
)
612 return cpd
? container_of(cpd
, struct cfq_group_data
, cpd
) : NULL
;
615 static inline struct blkcg_gq
*cfqg_to_blkg(struct cfq_group
*cfqg
)
617 return pd_to_blkg(&cfqg
->pd
);
620 static struct blkcg_policy blkcg_policy_cfq
;
622 static inline struct cfq_group
*blkg_to_cfqg(struct blkcg_gq
*blkg
)
624 return pd_to_cfqg(blkg_to_pd(blkg
, &blkcg_policy_cfq
));
627 static struct cfq_group_data
*blkcg_to_cfqgd(struct blkcg
*blkcg
)
629 return cpd_to_cfqgd(blkcg_to_cpd(blkcg
, &blkcg_policy_cfq
));
632 static inline struct cfq_group
*cfqg_parent(struct cfq_group
*cfqg
)
634 struct blkcg_gq
*pblkg
= cfqg_to_blkg(cfqg
)->parent
;
636 return pblkg
? blkg_to_cfqg(pblkg
) : NULL
;
639 static inline bool cfqg_is_descendant(struct cfq_group
*cfqg
,
640 struct cfq_group
*ancestor
)
642 return cgroup_is_descendant(cfqg_to_blkg(cfqg
)->blkcg
->css
.cgroup
,
643 cfqg_to_blkg(ancestor
)->blkcg
->css
.cgroup
);
646 static inline void cfqg_get(struct cfq_group
*cfqg
)
648 return blkg_get(cfqg_to_blkg(cfqg
));
651 static inline void cfqg_put(struct cfq_group
*cfqg
)
653 return blkg_put(cfqg_to_blkg(cfqg
));
656 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) do { \
659 blkg_path(cfqg_to_blkg((cfqq)->cfqg), __pbuf, sizeof(__pbuf)); \
660 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c %s " fmt, (cfqq)->pid, \
661 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
662 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
666 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do { \
669 blkg_path(cfqg_to_blkg(cfqg), __pbuf, sizeof(__pbuf)); \
670 blk_add_trace_msg((cfqd)->queue, "%s " fmt, __pbuf, ##args); \
673 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
674 struct cfq_group
*curr_cfqg
, int op
,
677 blkg_rwstat_add(&cfqg
->stats
.queued
, op
, op_flags
, 1);
678 cfqg_stats_end_empty_time(&cfqg
->stats
);
679 cfqg_stats_set_start_group_wait_time(cfqg
, curr_cfqg
);
682 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
683 uint64_t time
, unsigned long unaccounted_time
)
685 blkg_stat_add(&cfqg
->stats
.time
, time
);
686 #ifdef CONFIG_DEBUG_BLK_CGROUP
687 blkg_stat_add(&cfqg
->stats
.unaccounted_time
, unaccounted_time
);
691 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
, int op
,
694 blkg_rwstat_add(&cfqg
->stats
.queued
, op
, op_flags
, -1);
697 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
, int op
,
700 blkg_rwstat_add(&cfqg
->stats
.merged
, op
, op_flags
, 1);
703 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
704 uint64_t start_time
, uint64_t io_start_time
, int op
,
707 struct cfqg_stats
*stats
= &cfqg
->stats
;
708 unsigned long long now
= sched_clock();
710 if (time_after64(now
, io_start_time
))
711 blkg_rwstat_add(&stats
->service_time
, op
, op_flags
,
712 now
- io_start_time
);
713 if (time_after64(io_start_time
, start_time
))
714 blkg_rwstat_add(&stats
->wait_time
, op
, op_flags
,
715 io_start_time
- start_time
);
719 static void cfqg_stats_reset(struct cfqg_stats
*stats
)
721 /* queued stats shouldn't be cleared */
722 blkg_rwstat_reset(&stats
->merged
);
723 blkg_rwstat_reset(&stats
->service_time
);
724 blkg_rwstat_reset(&stats
->wait_time
);
725 blkg_stat_reset(&stats
->time
);
726 #ifdef CONFIG_DEBUG_BLK_CGROUP
727 blkg_stat_reset(&stats
->unaccounted_time
);
728 blkg_stat_reset(&stats
->avg_queue_size_sum
);
729 blkg_stat_reset(&stats
->avg_queue_size_samples
);
730 blkg_stat_reset(&stats
->dequeue
);
731 blkg_stat_reset(&stats
->group_wait_time
);
732 blkg_stat_reset(&stats
->idle_time
);
733 blkg_stat_reset(&stats
->empty_time
);
738 static void cfqg_stats_add_aux(struct cfqg_stats
*to
, struct cfqg_stats
*from
)
740 /* queued stats shouldn't be cleared */
741 blkg_rwstat_add_aux(&to
->merged
, &from
->merged
);
742 blkg_rwstat_add_aux(&to
->service_time
, &from
->service_time
);
743 blkg_rwstat_add_aux(&to
->wait_time
, &from
->wait_time
);
744 blkg_stat_add_aux(&from
->time
, &from
->time
);
745 #ifdef CONFIG_DEBUG_BLK_CGROUP
746 blkg_stat_add_aux(&to
->unaccounted_time
, &from
->unaccounted_time
);
747 blkg_stat_add_aux(&to
->avg_queue_size_sum
, &from
->avg_queue_size_sum
);
748 blkg_stat_add_aux(&to
->avg_queue_size_samples
, &from
->avg_queue_size_samples
);
749 blkg_stat_add_aux(&to
->dequeue
, &from
->dequeue
);
750 blkg_stat_add_aux(&to
->group_wait_time
, &from
->group_wait_time
);
751 blkg_stat_add_aux(&to
->idle_time
, &from
->idle_time
);
752 blkg_stat_add_aux(&to
->empty_time
, &from
->empty_time
);
757 * Transfer @cfqg's stats to its parent's aux counts so that the ancestors'
758 * recursive stats can still account for the amount used by this cfqg after
761 static void cfqg_stats_xfer_dead(struct cfq_group
*cfqg
)
763 struct cfq_group
*parent
= cfqg_parent(cfqg
);
765 lockdep_assert_held(cfqg_to_blkg(cfqg
)->q
->queue_lock
);
767 if (unlikely(!parent
))
770 cfqg_stats_add_aux(&parent
->stats
, &cfqg
->stats
);
771 cfqg_stats_reset(&cfqg
->stats
);
774 #else /* CONFIG_CFQ_GROUP_IOSCHED */
776 static inline struct cfq_group
*cfqg_parent(struct cfq_group
*cfqg
) { return NULL
; }
777 static inline bool cfqg_is_descendant(struct cfq_group
*cfqg
,
778 struct cfq_group
*ancestor
)
782 static inline void cfqg_get(struct cfq_group
*cfqg
) { }
783 static inline void cfqg_put(struct cfq_group
*cfqg
) { }
785 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
786 blk_add_trace_msg((cfqd)->queue, "cfq%d%c%c " fmt, (cfqq)->pid, \
787 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
788 cfqq_type((cfqq)) == SYNC_NOIDLE_WORKLOAD ? 'N' : ' ',\
790 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
792 static inline void cfqg_stats_update_io_add(struct cfq_group
*cfqg
,
793 struct cfq_group
*curr_cfqg
, int op
, int op_flags
) { }
794 static inline void cfqg_stats_update_timeslice_used(struct cfq_group
*cfqg
,
795 uint64_t time
, unsigned long unaccounted_time
) { }
796 static inline void cfqg_stats_update_io_remove(struct cfq_group
*cfqg
, int op
,
798 static inline void cfqg_stats_update_io_merged(struct cfq_group
*cfqg
, int op
,
800 static inline void cfqg_stats_update_completion(struct cfq_group
*cfqg
,
801 uint64_t start_time
, uint64_t io_start_time
, int op
,
804 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
806 #define cfq_log(cfqd, fmt, args...) \
807 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
809 /* Traverses through cfq group service trees */
810 #define for_each_cfqg_st(cfqg, i, j, st) \
811 for (i = 0; i <= IDLE_WORKLOAD; i++) \
812 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
813 : &cfqg->service_tree_idle; \
814 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
815 (i == IDLE_WORKLOAD && j == 0); \
816 j++, st = i < IDLE_WORKLOAD ? \
817 &cfqg->service_trees[i][j]: NULL) \
819 static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
820 struct cfq_ttime
*ttime
, bool group_idle
)
823 if (!sample_valid(ttime
->ttime_samples
))
826 slice
= cfqd
->cfq_group_idle
;
828 slice
= cfqd
->cfq_slice_idle
;
829 return ttime
->ttime_mean
> slice
;
832 static inline bool iops_mode(struct cfq_data
*cfqd
)
835 * If we are not idling on queues and it is a NCQ drive, parallel
836 * execution of requests is on and measuring time is not possible
837 * in most of the cases until and unless we drive shallower queue
838 * depths and that becomes a performance bottleneck. In such cases
839 * switch to start providing fairness in terms of number of IOs.
841 if (!cfqd
->cfq_slice_idle
&& cfqd
->hw_tag
)
847 static inline enum wl_class_t
cfqq_class(struct cfq_queue
*cfqq
)
849 if (cfq_class_idle(cfqq
))
850 return IDLE_WORKLOAD
;
851 if (cfq_class_rt(cfqq
))
857 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
859 if (!cfq_cfqq_sync(cfqq
))
860 return ASYNC_WORKLOAD
;
861 if (!cfq_cfqq_idle_window(cfqq
))
862 return SYNC_NOIDLE_WORKLOAD
;
863 return SYNC_WORKLOAD
;
866 static inline int cfq_group_busy_queues_wl(enum wl_class_t wl_class
,
867 struct cfq_data
*cfqd
,
868 struct cfq_group
*cfqg
)
870 if (wl_class
== IDLE_WORKLOAD
)
871 return cfqg
->service_tree_idle
.count
;
873 return cfqg
->service_trees
[wl_class
][ASYNC_WORKLOAD
].count
+
874 cfqg
->service_trees
[wl_class
][SYNC_NOIDLE_WORKLOAD
].count
+
875 cfqg
->service_trees
[wl_class
][SYNC_WORKLOAD
].count
;
878 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
879 struct cfq_group
*cfqg
)
881 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
+
882 cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
885 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
886 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
,
887 struct cfq_io_cq
*cic
, struct bio
*bio
);
889 static inline struct cfq_io_cq
*icq_to_cic(struct io_cq
*icq
)
891 /* cic->icq is the first member, %NULL will convert to %NULL */
892 return container_of(icq
, struct cfq_io_cq
, icq
);
895 static inline struct cfq_io_cq
*cfq_cic_lookup(struct cfq_data
*cfqd
,
896 struct io_context
*ioc
)
899 return icq_to_cic(ioc_lookup_icq(ioc
, cfqd
->queue
));
903 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_cq
*cic
, bool is_sync
)
905 return cic
->cfqq
[is_sync
];
908 static inline void cic_set_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
,
911 cic
->cfqq
[is_sync
] = cfqq
;
914 static inline struct cfq_data
*cic_to_cfqd(struct cfq_io_cq
*cic
)
916 return cic
->icq
.q
->elevator
->elevator_data
;
920 * We regard a request as SYNC, if it's either a read or has the SYNC bit
921 * set (in which case it could also be direct WRITE).
923 static inline bool cfq_bio_sync(struct bio
*bio
)
925 return bio_data_dir(bio
) == READ
|| (bio
->bi_opf
& REQ_SYNC
);
929 * scheduler run of queue, if there are requests pending and no one in the
930 * driver that will restart queueing
932 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
934 if (cfqd
->busy_queues
) {
935 cfq_log(cfqd
, "schedule dispatch");
936 kblockd_schedule_work(&cfqd
->unplug_work
);
941 * Scale schedule slice based on io priority. Use the sync time slice only
942 * if a queue is marked sync and has sync io queued. A sync queue with async
943 * io only, should not get full sync slice length.
945 static inline u64
cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
948 u64 base_slice
= cfqd
->cfq_slice
[sync
];
949 u64 slice
= div_u64(base_slice
, CFQ_SLICE_SCALE
);
951 WARN_ON(prio
>= IOPRIO_BE_NR
);
953 return base_slice
+ (slice
* (4 - prio
));
957 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
959 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
963 * cfqg_scale_charge - scale disk time charge according to cfqg weight
964 * @charge: disk time being charged
965 * @vfraction: vfraction of the cfqg, fixed point w/ CFQ_SERVICE_SHIFT
967 * Scale @charge according to @vfraction, which is in range (0, 1]. The
968 * scaling is inversely proportional.
970 * scaled = charge / vfraction
972 * The result is also in fixed point w/ CFQ_SERVICE_SHIFT.
974 static inline u64
cfqg_scale_charge(u64 charge
,
975 unsigned int vfraction
)
977 u64 c
= charge
<< CFQ_SERVICE_SHIFT
; /* make it fixed point */
979 /* charge / vfraction */
980 c
<<= CFQ_SERVICE_SHIFT
;
981 return div_u64(c
, vfraction
);
984 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
986 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
988 min_vdisktime
= vdisktime
;
990 return min_vdisktime
;
993 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
995 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
997 min_vdisktime
= vdisktime
;
999 return min_vdisktime
;
1002 static void update_min_vdisktime(struct cfq_rb_root
*st
)
1004 struct cfq_group
*cfqg
;
1007 cfqg
= rb_entry_cfqg(st
->left
);
1008 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
,
1014 * get averaged number of queues of RT/BE priority.
1015 * average is updated, with a formula that gives more weight to higher numbers,
1016 * to quickly follows sudden increases and decrease slowly
1019 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
1020 struct cfq_group
*cfqg
, bool rt
)
1022 unsigned min_q
, max_q
;
1023 unsigned mult
= cfq_hist_divisor
- 1;
1024 unsigned round
= cfq_hist_divisor
/ 2;
1025 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
1027 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
1028 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
1029 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
1031 return cfqg
->busy_queues_avg
[rt
];
1035 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1037 return cfqd
->cfq_target_latency
* cfqg
->vfraction
>> CFQ_SERVICE_SHIFT
;
1041 cfq_scaled_cfqq_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1043 u64 slice
= cfq_prio_to_slice(cfqd
, cfqq
);
1044 if (cfqd
->cfq_latency
) {
1046 * interested queues (we consider only the ones with the same
1047 * priority class in the cfq group)
1049 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
1050 cfq_class_rt(cfqq
));
1051 u64 sync_slice
= cfqd
->cfq_slice
[1];
1052 u64 expect_latency
= sync_slice
* iq
;
1053 u64 group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
1055 if (expect_latency
> group_slice
) {
1056 u64 base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
1059 /* scale low_slice according to IO priority
1060 * and sync vs async */
1061 low_slice
= div64_u64(base_low_slice
*slice
, sync_slice
);
1062 low_slice
= min(slice
, low_slice
);
1063 /* the adapted slice value is scaled to fit all iqs
1064 * into the target latency */
1065 slice
= div64_u64(slice
*group_slice
, expect_latency
);
1066 slice
= max(slice
, low_slice
);
1073 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1075 u64 slice
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
1076 u64 now
= ktime_get_ns();
1078 cfqq
->slice_start
= now
;
1079 cfqq
->slice_end
= now
+ slice
;
1080 cfqq
->allocated_slice
= slice
;
1081 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%llu", cfqq
->slice_end
- now
);
1085 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
1086 * isn't valid until the first request from the dispatch is activated
1087 * and the slice time set.
1089 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
1091 if (cfq_cfqq_slice_new(cfqq
))
1093 if (ktime_get_ns() < cfqq
->slice_end
)
1100 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1101 * We choose the request that is closest to the head right now. Distance
1102 * behind the head is penalized and only allowed to a certain extent.
1104 static struct request
*
1105 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
1107 sector_t s1
, s2
, d1
= 0, d2
= 0;
1108 unsigned long back_max
;
1109 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
1110 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
1111 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
1113 if (rq1
== NULL
|| rq1
== rq2
)
1118 if (rq_is_sync(rq1
) != rq_is_sync(rq2
))
1119 return rq_is_sync(rq1
) ? rq1
: rq2
;
1121 if ((rq1
->cmd_flags
^ rq2
->cmd_flags
) & REQ_PRIO
)
1122 return rq1
->cmd_flags
& REQ_PRIO
? rq1
: rq2
;
1124 s1
= blk_rq_pos(rq1
);
1125 s2
= blk_rq_pos(rq2
);
1128 * by definition, 1KiB is 2 sectors
1130 back_max
= cfqd
->cfq_back_max
* 2;
1133 * Strict one way elevator _except_ in the case where we allow
1134 * short backward seeks which are biased as twice the cost of a
1135 * similar forward seek.
1139 else if (s1
+ back_max
>= last
)
1140 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
1142 wrap
|= CFQ_RQ1_WRAP
;
1146 else if (s2
+ back_max
>= last
)
1147 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
1149 wrap
|= CFQ_RQ2_WRAP
;
1151 /* Found required data */
1154 * By doing switch() on the bit mask "wrap" we avoid having to
1155 * check two variables for all permutations: --> faster!
1158 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
1174 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
1177 * Since both rqs are wrapped,
1178 * start with the one that's further behind head
1179 * (--> only *one* back seek required),
1180 * since back seek takes more time than forward.
1190 * The below is leftmost cache rbtree addon
1192 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
1194 /* Service tree is empty */
1199 root
->left
= rb_first(&root
->rb
);
1202 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
1207 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
1210 root
->left
= rb_first(&root
->rb
);
1213 return rb_entry_cfqg(root
->left
);
1218 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
1224 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
1226 if (root
->left
== n
)
1228 rb_erase_init(n
, &root
->rb
);
1233 * would be nice to take fifo expire time into account as well
1235 static struct request
*
1236 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1237 struct request
*last
)
1239 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
1240 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
1241 struct request
*next
= NULL
, *prev
= NULL
;
1243 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
1246 prev
= rb_entry_rq(rbprev
);
1249 next
= rb_entry_rq(rbnext
);
1251 rbnext
= rb_first(&cfqq
->sort_list
);
1252 if (rbnext
&& rbnext
!= &last
->rb_node
)
1253 next
= rb_entry_rq(rbnext
);
1256 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
1259 static u64
cfq_slice_offset(struct cfq_data
*cfqd
,
1260 struct cfq_queue
*cfqq
)
1263 * just an approximation, should be ok.
1265 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
1266 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
1270 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1272 return cfqg
->vdisktime
- st
->min_vdisktime
;
1276 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1278 struct rb_node
**node
= &st
->rb
.rb_node
;
1279 struct rb_node
*parent
= NULL
;
1280 struct cfq_group
*__cfqg
;
1281 s64 key
= cfqg_key(st
, cfqg
);
1284 while (*node
!= NULL
) {
1286 __cfqg
= rb_entry_cfqg(parent
);
1288 if (key
< cfqg_key(st
, __cfqg
))
1289 node
= &parent
->rb_left
;
1291 node
= &parent
->rb_right
;
1297 st
->left
= &cfqg
->rb_node
;
1299 rb_link_node(&cfqg
->rb_node
, parent
, node
);
1300 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
1304 * This has to be called only on activation of cfqg
1307 cfq_update_group_weight(struct cfq_group
*cfqg
)
1309 if (cfqg
->new_weight
) {
1310 cfqg
->weight
= cfqg
->new_weight
;
1311 cfqg
->new_weight
= 0;
1316 cfq_update_group_leaf_weight(struct cfq_group
*cfqg
)
1318 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1320 if (cfqg
->new_leaf_weight
) {
1321 cfqg
->leaf_weight
= cfqg
->new_leaf_weight
;
1322 cfqg
->new_leaf_weight
= 0;
1327 cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1329 unsigned int vfr
= 1 << CFQ_SERVICE_SHIFT
; /* start with 1 */
1330 struct cfq_group
*pos
= cfqg
;
1331 struct cfq_group
*parent
;
1334 /* add to the service tree */
1335 BUG_ON(!RB_EMPTY_NODE(&cfqg
->rb_node
));
1338 * Update leaf_weight. We cannot update weight at this point
1339 * because cfqg might already have been activated and is
1340 * contributing its current weight to the parent's child_weight.
1342 cfq_update_group_leaf_weight(cfqg
);
1343 __cfq_group_service_tree_add(st
, cfqg
);
1346 * Activate @cfqg and calculate the portion of vfraction @cfqg is
1347 * entitled to. vfraction is calculated by walking the tree
1348 * towards the root calculating the fraction it has at each level.
1349 * The compounded ratio is how much vfraction @cfqg owns.
1351 * Start with the proportion tasks in this cfqg has against active
1352 * children cfqgs - its leaf_weight against children_weight.
1354 propagate
= !pos
->nr_active
++;
1355 pos
->children_weight
+= pos
->leaf_weight
;
1356 vfr
= vfr
* pos
->leaf_weight
/ pos
->children_weight
;
1359 * Compound ->weight walking up the tree. Both activation and
1360 * vfraction calculation are done in the same loop. Propagation
1361 * stops once an already activated node is met. vfraction
1362 * calculation should always continue to the root.
1364 while ((parent
= cfqg_parent(pos
))) {
1366 cfq_update_group_weight(pos
);
1367 propagate
= !parent
->nr_active
++;
1368 parent
->children_weight
+= pos
->weight
;
1370 vfr
= vfr
* pos
->weight
/ parent
->children_weight
;
1374 cfqg
->vfraction
= max_t(unsigned, vfr
, 1);
1377 static inline u64
cfq_get_cfqg_vdisktime_delay(struct cfq_data
*cfqd
)
1379 if (!iops_mode(cfqd
))
1380 return CFQ_SLICE_MODE_GROUP_DELAY
;
1382 return CFQ_IOPS_MODE_GROUP_DELAY
;
1386 cfq_group_notify_queue_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1388 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1389 struct cfq_group
*__cfqg
;
1393 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1397 * Currently put the group at the end. Later implement something
1398 * so that groups get lesser vtime based on their weights, so that
1399 * if group does not loose all if it was not continuously backlogged.
1401 n
= rb_last(&st
->rb
);
1403 __cfqg
= rb_entry_cfqg(n
);
1404 cfqg
->vdisktime
= __cfqg
->vdisktime
+
1405 cfq_get_cfqg_vdisktime_delay(cfqd
);
1407 cfqg
->vdisktime
= st
->min_vdisktime
;
1408 cfq_group_service_tree_add(st
, cfqg
);
1412 cfq_group_service_tree_del(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
1414 struct cfq_group
*pos
= cfqg
;
1418 * Undo activation from cfq_group_service_tree_add(). Deactivate
1419 * @cfqg and propagate deactivation upwards.
1421 propagate
= !--pos
->nr_active
;
1422 pos
->children_weight
-= pos
->leaf_weight
;
1425 struct cfq_group
*parent
= cfqg_parent(pos
);
1427 /* @pos has 0 nr_active at this point */
1428 WARN_ON_ONCE(pos
->children_weight
);
1434 propagate
= !--parent
->nr_active
;
1435 parent
->children_weight
-= pos
->weight
;
1439 /* remove from the service tree */
1440 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
1441 cfq_rb_erase(&cfqg
->rb_node
, st
);
1445 cfq_group_notify_queue_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1447 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1449 BUG_ON(cfqg
->nr_cfqq
< 1);
1452 /* If there are other cfq queues under this group, don't delete it */
1456 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
1457 cfq_group_service_tree_del(st
, cfqg
);
1458 cfqg
->saved_wl_slice
= 0;
1459 cfqg_stats_update_dequeue(cfqg
);
1462 static inline u64
cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
,
1463 u64
*unaccounted_time
)
1466 u64 now
= ktime_get_ns();
1469 * Queue got expired before even a single request completed or
1470 * got expired immediately after first request completion.
1472 if (!cfqq
->slice_start
|| cfqq
->slice_start
== now
) {
1474 * Also charge the seek time incurred to the group, otherwise
1475 * if there are mutiple queues in the group, each can dispatch
1476 * a single request on seeky media and cause lots of seek time
1477 * and group will never know it.
1479 slice_used
= max_t(u64
, (now
- cfqq
->dispatch_start
),
1480 jiffies_to_nsecs(1));
1482 slice_used
= now
- cfqq
->slice_start
;
1483 if (slice_used
> cfqq
->allocated_slice
) {
1484 *unaccounted_time
= slice_used
- cfqq
->allocated_slice
;
1485 slice_used
= cfqq
->allocated_slice
;
1487 if (cfqq
->slice_start
> cfqq
->dispatch_start
)
1488 *unaccounted_time
+= cfqq
->slice_start
-
1489 cfqq
->dispatch_start
;
1495 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
1496 struct cfq_queue
*cfqq
)
1498 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
1499 u64 used_sl
, charge
, unaccounted_sl
= 0;
1500 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
1501 - cfqg
->service_tree_idle
.count
;
1503 u64 now
= ktime_get_ns();
1505 BUG_ON(nr_sync
< 0);
1506 used_sl
= charge
= cfq_cfqq_slice_usage(cfqq
, &unaccounted_sl
);
1508 if (iops_mode(cfqd
))
1509 charge
= cfqq
->slice_dispatch
;
1510 else if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
1511 charge
= cfqq
->allocated_slice
;
1514 * Can't update vdisktime while on service tree and cfqg->vfraction
1515 * is valid only while on it. Cache vfr, leave the service tree,
1516 * update vdisktime and go back on. The re-addition to the tree
1517 * will also update the weights as necessary.
1519 vfr
= cfqg
->vfraction
;
1520 cfq_group_service_tree_del(st
, cfqg
);
1521 cfqg
->vdisktime
+= cfqg_scale_charge(charge
, vfr
);
1522 cfq_group_service_tree_add(st
, cfqg
);
1524 /* This group is being expired. Save the context */
1525 if (cfqd
->workload_expires
> now
) {
1526 cfqg
->saved_wl_slice
= cfqd
->workload_expires
- now
;
1527 cfqg
->saved_wl_type
= cfqd
->serving_wl_type
;
1528 cfqg
->saved_wl_class
= cfqd
->serving_wl_class
;
1530 cfqg
->saved_wl_slice
= 0;
1532 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
1534 cfq_log_cfqq(cfqq
->cfqd
, cfqq
,
1535 "sl_used=%llu disp=%llu charge=%llu iops=%u sect=%lu",
1536 used_sl
, cfqq
->slice_dispatch
, charge
,
1537 iops_mode(cfqd
), cfqq
->nr_sectors
);
1538 cfqg_stats_update_timeslice_used(cfqg
, used_sl
, unaccounted_sl
);
1539 cfqg_stats_set_start_empty_time(cfqg
);
1543 * cfq_init_cfqg_base - initialize base part of a cfq_group
1544 * @cfqg: cfq_group to initialize
1546 * Initialize the base part which is used whether %CONFIG_CFQ_GROUP_IOSCHED
1547 * is enabled or not.
1549 static void cfq_init_cfqg_base(struct cfq_group
*cfqg
)
1551 struct cfq_rb_root
*st
;
1554 for_each_cfqg_st(cfqg
, i
, j
, st
)
1556 RB_CLEAR_NODE(&cfqg
->rb_node
);
1558 cfqg
->ttime
.last_end_request
= ktime_get_ns();
1561 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1562 static int __cfq_set_weight(struct cgroup_subsys_state
*css
, u64 val
,
1563 bool on_dfl
, bool reset_dev
, bool is_leaf_weight
);
1565 static void cfqg_stats_exit(struct cfqg_stats
*stats
)
1567 blkg_rwstat_exit(&stats
->merged
);
1568 blkg_rwstat_exit(&stats
->service_time
);
1569 blkg_rwstat_exit(&stats
->wait_time
);
1570 blkg_rwstat_exit(&stats
->queued
);
1571 blkg_stat_exit(&stats
->time
);
1572 #ifdef CONFIG_DEBUG_BLK_CGROUP
1573 blkg_stat_exit(&stats
->unaccounted_time
);
1574 blkg_stat_exit(&stats
->avg_queue_size_sum
);
1575 blkg_stat_exit(&stats
->avg_queue_size_samples
);
1576 blkg_stat_exit(&stats
->dequeue
);
1577 blkg_stat_exit(&stats
->group_wait_time
);
1578 blkg_stat_exit(&stats
->idle_time
);
1579 blkg_stat_exit(&stats
->empty_time
);
1583 static int cfqg_stats_init(struct cfqg_stats
*stats
, gfp_t gfp
)
1585 if (blkg_rwstat_init(&stats
->merged
, gfp
) ||
1586 blkg_rwstat_init(&stats
->service_time
, gfp
) ||
1587 blkg_rwstat_init(&stats
->wait_time
, gfp
) ||
1588 blkg_rwstat_init(&stats
->queued
, gfp
) ||
1589 blkg_stat_init(&stats
->time
, gfp
))
1592 #ifdef CONFIG_DEBUG_BLK_CGROUP
1593 if (blkg_stat_init(&stats
->unaccounted_time
, gfp
) ||
1594 blkg_stat_init(&stats
->avg_queue_size_sum
, gfp
) ||
1595 blkg_stat_init(&stats
->avg_queue_size_samples
, gfp
) ||
1596 blkg_stat_init(&stats
->dequeue
, gfp
) ||
1597 blkg_stat_init(&stats
->group_wait_time
, gfp
) ||
1598 blkg_stat_init(&stats
->idle_time
, gfp
) ||
1599 blkg_stat_init(&stats
->empty_time
, gfp
))
1604 cfqg_stats_exit(stats
);
1608 static struct blkcg_policy_data
*cfq_cpd_alloc(gfp_t gfp
)
1610 struct cfq_group_data
*cgd
;
1612 cgd
= kzalloc(sizeof(*cgd
), gfp
);
1618 static void cfq_cpd_init(struct blkcg_policy_data
*cpd
)
1620 struct cfq_group_data
*cgd
= cpd_to_cfqgd(cpd
);
1621 unsigned int weight
= cgroup_subsys_on_dfl(io_cgrp_subsys
) ?
1622 CGROUP_WEIGHT_DFL
: CFQ_WEIGHT_LEGACY_DFL
;
1624 if (cpd_to_blkcg(cpd
) == &blkcg_root
)
1627 cgd
->weight
= weight
;
1628 cgd
->leaf_weight
= weight
;
1631 static void cfq_cpd_free(struct blkcg_policy_data
*cpd
)
1633 kfree(cpd_to_cfqgd(cpd
));
1636 static void cfq_cpd_bind(struct blkcg_policy_data
*cpd
)
1638 struct blkcg
*blkcg
= cpd_to_blkcg(cpd
);
1639 bool on_dfl
= cgroup_subsys_on_dfl(io_cgrp_subsys
);
1640 unsigned int weight
= on_dfl
? CGROUP_WEIGHT_DFL
: CFQ_WEIGHT_LEGACY_DFL
;
1642 if (blkcg
== &blkcg_root
)
1645 WARN_ON_ONCE(__cfq_set_weight(&blkcg
->css
, weight
, on_dfl
, true, false));
1646 WARN_ON_ONCE(__cfq_set_weight(&blkcg
->css
, weight
, on_dfl
, true, true));
1649 static struct blkg_policy_data
*cfq_pd_alloc(gfp_t gfp
, int node
)
1651 struct cfq_group
*cfqg
;
1653 cfqg
= kzalloc_node(sizeof(*cfqg
), gfp
, node
);
1657 cfq_init_cfqg_base(cfqg
);
1658 if (cfqg_stats_init(&cfqg
->stats
, gfp
)) {
1666 static void cfq_pd_init(struct blkg_policy_data
*pd
)
1668 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1669 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(pd
->blkg
->blkcg
);
1671 cfqg
->weight
= cgd
->weight
;
1672 cfqg
->leaf_weight
= cgd
->leaf_weight
;
1675 static void cfq_pd_offline(struct blkg_policy_data
*pd
)
1677 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1680 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
1681 if (cfqg
->async_cfqq
[0][i
])
1682 cfq_put_queue(cfqg
->async_cfqq
[0][i
]);
1683 if (cfqg
->async_cfqq
[1][i
])
1684 cfq_put_queue(cfqg
->async_cfqq
[1][i
]);
1687 if (cfqg
->async_idle_cfqq
)
1688 cfq_put_queue(cfqg
->async_idle_cfqq
);
1691 * @blkg is going offline and will be ignored by
1692 * blkg_[rw]stat_recursive_sum(). Transfer stats to the parent so
1693 * that they don't get lost. If IOs complete after this point, the
1694 * stats for them will be lost. Oh well...
1696 cfqg_stats_xfer_dead(cfqg
);
1699 static void cfq_pd_free(struct blkg_policy_data
*pd
)
1701 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1703 cfqg_stats_exit(&cfqg
->stats
);
1707 static void cfq_pd_reset_stats(struct blkg_policy_data
*pd
)
1709 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1711 cfqg_stats_reset(&cfqg
->stats
);
1714 static struct cfq_group
*cfq_lookup_cfqg(struct cfq_data
*cfqd
,
1715 struct blkcg
*blkcg
)
1717 struct blkcg_gq
*blkg
;
1719 blkg
= blkg_lookup(blkcg
, cfqd
->queue
);
1721 return blkg_to_cfqg(blkg
);
1725 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1728 /* cfqq reference on cfqg */
1732 static u64
cfqg_prfill_weight_device(struct seq_file
*sf
,
1733 struct blkg_policy_data
*pd
, int off
)
1735 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1737 if (!cfqg
->dev_weight
)
1739 return __blkg_prfill_u64(sf
, pd
, cfqg
->dev_weight
);
1742 static int cfqg_print_weight_device(struct seq_file
*sf
, void *v
)
1744 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1745 cfqg_prfill_weight_device
, &blkcg_policy_cfq
,
1750 static u64
cfqg_prfill_leaf_weight_device(struct seq_file
*sf
,
1751 struct blkg_policy_data
*pd
, int off
)
1753 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
1755 if (!cfqg
->dev_leaf_weight
)
1757 return __blkg_prfill_u64(sf
, pd
, cfqg
->dev_leaf_weight
);
1760 static int cfqg_print_leaf_weight_device(struct seq_file
*sf
, void *v
)
1762 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1763 cfqg_prfill_leaf_weight_device
, &blkcg_policy_cfq
,
1768 static int cfq_print_weight(struct seq_file
*sf
, void *v
)
1770 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
1771 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
1772 unsigned int val
= 0;
1777 seq_printf(sf
, "%u\n", val
);
1781 static int cfq_print_leaf_weight(struct seq_file
*sf
, void *v
)
1783 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
1784 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
1785 unsigned int val
= 0;
1788 val
= cgd
->leaf_weight
;
1790 seq_printf(sf
, "%u\n", val
);
1794 static ssize_t
__cfqg_set_weight_device(struct kernfs_open_file
*of
,
1795 char *buf
, size_t nbytes
, loff_t off
,
1796 bool on_dfl
, bool is_leaf_weight
)
1798 unsigned int min
= on_dfl
? CGROUP_WEIGHT_MIN
: CFQ_WEIGHT_LEGACY_MIN
;
1799 unsigned int max
= on_dfl
? CGROUP_WEIGHT_MAX
: CFQ_WEIGHT_LEGACY_MAX
;
1800 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1801 struct blkg_conf_ctx ctx
;
1802 struct cfq_group
*cfqg
;
1803 struct cfq_group_data
*cfqgd
;
1807 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_cfq
, buf
, &ctx
);
1811 if (sscanf(ctx
.body
, "%llu", &v
) == 1) {
1812 /* require "default" on dfl */
1816 } else if (!strcmp(strim(ctx
.body
), "default")) {
1823 cfqg
= blkg_to_cfqg(ctx
.blkg
);
1824 cfqgd
= blkcg_to_cfqgd(blkcg
);
1827 if (!v
|| (v
>= min
&& v
<= max
)) {
1828 if (!is_leaf_weight
) {
1829 cfqg
->dev_weight
= v
;
1830 cfqg
->new_weight
= v
?: cfqgd
->weight
;
1832 cfqg
->dev_leaf_weight
= v
;
1833 cfqg
->new_leaf_weight
= v
?: cfqgd
->leaf_weight
;
1838 blkg_conf_finish(&ctx
);
1839 return ret
?: nbytes
;
1842 static ssize_t
cfqg_set_weight_device(struct kernfs_open_file
*of
,
1843 char *buf
, size_t nbytes
, loff_t off
)
1845 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, false, false);
1848 static ssize_t
cfqg_set_leaf_weight_device(struct kernfs_open_file
*of
,
1849 char *buf
, size_t nbytes
, loff_t off
)
1851 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, false, true);
1854 static int __cfq_set_weight(struct cgroup_subsys_state
*css
, u64 val
,
1855 bool on_dfl
, bool reset_dev
, bool is_leaf_weight
)
1857 unsigned int min
= on_dfl
? CGROUP_WEIGHT_MIN
: CFQ_WEIGHT_LEGACY_MIN
;
1858 unsigned int max
= on_dfl
? CGROUP_WEIGHT_MAX
: CFQ_WEIGHT_LEGACY_MAX
;
1859 struct blkcg
*blkcg
= css_to_blkcg(css
);
1860 struct blkcg_gq
*blkg
;
1861 struct cfq_group_data
*cfqgd
;
1864 if (val
< min
|| val
> max
)
1867 spin_lock_irq(&blkcg
->lock
);
1868 cfqgd
= blkcg_to_cfqgd(blkcg
);
1874 if (!is_leaf_weight
)
1875 cfqgd
->weight
= val
;
1877 cfqgd
->leaf_weight
= val
;
1879 hlist_for_each_entry(blkg
, &blkcg
->blkg_list
, blkcg_node
) {
1880 struct cfq_group
*cfqg
= blkg_to_cfqg(blkg
);
1885 if (!is_leaf_weight
) {
1887 cfqg
->dev_weight
= 0;
1888 if (!cfqg
->dev_weight
)
1889 cfqg
->new_weight
= cfqgd
->weight
;
1892 cfqg
->dev_leaf_weight
= 0;
1893 if (!cfqg
->dev_leaf_weight
)
1894 cfqg
->new_leaf_weight
= cfqgd
->leaf_weight
;
1899 spin_unlock_irq(&blkcg
->lock
);
1903 static int cfq_set_weight(struct cgroup_subsys_state
*css
, struct cftype
*cft
,
1906 return __cfq_set_weight(css
, val
, false, false, false);
1909 static int cfq_set_leaf_weight(struct cgroup_subsys_state
*css
,
1910 struct cftype
*cft
, u64 val
)
1912 return __cfq_set_weight(css
, val
, false, false, true);
1915 static int cfqg_print_stat(struct seq_file
*sf
, void *v
)
1917 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), blkg_prfill_stat
,
1918 &blkcg_policy_cfq
, seq_cft(sf
)->private, false);
1922 static int cfqg_print_rwstat(struct seq_file
*sf
, void *v
)
1924 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), blkg_prfill_rwstat
,
1925 &blkcg_policy_cfq
, seq_cft(sf
)->private, true);
1929 static u64
cfqg_prfill_stat_recursive(struct seq_file
*sf
,
1930 struct blkg_policy_data
*pd
, int off
)
1932 u64 sum
= blkg_stat_recursive_sum(pd_to_blkg(pd
),
1933 &blkcg_policy_cfq
, off
);
1934 return __blkg_prfill_u64(sf
, pd
, sum
);
1937 static u64
cfqg_prfill_rwstat_recursive(struct seq_file
*sf
,
1938 struct blkg_policy_data
*pd
, int off
)
1940 struct blkg_rwstat sum
= blkg_rwstat_recursive_sum(pd_to_blkg(pd
),
1941 &blkcg_policy_cfq
, off
);
1942 return __blkg_prfill_rwstat(sf
, pd
, &sum
);
1945 static int cfqg_print_stat_recursive(struct seq_file
*sf
, void *v
)
1947 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1948 cfqg_prfill_stat_recursive
, &blkcg_policy_cfq
,
1949 seq_cft(sf
)->private, false);
1953 static int cfqg_print_rwstat_recursive(struct seq_file
*sf
, void *v
)
1955 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1956 cfqg_prfill_rwstat_recursive
, &blkcg_policy_cfq
,
1957 seq_cft(sf
)->private, true);
1961 static u64
cfqg_prfill_sectors(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1964 u64 sum
= blkg_rwstat_total(&pd
->blkg
->stat_bytes
);
1966 return __blkg_prfill_u64(sf
, pd
, sum
>> 9);
1969 static int cfqg_print_stat_sectors(struct seq_file
*sf
, void *v
)
1971 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1972 cfqg_prfill_sectors
, &blkcg_policy_cfq
, 0, false);
1976 static u64
cfqg_prfill_sectors_recursive(struct seq_file
*sf
,
1977 struct blkg_policy_data
*pd
, int off
)
1979 struct blkg_rwstat tmp
= blkg_rwstat_recursive_sum(pd
->blkg
, NULL
,
1980 offsetof(struct blkcg_gq
, stat_bytes
));
1981 u64 sum
= atomic64_read(&tmp
.aux_cnt
[BLKG_RWSTAT_READ
]) +
1982 atomic64_read(&tmp
.aux_cnt
[BLKG_RWSTAT_WRITE
]);
1984 return __blkg_prfill_u64(sf
, pd
, sum
>> 9);
1987 static int cfqg_print_stat_sectors_recursive(struct seq_file
*sf
, void *v
)
1989 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
1990 cfqg_prfill_sectors_recursive
, &blkcg_policy_cfq
, 0,
1995 #ifdef CONFIG_DEBUG_BLK_CGROUP
1996 static u64
cfqg_prfill_avg_queue_size(struct seq_file
*sf
,
1997 struct blkg_policy_data
*pd
, int off
)
1999 struct cfq_group
*cfqg
= pd_to_cfqg(pd
);
2000 u64 samples
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_samples
);
2004 v
= blkg_stat_read(&cfqg
->stats
.avg_queue_size_sum
);
2005 v
= div64_u64(v
, samples
);
2007 __blkg_prfill_u64(sf
, pd
, v
);
2011 /* print avg_queue_size */
2012 static int cfqg_print_avg_queue_size(struct seq_file
*sf
, void *v
)
2014 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)),
2015 cfqg_prfill_avg_queue_size
, &blkcg_policy_cfq
,
2019 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2021 static struct cftype cfq_blkcg_legacy_files
[] = {
2022 /* on root, weight is mapped to leaf_weight */
2024 .name
= "weight_device",
2025 .flags
= CFTYPE_ONLY_ON_ROOT
,
2026 .seq_show
= cfqg_print_leaf_weight_device
,
2027 .write
= cfqg_set_leaf_weight_device
,
2031 .flags
= CFTYPE_ONLY_ON_ROOT
,
2032 .seq_show
= cfq_print_leaf_weight
,
2033 .write_u64
= cfq_set_leaf_weight
,
2036 /* no such mapping necessary for !roots */
2038 .name
= "weight_device",
2039 .flags
= CFTYPE_NOT_ON_ROOT
,
2040 .seq_show
= cfqg_print_weight_device
,
2041 .write
= cfqg_set_weight_device
,
2045 .flags
= CFTYPE_NOT_ON_ROOT
,
2046 .seq_show
= cfq_print_weight
,
2047 .write_u64
= cfq_set_weight
,
2051 .name
= "leaf_weight_device",
2052 .seq_show
= cfqg_print_leaf_weight_device
,
2053 .write
= cfqg_set_leaf_weight_device
,
2056 .name
= "leaf_weight",
2057 .seq_show
= cfq_print_leaf_weight
,
2058 .write_u64
= cfq_set_leaf_weight
,
2061 /* statistics, covers only the tasks in the cfqg */
2064 .private = offsetof(struct cfq_group
, stats
.time
),
2065 .seq_show
= cfqg_print_stat
,
2069 .seq_show
= cfqg_print_stat_sectors
,
2072 .name
= "io_service_bytes",
2073 .private = (unsigned long)&blkcg_policy_cfq
,
2074 .seq_show
= blkg_print_stat_bytes
,
2077 .name
= "io_serviced",
2078 .private = (unsigned long)&blkcg_policy_cfq
,
2079 .seq_show
= blkg_print_stat_ios
,
2082 .name
= "io_service_time",
2083 .private = offsetof(struct cfq_group
, stats
.service_time
),
2084 .seq_show
= cfqg_print_rwstat
,
2087 .name
= "io_wait_time",
2088 .private = offsetof(struct cfq_group
, stats
.wait_time
),
2089 .seq_show
= cfqg_print_rwstat
,
2092 .name
= "io_merged",
2093 .private = offsetof(struct cfq_group
, stats
.merged
),
2094 .seq_show
= cfqg_print_rwstat
,
2097 .name
= "io_queued",
2098 .private = offsetof(struct cfq_group
, stats
.queued
),
2099 .seq_show
= cfqg_print_rwstat
,
2102 /* the same statictics which cover the cfqg and its descendants */
2104 .name
= "time_recursive",
2105 .private = offsetof(struct cfq_group
, stats
.time
),
2106 .seq_show
= cfqg_print_stat_recursive
,
2109 .name
= "sectors_recursive",
2110 .seq_show
= cfqg_print_stat_sectors_recursive
,
2113 .name
= "io_service_bytes_recursive",
2114 .private = (unsigned long)&blkcg_policy_cfq
,
2115 .seq_show
= blkg_print_stat_bytes_recursive
,
2118 .name
= "io_serviced_recursive",
2119 .private = (unsigned long)&blkcg_policy_cfq
,
2120 .seq_show
= blkg_print_stat_ios_recursive
,
2123 .name
= "io_service_time_recursive",
2124 .private = offsetof(struct cfq_group
, stats
.service_time
),
2125 .seq_show
= cfqg_print_rwstat_recursive
,
2128 .name
= "io_wait_time_recursive",
2129 .private = offsetof(struct cfq_group
, stats
.wait_time
),
2130 .seq_show
= cfqg_print_rwstat_recursive
,
2133 .name
= "io_merged_recursive",
2134 .private = offsetof(struct cfq_group
, stats
.merged
),
2135 .seq_show
= cfqg_print_rwstat_recursive
,
2138 .name
= "io_queued_recursive",
2139 .private = offsetof(struct cfq_group
, stats
.queued
),
2140 .seq_show
= cfqg_print_rwstat_recursive
,
2142 #ifdef CONFIG_DEBUG_BLK_CGROUP
2144 .name
= "avg_queue_size",
2145 .seq_show
= cfqg_print_avg_queue_size
,
2148 .name
= "group_wait_time",
2149 .private = offsetof(struct cfq_group
, stats
.group_wait_time
),
2150 .seq_show
= cfqg_print_stat
,
2153 .name
= "idle_time",
2154 .private = offsetof(struct cfq_group
, stats
.idle_time
),
2155 .seq_show
= cfqg_print_stat
,
2158 .name
= "empty_time",
2159 .private = offsetof(struct cfq_group
, stats
.empty_time
),
2160 .seq_show
= cfqg_print_stat
,
2164 .private = offsetof(struct cfq_group
, stats
.dequeue
),
2165 .seq_show
= cfqg_print_stat
,
2168 .name
= "unaccounted_time",
2169 .private = offsetof(struct cfq_group
, stats
.unaccounted_time
),
2170 .seq_show
= cfqg_print_stat
,
2172 #endif /* CONFIG_DEBUG_BLK_CGROUP */
2176 static int cfq_print_weight_on_dfl(struct seq_file
*sf
, void *v
)
2178 struct blkcg
*blkcg
= css_to_blkcg(seq_css(sf
));
2179 struct cfq_group_data
*cgd
= blkcg_to_cfqgd(blkcg
);
2181 seq_printf(sf
, "default %u\n", cgd
->weight
);
2182 blkcg_print_blkgs(sf
, blkcg
, cfqg_prfill_weight_device
,
2183 &blkcg_policy_cfq
, 0, false);
2187 static ssize_t
cfq_set_weight_on_dfl(struct kernfs_open_file
*of
,
2188 char *buf
, size_t nbytes
, loff_t off
)
2196 /* "WEIGHT" or "default WEIGHT" sets the default weight */
2197 v
= simple_strtoull(buf
, &endp
, 0);
2198 if (*endp
== '\0' || sscanf(buf
, "default %llu", &v
) == 1) {
2199 ret
= __cfq_set_weight(of_css(of
), v
, true, false, false);
2200 return ret
?: nbytes
;
2203 /* "MAJ:MIN WEIGHT" */
2204 return __cfqg_set_weight_device(of
, buf
, nbytes
, off
, true, false);
2207 static struct cftype cfq_blkcg_files
[] = {
2210 .flags
= CFTYPE_NOT_ON_ROOT
,
2211 .seq_show
= cfq_print_weight_on_dfl
,
2212 .write
= cfq_set_weight_on_dfl
,
2217 #else /* GROUP_IOSCHED */
2218 static struct cfq_group
*cfq_lookup_cfqg(struct cfq_data
*cfqd
,
2219 struct blkcg
*blkcg
)
2221 return cfqd
->root_group
;
2225 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
2229 #endif /* GROUP_IOSCHED */
2232 * The cfqd->service_trees holds all pending cfq_queue's that have
2233 * requests waiting to be processed. It is sorted in the order that
2234 * we will service the queues.
2236 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2239 struct rb_node
**p
, *parent
;
2240 struct cfq_queue
*__cfqq
;
2242 struct cfq_rb_root
*st
;
2245 u64 now
= ktime_get_ns();
2247 st
= st_for(cfqq
->cfqg
, cfqq_class(cfqq
), cfqq_type(cfqq
));
2248 if (cfq_class_idle(cfqq
)) {
2249 rb_key
= CFQ_IDLE_DELAY
;
2250 parent
= rb_last(&st
->rb
);
2251 if (parent
&& parent
!= &cfqq
->rb_node
) {
2252 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
2253 rb_key
+= __cfqq
->rb_key
;
2256 } else if (!add_front
) {
2258 * Get our rb key offset. Subtract any residual slice
2259 * value carried from last service. A negative resid
2260 * count indicates slice overrun, and this should position
2261 * the next service time further away in the tree.
2263 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + now
;
2264 rb_key
-= cfqq
->slice_resid
;
2265 cfqq
->slice_resid
= 0;
2267 rb_key
= -NSEC_PER_SEC
;
2268 __cfqq
= cfq_rb_first(st
);
2269 rb_key
+= __cfqq
? __cfqq
->rb_key
: now
;
2272 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
2275 * same position, nothing more to do
2277 if (rb_key
== cfqq
->rb_key
&& cfqq
->service_tree
== st
)
2280 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
2281 cfqq
->service_tree
= NULL
;
2286 cfqq
->service_tree
= st
;
2287 p
= &st
->rb
.rb_node
;
2290 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
2293 * sort by key, that represents service time.
2295 if (rb_key
< __cfqq
->rb_key
)
2296 p
= &parent
->rb_left
;
2298 p
= &parent
->rb_right
;
2304 st
->left
= &cfqq
->rb_node
;
2306 cfqq
->rb_key
= rb_key
;
2307 rb_link_node(&cfqq
->rb_node
, parent
, p
);
2308 rb_insert_color(&cfqq
->rb_node
, &st
->rb
);
2310 if (add_front
|| !new_cfqq
)
2312 cfq_group_notify_queue_add(cfqd
, cfqq
->cfqg
);
2315 static struct cfq_queue
*
2316 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
2317 sector_t sector
, struct rb_node
**ret_parent
,
2318 struct rb_node
***rb_link
)
2320 struct rb_node
**p
, *parent
;
2321 struct cfq_queue
*cfqq
= NULL
;
2329 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
2332 * Sort strictly based on sector. Smallest to the left,
2333 * largest to the right.
2335 if (sector
> blk_rq_pos(cfqq
->next_rq
))
2336 n
= &(*p
)->rb_right
;
2337 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
2345 *ret_parent
= parent
;
2351 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2353 struct rb_node
**p
, *parent
;
2354 struct cfq_queue
*__cfqq
;
2357 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2358 cfqq
->p_root
= NULL
;
2361 if (cfq_class_idle(cfqq
))
2366 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
2367 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
2368 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
2370 rb_link_node(&cfqq
->p_node
, parent
, p
);
2371 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
2373 cfqq
->p_root
= NULL
;
2377 * Update cfqq's position in the service tree.
2379 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2382 * Resorting requires the cfqq to be on the RR list already.
2384 if (cfq_cfqq_on_rr(cfqq
)) {
2385 cfq_service_tree_add(cfqd
, cfqq
, 0);
2386 cfq_prio_tree_add(cfqd
, cfqq
);
2391 * add to busy list of queues for service, trying to be fair in ordering
2392 * the pending list according to last request service
2394 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2396 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
2397 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2398 cfq_mark_cfqq_on_rr(cfqq
);
2399 cfqd
->busy_queues
++;
2400 if (cfq_cfqq_sync(cfqq
))
2401 cfqd
->busy_sync_queues
++;
2403 cfq_resort_rr_list(cfqd
, cfqq
);
2407 * Called when the cfqq no longer has requests pending, remove it from
2410 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2412 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
2413 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
2414 cfq_clear_cfqq_on_rr(cfqq
);
2416 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
2417 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
2418 cfqq
->service_tree
= NULL
;
2421 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2422 cfqq
->p_root
= NULL
;
2425 cfq_group_notify_queue_del(cfqd
, cfqq
->cfqg
);
2426 BUG_ON(!cfqd
->busy_queues
);
2427 cfqd
->busy_queues
--;
2428 if (cfq_cfqq_sync(cfqq
))
2429 cfqd
->busy_sync_queues
--;
2433 * rb tree support functions
2435 static void cfq_del_rq_rb(struct request
*rq
)
2437 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2438 const int sync
= rq_is_sync(rq
);
2440 BUG_ON(!cfqq
->queued
[sync
]);
2441 cfqq
->queued
[sync
]--;
2443 elv_rb_del(&cfqq
->sort_list
, rq
);
2445 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
2447 * Queue will be deleted from service tree when we actually
2448 * expire it later. Right now just remove it from prio tree
2452 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
2453 cfqq
->p_root
= NULL
;
2458 static void cfq_add_rq_rb(struct request
*rq
)
2460 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2461 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2462 struct request
*prev
;
2464 cfqq
->queued
[rq_is_sync(rq
)]++;
2466 elv_rb_add(&cfqq
->sort_list
, rq
);
2468 if (!cfq_cfqq_on_rr(cfqq
))
2469 cfq_add_cfqq_rr(cfqd
, cfqq
);
2472 * check if this request is a better next-serve candidate
2474 prev
= cfqq
->next_rq
;
2475 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
2478 * adjust priority tree position, if ->next_rq changes
2480 if (prev
!= cfqq
->next_rq
)
2481 cfq_prio_tree_add(cfqd
, cfqq
);
2483 BUG_ON(!cfqq
->next_rq
);
2486 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
2488 elv_rb_del(&cfqq
->sort_list
, rq
);
2489 cfqq
->queued
[rq_is_sync(rq
)]--;
2490 cfqg_stats_update_io_remove(RQ_CFQG(rq
), req_op(rq
), rq
->cmd_flags
);
2492 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqq
->cfqd
->serving_group
,
2493 req_op(rq
), rq
->cmd_flags
);
2496 static struct request
*
2497 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
2499 struct task_struct
*tsk
= current
;
2500 struct cfq_io_cq
*cic
;
2501 struct cfq_queue
*cfqq
;
2503 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2507 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
2509 return elv_rb_find(&cfqq
->sort_list
, bio_end_sector(bio
));
2514 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
2516 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2518 cfqd
->rq_in_driver
++;
2519 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
2520 cfqd
->rq_in_driver
);
2522 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
2525 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
2527 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2529 WARN_ON(!cfqd
->rq_in_driver
);
2530 cfqd
->rq_in_driver
--;
2531 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
2532 cfqd
->rq_in_driver
);
2535 static void cfq_remove_request(struct request
*rq
)
2537 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2539 if (cfqq
->next_rq
== rq
)
2540 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
2542 list_del_init(&rq
->queuelist
);
2545 cfqq
->cfqd
->rq_queued
--;
2546 cfqg_stats_update_io_remove(RQ_CFQG(rq
), req_op(rq
), rq
->cmd_flags
);
2547 if (rq
->cmd_flags
& REQ_PRIO
) {
2548 WARN_ON(!cfqq
->prio_pending
);
2549 cfqq
->prio_pending
--;
2553 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
2556 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2557 struct request
*__rq
;
2559 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
2560 if (__rq
&& elv_bio_merge_ok(__rq
, bio
)) {
2562 return ELEVATOR_FRONT_MERGE
;
2565 return ELEVATOR_NO_MERGE
;
2568 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
2571 if (type
== ELEVATOR_FRONT_MERGE
) {
2572 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
2574 cfq_reposition_rq_rb(cfqq
, req
);
2578 static void cfq_bio_merged(struct request_queue
*q
, struct request
*req
,
2581 cfqg_stats_update_io_merged(RQ_CFQG(req
), bio_op(bio
), bio
->bi_opf
);
2585 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
2586 struct request
*next
)
2588 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2589 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2592 * reposition in fifo if next is older than rq
2594 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
2595 next
->fifo_time
< rq
->fifo_time
&&
2596 cfqq
== RQ_CFQQ(next
)) {
2597 list_move(&rq
->queuelist
, &next
->queuelist
);
2598 rq
->fifo_time
= next
->fifo_time
;
2601 if (cfqq
->next_rq
== next
)
2603 cfq_remove_request(next
);
2604 cfqg_stats_update_io_merged(RQ_CFQG(rq
), req_op(next
), next
->cmd_flags
);
2606 cfqq
= RQ_CFQQ(next
);
2608 * all requests of this queue are merged to other queues, delete it
2609 * from the service tree. If it's the active_queue,
2610 * cfq_dispatch_requests() will choose to expire it or do idle
2612 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
) &&
2613 cfqq
!= cfqd
->active_queue
)
2614 cfq_del_cfqq_rr(cfqd
, cfqq
);
2617 static int cfq_allow_bio_merge(struct request_queue
*q
, struct request
*rq
,
2620 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2621 struct cfq_io_cq
*cic
;
2622 struct cfq_queue
*cfqq
;
2625 * Disallow merge of a sync bio into an async request.
2627 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
2631 * Lookup the cfqq that this bio will be queued with and allow
2632 * merge only if rq is queued there.
2634 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
2638 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
2639 return cfqq
== RQ_CFQQ(rq
);
2642 static int cfq_allow_rq_merge(struct request_queue
*q
, struct request
*rq
,
2643 struct request
*next
)
2645 return RQ_CFQQ(rq
) == RQ_CFQQ(next
);
2648 static inline void cfq_del_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2650 hrtimer_try_to_cancel(&cfqd
->idle_slice_timer
);
2651 cfqg_stats_update_idle_time(cfqq
->cfqg
);
2654 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
2655 struct cfq_queue
*cfqq
)
2658 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_class:%d wl_type:%d",
2659 cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
2660 cfqg_stats_update_avg_queue_size(cfqq
->cfqg
);
2661 cfqq
->slice_start
= 0;
2662 cfqq
->dispatch_start
= ktime_get_ns();
2663 cfqq
->allocated_slice
= 0;
2664 cfqq
->slice_end
= 0;
2665 cfqq
->slice_dispatch
= 0;
2666 cfqq
->nr_sectors
= 0;
2668 cfq_clear_cfqq_wait_request(cfqq
);
2669 cfq_clear_cfqq_must_dispatch(cfqq
);
2670 cfq_clear_cfqq_must_alloc_slice(cfqq
);
2671 cfq_clear_cfqq_fifo_expire(cfqq
);
2672 cfq_mark_cfqq_slice_new(cfqq
);
2674 cfq_del_timer(cfqd
, cfqq
);
2677 cfqd
->active_queue
= cfqq
;
2681 * current cfqq expired its slice (or was too idle), select new one
2684 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2687 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
2689 if (cfq_cfqq_wait_request(cfqq
))
2690 cfq_del_timer(cfqd
, cfqq
);
2692 cfq_clear_cfqq_wait_request(cfqq
);
2693 cfq_clear_cfqq_wait_busy(cfqq
);
2696 * If this cfqq is shared between multiple processes, check to
2697 * make sure that those processes are still issuing I/Os within
2698 * the mean seek distance. If not, it may be time to break the
2699 * queues apart again.
2701 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
2702 cfq_mark_cfqq_split_coop(cfqq
);
2705 * store what was left of this slice, if the queue idled/timed out
2708 if (cfq_cfqq_slice_new(cfqq
))
2709 cfqq
->slice_resid
= cfq_scaled_cfqq_slice(cfqd
, cfqq
);
2711 cfqq
->slice_resid
= cfqq
->slice_end
- ktime_get_ns();
2712 cfq_log_cfqq(cfqd
, cfqq
, "resid=%lld", cfqq
->slice_resid
);
2715 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
2717 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
2718 cfq_del_cfqq_rr(cfqd
, cfqq
);
2720 cfq_resort_rr_list(cfqd
, cfqq
);
2722 if (cfqq
== cfqd
->active_queue
)
2723 cfqd
->active_queue
= NULL
;
2725 if (cfqd
->active_cic
) {
2726 put_io_context(cfqd
->active_cic
->icq
.ioc
);
2727 cfqd
->active_cic
= NULL
;
2731 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
2733 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2736 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
2740 * Get next queue for service. Unless we have a queue preemption,
2741 * we'll simply select the first cfqq in the service tree.
2743 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
2745 struct cfq_rb_root
*st
= st_for(cfqd
->serving_group
,
2746 cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
2748 if (!cfqd
->rq_queued
)
2751 /* There is nothing to dispatch */
2754 if (RB_EMPTY_ROOT(&st
->rb
))
2756 return cfq_rb_first(st
);
2759 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
2761 struct cfq_group
*cfqg
;
2762 struct cfq_queue
*cfqq
;
2764 struct cfq_rb_root
*st
;
2766 if (!cfqd
->rq_queued
)
2769 cfqg
= cfq_get_next_cfqg(cfqd
);
2773 for_each_cfqg_st(cfqg
, i
, j
, st
)
2774 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
2780 * Get and set a new active queue for service.
2782 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
2783 struct cfq_queue
*cfqq
)
2786 cfqq
= cfq_get_next_queue(cfqd
);
2788 __cfq_set_active_queue(cfqd
, cfqq
);
2792 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
2795 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
2796 return blk_rq_pos(rq
) - cfqd
->last_position
;
2798 return cfqd
->last_position
- blk_rq_pos(rq
);
2801 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2804 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
2807 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
2808 struct cfq_queue
*cur_cfqq
)
2810 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
2811 struct rb_node
*parent
, *node
;
2812 struct cfq_queue
*__cfqq
;
2813 sector_t sector
= cfqd
->last_position
;
2815 if (RB_EMPTY_ROOT(root
))
2819 * First, if we find a request starting at the end of the last
2820 * request, choose it.
2822 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
2827 * If the exact sector wasn't found, the parent of the NULL leaf
2828 * will contain the closest sector.
2830 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
2831 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2834 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
2835 node
= rb_next(&__cfqq
->p_node
);
2837 node
= rb_prev(&__cfqq
->p_node
);
2841 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
2842 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
2850 * cur_cfqq - passed in so that we don't decide that the current queue is
2851 * closely cooperating with itself.
2853 * So, basically we're assuming that that cur_cfqq has dispatched at least
2854 * one request, and that cfqd->last_position reflects a position on the disk
2855 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
2858 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
2859 struct cfq_queue
*cur_cfqq
)
2861 struct cfq_queue
*cfqq
;
2863 if (cfq_class_idle(cur_cfqq
))
2865 if (!cfq_cfqq_sync(cur_cfqq
))
2867 if (CFQQ_SEEKY(cur_cfqq
))
2871 * Don't search priority tree if it's the only queue in the group.
2873 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
2877 * We should notice if some of the queues are cooperating, eg
2878 * working closely on the same area of the disk. In that case,
2879 * we can group them together and don't waste time idling.
2881 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
2885 /* If new queue belongs to different cfq_group, don't choose it */
2886 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
2890 * It only makes sense to merge sync queues.
2892 if (!cfq_cfqq_sync(cfqq
))
2894 if (CFQQ_SEEKY(cfqq
))
2898 * Do not merge queues of different priority classes
2900 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
2907 * Determine whether we should enforce idle window for this queue.
2910 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2912 enum wl_class_t wl_class
= cfqq_class(cfqq
);
2913 struct cfq_rb_root
*st
= cfqq
->service_tree
;
2918 if (!cfqd
->cfq_slice_idle
)
2921 /* We never do for idle class queues. */
2922 if (wl_class
== IDLE_WORKLOAD
)
2925 /* We do for queues that were marked with idle window flag. */
2926 if (cfq_cfqq_idle_window(cfqq
) &&
2927 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
2931 * Otherwise, we do only if they are the last ones
2932 * in their service tree.
2934 if (st
->count
== 1 && cfq_cfqq_sync(cfqq
) &&
2935 !cfq_io_thinktime_big(cfqd
, &st
->ttime
, false))
2937 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d", st
->count
);
2941 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
2943 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
2944 struct cfq_rb_root
*st
= cfqq
->service_tree
;
2945 struct cfq_io_cq
*cic
;
2946 u64 sl
, group_idle
= 0;
2947 u64 now
= ktime_get_ns();
2950 * SSD device without seek penalty, disable idling. But only do so
2951 * for devices that support queuing, otherwise we still have a problem
2952 * with sync vs async workloads.
2954 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
&&
2955 !cfqd
->cfq_group_idle
)
2958 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
2959 WARN_ON(cfq_cfqq_slice_new(cfqq
));
2962 * idle is disabled, either manually or by past process history
2964 if (!cfq_should_idle(cfqd
, cfqq
)) {
2965 /* no queue idling. Check for group idling */
2966 if (cfqd
->cfq_group_idle
)
2967 group_idle
= cfqd
->cfq_group_idle
;
2973 * still active requests from this queue, don't idle
2975 if (cfqq
->dispatched
)
2979 * task has exited, don't wait
2981 cic
= cfqd
->active_cic
;
2982 if (!cic
|| !atomic_read(&cic
->icq
.ioc
->active_ref
))
2986 * If our average think time is larger than the remaining time
2987 * slice, then don't idle. This avoids overrunning the allotted
2990 if (sample_valid(cic
->ttime
.ttime_samples
) &&
2991 (cfqq
->slice_end
- now
< cic
->ttime
.ttime_mean
)) {
2992 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%llu",
2993 cic
->ttime
.ttime_mean
);
2998 * There are other queues in the group or this is the only group and
2999 * it has too big thinktime, don't do group idle.
3002 (cfqq
->cfqg
->nr_cfqq
> 1 ||
3003 cfq_io_thinktime_big(cfqd
, &st
->ttime
, true)))
3006 cfq_mark_cfqq_wait_request(cfqq
);
3009 sl
= cfqd
->cfq_group_idle
;
3011 sl
= cfqd
->cfq_slice_idle
;
3013 hrtimer_start(&cfqd
->idle_slice_timer
, ns_to_ktime(sl
),
3015 cfqg_stats_set_start_idle_time(cfqq
->cfqg
);
3016 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %llu group_idle: %d", sl
,
3017 group_idle
? 1 : 0);
3021 * Move request from internal lists to the request queue dispatch list.
3023 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
3025 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3026 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3028 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
3030 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
3031 cfq_remove_request(rq
);
3033 (RQ_CFQG(rq
))->dispatched
++;
3034 elv_dispatch_sort(q
, rq
);
3036 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
3037 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
3041 * return expired entry, or NULL to just start from scratch in rbtree
3043 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
3045 struct request
*rq
= NULL
;
3047 if (cfq_cfqq_fifo_expire(cfqq
))
3050 cfq_mark_cfqq_fifo_expire(cfqq
);
3052 if (list_empty(&cfqq
->fifo
))
3055 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
3056 if (ktime_get_ns() < rq
->fifo_time
)
3063 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3065 const int base_rq
= cfqd
->cfq_slice_async_rq
;
3067 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
3069 return 2 * base_rq
* (IOPRIO_BE_NR
- cfqq
->ioprio
);
3073 * Must be called with the queue_lock held.
3075 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
3077 int process_refs
, io_refs
;
3079 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
3080 process_refs
= cfqq
->ref
- io_refs
;
3081 BUG_ON(process_refs
< 0);
3082 return process_refs
;
3085 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
3087 int process_refs
, new_process_refs
;
3088 struct cfq_queue
*__cfqq
;
3091 * If there are no process references on the new_cfqq, then it is
3092 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
3093 * chain may have dropped their last reference (not just their
3094 * last process reference).
3096 if (!cfqq_process_refs(new_cfqq
))
3099 /* Avoid a circular list and skip interim queue merges */
3100 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
3106 process_refs
= cfqq_process_refs(cfqq
);
3107 new_process_refs
= cfqq_process_refs(new_cfqq
);
3109 * If the process for the cfqq has gone away, there is no
3110 * sense in merging the queues.
3112 if (process_refs
== 0 || new_process_refs
== 0)
3116 * Merge in the direction of the lesser amount of work.
3118 if (new_process_refs
>= process_refs
) {
3119 cfqq
->new_cfqq
= new_cfqq
;
3120 new_cfqq
->ref
+= process_refs
;
3122 new_cfqq
->new_cfqq
= cfqq
;
3123 cfqq
->ref
+= new_process_refs
;
3127 static enum wl_type_t
cfq_choose_wl_type(struct cfq_data
*cfqd
,
3128 struct cfq_group
*cfqg
, enum wl_class_t wl_class
)
3130 struct cfq_queue
*queue
;
3132 bool key_valid
= false;
3134 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
3136 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
3137 /* select the one with lowest rb_key */
3138 queue
= cfq_rb_first(st_for(cfqg
, wl_class
, i
));
3140 (!key_valid
|| queue
->rb_key
< lowest_key
)) {
3141 lowest_key
= queue
->rb_key
;
3151 choose_wl_class_and_type(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
3155 struct cfq_rb_root
*st
;
3157 enum wl_class_t original_class
= cfqd
->serving_wl_class
;
3158 u64 now
= ktime_get_ns();
3160 /* Choose next priority. RT > BE > IDLE */
3161 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
3162 cfqd
->serving_wl_class
= RT_WORKLOAD
;
3163 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
3164 cfqd
->serving_wl_class
= BE_WORKLOAD
;
3166 cfqd
->serving_wl_class
= IDLE_WORKLOAD
;
3167 cfqd
->workload_expires
= now
+ jiffies_to_nsecs(1);
3171 if (original_class
!= cfqd
->serving_wl_class
)
3175 * For RT and BE, we have to choose also the type
3176 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
3179 st
= st_for(cfqg
, cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
3183 * check workload expiration, and that we still have other queues ready
3185 if (count
&& !(now
> cfqd
->workload_expires
))
3189 /* otherwise select new workload type */
3190 cfqd
->serving_wl_type
= cfq_choose_wl_type(cfqd
, cfqg
,
3191 cfqd
->serving_wl_class
);
3192 st
= st_for(cfqg
, cfqd
->serving_wl_class
, cfqd
->serving_wl_type
);
3196 * the workload slice is computed as a fraction of target latency
3197 * proportional to the number of queues in that workload, over
3198 * all the queues in the same priority class
3200 group_slice
= cfq_group_slice(cfqd
, cfqg
);
3202 slice
= div_u64(group_slice
* count
,
3203 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_wl_class
],
3204 cfq_group_busy_queues_wl(cfqd
->serving_wl_class
, cfqd
,
3207 if (cfqd
->serving_wl_type
== ASYNC_WORKLOAD
) {
3211 * Async queues are currently system wide. Just taking
3212 * proportion of queues with-in same group will lead to higher
3213 * async ratio system wide as generally root group is going
3214 * to have higher weight. A more accurate thing would be to
3215 * calculate system wide asnc/sync ratio.
3217 tmp
= cfqd
->cfq_target_latency
*
3218 cfqg_busy_async_queues(cfqd
, cfqg
);
3219 tmp
= div_u64(tmp
, cfqd
->busy_queues
);
3220 slice
= min_t(u64
, slice
, tmp
);
3222 /* async workload slice is scaled down according to
3223 * the sync/async slice ratio. */
3224 slice
= div64_u64(slice
*cfqd
->cfq_slice
[0], cfqd
->cfq_slice
[1]);
3226 /* sync workload slice is at least 2 * cfq_slice_idle */
3227 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
3229 slice
= max_t(u64
, slice
, CFQ_MIN_TT
);
3230 cfq_log(cfqd
, "workload slice:%llu", slice
);
3231 cfqd
->workload_expires
= now
+ slice
;
3234 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
3236 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
3237 struct cfq_group
*cfqg
;
3239 if (RB_EMPTY_ROOT(&st
->rb
))
3241 cfqg
= cfq_rb_first_group(st
);
3242 update_min_vdisktime(st
);
3246 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
3248 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
3249 u64 now
= ktime_get_ns();
3251 cfqd
->serving_group
= cfqg
;
3253 /* Restore the workload type data */
3254 if (cfqg
->saved_wl_slice
) {
3255 cfqd
->workload_expires
= now
+ cfqg
->saved_wl_slice
;
3256 cfqd
->serving_wl_type
= cfqg
->saved_wl_type
;
3257 cfqd
->serving_wl_class
= cfqg
->saved_wl_class
;
3259 cfqd
->workload_expires
= now
- 1;
3261 choose_wl_class_and_type(cfqd
, cfqg
);
3265 * Select a queue for service. If we have a current active queue,
3266 * check whether to continue servicing it, or retrieve and set a new one.
3268 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
3270 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
3271 u64 now
= ktime_get_ns();
3273 cfqq
= cfqd
->active_queue
;
3277 if (!cfqd
->rq_queued
)
3281 * We were waiting for group to get backlogged. Expire the queue
3283 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
3287 * The active queue has run out of time, expire it and select new.
3289 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
3291 * If slice had not expired at the completion of last request
3292 * we might not have turned on wait_busy flag. Don't expire
3293 * the queue yet. Allow the group to get backlogged.
3295 * The very fact that we have used the slice, that means we
3296 * have been idling all along on this queue and it should be
3297 * ok to wait for this request to complete.
3299 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
3300 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
3304 goto check_group_idle
;
3308 * The active queue has requests and isn't expired, allow it to
3311 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3315 * If another queue has a request waiting within our mean seek
3316 * distance, let it run. The expire code will check for close
3317 * cooperators and put the close queue at the front of the service
3318 * tree. If possible, merge the expiring queue with the new cfqq.
3320 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
3322 if (!cfqq
->new_cfqq
)
3323 cfq_setup_merge(cfqq
, new_cfqq
);
3328 * No requests pending. If the active queue still has requests in
3329 * flight or is idling for a new request, allow either of these
3330 * conditions to happen (or time out) before selecting a new queue.
3332 if (hrtimer_active(&cfqd
->idle_slice_timer
)) {
3338 * This is a deep seek queue, but the device is much faster than
3339 * the queue can deliver, don't idle
3341 if (CFQQ_SEEKY(cfqq
) && cfq_cfqq_idle_window(cfqq
) &&
3342 (cfq_cfqq_slice_new(cfqq
) ||
3343 (cfqq
->slice_end
- now
> now
- cfqq
->slice_start
))) {
3344 cfq_clear_cfqq_deep(cfqq
);
3345 cfq_clear_cfqq_idle_window(cfqq
);
3348 if (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
3354 * If group idle is enabled and there are requests dispatched from
3355 * this group, wait for requests to complete.
3358 if (cfqd
->cfq_group_idle
&& cfqq
->cfqg
->nr_cfqq
== 1 &&
3359 cfqq
->cfqg
->dispatched
&&
3360 !cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true)) {
3366 cfq_slice_expired(cfqd
, 0);
3369 * Current queue expired. Check if we have to switch to a new
3373 cfq_choose_cfqg(cfqd
);
3375 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
3380 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
3384 while (cfqq
->next_rq
) {
3385 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
3389 BUG_ON(!list_empty(&cfqq
->fifo
));
3391 /* By default cfqq is not expired if it is empty. Do it explicitly */
3392 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
3397 * Drain our current requests. Used for barriers and when switching
3398 * io schedulers on-the-fly.
3400 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
3402 struct cfq_queue
*cfqq
;
3405 /* Expire the timeslice of the current active queue first */
3406 cfq_slice_expired(cfqd
, 0);
3407 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
3408 __cfq_set_active_queue(cfqd
, cfqq
);
3409 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
3412 BUG_ON(cfqd
->busy_queues
);
3414 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
3418 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
3419 struct cfq_queue
*cfqq
)
3421 u64 now
= ktime_get_ns();
3423 /* the queue hasn't finished any request, can't estimate */
3424 if (cfq_cfqq_slice_new(cfqq
))
3426 if (now
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
> cfqq
->slice_end
)
3432 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3434 unsigned int max_dispatch
;
3436 if (cfq_cfqq_must_dispatch(cfqq
))
3440 * Drain async requests before we start sync IO
3442 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
3446 * If this is an async queue and we have sync IO in flight, let it wait
3448 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
3451 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
3452 if (cfq_class_idle(cfqq
))
3456 * Does this cfqq already have too much IO in flight?
3458 if (cfqq
->dispatched
>= max_dispatch
) {
3459 bool promote_sync
= false;
3461 * idle queue must always only have a single IO in flight
3463 if (cfq_class_idle(cfqq
))
3467 * If there is only one sync queue
3468 * we can ignore async queue here and give the sync
3469 * queue no dispatch limit. The reason is a sync queue can
3470 * preempt async queue, limiting the sync queue doesn't make
3471 * sense. This is useful for aiostress test.
3473 if (cfq_cfqq_sync(cfqq
) && cfqd
->busy_sync_queues
== 1)
3474 promote_sync
= true;
3477 * We have other queues, don't allow more IO from this one
3479 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
) &&
3484 * Sole queue user, no limit
3486 if (cfqd
->busy_queues
== 1 || promote_sync
)
3490 * Normally we start throttling cfqq when cfq_quantum/2
3491 * requests have been dispatched. But we can drive
3492 * deeper queue depths at the beginning of slice
3493 * subjected to upper limit of cfq_quantum.
3495 max_dispatch
= cfqd
->cfq_quantum
;
3499 * Async queues must wait a bit before being allowed dispatch.
3500 * We also ramp up the dispatch depth gradually for async IO,
3501 * based on the last sync IO we serviced
3503 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
3504 u64 last_sync
= ktime_get_ns() - cfqd
->last_delayed_sync
;
3507 depth
= div64_u64(last_sync
, cfqd
->cfq_slice
[1]);
3508 if (!depth
&& !cfqq
->dispatched
)
3510 if (depth
< max_dispatch
)
3511 max_dispatch
= depth
;
3515 * If we're below the current max, allow a dispatch
3517 return cfqq
->dispatched
< max_dispatch
;
3521 * Dispatch a request from cfqq, moving them to the request queue
3524 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3528 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
3530 rq
= cfq_check_fifo(cfqq
);
3532 cfq_mark_cfqq_must_dispatch(cfqq
);
3534 if (!cfq_may_dispatch(cfqd
, cfqq
))
3538 * follow expired path, else get first next available
3543 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
3546 * insert request into driver dispatch list
3548 cfq_dispatch_insert(cfqd
->queue
, rq
);
3550 if (!cfqd
->active_cic
) {
3551 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
3553 atomic_long_inc(&cic
->icq
.ioc
->refcount
);
3554 cfqd
->active_cic
= cic
;
3561 * Find the cfqq that we need to service and move a request from that to the
3564 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
3566 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3567 struct cfq_queue
*cfqq
;
3569 if (!cfqd
->busy_queues
)
3572 if (unlikely(force
))
3573 return cfq_forced_dispatch(cfqd
);
3575 cfqq
= cfq_select_queue(cfqd
);
3580 * Dispatch a request from this cfqq, if it is allowed
3582 if (!cfq_dispatch_request(cfqd
, cfqq
))
3585 cfqq
->slice_dispatch
++;
3586 cfq_clear_cfqq_must_dispatch(cfqq
);
3589 * expire an async queue immediately if it has used up its slice. idle
3590 * queue always expire after 1 dispatch round.
3592 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
3593 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
3594 cfq_class_idle(cfqq
))) {
3595 cfqq
->slice_end
= ktime_get_ns() + 1;
3596 cfq_slice_expired(cfqd
, 0);
3599 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
3604 * task holds one reference to the queue, dropped when task exits. each rq
3605 * in-flight on this queue also holds a reference, dropped when rq is freed.
3607 * Each cfq queue took a reference on the parent group. Drop it now.
3608 * queue lock must be held here.
3610 static void cfq_put_queue(struct cfq_queue
*cfqq
)
3612 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3613 struct cfq_group
*cfqg
;
3615 BUG_ON(cfqq
->ref
<= 0);
3621 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
3622 BUG_ON(rb_first(&cfqq
->sort_list
));
3623 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
3626 if (unlikely(cfqd
->active_queue
== cfqq
)) {
3627 __cfq_slice_expired(cfqd
, cfqq
, 0);
3628 cfq_schedule_dispatch(cfqd
);
3631 BUG_ON(cfq_cfqq_on_rr(cfqq
));
3632 kmem_cache_free(cfq_pool
, cfqq
);
3636 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
3638 struct cfq_queue
*__cfqq
, *next
;
3641 * If this queue was scheduled to merge with another queue, be
3642 * sure to drop the reference taken on that queue (and others in
3643 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
3645 __cfqq
= cfqq
->new_cfqq
;
3647 if (__cfqq
== cfqq
) {
3648 WARN(1, "cfqq->new_cfqq loop detected\n");
3651 next
= __cfqq
->new_cfqq
;
3652 cfq_put_queue(__cfqq
);
3657 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3659 if (unlikely(cfqq
== cfqd
->active_queue
)) {
3660 __cfq_slice_expired(cfqd
, cfqq
, 0);
3661 cfq_schedule_dispatch(cfqd
);
3664 cfq_put_cooperator(cfqq
);
3666 cfq_put_queue(cfqq
);
3669 static void cfq_init_icq(struct io_cq
*icq
)
3671 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3673 cic
->ttime
.last_end_request
= ktime_get_ns();
3676 static void cfq_exit_icq(struct io_cq
*icq
)
3678 struct cfq_io_cq
*cic
= icq_to_cic(icq
);
3679 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3681 if (cic_to_cfqq(cic
, false)) {
3682 cfq_exit_cfqq(cfqd
, cic_to_cfqq(cic
, false));
3683 cic_set_cfqq(cic
, NULL
, false);
3686 if (cic_to_cfqq(cic
, true)) {
3687 cfq_exit_cfqq(cfqd
, cic_to_cfqq(cic
, true));
3688 cic_set_cfqq(cic
, NULL
, true);
3692 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct cfq_io_cq
*cic
)
3694 struct task_struct
*tsk
= current
;
3697 if (!cfq_cfqq_prio_changed(cfqq
))
3700 ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3701 switch (ioprio_class
) {
3703 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
3704 case IOPRIO_CLASS_NONE
:
3706 * no prio set, inherit CPU scheduling settings
3708 cfqq
->ioprio
= task_nice_ioprio(tsk
);
3709 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
3711 case IOPRIO_CLASS_RT
:
3712 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3713 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
3715 case IOPRIO_CLASS_BE
:
3716 cfqq
->ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3717 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3719 case IOPRIO_CLASS_IDLE
:
3720 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
3722 cfq_clear_cfqq_idle_window(cfqq
);
3727 * keep track of original prio settings in case we have to temporarily
3728 * elevate the priority of this queue
3730 cfqq
->org_ioprio
= cfqq
->ioprio
;
3731 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
3732 cfq_clear_cfqq_prio_changed(cfqq
);
3735 static void check_ioprio_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3737 int ioprio
= cic
->icq
.ioc
->ioprio
;
3738 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3739 struct cfq_queue
*cfqq
;
3742 * Check whether ioprio has changed. The condition may trigger
3743 * spuriously on a newly created cic but there's no harm.
3745 if (unlikely(!cfqd
) || likely(cic
->ioprio
== ioprio
))
3748 cfqq
= cic_to_cfqq(cic
, false);
3750 cfq_put_queue(cfqq
);
3751 cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
, bio
);
3752 cic_set_cfqq(cic
, cfqq
, false);
3755 cfqq
= cic_to_cfqq(cic
, true);
3757 cfq_mark_cfqq_prio_changed(cfqq
);
3759 cic
->ioprio
= ioprio
;
3762 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3763 pid_t pid
, bool is_sync
)
3765 RB_CLEAR_NODE(&cfqq
->rb_node
);
3766 RB_CLEAR_NODE(&cfqq
->p_node
);
3767 INIT_LIST_HEAD(&cfqq
->fifo
);
3772 cfq_mark_cfqq_prio_changed(cfqq
);
3775 if (!cfq_class_idle(cfqq
))
3776 cfq_mark_cfqq_idle_window(cfqq
);
3777 cfq_mark_cfqq_sync(cfqq
);
3782 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3783 static void check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
)
3785 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
3786 struct cfq_queue
*cfqq
;
3790 serial_nr
= bio_blkcg(bio
)->css
.serial_nr
;
3794 * Check whether blkcg has changed. The condition may trigger
3795 * spuriously on a newly created cic but there's no harm.
3797 if (unlikely(!cfqd
) || likely(cic
->blkcg_serial_nr
== serial_nr
))
3801 * Drop reference to queues. New queues will be assigned in new
3802 * group upon arrival of fresh requests.
3804 cfqq
= cic_to_cfqq(cic
, false);
3806 cfq_log_cfqq(cfqd
, cfqq
, "changed cgroup");
3807 cic_set_cfqq(cic
, NULL
, false);
3808 cfq_put_queue(cfqq
);
3811 cfqq
= cic_to_cfqq(cic
, true);
3813 cfq_log_cfqq(cfqd
, cfqq
, "changed cgroup");
3814 cic_set_cfqq(cic
, NULL
, true);
3815 cfq_put_queue(cfqq
);
3818 cic
->blkcg_serial_nr
= serial_nr
;
3821 static inline void check_blkcg_changed(struct cfq_io_cq
*cic
, struct bio
*bio
) { }
3822 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
3824 static struct cfq_queue
**
3825 cfq_async_queue_prio(struct cfq_group
*cfqg
, int ioprio_class
, int ioprio
)
3827 switch (ioprio_class
) {
3828 case IOPRIO_CLASS_RT
:
3829 return &cfqg
->async_cfqq
[0][ioprio
];
3830 case IOPRIO_CLASS_NONE
:
3831 ioprio
= IOPRIO_NORM
;
3833 case IOPRIO_CLASS_BE
:
3834 return &cfqg
->async_cfqq
[1][ioprio
];
3835 case IOPRIO_CLASS_IDLE
:
3836 return &cfqg
->async_idle_cfqq
;
3842 static struct cfq_queue
*
3843 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct cfq_io_cq
*cic
,
3846 int ioprio_class
= IOPRIO_PRIO_CLASS(cic
->ioprio
);
3847 int ioprio
= IOPRIO_PRIO_DATA(cic
->ioprio
);
3848 struct cfq_queue
**async_cfqq
= NULL
;
3849 struct cfq_queue
*cfqq
;
3850 struct cfq_group
*cfqg
;
3853 cfqg
= cfq_lookup_cfqg(cfqd
, bio_blkcg(bio
));
3855 cfqq
= &cfqd
->oom_cfqq
;
3860 if (!ioprio_valid(cic
->ioprio
)) {
3861 struct task_struct
*tsk
= current
;
3862 ioprio
= task_nice_ioprio(tsk
);
3863 ioprio_class
= task_nice_ioclass(tsk
);
3865 async_cfqq
= cfq_async_queue_prio(cfqg
, ioprio_class
, ioprio
);
3871 cfqq
= kmem_cache_alloc_node(cfq_pool
,
3872 GFP_NOWAIT
| __GFP_ZERO
| __GFP_NOWARN
,
3875 cfqq
= &cfqd
->oom_cfqq
;
3879 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
3880 cfq_init_prio_data(cfqq
, cic
);
3881 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
3882 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
3885 /* a new async queue is created, pin and remember */
3896 __cfq_update_io_thinktime(struct cfq_ttime
*ttime
, u64 slice_idle
)
3898 u64 elapsed
= ktime_get_ns() - ttime
->last_end_request
;
3899 elapsed
= min(elapsed
, 2UL * slice_idle
);
3901 ttime
->ttime_samples
= (7*ttime
->ttime_samples
+ 256) / 8;
3902 ttime
->ttime_total
= div_u64(7*ttime
->ttime_total
+ 256*elapsed
, 8);
3903 ttime
->ttime_mean
= div64_ul(ttime
->ttime_total
+ 128,
3904 ttime
->ttime_samples
);
3908 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3909 struct cfq_io_cq
*cic
)
3911 if (cfq_cfqq_sync(cfqq
)) {
3912 __cfq_update_io_thinktime(&cic
->ttime
, cfqd
->cfq_slice_idle
);
3913 __cfq_update_io_thinktime(&cfqq
->service_tree
->ttime
,
3914 cfqd
->cfq_slice_idle
);
3916 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3917 __cfq_update_io_thinktime(&cfqq
->cfqg
->ttime
, cfqd
->cfq_group_idle
);
3922 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3926 sector_t n_sec
= blk_rq_sectors(rq
);
3927 if (cfqq
->last_request_pos
) {
3928 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3929 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3931 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3934 cfqq
->seek_history
<<= 1;
3935 if (blk_queue_nonrot(cfqd
->queue
))
3936 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
3938 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3942 * Disable idle window if the process thinks too long or seeks so much that
3946 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3947 struct cfq_io_cq
*cic
)
3949 int old_idle
, enable_idle
;
3952 * Don't idle for async or idle io prio class
3954 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3957 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3959 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3960 cfq_mark_cfqq_deep(cfqq
);
3962 if (cfqq
->next_rq
&& (cfqq
->next_rq
->cmd_flags
& REQ_NOIDLE
))
3964 else if (!atomic_read(&cic
->icq
.ioc
->active_ref
) ||
3965 !cfqd
->cfq_slice_idle
||
3966 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3968 else if (sample_valid(cic
->ttime
.ttime_samples
)) {
3969 if (cic
->ttime
.ttime_mean
> cfqd
->cfq_slice_idle
)
3975 if (old_idle
!= enable_idle
) {
3976 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3978 cfq_mark_cfqq_idle_window(cfqq
);
3980 cfq_clear_cfqq_idle_window(cfqq
);
3985 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3986 * no or if we aren't sure, a 1 will cause a preempt.
3989 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3992 struct cfq_queue
*cfqq
;
3994 cfqq
= cfqd
->active_queue
;
3998 if (cfq_class_idle(new_cfqq
))
4001 if (cfq_class_idle(cfqq
))
4005 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
4007 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
4011 * if the new request is sync, but the currently running queue is
4012 * not, let the sync request have priority.
4014 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
))
4018 * Treat ancestors of current cgroup the same way as current cgroup.
4019 * For anybody else we disallow preemption to guarantee service
4020 * fairness among cgroups.
4022 if (!cfqg_is_descendant(cfqq
->cfqg
, new_cfqq
->cfqg
))
4025 if (cfq_slice_used(cfqq
))
4029 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
4031 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
4034 WARN_ON_ONCE(cfqq
->ioprio_class
!= new_cfqq
->ioprio_class
);
4035 /* Allow preemption only if we are idling on sync-noidle tree */
4036 if (cfqd
->serving_wl_type
== SYNC_NOIDLE_WORKLOAD
&&
4037 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
4038 RB_EMPTY_ROOT(&cfqq
->sort_list
))
4042 * So both queues are sync. Let the new request get disk time if
4043 * it's a metadata request and the current queue is doing regular IO.
4045 if ((rq
->cmd_flags
& REQ_PRIO
) && !cfqq
->prio_pending
)
4048 /* An idle queue should not be idle now for some reason */
4049 if (RB_EMPTY_ROOT(&cfqq
->sort_list
) && !cfq_should_idle(cfqd
, cfqq
))
4052 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
4056 * if this request is as-good as one we would expect from the
4057 * current cfqq, let it preempt
4059 if (cfq_rq_close(cfqd
, cfqq
, rq
))
4066 * cfqq preempts the active queue. if we allowed preempt with no slice left,
4067 * let it have half of its nominal slice.
4069 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
4071 enum wl_type_t old_type
= cfqq_type(cfqd
->active_queue
);
4073 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
4074 cfq_slice_expired(cfqd
, 1);
4077 * workload type is changed, don't save slice, otherwise preempt
4080 if (old_type
!= cfqq_type(cfqq
))
4081 cfqq
->cfqg
->saved_wl_slice
= 0;
4084 * Put the new queue at the front of the of the current list,
4085 * so we know that it will be selected next.
4087 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
4089 cfq_service_tree_add(cfqd
, cfqq
, 1);
4091 cfqq
->slice_end
= 0;
4092 cfq_mark_cfqq_slice_new(cfqq
);
4096 * Called when a new fs request (rq) is added (to cfqq). Check if there's
4097 * something we should do about it
4100 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
4103 struct cfq_io_cq
*cic
= RQ_CIC(rq
);
4106 if (rq
->cmd_flags
& REQ_PRIO
)
4107 cfqq
->prio_pending
++;
4109 cfq_update_io_thinktime(cfqd
, cfqq
, cic
);
4110 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
4111 cfq_update_idle_window(cfqd
, cfqq
, cic
);
4113 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
4115 if (cfqq
== cfqd
->active_queue
) {
4117 * Remember that we saw a request from this process, but
4118 * don't start queuing just yet. Otherwise we risk seeing lots
4119 * of tiny requests, because we disrupt the normal plugging
4120 * and merging. If the request is already larger than a single
4121 * page, let it rip immediately. For that case we assume that
4122 * merging is already done. Ditto for a busy system that
4123 * has other work pending, don't risk delaying until the
4124 * idle timer unplug to continue working.
4126 if (cfq_cfqq_wait_request(cfqq
)) {
4127 if (blk_rq_bytes(rq
) > PAGE_SIZE
||
4128 cfqd
->busy_queues
> 1) {
4129 cfq_del_timer(cfqd
, cfqq
);
4130 cfq_clear_cfqq_wait_request(cfqq
);
4131 __blk_run_queue(cfqd
->queue
);
4133 cfqg_stats_update_idle_time(cfqq
->cfqg
);
4134 cfq_mark_cfqq_must_dispatch(cfqq
);
4137 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
4139 * not the active queue - expire current slice if it is
4140 * idle and has expired it's mean thinktime or this new queue
4141 * has some old slice time left and is of higher priority or
4142 * this new queue is RT and the current one is BE
4144 cfq_preempt_queue(cfqd
, cfqq
);
4145 __blk_run_queue(cfqd
->queue
);
4149 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
4151 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4152 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4154 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
4155 cfq_init_prio_data(cfqq
, RQ_CIC(rq
));
4157 rq
->fifo_time
= ktime_get_ns() + cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)];
4158 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
4160 cfqg_stats_update_io_add(RQ_CFQG(rq
), cfqd
->serving_group
, req_op(rq
),
4162 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
4166 * Update hw_tag based on peak queue depth over 50 samples under
4169 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
4171 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
4173 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
4174 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
4176 if (cfqd
->hw_tag
== 1)
4179 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
4180 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
4184 * If active queue hasn't enough requests and can idle, cfq might not
4185 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
4188 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
4189 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
4190 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
4193 if (cfqd
->hw_tag_samples
++ < 50)
4196 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
4202 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
4204 struct cfq_io_cq
*cic
= cfqd
->active_cic
;
4205 u64 now
= ktime_get_ns();
4207 /* If the queue already has requests, don't wait */
4208 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
4211 /* If there are other queues in the group, don't wait */
4212 if (cfqq
->cfqg
->nr_cfqq
> 1)
4215 /* the only queue in the group, but think time is big */
4216 if (cfq_io_thinktime_big(cfqd
, &cfqq
->cfqg
->ttime
, true))
4219 if (cfq_slice_used(cfqq
))
4222 /* if slice left is less than think time, wait busy */
4223 if (cic
&& sample_valid(cic
->ttime
.ttime_samples
)
4224 && (cfqq
->slice_end
- now
< cic
->ttime
.ttime_mean
))
4228 * If think times is less than a jiffy than ttime_mean=0 and above
4229 * will not be true. It might happen that slice has not expired yet
4230 * but will expire soon (4-5 ns) during select_queue(). To cover the
4231 * case where think time is less than a jiffy, mark the queue wait
4232 * busy if only 1 jiffy is left in the slice.
4234 if (cfqq
->slice_end
- now
<= jiffies_to_nsecs(1))
4240 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
4242 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4243 struct cfq_data
*cfqd
= cfqq
->cfqd
;
4244 const int sync
= rq_is_sync(rq
);
4245 u64 now
= ktime_get_ns();
4247 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d",
4248 !!(rq
->cmd_flags
& REQ_NOIDLE
));
4250 cfq_update_hw_tag(cfqd
);
4252 WARN_ON(!cfqd
->rq_in_driver
);
4253 WARN_ON(!cfqq
->dispatched
);
4254 cfqd
->rq_in_driver
--;
4256 (RQ_CFQG(rq
))->dispatched
--;
4257 cfqg_stats_update_completion(cfqq
->cfqg
, rq_start_time_ns(rq
),
4258 rq_io_start_time_ns(rq
), req_op(rq
),
4261 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
4264 struct cfq_rb_root
*st
;
4266 RQ_CIC(rq
)->ttime
.last_end_request
= now
;
4268 if (cfq_cfqq_on_rr(cfqq
))
4269 st
= cfqq
->service_tree
;
4271 st
= st_for(cfqq
->cfqg
, cfqq_class(cfqq
),
4274 st
->ttime
.last_end_request
= now
;
4276 * We have to do this check in jiffies since start_time is in
4277 * jiffies and it is not trivial to convert to ns. If
4278 * cfq_fifo_expire[1] ever comes close to 1 jiffie, this test
4279 * will become problematic but so far we are fine (the default
4282 if (!time_after(rq
->start_time
+
4283 nsecs_to_jiffies(cfqd
->cfq_fifo_expire
[1]),
4285 cfqd
->last_delayed_sync
= now
;
4288 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4289 cfqq
->cfqg
->ttime
.last_end_request
= now
;
4293 * If this is the active queue, check if it needs to be expired,
4294 * or if we want to idle in case it has no pending requests.
4296 if (cfqd
->active_queue
== cfqq
) {
4297 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
4299 if (cfq_cfqq_slice_new(cfqq
)) {
4300 cfq_set_prio_slice(cfqd
, cfqq
);
4301 cfq_clear_cfqq_slice_new(cfqq
);
4305 * Should we wait for next request to come in before we expire
4308 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
4309 u64 extend_sl
= cfqd
->cfq_slice_idle
;
4310 if (!cfqd
->cfq_slice_idle
)
4311 extend_sl
= cfqd
->cfq_group_idle
;
4312 cfqq
->slice_end
= now
+ extend_sl
;
4313 cfq_mark_cfqq_wait_busy(cfqq
);
4314 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
4318 * Idling is not enabled on:
4320 * - idle-priority queues
4322 * - queues with still some requests queued
4323 * - when there is a close cooperator
4325 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
4326 cfq_slice_expired(cfqd
, 1);
4327 else if (sync
&& cfqq_empty
&&
4328 !cfq_close_cooperator(cfqd
, cfqq
)) {
4329 cfq_arm_slice_timer(cfqd
);
4333 if (!cfqd
->rq_in_driver
)
4334 cfq_schedule_dispatch(cfqd
);
4337 static void cfqq_boost_on_prio(struct cfq_queue
*cfqq
, int op_flags
)
4340 * If REQ_PRIO is set, boost class and prio level, if it's below
4341 * BE/NORM. If prio is not set, restore the potentially boosted
4344 if (!(op_flags
& REQ_PRIO
)) {
4345 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
4346 cfqq
->ioprio
= cfqq
->org_ioprio
;
4348 if (cfq_class_idle(cfqq
))
4349 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
4350 if (cfqq
->ioprio
> IOPRIO_NORM
)
4351 cfqq
->ioprio
= IOPRIO_NORM
;
4355 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
4357 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
4358 cfq_mark_cfqq_must_alloc_slice(cfqq
);
4359 return ELV_MQUEUE_MUST
;
4362 return ELV_MQUEUE_MAY
;
4365 static int cfq_may_queue(struct request_queue
*q
, int op
, int op_flags
)
4367 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4368 struct task_struct
*tsk
= current
;
4369 struct cfq_io_cq
*cic
;
4370 struct cfq_queue
*cfqq
;
4373 * don't force setup of a queue from here, as a call to may_queue
4374 * does not necessarily imply that a request actually will be queued.
4375 * so just lookup a possibly existing queue, or return 'may queue'
4378 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
4380 return ELV_MQUEUE_MAY
;
4382 cfqq
= cic_to_cfqq(cic
, rw_is_sync(op
, op_flags
));
4384 cfq_init_prio_data(cfqq
, cic
);
4385 cfqq_boost_on_prio(cfqq
, op_flags
);
4387 return __cfq_may_queue(cfqq
);
4390 return ELV_MQUEUE_MAY
;
4394 * queue lock held here
4396 static void cfq_put_request(struct request
*rq
)
4398 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
4401 const int rw
= rq_data_dir(rq
);
4403 BUG_ON(!cfqq
->allocated
[rw
]);
4404 cfqq
->allocated
[rw
]--;
4406 /* Put down rq reference on cfqg */
4407 cfqg_put(RQ_CFQG(rq
));
4408 rq
->elv
.priv
[0] = NULL
;
4409 rq
->elv
.priv
[1] = NULL
;
4411 cfq_put_queue(cfqq
);
4415 static struct cfq_queue
*
4416 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_cq
*cic
,
4417 struct cfq_queue
*cfqq
)
4419 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
4420 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
4421 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
4422 cfq_put_queue(cfqq
);
4423 return cic_to_cfqq(cic
, 1);
4427 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
4428 * was the last process referring to said cfqq.
4430 static struct cfq_queue
*
4431 split_cfqq(struct cfq_io_cq
*cic
, struct cfq_queue
*cfqq
)
4433 if (cfqq_process_refs(cfqq
) == 1) {
4434 cfqq
->pid
= current
->pid
;
4435 cfq_clear_cfqq_coop(cfqq
);
4436 cfq_clear_cfqq_split_coop(cfqq
);
4440 cic_set_cfqq(cic
, NULL
, 1);
4442 cfq_put_cooperator(cfqq
);
4444 cfq_put_queue(cfqq
);
4448 * Allocate cfq data structures associated with this request.
4451 cfq_set_request(struct request_queue
*q
, struct request
*rq
, struct bio
*bio
,
4454 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
4455 struct cfq_io_cq
*cic
= icq_to_cic(rq
->elv
.icq
);
4456 const int rw
= rq_data_dir(rq
);
4457 const bool is_sync
= rq_is_sync(rq
);
4458 struct cfq_queue
*cfqq
;
4460 spin_lock_irq(q
->queue_lock
);
4462 check_ioprio_changed(cic
, bio
);
4463 check_blkcg_changed(cic
, bio
);
4465 cfqq
= cic_to_cfqq(cic
, is_sync
);
4466 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
4468 cfq_put_queue(cfqq
);
4469 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
, bio
);
4470 cic_set_cfqq(cic
, cfqq
, is_sync
);
4473 * If the queue was seeky for too long, break it apart.
4475 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
4476 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
4477 cfqq
= split_cfqq(cic
, cfqq
);
4483 * Check to see if this queue is scheduled to merge with
4484 * another, closely cooperating queue. The merging of
4485 * queues happens here as it must be done in process context.
4486 * The reference on new_cfqq was taken in merge_cfqqs.
4489 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
4492 cfqq
->allocated
[rw
]++;
4495 cfqg_get(cfqq
->cfqg
);
4496 rq
->elv
.priv
[0] = cfqq
;
4497 rq
->elv
.priv
[1] = cfqq
->cfqg
;
4498 spin_unlock_irq(q
->queue_lock
);
4502 static void cfq_kick_queue(struct work_struct
*work
)
4504 struct cfq_data
*cfqd
=
4505 container_of(work
, struct cfq_data
, unplug_work
);
4506 struct request_queue
*q
= cfqd
->queue
;
4508 spin_lock_irq(q
->queue_lock
);
4509 __blk_run_queue(cfqd
->queue
);
4510 spin_unlock_irq(q
->queue_lock
);
4514 * Timer running if the active_queue is currently idling inside its time slice
4516 static enum hrtimer_restart
cfq_idle_slice_timer(struct hrtimer
*timer
)
4518 struct cfq_data
*cfqd
= container_of(timer
, struct cfq_data
,
4520 struct cfq_queue
*cfqq
;
4521 unsigned long flags
;
4524 cfq_log(cfqd
, "idle timer fired");
4526 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
4528 cfqq
= cfqd
->active_queue
;
4533 * We saw a request before the queue expired, let it through
4535 if (cfq_cfqq_must_dispatch(cfqq
))
4541 if (cfq_slice_used(cfqq
))
4545 * only expire and reinvoke request handler, if there are
4546 * other queues with pending requests
4548 if (!cfqd
->busy_queues
)
4552 * not expired and it has a request pending, let it dispatch
4554 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
4558 * Queue depth flag is reset only when the idle didn't succeed
4560 cfq_clear_cfqq_deep(cfqq
);
4563 cfq_slice_expired(cfqd
, timed_out
);
4565 cfq_schedule_dispatch(cfqd
);
4567 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
4568 return HRTIMER_NORESTART
;
4571 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
4573 hrtimer_cancel(&cfqd
->idle_slice_timer
);
4574 cancel_work_sync(&cfqd
->unplug_work
);
4577 static void cfq_exit_queue(struct elevator_queue
*e
)
4579 struct cfq_data
*cfqd
= e
->elevator_data
;
4580 struct request_queue
*q
= cfqd
->queue
;
4582 cfq_shutdown_timer_wq(cfqd
);
4584 spin_lock_irq(q
->queue_lock
);
4586 if (cfqd
->active_queue
)
4587 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
4589 spin_unlock_irq(q
->queue_lock
);
4591 cfq_shutdown_timer_wq(cfqd
);
4593 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4594 blkcg_deactivate_policy(q
, &blkcg_policy_cfq
);
4596 kfree(cfqd
->root_group
);
4601 static int cfq_init_queue(struct request_queue
*q
, struct elevator_type
*e
)
4603 struct cfq_data
*cfqd
;
4604 struct blkcg_gq
*blkg __maybe_unused
;
4606 struct elevator_queue
*eq
;
4608 eq
= elevator_alloc(q
, e
);
4612 cfqd
= kzalloc_node(sizeof(*cfqd
), GFP_KERNEL
, q
->node
);
4614 kobject_put(&eq
->kobj
);
4617 eq
->elevator_data
= cfqd
;
4620 spin_lock_irq(q
->queue_lock
);
4622 spin_unlock_irq(q
->queue_lock
);
4624 /* Init root service tree */
4625 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
4627 /* Init root group and prefer root group over other groups by default */
4628 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4629 ret
= blkcg_activate_policy(q
, &blkcg_policy_cfq
);
4633 cfqd
->root_group
= blkg_to_cfqg(q
->root_blkg
);
4636 cfqd
->root_group
= kzalloc_node(sizeof(*cfqd
->root_group
),
4637 GFP_KERNEL
, cfqd
->queue
->node
);
4638 if (!cfqd
->root_group
)
4641 cfq_init_cfqg_base(cfqd
->root_group
);
4642 cfqd
->root_group
->weight
= 2 * CFQ_WEIGHT_LEGACY_DFL
;
4643 cfqd
->root_group
->leaf_weight
= 2 * CFQ_WEIGHT_LEGACY_DFL
;
4647 * Not strictly needed (since RB_ROOT just clears the node and we
4648 * zeroed cfqd on alloc), but better be safe in case someone decides
4649 * to add magic to the rb code
4651 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
4652 cfqd
->prio_trees
[i
] = RB_ROOT
;
4655 * Our fallback cfqq if cfq_get_queue() runs into OOM issues.
4656 * Grab a permanent reference to it, so that the normal code flow
4657 * will not attempt to free it. oom_cfqq is linked to root_group
4658 * but shouldn't hold a reference as it'll never be unlinked. Lose
4659 * the reference from linking right away.
4661 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
4662 cfqd
->oom_cfqq
.ref
++;
4664 spin_lock_irq(q
->queue_lock
);
4665 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, cfqd
->root_group
);
4666 cfqg_put(cfqd
->root_group
);
4667 spin_unlock_irq(q
->queue_lock
);
4669 hrtimer_init(&cfqd
->idle_slice_timer
, CLOCK_MONOTONIC
,
4671 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
4673 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
4675 cfqd
->cfq_quantum
= cfq_quantum
;
4676 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
4677 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
4678 cfqd
->cfq_back_max
= cfq_back_max
;
4679 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
4680 cfqd
->cfq_slice
[0] = cfq_slice_async
;
4681 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
4682 cfqd
->cfq_target_latency
= cfq_target_latency
;
4683 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
4684 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
4685 cfqd
->cfq_group_idle
= cfq_group_idle
;
4686 cfqd
->cfq_latency
= 1;
4689 * we optimistically start assuming sync ops weren't delayed in last
4690 * second, in order to have larger depth for async operations.
4692 cfqd
->last_delayed_sync
= ktime_get_ns() - NSEC_PER_SEC
;
4697 kobject_put(&eq
->kobj
);
4701 static void cfq_registered_queue(struct request_queue
*q
)
4703 struct elevator_queue
*e
= q
->elevator
;
4704 struct cfq_data
*cfqd
= e
->elevator_data
;
4707 * Default to IOPS mode with no idling for SSDs
4709 if (blk_queue_nonrot(q
))
4710 cfqd
->cfq_slice_idle
= 0;
4714 * sysfs parts below -->
4717 cfq_var_show(unsigned int var
, char *page
)
4719 return sprintf(page
, "%u\n", var
);
4723 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
4725 char *p
= (char *) page
;
4727 *var
= simple_strtoul(p
, &p
, 10);
4731 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
4732 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4734 struct cfq_data *cfqd = e->elevator_data; \
4735 u64 __data = __VAR; \
4737 __data = div_u64(__data, NSEC_PER_MSEC); \
4738 return cfq_var_show(__data, (page)); \
4740 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
4741 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
4742 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
4743 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
4744 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
4745 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
4746 SHOW_FUNCTION(cfq_group_idle_show
, cfqd
->cfq_group_idle
, 1);
4747 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
4748 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
4749 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
4750 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
4751 SHOW_FUNCTION(cfq_target_latency_show
, cfqd
->cfq_target_latency
, 1);
4752 #undef SHOW_FUNCTION
4754 #define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
4755 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
4757 struct cfq_data *cfqd = e->elevator_data; \
4758 u64 __data = __VAR; \
4759 __data = div_u64(__data, NSEC_PER_USEC); \
4760 return cfq_var_show(__data, (page)); \
4762 USEC_SHOW_FUNCTION(cfq_slice_idle_us_show
, cfqd
->cfq_slice_idle
);
4763 USEC_SHOW_FUNCTION(cfq_group_idle_us_show
, cfqd
->cfq_group_idle
);
4764 USEC_SHOW_FUNCTION(cfq_slice_sync_us_show
, cfqd
->cfq_slice
[1]);
4765 USEC_SHOW_FUNCTION(cfq_slice_async_us_show
, cfqd
->cfq_slice
[0]);
4766 USEC_SHOW_FUNCTION(cfq_target_latency_us_show
, cfqd
->cfq_target_latency
);
4767 #undef USEC_SHOW_FUNCTION
4769 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
4770 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4772 struct cfq_data *cfqd = e->elevator_data; \
4773 unsigned int __data; \
4774 int ret = cfq_var_store(&__data, (page), count); \
4775 if (__data < (MIN)) \
4777 else if (__data > (MAX)) \
4780 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
4782 *(__PTR) = __data; \
4785 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
4786 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
4788 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
4790 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
4791 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
4793 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
4794 STORE_FUNCTION(cfq_group_idle_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
, 1);
4795 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
4796 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
4797 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
4799 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
4800 STORE_FUNCTION(cfq_target_latency_store
, &cfqd
->cfq_target_latency
, 1, UINT_MAX
, 1);
4801 #undef STORE_FUNCTION
4803 #define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
4804 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4806 struct cfq_data *cfqd = e->elevator_data; \
4807 unsigned int __data; \
4808 int ret = cfq_var_store(&__data, (page), count); \
4809 if (__data < (MIN)) \
4811 else if (__data > (MAX)) \
4813 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
4816 USEC_STORE_FUNCTION(cfq_slice_idle_us_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
);
4817 USEC_STORE_FUNCTION(cfq_group_idle_us_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
);
4818 USEC_STORE_FUNCTION(cfq_slice_sync_us_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
);
4819 USEC_STORE_FUNCTION(cfq_slice_async_us_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
);
4820 USEC_STORE_FUNCTION(cfq_target_latency_us_store
, &cfqd
->cfq_target_latency
, 1, UINT_MAX
);
4821 #undef USEC_STORE_FUNCTION
4823 #define CFQ_ATTR(name) \
4824 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4826 static struct elv_fs_entry cfq_attrs
[] = {
4828 CFQ_ATTR(fifo_expire_sync
),
4829 CFQ_ATTR(fifo_expire_async
),
4830 CFQ_ATTR(back_seek_max
),
4831 CFQ_ATTR(back_seek_penalty
),
4832 CFQ_ATTR(slice_sync
),
4833 CFQ_ATTR(slice_sync_us
),
4834 CFQ_ATTR(slice_async
),
4835 CFQ_ATTR(slice_async_us
),
4836 CFQ_ATTR(slice_async_rq
),
4837 CFQ_ATTR(slice_idle
),
4838 CFQ_ATTR(slice_idle_us
),
4839 CFQ_ATTR(group_idle
),
4840 CFQ_ATTR(group_idle_us
),
4841 CFQ_ATTR(low_latency
),
4842 CFQ_ATTR(target_latency
),
4843 CFQ_ATTR(target_latency_us
),
4847 static struct elevator_type iosched_cfq
= {
4849 .elevator_merge_fn
= cfq_merge
,
4850 .elevator_merged_fn
= cfq_merged_request
,
4851 .elevator_merge_req_fn
= cfq_merged_requests
,
4852 .elevator_allow_bio_merge_fn
= cfq_allow_bio_merge
,
4853 .elevator_allow_rq_merge_fn
= cfq_allow_rq_merge
,
4854 .elevator_bio_merged_fn
= cfq_bio_merged
,
4855 .elevator_dispatch_fn
= cfq_dispatch_requests
,
4856 .elevator_add_req_fn
= cfq_insert_request
,
4857 .elevator_activate_req_fn
= cfq_activate_request
,
4858 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
4859 .elevator_completed_req_fn
= cfq_completed_request
,
4860 .elevator_former_req_fn
= elv_rb_former_request
,
4861 .elevator_latter_req_fn
= elv_rb_latter_request
,
4862 .elevator_init_icq_fn
= cfq_init_icq
,
4863 .elevator_exit_icq_fn
= cfq_exit_icq
,
4864 .elevator_set_req_fn
= cfq_set_request
,
4865 .elevator_put_req_fn
= cfq_put_request
,
4866 .elevator_may_queue_fn
= cfq_may_queue
,
4867 .elevator_init_fn
= cfq_init_queue
,
4868 .elevator_exit_fn
= cfq_exit_queue
,
4869 .elevator_registered_fn
= cfq_registered_queue
,
4871 .icq_size
= sizeof(struct cfq_io_cq
),
4872 .icq_align
= __alignof__(struct cfq_io_cq
),
4873 .elevator_attrs
= cfq_attrs
,
4874 .elevator_name
= "cfq",
4875 .elevator_owner
= THIS_MODULE
,
4878 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4879 static struct blkcg_policy blkcg_policy_cfq
= {
4880 .dfl_cftypes
= cfq_blkcg_files
,
4881 .legacy_cftypes
= cfq_blkcg_legacy_files
,
4883 .cpd_alloc_fn
= cfq_cpd_alloc
,
4884 .cpd_init_fn
= cfq_cpd_init
,
4885 .cpd_free_fn
= cfq_cpd_free
,
4886 .cpd_bind_fn
= cfq_cpd_bind
,
4888 .pd_alloc_fn
= cfq_pd_alloc
,
4889 .pd_init_fn
= cfq_pd_init
,
4890 .pd_offline_fn
= cfq_pd_offline
,
4891 .pd_free_fn
= cfq_pd_free
,
4892 .pd_reset_stats_fn
= cfq_pd_reset_stats
,
4896 static int __init
cfq_init(void)
4900 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4901 ret
= blkcg_policy_register(&blkcg_policy_cfq
);
4909 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
4913 ret
= elv_register(&iosched_cfq
);
4920 kmem_cache_destroy(cfq_pool
);
4922 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4923 blkcg_policy_unregister(&blkcg_policy_cfq
);
4928 static void __exit
cfq_exit(void)
4930 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4931 blkcg_policy_unregister(&blkcg_policy_cfq
);
4933 elv_unregister(&iosched_cfq
);
4934 kmem_cache_destroy(cfq_pool
);
4937 module_init(cfq_init
);
4938 module_exit(cfq_exit
);
4940 MODULE_AUTHOR("Jens Axboe");
4941 MODULE_LICENSE("GPL");
4942 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");