2 * scsi_lib.c Copyright (C) 1999 Eric Youngdale
4 * SCSI queueing library.
5 * Initial versions: Eric Youngdale (eric@andante.org).
6 * Based upon conversations with large numbers
7 * of people at Linux Expo.
10 #include <linux/bio.h>
11 #include <linux/bitops.h>
12 #include <linux/blkdev.h>
13 #include <linux/completion.h>
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/mempool.h>
17 #include <linux/slab.h>
18 #include <linux/init.h>
19 #include <linux/pci.h>
20 #include <linux/delay.h>
21 #include <linux/hardirq.h>
22 #include <linux/scatterlist.h>
24 #include <scsi/scsi.h>
25 #include <scsi/scsi_cmnd.h>
26 #include <scsi/scsi_dbg.h>
27 #include <scsi/scsi_device.h>
28 #include <scsi/scsi_driver.h>
29 #include <scsi/scsi_eh.h>
30 #include <scsi/scsi_host.h>
32 #include "scsi_priv.h"
33 #include "scsi_logging.h"
36 #define SG_MEMPOOL_NR ARRAY_SIZE(scsi_sg_pools)
37 #define SG_MEMPOOL_SIZE 2
39 struct scsi_host_sg_pool
{
42 struct kmem_cache
*slab
;
46 #define SP(x) { x, "sgpool-" __stringify(x) }
47 #if (SCSI_MAX_SG_SEGMENTS < 32)
48 #error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
50 static struct scsi_host_sg_pool scsi_sg_pools
[] = {
53 #if (SCSI_MAX_SG_SEGMENTS > 32)
55 #if (SCSI_MAX_SG_SEGMENTS > 64)
57 #if (SCSI_MAX_SG_SEGMENTS > 128)
59 #if (SCSI_MAX_SG_SEGMENTS > 256)
60 #error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
65 SP(SCSI_MAX_SG_SEGMENTS
)
69 struct kmem_cache
*scsi_sdb_cache
;
72 #include <acpi/acpi_bus.h>
74 static bool acpi_scsi_bus_match(struct device
*dev
)
76 return dev
->bus
== &scsi_bus_type
;
79 int scsi_register_acpi_bus_type(struct acpi_bus_type
*bus
)
81 bus
->match
= acpi_scsi_bus_match
;
82 return register_acpi_bus_type(bus
);
84 EXPORT_SYMBOL_GPL(scsi_register_acpi_bus_type
);
86 void scsi_unregister_acpi_bus_type(struct acpi_bus_type
*bus
)
88 unregister_acpi_bus_type(bus
);
90 EXPORT_SYMBOL_GPL(scsi_unregister_acpi_bus_type
);
94 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
95 * not change behaviour from the previous unplug mechanism, experimentation
96 * may prove this needs changing.
98 #define SCSI_QUEUE_DELAY 3
101 * Function: scsi_unprep_request()
103 * Purpose: Remove all preparation done for a request, including its
104 * associated scsi_cmnd, so that it can be requeued.
106 * Arguments: req - request to unprepare
108 * Lock status: Assumed that no locks are held upon entry.
112 static void scsi_unprep_request(struct request
*req
)
114 struct scsi_cmnd
*cmd
= req
->special
;
116 blk_unprep_request(req
);
119 scsi_put_command(cmd
);
123 * __scsi_queue_insert - private queue insertion
124 * @cmd: The SCSI command being requeued
125 * @reason: The reason for the requeue
126 * @unbusy: Whether the queue should be unbusied
128 * This is a private queue insertion. The public interface
129 * scsi_queue_insert() always assumes the queue should be unbusied
130 * because it's always called before the completion. This function is
131 * for a requeue after completion, which should only occur in this
134 static void __scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
, int unbusy
)
136 struct Scsi_Host
*host
= cmd
->device
->host
;
137 struct scsi_device
*device
= cmd
->device
;
138 struct scsi_target
*starget
= scsi_target(device
);
139 struct request_queue
*q
= device
->request_queue
;
143 printk("Inserting command %p into mlqueue\n", cmd
));
146 * Set the appropriate busy bit for the device/host.
148 * If the host/device isn't busy, assume that something actually
149 * completed, and that we should be able to queue a command now.
151 * Note that the prior mid-layer assumption that any host could
152 * always queue at least one command is now broken. The mid-layer
153 * will implement a user specifiable stall (see
154 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
155 * if a command is requeued with no other commands outstanding
156 * either for the device or for the host.
159 case SCSI_MLQUEUE_HOST_BUSY
:
160 host
->host_blocked
= host
->max_host_blocked
;
162 case SCSI_MLQUEUE_DEVICE_BUSY
:
163 case SCSI_MLQUEUE_EH_RETRY
:
164 device
->device_blocked
= device
->max_device_blocked
;
166 case SCSI_MLQUEUE_TARGET_BUSY
:
167 starget
->target_blocked
= starget
->max_target_blocked
;
172 * Decrement the counters, since these commands are no longer
173 * active on the host/device.
176 scsi_device_unbusy(device
);
179 * Requeue this command. It will go before all other commands
180 * that are already in the queue. Schedule requeue work under
181 * lock such that the kblockd_schedule_work() call happens
182 * before blk_cleanup_queue() finishes.
184 spin_lock_irqsave(q
->queue_lock
, flags
);
185 blk_requeue_request(q
, cmd
->request
);
186 kblockd_schedule_work(q
, &device
->requeue_work
);
187 spin_unlock_irqrestore(q
->queue_lock
, flags
);
191 * Function: scsi_queue_insert()
193 * Purpose: Insert a command in the midlevel queue.
195 * Arguments: cmd - command that we are adding to queue.
196 * reason - why we are inserting command to queue.
198 * Lock status: Assumed that lock is not held upon entry.
202 * Notes: We do this for one of two cases. Either the host is busy
203 * and it cannot accept any more commands for the time being,
204 * or the device returned QUEUE_FULL and can accept no more
206 * Notes: This could be called either from an interrupt context or a
207 * normal process context.
209 void scsi_queue_insert(struct scsi_cmnd
*cmd
, int reason
)
211 __scsi_queue_insert(cmd
, reason
, 1);
214 * scsi_execute - insert request and wait for the result
217 * @data_direction: data direction
218 * @buffer: data buffer
219 * @bufflen: len of buffer
220 * @sense: optional sense buffer
221 * @timeout: request timeout in seconds
222 * @retries: number of times to retry request
223 * @flags: or into request flags;
224 * @resid: optional residual length
226 * returns the req->errors value which is the scsi_cmnd result
229 int scsi_execute(struct scsi_device
*sdev
, const unsigned char *cmd
,
230 int data_direction
, void *buffer
, unsigned bufflen
,
231 unsigned char *sense
, int timeout
, int retries
, int flags
,
235 int write
= (data_direction
== DMA_TO_DEVICE
);
236 int ret
= DRIVER_ERROR
<< 24;
238 req
= blk_get_request(sdev
->request_queue
, write
, __GFP_WAIT
);
242 if (bufflen
&& blk_rq_map_kern(sdev
->request_queue
, req
,
243 buffer
, bufflen
, __GFP_WAIT
))
246 req
->cmd_len
= COMMAND_SIZE(cmd
[0]);
247 memcpy(req
->cmd
, cmd
, req
->cmd_len
);
250 req
->retries
= retries
;
251 req
->timeout
= timeout
;
252 req
->cmd_type
= REQ_TYPE_BLOCK_PC
;
253 req
->cmd_flags
|= flags
| REQ_QUIET
| REQ_PREEMPT
;
256 * head injection *required* here otherwise quiesce won't work
258 blk_execute_rq(req
->q
, NULL
, req
, 1);
261 * Some devices (USB mass-storage in particular) may transfer
262 * garbage data together with a residue indicating that the data
263 * is invalid. Prevent the garbage from being misinterpreted
264 * and prevent security leaks by zeroing out the excess data.
266 if (unlikely(req
->resid_len
> 0 && req
->resid_len
<= bufflen
))
267 memset(buffer
+ (bufflen
- req
->resid_len
), 0, req
->resid_len
);
270 *resid
= req
->resid_len
;
273 blk_put_request(req
);
277 EXPORT_SYMBOL(scsi_execute
);
280 int scsi_execute_req(struct scsi_device
*sdev
, const unsigned char *cmd
,
281 int data_direction
, void *buffer
, unsigned bufflen
,
282 struct scsi_sense_hdr
*sshdr
, int timeout
, int retries
,
289 sense
= kzalloc(SCSI_SENSE_BUFFERSIZE
, GFP_NOIO
);
291 return DRIVER_ERROR
<< 24;
293 result
= scsi_execute(sdev
, cmd
, data_direction
, buffer
, bufflen
,
294 sense
, timeout
, retries
, 0, resid
);
296 scsi_normalize_sense(sense
, SCSI_SENSE_BUFFERSIZE
, sshdr
);
301 EXPORT_SYMBOL(scsi_execute_req
);
304 * Function: scsi_init_cmd_errh()
306 * Purpose: Initialize cmd fields related to error handling.
308 * Arguments: cmd - command that is ready to be queued.
310 * Notes: This function has the job of initializing a number of
311 * fields related to error handling. Typically this will
312 * be called once for each command, as required.
314 static void scsi_init_cmd_errh(struct scsi_cmnd
*cmd
)
316 cmd
->serial_number
= 0;
317 scsi_set_resid(cmd
, 0);
318 memset(cmd
->sense_buffer
, 0, SCSI_SENSE_BUFFERSIZE
);
319 if (cmd
->cmd_len
== 0)
320 cmd
->cmd_len
= scsi_command_size(cmd
->cmnd
);
323 void scsi_device_unbusy(struct scsi_device
*sdev
)
325 struct Scsi_Host
*shost
= sdev
->host
;
326 struct scsi_target
*starget
= scsi_target(sdev
);
329 spin_lock_irqsave(shost
->host_lock
, flags
);
331 starget
->target_busy
--;
332 if (unlikely(scsi_host_in_recovery(shost
) &&
333 (shost
->host_failed
|| shost
->host_eh_scheduled
)))
334 scsi_eh_wakeup(shost
);
335 spin_unlock(shost
->host_lock
);
336 spin_lock(sdev
->request_queue
->queue_lock
);
338 spin_unlock_irqrestore(sdev
->request_queue
->queue_lock
, flags
);
342 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
343 * and call blk_run_queue for all the scsi_devices on the target -
344 * including current_sdev first.
346 * Called with *no* scsi locks held.
348 static void scsi_single_lun_run(struct scsi_device
*current_sdev
)
350 struct Scsi_Host
*shost
= current_sdev
->host
;
351 struct scsi_device
*sdev
, *tmp
;
352 struct scsi_target
*starget
= scsi_target(current_sdev
);
355 spin_lock_irqsave(shost
->host_lock
, flags
);
356 starget
->starget_sdev_user
= NULL
;
357 spin_unlock_irqrestore(shost
->host_lock
, flags
);
360 * Call blk_run_queue for all LUNs on the target, starting with
361 * current_sdev. We race with others (to set starget_sdev_user),
362 * but in most cases, we will be first. Ideally, each LU on the
363 * target would get some limited time or requests on the target.
365 blk_run_queue(current_sdev
->request_queue
);
367 spin_lock_irqsave(shost
->host_lock
, flags
);
368 if (starget
->starget_sdev_user
)
370 list_for_each_entry_safe(sdev
, tmp
, &starget
->devices
,
371 same_target_siblings
) {
372 if (sdev
== current_sdev
)
374 if (scsi_device_get(sdev
))
377 spin_unlock_irqrestore(shost
->host_lock
, flags
);
378 blk_run_queue(sdev
->request_queue
);
379 spin_lock_irqsave(shost
->host_lock
, flags
);
381 scsi_device_put(sdev
);
384 spin_unlock_irqrestore(shost
->host_lock
, flags
);
387 static inline int scsi_device_is_busy(struct scsi_device
*sdev
)
389 if (sdev
->device_busy
>= sdev
->queue_depth
|| sdev
->device_blocked
)
395 static inline int scsi_target_is_busy(struct scsi_target
*starget
)
397 return ((starget
->can_queue
> 0 &&
398 starget
->target_busy
>= starget
->can_queue
) ||
399 starget
->target_blocked
);
402 static inline int scsi_host_is_busy(struct Scsi_Host
*shost
)
404 if ((shost
->can_queue
> 0 && shost
->host_busy
>= shost
->can_queue
) ||
405 shost
->host_blocked
|| shost
->host_self_blocked
)
412 * Function: scsi_run_queue()
414 * Purpose: Select a proper request queue to serve next
416 * Arguments: q - last request's queue
420 * Notes: The previous command was completely finished, start
421 * a new one if possible.
423 static void scsi_run_queue(struct request_queue
*q
)
425 struct scsi_device
*sdev
= q
->queuedata
;
426 struct Scsi_Host
*shost
;
427 LIST_HEAD(starved_list
);
431 if (scsi_target(sdev
)->single_lun
)
432 scsi_single_lun_run(sdev
);
434 spin_lock_irqsave(shost
->host_lock
, flags
);
435 list_splice_init(&shost
->starved_list
, &starved_list
);
437 while (!list_empty(&starved_list
)) {
439 * As long as shost is accepting commands and we have
440 * starved queues, call blk_run_queue. scsi_request_fn
441 * drops the queue_lock and can add us back to the
444 * host_lock protects the starved_list and starved_entry.
445 * scsi_request_fn must get the host_lock before checking
446 * or modifying starved_list or starved_entry.
448 if (scsi_host_is_busy(shost
))
451 sdev
= list_entry(starved_list
.next
,
452 struct scsi_device
, starved_entry
);
453 list_del_init(&sdev
->starved_entry
);
454 if (scsi_target_is_busy(scsi_target(sdev
))) {
455 list_move_tail(&sdev
->starved_entry
,
456 &shost
->starved_list
);
460 spin_unlock(shost
->host_lock
);
461 spin_lock(sdev
->request_queue
->queue_lock
);
462 __blk_run_queue(sdev
->request_queue
);
463 spin_unlock(sdev
->request_queue
->queue_lock
);
464 spin_lock(shost
->host_lock
);
466 /* put any unprocessed entries back */
467 list_splice(&starved_list
, &shost
->starved_list
);
468 spin_unlock_irqrestore(shost
->host_lock
, flags
);
473 void scsi_requeue_run_queue(struct work_struct
*work
)
475 struct scsi_device
*sdev
;
476 struct request_queue
*q
;
478 sdev
= container_of(work
, struct scsi_device
, requeue_work
);
479 q
= sdev
->request_queue
;
484 * Function: scsi_requeue_command()
486 * Purpose: Handle post-processing of completed commands.
488 * Arguments: q - queue to operate on
489 * cmd - command that may need to be requeued.
493 * Notes: After command completion, there may be blocks left
494 * over which weren't finished by the previous command
495 * this can be for a number of reasons - the main one is
496 * I/O errors in the middle of the request, in which case
497 * we need to request the blocks that come after the bad
499 * Notes: Upon return, cmd is a stale pointer.
501 static void scsi_requeue_command(struct request_queue
*q
, struct scsi_cmnd
*cmd
)
503 struct scsi_device
*sdev
= cmd
->device
;
504 struct request
*req
= cmd
->request
;
508 * We need to hold a reference on the device to avoid the queue being
509 * killed after the unlock and before scsi_run_queue is invoked which
510 * may happen because scsi_unprep_request() puts the command which
511 * releases its reference on the device.
513 get_device(&sdev
->sdev_gendev
);
515 spin_lock_irqsave(q
->queue_lock
, flags
);
516 scsi_unprep_request(req
);
517 blk_requeue_request(q
, req
);
518 spin_unlock_irqrestore(q
->queue_lock
, flags
);
522 put_device(&sdev
->sdev_gendev
);
525 void scsi_next_command(struct scsi_cmnd
*cmd
)
527 struct scsi_device
*sdev
= cmd
->device
;
528 struct request_queue
*q
= sdev
->request_queue
;
530 /* need to hold a reference on the device before we let go of the cmd */
531 get_device(&sdev
->sdev_gendev
);
533 scsi_put_command(cmd
);
536 /* ok to remove device now */
537 put_device(&sdev
->sdev_gendev
);
540 void scsi_run_host_queues(struct Scsi_Host
*shost
)
542 struct scsi_device
*sdev
;
544 shost_for_each_device(sdev
, shost
)
545 scsi_run_queue(sdev
->request_queue
);
548 static void __scsi_release_buffers(struct scsi_cmnd
*, int);
551 * Function: scsi_end_request()
553 * Purpose: Post-processing of completed commands (usually invoked at end
554 * of upper level post-processing and scsi_io_completion).
556 * Arguments: cmd - command that is complete.
557 * error - 0 if I/O indicates success, < 0 for I/O error.
558 * bytes - number of bytes of completed I/O
559 * requeue - indicates whether we should requeue leftovers.
561 * Lock status: Assumed that lock is not held upon entry.
563 * Returns: cmd if requeue required, NULL otherwise.
565 * Notes: This is called for block device requests in order to
566 * mark some number of sectors as complete.
568 * We are guaranteeing that the request queue will be goosed
569 * at some point during this call.
570 * Notes: If cmd was requeued, upon return it will be a stale pointer.
572 static struct scsi_cmnd
*scsi_end_request(struct scsi_cmnd
*cmd
, int error
,
573 int bytes
, int requeue
)
575 struct request_queue
*q
= cmd
->device
->request_queue
;
576 struct request
*req
= cmd
->request
;
579 * If there are blocks left over at the end, set up the command
580 * to queue the remainder of them.
582 if (blk_end_request(req
, error
, bytes
)) {
583 /* kill remainder if no retrys */
584 if (error
&& scsi_noretry_cmd(cmd
))
585 blk_end_request_all(req
, error
);
589 * Bleah. Leftovers again. Stick the
590 * leftovers in the front of the
591 * queue, and goose the queue again.
593 scsi_release_buffers(cmd
);
594 scsi_requeue_command(q
, cmd
);
602 * This will goose the queue request function at the end, so we don't
603 * need to worry about launching another command.
605 __scsi_release_buffers(cmd
, 0);
606 scsi_next_command(cmd
);
610 static inline unsigned int scsi_sgtable_index(unsigned short nents
)
614 BUG_ON(nents
> SCSI_MAX_SG_SEGMENTS
);
619 index
= get_count_order(nents
) - 3;
624 static void scsi_sg_free(struct scatterlist
*sgl
, unsigned int nents
)
626 struct scsi_host_sg_pool
*sgp
;
628 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
629 mempool_free(sgl
, sgp
->pool
);
632 static struct scatterlist
*scsi_sg_alloc(unsigned int nents
, gfp_t gfp_mask
)
634 struct scsi_host_sg_pool
*sgp
;
636 sgp
= scsi_sg_pools
+ scsi_sgtable_index(nents
);
637 return mempool_alloc(sgp
->pool
, gfp_mask
);
640 static int scsi_alloc_sgtable(struct scsi_data_buffer
*sdb
, int nents
,
647 ret
= __sg_alloc_table(&sdb
->table
, nents
, SCSI_MAX_SG_SEGMENTS
,
648 gfp_mask
, scsi_sg_alloc
);
650 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
,
656 static void scsi_free_sgtable(struct scsi_data_buffer
*sdb
)
658 __sg_free_table(&sdb
->table
, SCSI_MAX_SG_SEGMENTS
, scsi_sg_free
);
661 static void __scsi_release_buffers(struct scsi_cmnd
*cmd
, int do_bidi_check
)
664 if (cmd
->sdb
.table
.nents
)
665 scsi_free_sgtable(&cmd
->sdb
);
667 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
669 if (do_bidi_check
&& scsi_bidi_cmnd(cmd
)) {
670 struct scsi_data_buffer
*bidi_sdb
=
671 cmd
->request
->next_rq
->special
;
672 scsi_free_sgtable(bidi_sdb
);
673 kmem_cache_free(scsi_sdb_cache
, bidi_sdb
);
674 cmd
->request
->next_rq
->special
= NULL
;
677 if (scsi_prot_sg_count(cmd
))
678 scsi_free_sgtable(cmd
->prot_sdb
);
682 * Function: scsi_release_buffers()
684 * Purpose: Completion processing for block device I/O requests.
686 * Arguments: cmd - command that we are bailing.
688 * Lock status: Assumed that no lock is held upon entry.
692 * Notes: In the event that an upper level driver rejects a
693 * command, we must release resources allocated during
694 * the __init_io() function. Primarily this would involve
695 * the scatter-gather table, and potentially any bounce
698 void scsi_release_buffers(struct scsi_cmnd
*cmd
)
700 __scsi_release_buffers(cmd
, 1);
702 EXPORT_SYMBOL(scsi_release_buffers
);
704 static int __scsi_error_from_host_byte(struct scsi_cmnd
*cmd
, int result
)
708 switch(host_byte(result
)) {
709 case DID_TRANSPORT_FAILFAST
:
712 case DID_TARGET_FAILURE
:
713 set_host_byte(cmd
, DID_OK
);
716 case DID_NEXUS_FAILURE
:
717 set_host_byte(cmd
, DID_OK
);
729 * Function: scsi_io_completion()
731 * Purpose: Completion processing for block device I/O requests.
733 * Arguments: cmd - command that is finished.
735 * Lock status: Assumed that no lock is held upon entry.
739 * Notes: This function is matched in terms of capabilities to
740 * the function that created the scatter-gather list.
741 * In other words, if there are no bounce buffers
742 * (the normal case for most drivers), we don't need
743 * the logic to deal with cleaning up afterwards.
745 * We must call scsi_end_request(). This will finish off
746 * the specified number of sectors. If we are done, the
747 * command block will be released and the queue function
748 * will be goosed. If we are not done then we have to
749 * figure out what to do next:
751 * a) We can call scsi_requeue_command(). The request
752 * will be unprepared and put back on the queue. Then
753 * a new command will be created for it. This should
754 * be used if we made forward progress, or if we want
755 * to switch from READ(10) to READ(6) for example.
757 * b) We can call scsi_queue_insert(). The request will
758 * be put back on the queue and retried using the same
759 * command as before, possibly after a delay.
761 * c) We can call blk_end_request() with -EIO to fail
762 * the remainder of the request.
764 void scsi_io_completion(struct scsi_cmnd
*cmd
, unsigned int good_bytes
)
766 int result
= cmd
->result
;
767 struct request_queue
*q
= cmd
->device
->request_queue
;
768 struct request
*req
= cmd
->request
;
770 struct scsi_sense_hdr sshdr
;
772 int sense_deferred
= 0;
773 enum {ACTION_FAIL
, ACTION_REPREP
, ACTION_RETRY
,
774 ACTION_DELAYED_RETRY
} action
;
775 char *description
= NULL
;
778 sense_valid
= scsi_command_normalize_sense(cmd
, &sshdr
);
780 sense_deferred
= scsi_sense_is_deferred(&sshdr
);
783 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
) { /* SG_IO ioctl from block level */
785 if (sense_valid
&& req
->sense
) {
787 * SG_IO wants current and deferred errors
789 int len
= 8 + cmd
->sense_buffer
[7];
791 if (len
> SCSI_SENSE_BUFFERSIZE
)
792 len
= SCSI_SENSE_BUFFERSIZE
;
793 memcpy(req
->sense
, cmd
->sense_buffer
, len
);
794 req
->sense_len
= len
;
797 error
= __scsi_error_from_host_byte(cmd
, result
);
800 * __scsi_error_from_host_byte may have reset the host_byte
802 req
->errors
= cmd
->result
;
804 req
->resid_len
= scsi_get_resid(cmd
);
806 if (scsi_bidi_cmnd(cmd
)) {
808 * Bidi commands Must be complete as a whole,
809 * both sides at once.
811 req
->next_rq
->resid_len
= scsi_in(cmd
)->resid
;
813 scsi_release_buffers(cmd
);
814 blk_end_request_all(req
, 0);
816 scsi_next_command(cmd
);
821 /* no bidi support for !REQ_TYPE_BLOCK_PC yet */
822 BUG_ON(blk_bidi_rq(req
));
825 * Next deal with any sectors which we were able to correctly
828 SCSI_LOG_HLCOMPLETE(1, printk("%u sectors total, "
830 blk_rq_sectors(req
), good_bytes
));
833 * Recovered errors need reporting, but they're always treated
834 * as success, so fiddle the result code here. For BLOCK_PC
835 * we already took a copy of the original into rq->errors which
836 * is what gets returned to the user
838 if (sense_valid
&& (sshdr
.sense_key
== RECOVERED_ERROR
)) {
839 /* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
840 * print since caller wants ATA registers. Only occurs on
841 * SCSI ATA PASS_THROUGH commands when CK_COND=1
843 if ((sshdr
.asc
== 0x0) && (sshdr
.ascq
== 0x1d))
845 else if (!(req
->cmd_flags
& REQ_QUIET
))
846 scsi_print_sense("", cmd
);
848 /* BLOCK_PC may have set error */
853 * A number of bytes were successfully read. If there
854 * are leftovers and there is some kind of error
855 * (result != 0), retry the rest.
857 if (scsi_end_request(cmd
, error
, good_bytes
, result
== 0) == NULL
)
860 error
= __scsi_error_from_host_byte(cmd
, result
);
862 if (host_byte(result
) == DID_RESET
) {
863 /* Third party bus reset or reset for error recovery
864 * reasons. Just retry the command and see what
867 action
= ACTION_RETRY
;
868 } else if (sense_valid
&& !sense_deferred
) {
869 switch (sshdr
.sense_key
) {
871 if (cmd
->device
->removable
) {
872 /* Detected disc change. Set a bit
873 * and quietly refuse further access.
875 cmd
->device
->changed
= 1;
876 description
= "Media Changed";
877 action
= ACTION_FAIL
;
879 /* Must have been a power glitch, or a
880 * bus reset. Could not have been a
881 * media change, so we just retry the
882 * command and see what happens.
884 action
= ACTION_RETRY
;
887 case ILLEGAL_REQUEST
:
888 /* If we had an ILLEGAL REQUEST returned, then
889 * we may have performed an unsupported
890 * command. The only thing this should be
891 * would be a ten byte read where only a six
892 * byte read was supported. Also, on a system
893 * where READ CAPACITY failed, we may have
894 * read past the end of the disk.
896 if ((cmd
->device
->use_10_for_rw
&&
897 sshdr
.asc
== 0x20 && sshdr
.ascq
== 0x00) &&
898 (cmd
->cmnd
[0] == READ_10
||
899 cmd
->cmnd
[0] == WRITE_10
)) {
900 /* This will issue a new 6-byte command. */
901 cmd
->device
->use_10_for_rw
= 0;
902 action
= ACTION_REPREP
;
903 } else if (sshdr
.asc
== 0x10) /* DIX */ {
904 description
= "Host Data Integrity Failure";
905 action
= ACTION_FAIL
;
907 /* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
908 } else if (sshdr
.asc
== 0x20 || sshdr
.asc
== 0x24) {
909 switch (cmd
->cmnd
[0]) {
911 description
= "Discard failure";
915 if (cmd
->cmnd
[1] & 0x8)
916 description
= "Discard failure";
919 "Write same failure";
922 description
= "Invalid command failure";
925 action
= ACTION_FAIL
;
928 action
= ACTION_FAIL
;
930 case ABORTED_COMMAND
:
931 action
= ACTION_FAIL
;
932 if (sshdr
.asc
== 0x10) { /* DIF */
933 description
= "Target Data Integrity Failure";
938 /* If the device is in the process of becoming
939 * ready, or has a temporary blockage, retry.
941 if (sshdr
.asc
== 0x04) {
942 switch (sshdr
.ascq
) {
943 case 0x01: /* becoming ready */
944 case 0x04: /* format in progress */
945 case 0x05: /* rebuild in progress */
946 case 0x06: /* recalculation in progress */
947 case 0x07: /* operation in progress */
948 case 0x08: /* Long write in progress */
949 case 0x09: /* self test in progress */
950 case 0x14: /* space allocation in progress */
951 action
= ACTION_DELAYED_RETRY
;
954 description
= "Device not ready";
955 action
= ACTION_FAIL
;
959 description
= "Device not ready";
960 action
= ACTION_FAIL
;
963 case VOLUME_OVERFLOW
:
964 /* See SSC3rXX or current. */
965 action
= ACTION_FAIL
;
968 description
= "Unhandled sense code";
969 action
= ACTION_FAIL
;
973 description
= "Unhandled error code";
974 action
= ACTION_FAIL
;
979 /* Give up and fail the remainder of the request */
980 scsi_release_buffers(cmd
);
981 if (!(req
->cmd_flags
& REQ_QUIET
)) {
983 scmd_printk(KERN_INFO
, cmd
, "%s\n",
985 scsi_print_result(cmd
);
986 if (driver_byte(result
) & DRIVER_SENSE
)
987 scsi_print_sense("", cmd
);
988 scsi_print_command(cmd
);
990 if (blk_end_request_err(req
, error
))
991 scsi_requeue_command(q
, cmd
);
993 scsi_next_command(cmd
);
996 /* Unprep the request and put it back at the head of the queue.
997 * A new command will be prepared and issued.
999 scsi_release_buffers(cmd
);
1000 scsi_requeue_command(q
, cmd
);
1003 /* Retry the same command immediately */
1004 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
, 0);
1006 case ACTION_DELAYED_RETRY
:
1007 /* Retry the same command after a delay */
1008 __scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
, 0);
1013 static int scsi_init_sgtable(struct request
*req
, struct scsi_data_buffer
*sdb
,
1019 * If sg table allocation fails, requeue request later.
1021 if (unlikely(scsi_alloc_sgtable(sdb
, req
->nr_phys_segments
,
1023 return BLKPREP_DEFER
;
1029 * Next, walk the list, and fill in the addresses and sizes of
1032 count
= blk_rq_map_sg(req
->q
, req
, sdb
->table
.sgl
);
1033 BUG_ON(count
> sdb
->table
.nents
);
1034 sdb
->table
.nents
= count
;
1035 sdb
->length
= blk_rq_bytes(req
);
1040 * Function: scsi_init_io()
1042 * Purpose: SCSI I/O initialize function.
1044 * Arguments: cmd - Command descriptor we wish to initialize
1046 * Returns: 0 on success
1047 * BLKPREP_DEFER if the failure is retryable
1048 * BLKPREP_KILL if the failure is fatal
1050 int scsi_init_io(struct scsi_cmnd
*cmd
, gfp_t gfp_mask
)
1052 struct request
*rq
= cmd
->request
;
1054 int error
= scsi_init_sgtable(rq
, &cmd
->sdb
, gfp_mask
);
1058 if (blk_bidi_rq(rq
)) {
1059 struct scsi_data_buffer
*bidi_sdb
= kmem_cache_zalloc(
1060 scsi_sdb_cache
, GFP_ATOMIC
);
1062 error
= BLKPREP_DEFER
;
1066 rq
->next_rq
->special
= bidi_sdb
;
1067 error
= scsi_init_sgtable(rq
->next_rq
, bidi_sdb
, GFP_ATOMIC
);
1072 if (blk_integrity_rq(rq
)) {
1073 struct scsi_data_buffer
*prot_sdb
= cmd
->prot_sdb
;
1076 BUG_ON(prot_sdb
== NULL
);
1077 ivecs
= blk_rq_count_integrity_sg(rq
->q
, rq
->bio
);
1079 if (scsi_alloc_sgtable(prot_sdb
, ivecs
, gfp_mask
)) {
1080 error
= BLKPREP_DEFER
;
1084 count
= blk_rq_map_integrity_sg(rq
->q
, rq
->bio
,
1085 prot_sdb
->table
.sgl
);
1086 BUG_ON(unlikely(count
> ivecs
));
1087 BUG_ON(unlikely(count
> queue_max_integrity_segments(rq
->q
)));
1089 cmd
->prot_sdb
= prot_sdb
;
1090 cmd
->prot_sdb
->table
.nents
= count
;
1096 scsi_release_buffers(cmd
);
1097 cmd
->request
->special
= NULL
;
1098 scsi_put_command(cmd
);
1101 EXPORT_SYMBOL(scsi_init_io
);
1103 static struct scsi_cmnd
*scsi_get_cmd_from_req(struct scsi_device
*sdev
,
1104 struct request
*req
)
1106 struct scsi_cmnd
*cmd
;
1108 if (!req
->special
) {
1109 cmd
= scsi_get_command(sdev
, GFP_ATOMIC
);
1117 /* pull a tag out of the request if we have one */
1118 cmd
->tag
= req
->tag
;
1121 cmd
->cmnd
= req
->cmd
;
1122 cmd
->prot_op
= SCSI_PROT_NORMAL
;
1127 int scsi_setup_blk_pc_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1129 struct scsi_cmnd
*cmd
;
1130 int ret
= scsi_prep_state_check(sdev
, req
);
1132 if (ret
!= BLKPREP_OK
)
1135 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1137 return BLKPREP_DEFER
;
1140 * BLOCK_PC requests may transfer data, in which case they must
1141 * a bio attached to them. Or they might contain a SCSI command
1142 * that does not transfer data, in which case they may optionally
1143 * submit a request without an attached bio.
1148 BUG_ON(!req
->nr_phys_segments
);
1150 ret
= scsi_init_io(cmd
, GFP_ATOMIC
);
1154 BUG_ON(blk_rq_bytes(req
));
1156 memset(&cmd
->sdb
, 0, sizeof(cmd
->sdb
));
1160 cmd
->cmd_len
= req
->cmd_len
;
1161 if (!blk_rq_bytes(req
))
1162 cmd
->sc_data_direction
= DMA_NONE
;
1163 else if (rq_data_dir(req
) == WRITE
)
1164 cmd
->sc_data_direction
= DMA_TO_DEVICE
;
1166 cmd
->sc_data_direction
= DMA_FROM_DEVICE
;
1168 cmd
->transfersize
= blk_rq_bytes(req
);
1169 cmd
->allowed
= req
->retries
;
1172 EXPORT_SYMBOL(scsi_setup_blk_pc_cmnd
);
1175 * Setup a REQ_TYPE_FS command. These are simple read/write request
1176 * from filesystems that still need to be translated to SCSI CDBs from
1179 int scsi_setup_fs_cmnd(struct scsi_device
*sdev
, struct request
*req
)
1181 struct scsi_cmnd
*cmd
;
1182 int ret
= scsi_prep_state_check(sdev
, req
);
1184 if (ret
!= BLKPREP_OK
)
1187 if (unlikely(sdev
->scsi_dh_data
&& sdev
->scsi_dh_data
->scsi_dh
1188 && sdev
->scsi_dh_data
->scsi_dh
->prep_fn
)) {
1189 ret
= sdev
->scsi_dh_data
->scsi_dh
->prep_fn(sdev
, req
);
1190 if (ret
!= BLKPREP_OK
)
1195 * Filesystem requests must transfer data.
1197 BUG_ON(!req
->nr_phys_segments
);
1199 cmd
= scsi_get_cmd_from_req(sdev
, req
);
1201 return BLKPREP_DEFER
;
1203 memset(cmd
->cmnd
, 0, BLK_MAX_CDB
);
1204 return scsi_init_io(cmd
, GFP_ATOMIC
);
1206 EXPORT_SYMBOL(scsi_setup_fs_cmnd
);
1208 int scsi_prep_state_check(struct scsi_device
*sdev
, struct request
*req
)
1210 int ret
= BLKPREP_OK
;
1213 * If the device is not in running state we will reject some
1216 if (unlikely(sdev
->sdev_state
!= SDEV_RUNNING
)) {
1217 switch (sdev
->sdev_state
) {
1219 case SDEV_TRANSPORT_OFFLINE
:
1221 * If the device is offline we refuse to process any
1222 * commands. The device must be brought online
1223 * before trying any recovery commands.
1225 sdev_printk(KERN_ERR
, sdev
,
1226 "rejecting I/O to offline device\n");
1231 * If the device is fully deleted, we refuse to
1232 * process any commands as well.
1234 sdev_printk(KERN_ERR
, sdev
,
1235 "rejecting I/O to dead device\n");
1240 case SDEV_CREATED_BLOCK
:
1242 * If the devices is blocked we defer normal commands.
1244 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1245 ret
= BLKPREP_DEFER
;
1249 * For any other not fully online state we only allow
1250 * special commands. In particular any user initiated
1251 * command is not allowed.
1253 if (!(req
->cmd_flags
& REQ_PREEMPT
))
1260 EXPORT_SYMBOL(scsi_prep_state_check
);
1262 int scsi_prep_return(struct request_queue
*q
, struct request
*req
, int ret
)
1264 struct scsi_device
*sdev
= q
->queuedata
;
1268 req
->errors
= DID_NO_CONNECT
<< 16;
1269 /* release the command and kill it */
1271 struct scsi_cmnd
*cmd
= req
->special
;
1272 scsi_release_buffers(cmd
);
1273 scsi_put_command(cmd
);
1274 req
->special
= NULL
;
1279 * If we defer, the blk_peek_request() returns NULL, but the
1280 * queue must be restarted, so we schedule a callback to happen
1283 if (sdev
->device_busy
== 0)
1284 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1287 req
->cmd_flags
|= REQ_DONTPREP
;
1292 EXPORT_SYMBOL(scsi_prep_return
);
1294 int scsi_prep_fn(struct request_queue
*q
, struct request
*req
)
1296 struct scsi_device
*sdev
= q
->queuedata
;
1297 int ret
= BLKPREP_KILL
;
1299 if (req
->cmd_type
== REQ_TYPE_BLOCK_PC
)
1300 ret
= scsi_setup_blk_pc_cmnd(sdev
, req
);
1301 return scsi_prep_return(q
, req
, ret
);
1303 EXPORT_SYMBOL(scsi_prep_fn
);
1306 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1309 * Called with the queue_lock held.
1311 static inline int scsi_dev_queue_ready(struct request_queue
*q
,
1312 struct scsi_device
*sdev
)
1314 if (sdev
->device_busy
== 0 && sdev
->device_blocked
) {
1316 * unblock after device_blocked iterates to zero
1318 if (--sdev
->device_blocked
== 0) {
1320 sdev_printk(KERN_INFO
, sdev
,
1321 "unblocking device at zero depth\n"));
1323 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1327 if (scsi_device_is_busy(sdev
))
1335 * scsi_target_queue_ready: checks if there we can send commands to target
1336 * @sdev: scsi device on starget to check.
1338 * Called with the host lock held.
1340 static inline int scsi_target_queue_ready(struct Scsi_Host
*shost
,
1341 struct scsi_device
*sdev
)
1343 struct scsi_target
*starget
= scsi_target(sdev
);
1345 if (starget
->single_lun
) {
1346 if (starget
->starget_sdev_user
&&
1347 starget
->starget_sdev_user
!= sdev
)
1349 starget
->starget_sdev_user
= sdev
;
1352 if (starget
->target_busy
== 0 && starget
->target_blocked
) {
1354 * unblock after target_blocked iterates to zero
1356 if (--starget
->target_blocked
== 0) {
1357 SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO
, starget
,
1358 "unblocking target at zero depth\n"));
1363 if (scsi_target_is_busy(starget
)) {
1364 list_move_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1372 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1373 * return 0. We must end up running the queue again whenever 0 is
1374 * returned, else IO can hang.
1376 * Called with host_lock held.
1378 static inline int scsi_host_queue_ready(struct request_queue
*q
,
1379 struct Scsi_Host
*shost
,
1380 struct scsi_device
*sdev
)
1382 if (scsi_host_in_recovery(shost
))
1384 if (shost
->host_busy
== 0 && shost
->host_blocked
) {
1386 * unblock after host_blocked iterates to zero
1388 if (--shost
->host_blocked
== 0) {
1390 printk("scsi%d unblocking host at zero depth\n",
1396 if (scsi_host_is_busy(shost
)) {
1397 if (list_empty(&sdev
->starved_entry
))
1398 list_add_tail(&sdev
->starved_entry
, &shost
->starved_list
);
1402 /* We're OK to process the command, so we can't be starved */
1403 if (!list_empty(&sdev
->starved_entry
))
1404 list_del_init(&sdev
->starved_entry
);
1410 * Busy state exporting function for request stacking drivers.
1412 * For efficiency, no lock is taken to check the busy state of
1413 * shost/starget/sdev, since the returned value is not guaranteed and
1414 * may be changed after request stacking drivers call the function,
1415 * regardless of taking lock or not.
1417 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1418 * needs to return 'not busy'. Otherwise, request stacking drivers
1419 * may hold requests forever.
1421 static int scsi_lld_busy(struct request_queue
*q
)
1423 struct scsi_device
*sdev
= q
->queuedata
;
1424 struct Scsi_Host
*shost
;
1426 if (blk_queue_dying(q
))
1432 * Ignore host/starget busy state.
1433 * Since block layer does not have a concept of fairness across
1434 * multiple queues, congestion of host/starget needs to be handled
1437 if (scsi_host_in_recovery(shost
) || scsi_device_is_busy(sdev
))
1444 * Kill a request for a dead device
1446 static void scsi_kill_request(struct request
*req
, struct request_queue
*q
)
1448 struct scsi_cmnd
*cmd
= req
->special
;
1449 struct scsi_device
*sdev
;
1450 struct scsi_target
*starget
;
1451 struct Scsi_Host
*shost
;
1453 blk_start_request(req
);
1455 scmd_printk(KERN_INFO
, cmd
, "killing request\n");
1458 starget
= scsi_target(sdev
);
1460 scsi_init_cmd_errh(cmd
);
1461 cmd
->result
= DID_NO_CONNECT
<< 16;
1462 atomic_inc(&cmd
->device
->iorequest_cnt
);
1465 * SCSI request completion path will do scsi_device_unbusy(),
1466 * bump busy counts. To bump the counters, we need to dance
1467 * with the locks as normal issue path does.
1469 sdev
->device_busy
++;
1470 spin_unlock(sdev
->request_queue
->queue_lock
);
1471 spin_lock(shost
->host_lock
);
1473 starget
->target_busy
++;
1474 spin_unlock(shost
->host_lock
);
1475 spin_lock(sdev
->request_queue
->queue_lock
);
1477 blk_complete_request(req
);
1480 static void scsi_softirq_done(struct request
*rq
)
1482 struct scsi_cmnd
*cmd
= rq
->special
;
1483 unsigned long wait_for
= (cmd
->allowed
+ 1) * rq
->timeout
;
1486 INIT_LIST_HEAD(&cmd
->eh_entry
);
1488 atomic_inc(&cmd
->device
->iodone_cnt
);
1490 atomic_inc(&cmd
->device
->ioerr_cnt
);
1492 disposition
= scsi_decide_disposition(cmd
);
1493 if (disposition
!= SUCCESS
&&
1494 time_before(cmd
->jiffies_at_alloc
+ wait_for
, jiffies
)) {
1495 sdev_printk(KERN_ERR
, cmd
->device
,
1496 "timing out command, waited %lus\n",
1498 disposition
= SUCCESS
;
1501 scsi_log_completion(cmd
, disposition
);
1503 switch (disposition
) {
1505 scsi_finish_command(cmd
);
1508 scsi_queue_insert(cmd
, SCSI_MLQUEUE_EH_RETRY
);
1510 case ADD_TO_MLQUEUE
:
1511 scsi_queue_insert(cmd
, SCSI_MLQUEUE_DEVICE_BUSY
);
1514 if (!scsi_eh_scmd_add(cmd
, 0))
1515 scsi_finish_command(cmd
);
1520 * Function: scsi_request_fn()
1522 * Purpose: Main strategy routine for SCSI.
1524 * Arguments: q - Pointer to actual queue.
1528 * Lock status: IO request lock assumed to be held when called.
1530 static void scsi_request_fn(struct request_queue
*q
)
1532 struct scsi_device
*sdev
= q
->queuedata
;
1533 struct Scsi_Host
*shost
;
1534 struct scsi_cmnd
*cmd
;
1535 struct request
*req
;
1537 if(!get_device(&sdev
->sdev_gendev
))
1538 /* We must be tearing the block queue down already */
1542 * To start with, we keep looping until the queue is empty, or until
1543 * the host is no longer able to accept any more requests.
1549 * get next queueable request. We do this early to make sure
1550 * that the request is fully prepared even if we cannot
1553 req
= blk_peek_request(q
);
1554 if (!req
|| !scsi_dev_queue_ready(q
, sdev
))
1557 if (unlikely(!scsi_device_online(sdev
))) {
1558 sdev_printk(KERN_ERR
, sdev
,
1559 "rejecting I/O to offline device\n");
1560 scsi_kill_request(req
, q
);
1566 * Remove the request from the request list.
1568 if (!(blk_queue_tagged(q
) && !blk_queue_start_tag(q
, req
)))
1569 blk_start_request(req
);
1570 sdev
->device_busy
++;
1572 spin_unlock(q
->queue_lock
);
1574 if (unlikely(cmd
== NULL
)) {
1575 printk(KERN_CRIT
"impossible request in %s.\n"
1576 "please mail a stack trace to "
1577 "linux-scsi@vger.kernel.org\n",
1579 blk_dump_rq_flags(req
, "foo");
1582 spin_lock(shost
->host_lock
);
1585 * We hit this when the driver is using a host wide
1586 * tag map. For device level tag maps the queue_depth check
1587 * in the device ready fn would prevent us from trying
1588 * to allocate a tag. Since the map is a shared host resource
1589 * we add the dev to the starved list so it eventually gets
1590 * a run when a tag is freed.
1592 if (blk_queue_tagged(q
) && !blk_rq_tagged(req
)) {
1593 if (list_empty(&sdev
->starved_entry
))
1594 list_add_tail(&sdev
->starved_entry
,
1595 &shost
->starved_list
);
1599 if (!scsi_target_queue_ready(shost
, sdev
))
1602 if (!scsi_host_queue_ready(q
, shost
, sdev
))
1605 scsi_target(sdev
)->target_busy
++;
1609 * XXX(hch): This is rather suboptimal, scsi_dispatch_cmd will
1610 * take the lock again.
1612 spin_unlock_irq(shost
->host_lock
);
1615 * Finally, initialize any error handling parameters, and set up
1616 * the timers for timeouts.
1618 scsi_init_cmd_errh(cmd
);
1621 * Dispatch the command to the low-level driver.
1623 rtn
= scsi_dispatch_cmd(cmd
);
1624 spin_lock_irq(q
->queue_lock
);
1632 spin_unlock_irq(shost
->host_lock
);
1635 * lock q, handle tag, requeue req, and decrement device_busy. We
1636 * must return with queue_lock held.
1638 * Decrementing device_busy without checking it is OK, as all such
1639 * cases (host limits or settings) should run the queue at some
1642 spin_lock_irq(q
->queue_lock
);
1643 blk_requeue_request(q
, req
);
1644 sdev
->device_busy
--;
1646 if (sdev
->device_busy
== 0)
1647 blk_delay_queue(q
, SCSI_QUEUE_DELAY
);
1649 /* must be careful here...if we trigger the ->remove() function
1650 * we cannot be holding the q lock */
1651 spin_unlock_irq(q
->queue_lock
);
1652 put_device(&sdev
->sdev_gendev
);
1653 spin_lock_irq(q
->queue_lock
);
1656 u64
scsi_calculate_bounce_limit(struct Scsi_Host
*shost
)
1658 struct device
*host_dev
;
1659 u64 bounce_limit
= 0xffffffff;
1661 if (shost
->unchecked_isa_dma
)
1662 return BLK_BOUNCE_ISA
;
1664 * Platforms with virtual-DMA translation
1665 * hardware have no practical limit.
1667 if (!PCI_DMA_BUS_IS_PHYS
)
1668 return BLK_BOUNCE_ANY
;
1670 host_dev
= scsi_get_device(shost
);
1671 if (host_dev
&& host_dev
->dma_mask
)
1672 bounce_limit
= *host_dev
->dma_mask
;
1674 return bounce_limit
;
1676 EXPORT_SYMBOL(scsi_calculate_bounce_limit
);
1678 struct request_queue
*__scsi_alloc_queue(struct Scsi_Host
*shost
,
1679 request_fn_proc
*request_fn
)
1681 struct request_queue
*q
;
1682 struct device
*dev
= shost
->dma_dev
;
1684 q
= blk_init_queue(request_fn
, NULL
);
1689 * this limit is imposed by hardware restrictions
1691 blk_queue_max_segments(q
, min_t(unsigned short, shost
->sg_tablesize
,
1692 SCSI_MAX_SG_CHAIN_SEGMENTS
));
1694 if (scsi_host_prot_dma(shost
)) {
1695 shost
->sg_prot_tablesize
=
1696 min_not_zero(shost
->sg_prot_tablesize
,
1697 (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS
);
1698 BUG_ON(shost
->sg_prot_tablesize
< shost
->sg_tablesize
);
1699 blk_queue_max_integrity_segments(q
, shost
->sg_prot_tablesize
);
1702 blk_queue_max_hw_sectors(q
, shost
->max_sectors
);
1703 blk_queue_bounce_limit(q
, scsi_calculate_bounce_limit(shost
));
1704 blk_queue_segment_boundary(q
, shost
->dma_boundary
);
1705 dma_set_seg_boundary(dev
, shost
->dma_boundary
);
1707 blk_queue_max_segment_size(q
, dma_get_max_seg_size(dev
));
1709 if (!shost
->use_clustering
)
1710 q
->limits
.cluster
= 0;
1713 * set a reasonable default alignment on word boundaries: the
1714 * host and device may alter it using
1715 * blk_queue_update_dma_alignment() later.
1717 blk_queue_dma_alignment(q
, 0x03);
1721 EXPORT_SYMBOL(__scsi_alloc_queue
);
1723 struct request_queue
*scsi_alloc_queue(struct scsi_device
*sdev
)
1725 struct request_queue
*q
;
1727 q
= __scsi_alloc_queue(sdev
->host
, scsi_request_fn
);
1731 blk_queue_prep_rq(q
, scsi_prep_fn
);
1732 blk_queue_softirq_done(q
, scsi_softirq_done
);
1733 blk_queue_rq_timed_out(q
, scsi_times_out
);
1734 blk_queue_lld_busy(q
, scsi_lld_busy
);
1739 * Function: scsi_block_requests()
1741 * Purpose: Utility function used by low-level drivers to prevent further
1742 * commands from being queued to the device.
1744 * Arguments: shost - Host in question
1748 * Lock status: No locks are assumed held.
1750 * Notes: There is no timer nor any other means by which the requests
1751 * get unblocked other than the low-level driver calling
1752 * scsi_unblock_requests().
1754 void scsi_block_requests(struct Scsi_Host
*shost
)
1756 shost
->host_self_blocked
= 1;
1758 EXPORT_SYMBOL(scsi_block_requests
);
1761 * Function: scsi_unblock_requests()
1763 * Purpose: Utility function used by low-level drivers to allow further
1764 * commands from being queued to the device.
1766 * Arguments: shost - Host in question
1770 * Lock status: No locks are assumed held.
1772 * Notes: There is no timer nor any other means by which the requests
1773 * get unblocked other than the low-level driver calling
1774 * scsi_unblock_requests().
1776 * This is done as an API function so that changes to the
1777 * internals of the scsi mid-layer won't require wholesale
1778 * changes to drivers that use this feature.
1780 void scsi_unblock_requests(struct Scsi_Host
*shost
)
1782 shost
->host_self_blocked
= 0;
1783 scsi_run_host_queues(shost
);
1785 EXPORT_SYMBOL(scsi_unblock_requests
);
1787 int __init
scsi_init_queue(void)
1791 scsi_sdb_cache
= kmem_cache_create("scsi_data_buffer",
1792 sizeof(struct scsi_data_buffer
),
1794 if (!scsi_sdb_cache
) {
1795 printk(KERN_ERR
"SCSI: can't init scsi sdb cache\n");
1799 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1800 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1801 int size
= sgp
->size
* sizeof(struct scatterlist
);
1803 sgp
->slab
= kmem_cache_create(sgp
->name
, size
, 0,
1804 SLAB_HWCACHE_ALIGN
, NULL
);
1806 printk(KERN_ERR
"SCSI: can't init sg slab %s\n",
1811 sgp
->pool
= mempool_create_slab_pool(SG_MEMPOOL_SIZE
,
1814 printk(KERN_ERR
"SCSI: can't init sg mempool %s\n",
1823 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1824 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1826 mempool_destroy(sgp
->pool
);
1828 kmem_cache_destroy(sgp
->slab
);
1830 kmem_cache_destroy(scsi_sdb_cache
);
1835 void scsi_exit_queue(void)
1839 kmem_cache_destroy(scsi_sdb_cache
);
1841 for (i
= 0; i
< SG_MEMPOOL_NR
; i
++) {
1842 struct scsi_host_sg_pool
*sgp
= scsi_sg_pools
+ i
;
1843 mempool_destroy(sgp
->pool
);
1844 kmem_cache_destroy(sgp
->slab
);
1849 * scsi_mode_select - issue a mode select
1850 * @sdev: SCSI device to be queried
1851 * @pf: Page format bit (1 == standard, 0 == vendor specific)
1852 * @sp: Save page bit (0 == don't save, 1 == save)
1853 * @modepage: mode page being requested
1854 * @buffer: request buffer (may not be smaller than eight bytes)
1855 * @len: length of request buffer.
1856 * @timeout: command timeout
1857 * @retries: number of retries before failing
1858 * @data: returns a structure abstracting the mode header data
1859 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1860 * must be SCSI_SENSE_BUFFERSIZE big.
1862 * Returns zero if successful; negative error number or scsi
1867 scsi_mode_select(struct scsi_device
*sdev
, int pf
, int sp
, int modepage
,
1868 unsigned char *buffer
, int len
, int timeout
, int retries
,
1869 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1871 unsigned char cmd
[10];
1872 unsigned char *real_buffer
;
1875 memset(cmd
, 0, sizeof(cmd
));
1876 cmd
[1] = (pf
? 0x10 : 0) | (sp
? 0x01 : 0);
1878 if (sdev
->use_10_for_ms
) {
1881 real_buffer
= kmalloc(8 + len
, GFP_KERNEL
);
1884 memcpy(real_buffer
+ 8, buffer
, len
);
1888 real_buffer
[2] = data
->medium_type
;
1889 real_buffer
[3] = data
->device_specific
;
1890 real_buffer
[4] = data
->longlba
? 0x01 : 0;
1892 real_buffer
[6] = data
->block_descriptor_length
>> 8;
1893 real_buffer
[7] = data
->block_descriptor_length
;
1895 cmd
[0] = MODE_SELECT_10
;
1899 if (len
> 255 || data
->block_descriptor_length
> 255 ||
1903 real_buffer
= kmalloc(4 + len
, GFP_KERNEL
);
1906 memcpy(real_buffer
+ 4, buffer
, len
);
1909 real_buffer
[1] = data
->medium_type
;
1910 real_buffer
[2] = data
->device_specific
;
1911 real_buffer
[3] = data
->block_descriptor_length
;
1914 cmd
[0] = MODE_SELECT
;
1918 ret
= scsi_execute_req(sdev
, cmd
, DMA_TO_DEVICE
, real_buffer
, len
,
1919 sshdr
, timeout
, retries
, NULL
);
1923 EXPORT_SYMBOL_GPL(scsi_mode_select
);
1926 * scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
1927 * @sdev: SCSI device to be queried
1928 * @dbd: set if mode sense will allow block descriptors to be returned
1929 * @modepage: mode page being requested
1930 * @buffer: request buffer (may not be smaller than eight bytes)
1931 * @len: length of request buffer.
1932 * @timeout: command timeout
1933 * @retries: number of retries before failing
1934 * @data: returns a structure abstracting the mode header data
1935 * @sshdr: place to put sense data (or NULL if no sense to be collected).
1936 * must be SCSI_SENSE_BUFFERSIZE big.
1938 * Returns zero if unsuccessful, or the header offset (either 4
1939 * or 8 depending on whether a six or ten byte command was
1940 * issued) if successful.
1943 scsi_mode_sense(struct scsi_device
*sdev
, int dbd
, int modepage
,
1944 unsigned char *buffer
, int len
, int timeout
, int retries
,
1945 struct scsi_mode_data
*data
, struct scsi_sense_hdr
*sshdr
)
1947 unsigned char cmd
[12];
1951 struct scsi_sense_hdr my_sshdr
;
1953 memset(data
, 0, sizeof(*data
));
1954 memset(&cmd
[0], 0, 12);
1955 cmd
[1] = dbd
& 0x18; /* allows DBD and LLBA bits */
1958 /* caller might not be interested in sense, but we need it */
1963 use_10_for_ms
= sdev
->use_10_for_ms
;
1965 if (use_10_for_ms
) {
1969 cmd
[0] = MODE_SENSE_10
;
1976 cmd
[0] = MODE_SENSE
;
1981 memset(buffer
, 0, len
);
1983 result
= scsi_execute_req(sdev
, cmd
, DMA_FROM_DEVICE
, buffer
, len
,
1984 sshdr
, timeout
, retries
, NULL
);
1986 /* This code looks awful: what it's doing is making sure an
1987 * ILLEGAL REQUEST sense return identifies the actual command
1988 * byte as the problem. MODE_SENSE commands can return
1989 * ILLEGAL REQUEST if the code page isn't supported */
1991 if (use_10_for_ms
&& !scsi_status_is_good(result
) &&
1992 (driver_byte(result
) & DRIVER_SENSE
)) {
1993 if (scsi_sense_valid(sshdr
)) {
1994 if ((sshdr
->sense_key
== ILLEGAL_REQUEST
) &&
1995 (sshdr
->asc
== 0x20) && (sshdr
->ascq
== 0)) {
1997 * Invalid command operation code
1999 sdev
->use_10_for_ms
= 0;
2005 if(scsi_status_is_good(result
)) {
2006 if (unlikely(buffer
[0] == 0x86 && buffer
[1] == 0x0b &&
2007 (modepage
== 6 || modepage
== 8))) {
2008 /* Initio breakage? */
2011 data
->medium_type
= 0;
2012 data
->device_specific
= 0;
2014 data
->block_descriptor_length
= 0;
2015 } else if(use_10_for_ms
) {
2016 data
->length
= buffer
[0]*256 + buffer
[1] + 2;
2017 data
->medium_type
= buffer
[2];
2018 data
->device_specific
= buffer
[3];
2019 data
->longlba
= buffer
[4] & 0x01;
2020 data
->block_descriptor_length
= buffer
[6]*256
2023 data
->length
= buffer
[0] + 1;
2024 data
->medium_type
= buffer
[1];
2025 data
->device_specific
= buffer
[2];
2026 data
->block_descriptor_length
= buffer
[3];
2028 data
->header_length
= header_length
;
2033 EXPORT_SYMBOL(scsi_mode_sense
);
2036 * scsi_test_unit_ready - test if unit is ready
2037 * @sdev: scsi device to change the state of.
2038 * @timeout: command timeout
2039 * @retries: number of retries before failing
2040 * @sshdr_external: Optional pointer to struct scsi_sense_hdr for
2041 * returning sense. Make sure that this is cleared before passing
2044 * Returns zero if unsuccessful or an error if TUR failed. For
2045 * removable media, UNIT_ATTENTION sets ->changed flag.
2048 scsi_test_unit_ready(struct scsi_device
*sdev
, int timeout
, int retries
,
2049 struct scsi_sense_hdr
*sshdr_external
)
2052 TEST_UNIT_READY
, 0, 0, 0, 0, 0,
2054 struct scsi_sense_hdr
*sshdr
;
2057 if (!sshdr_external
)
2058 sshdr
= kzalloc(sizeof(*sshdr
), GFP_KERNEL
);
2060 sshdr
= sshdr_external
;
2062 /* try to eat the UNIT_ATTENTION if there are enough retries */
2064 result
= scsi_execute_req(sdev
, cmd
, DMA_NONE
, NULL
, 0, sshdr
,
2065 timeout
, retries
, NULL
);
2066 if (sdev
->removable
&& scsi_sense_valid(sshdr
) &&
2067 sshdr
->sense_key
== UNIT_ATTENTION
)
2069 } while (scsi_sense_valid(sshdr
) &&
2070 sshdr
->sense_key
== UNIT_ATTENTION
&& --retries
);
2072 if (!sshdr_external
)
2076 EXPORT_SYMBOL(scsi_test_unit_ready
);
2079 * scsi_device_set_state - Take the given device through the device state model.
2080 * @sdev: scsi device to change the state of.
2081 * @state: state to change to.
2083 * Returns zero if unsuccessful or an error if the requested
2084 * transition is illegal.
2087 scsi_device_set_state(struct scsi_device
*sdev
, enum scsi_device_state state
)
2089 enum scsi_device_state oldstate
= sdev
->sdev_state
;
2091 if (state
== oldstate
)
2097 case SDEV_CREATED_BLOCK
:
2108 case SDEV_TRANSPORT_OFFLINE
:
2121 case SDEV_TRANSPORT_OFFLINE
:
2129 case SDEV_TRANSPORT_OFFLINE
:
2144 case SDEV_CREATED_BLOCK
:
2151 case SDEV_CREATED_BLOCK
:
2166 case SDEV_TRANSPORT_OFFLINE
:
2179 case SDEV_TRANSPORT_OFFLINE
:
2188 sdev
->sdev_state
= state
;
2192 SCSI_LOG_ERROR_RECOVERY(1,
2193 sdev_printk(KERN_ERR
, sdev
,
2194 "Illegal state transition %s->%s\n",
2195 scsi_device_state_name(oldstate
),
2196 scsi_device_state_name(state
))
2200 EXPORT_SYMBOL(scsi_device_set_state
);
2203 * sdev_evt_emit - emit a single SCSI device uevent
2204 * @sdev: associated SCSI device
2205 * @evt: event to emit
2207 * Send a single uevent (scsi_event) to the associated scsi_device.
2209 static void scsi_evt_emit(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2214 switch (evt
->evt_type
) {
2215 case SDEV_EVT_MEDIA_CHANGE
:
2216 envp
[idx
++] = "SDEV_MEDIA_CHANGE=1";
2226 kobject_uevent_env(&sdev
->sdev_gendev
.kobj
, KOBJ_CHANGE
, envp
);
2230 * sdev_evt_thread - send a uevent for each scsi event
2231 * @work: work struct for scsi_device
2233 * Dispatch queued events to their associated scsi_device kobjects
2236 void scsi_evt_thread(struct work_struct
*work
)
2238 struct scsi_device
*sdev
;
2239 LIST_HEAD(event_list
);
2241 sdev
= container_of(work
, struct scsi_device
, event_work
);
2244 struct scsi_event
*evt
;
2245 struct list_head
*this, *tmp
;
2246 unsigned long flags
;
2248 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2249 list_splice_init(&sdev
->event_list
, &event_list
);
2250 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2252 if (list_empty(&event_list
))
2255 list_for_each_safe(this, tmp
, &event_list
) {
2256 evt
= list_entry(this, struct scsi_event
, node
);
2257 list_del(&evt
->node
);
2258 scsi_evt_emit(sdev
, evt
);
2265 * sdev_evt_send - send asserted event to uevent thread
2266 * @sdev: scsi_device event occurred on
2267 * @evt: event to send
2269 * Assert scsi device event asynchronously.
2271 void sdev_evt_send(struct scsi_device
*sdev
, struct scsi_event
*evt
)
2273 unsigned long flags
;
2276 /* FIXME: currently this check eliminates all media change events
2277 * for polled devices. Need to update to discriminate between AN
2278 * and polled events */
2279 if (!test_bit(evt
->evt_type
, sdev
->supported_events
)) {
2285 spin_lock_irqsave(&sdev
->list_lock
, flags
);
2286 list_add_tail(&evt
->node
, &sdev
->event_list
);
2287 schedule_work(&sdev
->event_work
);
2288 spin_unlock_irqrestore(&sdev
->list_lock
, flags
);
2290 EXPORT_SYMBOL_GPL(sdev_evt_send
);
2293 * sdev_evt_alloc - allocate a new scsi event
2294 * @evt_type: type of event to allocate
2295 * @gfpflags: GFP flags for allocation
2297 * Allocates and returns a new scsi_event.
2299 struct scsi_event
*sdev_evt_alloc(enum scsi_device_event evt_type
,
2302 struct scsi_event
*evt
= kzalloc(sizeof(struct scsi_event
), gfpflags
);
2306 evt
->evt_type
= evt_type
;
2307 INIT_LIST_HEAD(&evt
->node
);
2309 /* evt_type-specific initialization, if any */
2311 case SDEV_EVT_MEDIA_CHANGE
:
2319 EXPORT_SYMBOL_GPL(sdev_evt_alloc
);
2322 * sdev_evt_send_simple - send asserted event to uevent thread
2323 * @sdev: scsi_device event occurred on
2324 * @evt_type: type of event to send
2325 * @gfpflags: GFP flags for allocation
2327 * Assert scsi device event asynchronously, given an event type.
2329 void sdev_evt_send_simple(struct scsi_device
*sdev
,
2330 enum scsi_device_event evt_type
, gfp_t gfpflags
)
2332 struct scsi_event
*evt
= sdev_evt_alloc(evt_type
, gfpflags
);
2334 sdev_printk(KERN_ERR
, sdev
, "event %d eaten due to OOM\n",
2339 sdev_evt_send(sdev
, evt
);
2341 EXPORT_SYMBOL_GPL(sdev_evt_send_simple
);
2344 * scsi_device_quiesce - Block user issued commands.
2345 * @sdev: scsi device to quiesce.
2347 * This works by trying to transition to the SDEV_QUIESCE state
2348 * (which must be a legal transition). When the device is in this
2349 * state, only special requests will be accepted, all others will
2350 * be deferred. Since special requests may also be requeued requests,
2351 * a successful return doesn't guarantee the device will be
2352 * totally quiescent.
2354 * Must be called with user context, may sleep.
2356 * Returns zero if unsuccessful or an error if not.
2359 scsi_device_quiesce(struct scsi_device
*sdev
)
2361 int err
= scsi_device_set_state(sdev
, SDEV_QUIESCE
);
2365 scsi_run_queue(sdev
->request_queue
);
2366 while (sdev
->device_busy
) {
2367 msleep_interruptible(200);
2368 scsi_run_queue(sdev
->request_queue
);
2372 EXPORT_SYMBOL(scsi_device_quiesce
);
2375 * scsi_device_resume - Restart user issued commands to a quiesced device.
2376 * @sdev: scsi device to resume.
2378 * Moves the device from quiesced back to running and restarts the
2381 * Must be called with user context, may sleep.
2383 void scsi_device_resume(struct scsi_device
*sdev
)
2385 /* check if the device state was mutated prior to resume, and if
2386 * so assume the state is being managed elsewhere (for example
2387 * device deleted during suspend)
2389 if (sdev
->sdev_state
!= SDEV_QUIESCE
||
2390 scsi_device_set_state(sdev
, SDEV_RUNNING
))
2392 scsi_run_queue(sdev
->request_queue
);
2394 EXPORT_SYMBOL(scsi_device_resume
);
2397 device_quiesce_fn(struct scsi_device
*sdev
, void *data
)
2399 scsi_device_quiesce(sdev
);
2403 scsi_target_quiesce(struct scsi_target
*starget
)
2405 starget_for_each_device(starget
, NULL
, device_quiesce_fn
);
2407 EXPORT_SYMBOL(scsi_target_quiesce
);
2410 device_resume_fn(struct scsi_device
*sdev
, void *data
)
2412 scsi_device_resume(sdev
);
2416 scsi_target_resume(struct scsi_target
*starget
)
2418 starget_for_each_device(starget
, NULL
, device_resume_fn
);
2420 EXPORT_SYMBOL(scsi_target_resume
);
2423 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2424 * @sdev: device to block
2426 * Block request made by scsi lld's to temporarily stop all
2427 * scsi commands on the specified device. Called from interrupt
2428 * or normal process context.
2430 * Returns zero if successful or error if not
2433 * This routine transitions the device to the SDEV_BLOCK state
2434 * (which must be a legal transition). When the device is in this
2435 * state, all commands are deferred until the scsi lld reenables
2436 * the device with scsi_device_unblock or device_block_tmo fires.
2439 scsi_internal_device_block(struct scsi_device
*sdev
)
2441 struct request_queue
*q
= sdev
->request_queue
;
2442 unsigned long flags
;
2445 err
= scsi_device_set_state(sdev
, SDEV_BLOCK
);
2447 err
= scsi_device_set_state(sdev
, SDEV_CREATED_BLOCK
);
2454 * The device has transitioned to SDEV_BLOCK. Stop the
2455 * block layer from calling the midlayer with this device's
2458 spin_lock_irqsave(q
->queue_lock
, flags
);
2460 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2464 EXPORT_SYMBOL_GPL(scsi_internal_device_block
);
2467 * scsi_internal_device_unblock - resume a device after a block request
2468 * @sdev: device to resume
2469 * @new_state: state to set devices to after unblocking
2471 * Called by scsi lld's or the midlayer to restart the device queue
2472 * for the previously suspended scsi device. Called from interrupt or
2473 * normal process context.
2475 * Returns zero if successful or error if not.
2478 * This routine transitions the device to the SDEV_RUNNING state
2479 * or to one of the offline states (which must be a legal transition)
2480 * allowing the midlayer to goose the queue for this device.
2483 scsi_internal_device_unblock(struct scsi_device
*sdev
,
2484 enum scsi_device_state new_state
)
2486 struct request_queue
*q
= sdev
->request_queue
;
2487 unsigned long flags
;
2490 * Try to transition the scsi device to SDEV_RUNNING or one of the
2491 * offlined states and goose the device queue if successful.
2493 if ((sdev
->sdev_state
== SDEV_BLOCK
) ||
2494 (sdev
->sdev_state
== SDEV_TRANSPORT_OFFLINE
))
2495 sdev
->sdev_state
= new_state
;
2496 else if (sdev
->sdev_state
== SDEV_CREATED_BLOCK
) {
2497 if (new_state
== SDEV_TRANSPORT_OFFLINE
||
2498 new_state
== SDEV_OFFLINE
)
2499 sdev
->sdev_state
= new_state
;
2501 sdev
->sdev_state
= SDEV_CREATED
;
2502 } else if (sdev
->sdev_state
!= SDEV_CANCEL
&&
2503 sdev
->sdev_state
!= SDEV_OFFLINE
)
2506 spin_lock_irqsave(q
->queue_lock
, flags
);
2508 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2512 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock
);
2515 device_block(struct scsi_device
*sdev
, void *data
)
2517 scsi_internal_device_block(sdev
);
2521 target_block(struct device
*dev
, void *data
)
2523 if (scsi_is_target_device(dev
))
2524 starget_for_each_device(to_scsi_target(dev
), NULL
,
2530 scsi_target_block(struct device
*dev
)
2532 if (scsi_is_target_device(dev
))
2533 starget_for_each_device(to_scsi_target(dev
), NULL
,
2536 device_for_each_child(dev
, NULL
, target_block
);
2538 EXPORT_SYMBOL_GPL(scsi_target_block
);
2541 device_unblock(struct scsi_device
*sdev
, void *data
)
2543 scsi_internal_device_unblock(sdev
, *(enum scsi_device_state
*)data
);
2547 target_unblock(struct device
*dev
, void *data
)
2549 if (scsi_is_target_device(dev
))
2550 starget_for_each_device(to_scsi_target(dev
), data
,
2556 scsi_target_unblock(struct device
*dev
, enum scsi_device_state new_state
)
2558 if (scsi_is_target_device(dev
))
2559 starget_for_each_device(to_scsi_target(dev
), &new_state
,
2562 device_for_each_child(dev
, &new_state
, target_unblock
);
2564 EXPORT_SYMBOL_GPL(scsi_target_unblock
);
2567 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
2568 * @sgl: scatter-gather list
2569 * @sg_count: number of segments in sg
2570 * @offset: offset in bytes into sg, on return offset into the mapped area
2571 * @len: bytes to map, on return number of bytes mapped
2573 * Returns virtual address of the start of the mapped page
2575 void *scsi_kmap_atomic_sg(struct scatterlist
*sgl
, int sg_count
,
2576 size_t *offset
, size_t *len
)
2579 size_t sg_len
= 0, len_complete
= 0;
2580 struct scatterlist
*sg
;
2583 WARN_ON(!irqs_disabled());
2585 for_each_sg(sgl
, sg
, sg_count
, i
) {
2586 len_complete
= sg_len
; /* Complete sg-entries */
2587 sg_len
+= sg
->length
;
2588 if (sg_len
> *offset
)
2592 if (unlikely(i
== sg_count
)) {
2593 printk(KERN_ERR
"%s: Bytes in sg: %zu, requested offset %zu, "
2595 __func__
, sg_len
, *offset
, sg_count
);
2600 /* Offset starting from the beginning of first page in this sg-entry */
2601 *offset
= *offset
- len_complete
+ sg
->offset
;
2603 /* Assumption: contiguous pages can be accessed as "page + i" */
2604 page
= nth_page(sg_page(sg
), (*offset
>> PAGE_SHIFT
));
2605 *offset
&= ~PAGE_MASK
;
2607 /* Bytes in this sg-entry from *offset to the end of the page */
2608 sg_len
= PAGE_SIZE
- *offset
;
2612 return kmap_atomic(page
);
2614 EXPORT_SYMBOL(scsi_kmap_atomic_sg
);
2617 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
2618 * @virt: virtual address to be unmapped
2620 void scsi_kunmap_atomic_sg(void *virt
)
2622 kunmap_atomic(virt
);
2624 EXPORT_SYMBOL(scsi_kunmap_atomic_sg
);
2626 void sdev_disable_disk_events(struct scsi_device
*sdev
)
2628 atomic_inc(&sdev
->disk_events_disable_depth
);
2630 EXPORT_SYMBOL(sdev_disable_disk_events
);
2632 void sdev_enable_disk_events(struct scsi_device
*sdev
)
2634 if (WARN_ON_ONCE(atomic_read(&sdev
->disk_events_disable_depth
) <= 0))
2636 atomic_dec(&sdev
->disk_events_disable_depth
);
2638 EXPORT_SYMBOL(sdev_enable_disk_events
);