2 * Copyright (C) 2015 IT University of Copenhagen
3 * Initial release: Matias Bjorling <m@bjorling.me>
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License version
7 * 2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful, but
10 * WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * Implementation of a Round-robin page-based Hybrid FTL for Open-channel SSDs.
19 static struct kmem_cache
*rrpc_gcb_cache
, *rrpc_rq_cache
;
20 static DECLARE_RWSEM(rrpc_lock
);
22 static int rrpc_submit_io(struct rrpc
*rrpc
, struct bio
*bio
,
23 struct nvm_rq
*rqd
, unsigned long flags
);
25 #define rrpc_for_each_lun(rrpc, rlun, i) \
26 for ((i) = 0, rlun = &(rrpc)->luns[0]; \
27 (i) < (rrpc)->nr_luns; (i)++, rlun = &(rrpc)->luns[(i)])
29 static void rrpc_page_invalidate(struct rrpc
*rrpc
, struct rrpc_addr
*a
)
31 struct rrpc_block
*rblk
= a
->rblk
;
32 unsigned int pg_offset
;
34 lockdep_assert_held(&rrpc
->rev_lock
);
36 if (a
->addr
== ADDR_EMPTY
|| !rblk
)
39 spin_lock(&rblk
->lock
);
41 div_u64_rem(a
->addr
, rrpc
->dev
->sec_per_blk
, &pg_offset
);
42 WARN_ON(test_and_set_bit(pg_offset
, rblk
->invalid_pages
));
43 rblk
->nr_invalid_pages
++;
45 spin_unlock(&rblk
->lock
);
47 rrpc
->rev_trans_map
[a
->addr
- rrpc
->poffset
].addr
= ADDR_EMPTY
;
50 static void rrpc_invalidate_range(struct rrpc
*rrpc
, sector_t slba
,
55 spin_lock(&rrpc
->rev_lock
);
56 for (i
= slba
; i
< slba
+ len
; i
++) {
57 struct rrpc_addr
*gp
= &rrpc
->trans_map
[i
];
59 rrpc_page_invalidate(rrpc
, gp
);
62 spin_unlock(&rrpc
->rev_lock
);
65 static struct nvm_rq
*rrpc_inflight_laddr_acquire(struct rrpc
*rrpc
,
66 sector_t laddr
, unsigned int pages
)
69 struct rrpc_inflight_rq
*inf
;
71 rqd
= mempool_alloc(rrpc
->rq_pool
, GFP_ATOMIC
);
73 return ERR_PTR(-ENOMEM
);
75 inf
= rrpc_get_inflight_rq(rqd
);
76 if (rrpc_lock_laddr(rrpc
, laddr
, pages
, inf
)) {
77 mempool_free(rqd
, rrpc
->rq_pool
);
84 static void rrpc_inflight_laddr_release(struct rrpc
*rrpc
, struct nvm_rq
*rqd
)
86 struct rrpc_inflight_rq
*inf
= rrpc_get_inflight_rq(rqd
);
88 rrpc_unlock_laddr(rrpc
, inf
);
90 mempool_free(rqd
, rrpc
->rq_pool
);
93 static void rrpc_discard(struct rrpc
*rrpc
, struct bio
*bio
)
95 sector_t slba
= bio
->bi_iter
.bi_sector
/ NR_PHY_IN_LOG
;
96 sector_t len
= bio
->bi_iter
.bi_size
/ RRPC_EXPOSED_PAGE_SIZE
;
100 rqd
= rrpc_inflight_laddr_acquire(rrpc
, slba
, len
);
105 pr_err("rrpc: unable to acquire inflight IO\n");
110 rrpc_invalidate_range(rrpc
, slba
, len
);
111 rrpc_inflight_laddr_release(rrpc
, rqd
);
114 static int block_is_full(struct rrpc
*rrpc
, struct rrpc_block
*rblk
)
116 return (rblk
->next_page
== rrpc
->dev
->sec_per_blk
);
119 /* Calculate relative addr for the given block, considering instantiated LUNs */
120 static u64
block_to_rel_addr(struct rrpc
*rrpc
, struct rrpc_block
*rblk
)
122 struct nvm_block
*blk
= rblk
->parent
;
123 int lun_blk
= blk
->id
% (rrpc
->dev
->blks_per_lun
* rrpc
->nr_luns
);
125 return lun_blk
* rrpc
->dev
->sec_per_blk
;
128 /* Calculate global addr for the given block */
129 static u64
block_to_addr(struct rrpc
*rrpc
, struct rrpc_block
*rblk
)
131 struct nvm_block
*blk
= rblk
->parent
;
133 return blk
->id
* rrpc
->dev
->sec_per_blk
;
136 static struct ppa_addr
linear_to_generic_addr(struct nvm_dev
*dev
,
140 int secs
, pgs
, blks
, luns
;
141 sector_t ppa
= r
.ppa
;
145 div_u64_rem(ppa
, dev
->sec_per_pg
, &secs
);
148 sector_div(ppa
, dev
->sec_per_pg
);
149 div_u64_rem(ppa
, dev
->pgs_per_blk
, &pgs
);
152 sector_div(ppa
, dev
->pgs_per_blk
);
153 div_u64_rem(ppa
, dev
->blks_per_lun
, &blks
);
156 sector_div(ppa
, dev
->blks_per_lun
);
157 div_u64_rem(ppa
, dev
->luns_per_chnl
, &luns
);
160 sector_div(ppa
, dev
->luns_per_chnl
);
166 static struct ppa_addr
rrpc_ppa_to_gaddr(struct nvm_dev
*dev
, u64 addr
)
168 struct ppa_addr paddr
;
171 return linear_to_generic_addr(dev
, paddr
);
174 /* requires lun->lock taken */
175 static void rrpc_set_lun_cur(struct rrpc_lun
*rlun
, struct rrpc_block
*rblk
)
177 struct rrpc
*rrpc
= rlun
->rrpc
;
182 spin_lock(&rlun
->cur
->lock
);
183 WARN_ON(!block_is_full(rrpc
, rlun
->cur
));
184 spin_unlock(&rlun
->cur
->lock
);
189 static struct rrpc_block
*rrpc_get_blk(struct rrpc
*rrpc
, struct rrpc_lun
*rlun
,
192 struct nvm_lun
*lun
= rlun
->parent
;
193 struct nvm_block
*blk
;
194 struct rrpc_block
*rblk
;
196 spin_lock(&lun
->lock
);
197 blk
= nvm_get_blk_unlocked(rrpc
->dev
, rlun
->parent
, flags
);
199 pr_err("nvm: rrpc: cannot get new block from media manager\n");
200 spin_unlock(&lun
->lock
);
204 rblk
= rrpc_get_rblk(rlun
, blk
->id
);
205 list_add_tail(&rblk
->list
, &rlun
->open_list
);
206 spin_unlock(&lun
->lock
);
209 bitmap_zero(rblk
->invalid_pages
, rrpc
->dev
->sec_per_blk
);
211 rblk
->nr_invalid_pages
= 0;
212 atomic_set(&rblk
->data_cmnt_size
, 0);
217 static void rrpc_put_blk(struct rrpc
*rrpc
, struct rrpc_block
*rblk
)
219 struct rrpc_lun
*rlun
= rblk
->rlun
;
220 struct nvm_lun
*lun
= rlun
->parent
;
222 spin_lock(&lun
->lock
);
223 nvm_put_blk_unlocked(rrpc
->dev
, rblk
->parent
);
224 list_del(&rblk
->list
);
225 spin_unlock(&lun
->lock
);
228 static void rrpc_put_blks(struct rrpc
*rrpc
)
230 struct rrpc_lun
*rlun
;
233 for (i
= 0; i
< rrpc
->nr_luns
; i
++) {
234 rlun
= &rrpc
->luns
[i
];
236 rrpc_put_blk(rrpc
, rlun
->cur
);
238 rrpc_put_blk(rrpc
, rlun
->gc_cur
);
242 static struct rrpc_lun
*get_next_lun(struct rrpc
*rrpc
)
244 int next
= atomic_inc_return(&rrpc
->next_lun
);
246 return &rrpc
->luns
[next
% rrpc
->nr_luns
];
249 static void rrpc_gc_kick(struct rrpc
*rrpc
)
251 struct rrpc_lun
*rlun
;
254 for (i
= 0; i
< rrpc
->nr_luns
; i
++) {
255 rlun
= &rrpc
->luns
[i
];
256 queue_work(rrpc
->krqd_wq
, &rlun
->ws_gc
);
261 * timed GC every interval.
263 static void rrpc_gc_timer(unsigned long data
)
265 struct rrpc
*rrpc
= (struct rrpc
*)data
;
268 mod_timer(&rrpc
->gc_timer
, jiffies
+ msecs_to_jiffies(10));
271 static void rrpc_end_sync_bio(struct bio
*bio
)
273 struct completion
*waiting
= bio
->bi_private
;
276 pr_err("nvm: gc request failed (%u).\n", bio
->bi_error
);
282 * rrpc_move_valid_pages -- migrate live data off the block
283 * @rrpc: the 'rrpc' structure
284 * @block: the block from which to migrate live pages
287 * GC algorithms may call this function to migrate remaining live
288 * pages off the block prior to erasing it. This function blocks
289 * further execution until the operation is complete.
291 static int rrpc_move_valid_pages(struct rrpc
*rrpc
, struct rrpc_block
*rblk
)
293 struct request_queue
*q
= rrpc
->dev
->q
;
294 struct rrpc_rev_addr
*rev
;
299 int nr_sec_per_blk
= rrpc
->dev
->sec_per_blk
;
301 DECLARE_COMPLETION_ONSTACK(wait
);
303 if (bitmap_full(rblk
->invalid_pages
, nr_sec_per_blk
))
306 bio
= bio_alloc(GFP_NOIO
, 1);
308 pr_err("nvm: could not alloc bio to gc\n");
312 page
= mempool_alloc(rrpc
->page_pool
, GFP_NOIO
);
318 while ((slot
= find_first_zero_bit(rblk
->invalid_pages
,
319 nr_sec_per_blk
)) < nr_sec_per_blk
) {
322 phys_addr
= rblk
->parent
->id
* nr_sec_per_blk
+ slot
;
325 spin_lock(&rrpc
->rev_lock
);
326 /* Get logical address from physical to logical table */
327 rev
= &rrpc
->rev_trans_map
[phys_addr
- rrpc
->poffset
];
328 /* already updated by previous regular write */
329 if (rev
->addr
== ADDR_EMPTY
) {
330 spin_unlock(&rrpc
->rev_lock
);
334 rqd
= rrpc_inflight_laddr_acquire(rrpc
, rev
->addr
, 1);
335 if (IS_ERR_OR_NULL(rqd
)) {
336 spin_unlock(&rrpc
->rev_lock
);
341 spin_unlock(&rrpc
->rev_lock
);
343 /* Perform read to do GC */
344 bio
->bi_iter
.bi_sector
= rrpc_get_sector(rev
->addr
);
346 bio
->bi_private
= &wait
;
347 bio
->bi_end_io
= rrpc_end_sync_bio
;
349 /* TODO: may fail when EXP_PG_SIZE > PAGE_SIZE */
350 bio_add_pc_page(q
, bio
, page
, RRPC_EXPOSED_PAGE_SIZE
, 0);
352 if (rrpc_submit_io(rrpc
, bio
, rqd
, NVM_IOTYPE_GC
)) {
353 pr_err("rrpc: gc read failed.\n");
354 rrpc_inflight_laddr_release(rrpc
, rqd
);
357 wait_for_completion_io(&wait
);
359 rrpc_inflight_laddr_release(rrpc
, rqd
);
364 reinit_completion(&wait
);
366 bio
->bi_iter
.bi_sector
= rrpc_get_sector(rev
->addr
);
368 bio
->bi_private
= &wait
;
369 bio
->bi_end_io
= rrpc_end_sync_bio
;
371 bio_add_pc_page(q
, bio
, page
, RRPC_EXPOSED_PAGE_SIZE
, 0);
373 /* turn the command around and write the data back to a new
376 if (rrpc_submit_io(rrpc
, bio
, rqd
, NVM_IOTYPE_GC
)) {
377 pr_err("rrpc: gc write failed.\n");
378 rrpc_inflight_laddr_release(rrpc
, rqd
);
381 wait_for_completion_io(&wait
);
383 rrpc_inflight_laddr_release(rrpc
, rqd
);
391 mempool_free(page
, rrpc
->page_pool
);
394 if (!bitmap_full(rblk
->invalid_pages
, nr_sec_per_blk
)) {
395 pr_err("nvm: failed to garbage collect block\n");
402 static void rrpc_block_gc(struct work_struct
*work
)
404 struct rrpc_block_gc
*gcb
= container_of(work
, struct rrpc_block_gc
,
406 struct rrpc
*rrpc
= gcb
->rrpc
;
407 struct rrpc_block
*rblk
= gcb
->rblk
;
408 struct rrpc_lun
*rlun
= rblk
->rlun
;
409 struct nvm_dev
*dev
= rrpc
->dev
;
411 mempool_free(gcb
, rrpc
->gcb_pool
);
412 pr_debug("nvm: block '%lu' being reclaimed\n", rblk
->parent
->id
);
414 if (rrpc_move_valid_pages(rrpc
, rblk
))
417 if (nvm_erase_blk(dev
, rblk
->parent
))
420 rrpc_put_blk(rrpc
, rblk
);
425 spin_lock(&rlun
->lock
);
426 list_add_tail(&rblk
->prio
, &rlun
->prio_list
);
427 spin_unlock(&rlun
->lock
);
430 /* the block with highest number of invalid pages, will be in the beginning
433 static struct rrpc_block
*rblock_max_invalid(struct rrpc_block
*ra
,
434 struct rrpc_block
*rb
)
436 if (ra
->nr_invalid_pages
== rb
->nr_invalid_pages
)
439 return (ra
->nr_invalid_pages
< rb
->nr_invalid_pages
) ? rb
: ra
;
442 /* linearly find the block with highest number of invalid pages
445 static struct rrpc_block
*block_prio_find_max(struct rrpc_lun
*rlun
)
447 struct list_head
*prio_list
= &rlun
->prio_list
;
448 struct rrpc_block
*rblock
, *max
;
450 BUG_ON(list_empty(prio_list
));
452 max
= list_first_entry(prio_list
, struct rrpc_block
, prio
);
453 list_for_each_entry(rblock
, prio_list
, prio
)
454 max
= rblock_max_invalid(max
, rblock
);
459 static void rrpc_lun_gc(struct work_struct
*work
)
461 struct rrpc_lun
*rlun
= container_of(work
, struct rrpc_lun
, ws_gc
);
462 struct rrpc
*rrpc
= rlun
->rrpc
;
463 struct nvm_lun
*lun
= rlun
->parent
;
464 struct rrpc_block_gc
*gcb
;
465 unsigned int nr_blocks_need
;
467 nr_blocks_need
= rrpc
->dev
->blks_per_lun
/ GC_LIMIT_INVERSE
;
469 if (nr_blocks_need
< rrpc
->nr_luns
)
470 nr_blocks_need
= rrpc
->nr_luns
;
472 spin_lock(&rlun
->lock
);
473 while (nr_blocks_need
> lun
->nr_free_blocks
&&
474 !list_empty(&rlun
->prio_list
)) {
475 struct rrpc_block
*rblock
= block_prio_find_max(rlun
);
476 struct nvm_block
*block
= rblock
->parent
;
478 if (!rblock
->nr_invalid_pages
)
481 gcb
= mempool_alloc(rrpc
->gcb_pool
, GFP_ATOMIC
);
485 list_del_init(&rblock
->prio
);
487 BUG_ON(!block_is_full(rrpc
, rblock
));
489 pr_debug("rrpc: selected block '%lu' for GC\n", block
->id
);
493 INIT_WORK(&gcb
->ws_gc
, rrpc_block_gc
);
495 queue_work(rrpc
->kgc_wq
, &gcb
->ws_gc
);
499 spin_unlock(&rlun
->lock
);
501 /* TODO: Hint that request queue can be started again */
504 static void rrpc_gc_queue(struct work_struct
*work
)
506 struct rrpc_block_gc
*gcb
= container_of(work
, struct rrpc_block_gc
,
508 struct rrpc
*rrpc
= gcb
->rrpc
;
509 struct rrpc_block
*rblk
= gcb
->rblk
;
510 struct rrpc_lun
*rlun
= rblk
->rlun
;
511 struct nvm_lun
*lun
= rblk
->parent
->lun
;
512 struct nvm_block
*blk
= rblk
->parent
;
514 spin_lock(&rlun
->lock
);
515 list_add_tail(&rblk
->prio
, &rlun
->prio_list
);
516 spin_unlock(&rlun
->lock
);
518 spin_lock(&lun
->lock
);
519 lun
->nr_open_blocks
--;
520 lun
->nr_closed_blocks
++;
521 blk
->state
&= ~NVM_BLK_ST_OPEN
;
522 blk
->state
|= NVM_BLK_ST_CLOSED
;
523 list_move_tail(&rblk
->list
, &rlun
->closed_list
);
524 spin_unlock(&lun
->lock
);
526 mempool_free(gcb
, rrpc
->gcb_pool
);
527 pr_debug("nvm: block '%lu' is full, allow GC (sched)\n",
531 static const struct block_device_operations rrpc_fops
= {
532 .owner
= THIS_MODULE
,
535 static struct rrpc_lun
*rrpc_get_lun_rr(struct rrpc
*rrpc
, int is_gc
)
538 struct rrpc_lun
*rlun
, *max_free
;
541 return get_next_lun(rrpc
);
543 /* during GC, we don't care about RR, instead we want to make
544 * sure that we maintain evenness between the block luns.
546 max_free
= &rrpc
->luns
[0];
547 /* prevent GC-ing lun from devouring pages of a lun with
548 * little free blocks. We don't take the lock as we only need an
551 rrpc_for_each_lun(rrpc
, rlun
, i
) {
552 if (rlun
->parent
->nr_free_blocks
>
553 max_free
->parent
->nr_free_blocks
)
560 static struct rrpc_addr
*rrpc_update_map(struct rrpc
*rrpc
, sector_t laddr
,
561 struct rrpc_block
*rblk
, u64 paddr
)
563 struct rrpc_addr
*gp
;
564 struct rrpc_rev_addr
*rev
;
566 BUG_ON(laddr
>= rrpc
->nr_sects
);
568 gp
= &rrpc
->trans_map
[laddr
];
569 spin_lock(&rrpc
->rev_lock
);
571 rrpc_page_invalidate(rrpc
, gp
);
576 rev
= &rrpc
->rev_trans_map
[gp
->addr
- rrpc
->poffset
];
578 spin_unlock(&rrpc
->rev_lock
);
583 static u64
rrpc_alloc_addr(struct rrpc
*rrpc
, struct rrpc_block
*rblk
)
585 u64 addr
= ADDR_EMPTY
;
587 spin_lock(&rblk
->lock
);
588 if (block_is_full(rrpc
, rblk
))
591 addr
= block_to_addr(rrpc
, rblk
) + rblk
->next_page
;
595 spin_unlock(&rblk
->lock
);
599 /* Simple round-robin Logical to physical address translation.
601 * Retrieve the mapping using the active append point. Then update the ap for
602 * the next write to the disk.
604 * Returns rrpc_addr with the physical address and block. Remember to return to
605 * rrpc->addr_cache when request is finished.
607 static struct rrpc_addr
*rrpc_map_page(struct rrpc
*rrpc
, sector_t laddr
,
610 struct rrpc_lun
*rlun
;
611 struct rrpc_block
*rblk
;
615 rlun
= rrpc_get_lun_rr(rrpc
, is_gc
);
618 if (!is_gc
&& lun
->nr_free_blocks
< rrpc
->nr_luns
* 4)
621 spin_lock(&rlun
->lock
);
625 paddr
= rrpc_alloc_addr(rrpc
, rblk
);
627 if (paddr
== ADDR_EMPTY
) {
628 rblk
= rrpc_get_blk(rrpc
, rlun
, 0);
630 rrpc_set_lun_cur(rlun
, rblk
);
635 /* retry from emergency gc block */
636 paddr
= rrpc_alloc_addr(rrpc
, rlun
->gc_cur
);
637 if (paddr
== ADDR_EMPTY
) {
638 rblk
= rrpc_get_blk(rrpc
, rlun
, 1);
640 pr_err("rrpc: no more blocks");
645 paddr
= rrpc_alloc_addr(rrpc
, rlun
->gc_cur
);
651 spin_unlock(&rlun
->lock
);
652 return rrpc_update_map(rrpc
, laddr
, rblk
, paddr
);
654 spin_unlock(&rlun
->lock
);
658 static void rrpc_run_gc(struct rrpc
*rrpc
, struct rrpc_block
*rblk
)
660 struct rrpc_block_gc
*gcb
;
662 gcb
= mempool_alloc(rrpc
->gcb_pool
, GFP_ATOMIC
);
664 pr_err("rrpc: unable to queue block for gc.");
671 INIT_WORK(&gcb
->ws_gc
, rrpc_gc_queue
);
672 queue_work(rrpc
->kgc_wq
, &gcb
->ws_gc
);
675 static void rrpc_end_io_write(struct rrpc
*rrpc
, struct rrpc_rq
*rrqd
,
676 sector_t laddr
, uint8_t npages
)
679 struct rrpc_block
*rblk
;
683 for (i
= 0; i
< npages
; i
++) {
684 p
= &rrpc
->trans_map
[laddr
+ i
];
686 lun
= rblk
->parent
->lun
;
688 cmnt_size
= atomic_inc_return(&rblk
->data_cmnt_size
);
689 if (unlikely(cmnt_size
== rrpc
->dev
->sec_per_blk
))
690 rrpc_run_gc(rrpc
, rblk
);
694 static void rrpc_end_io(struct nvm_rq
*rqd
)
696 struct rrpc
*rrpc
= container_of(rqd
->ins
, struct rrpc
, instance
);
697 struct rrpc_rq
*rrqd
= nvm_rq_to_pdu(rqd
);
698 uint8_t npages
= rqd
->nr_ppas
;
699 sector_t laddr
= rrpc_get_laddr(rqd
->bio
) - npages
;
701 if (bio_data_dir(rqd
->bio
) == WRITE
)
702 rrpc_end_io_write(rrpc
, rrqd
, laddr
, npages
);
706 if (rrqd
->flags
& NVM_IOTYPE_GC
)
709 rrpc_unlock_rq(rrpc
, rqd
);
712 nvm_dev_dma_free(rrpc
->dev
, rqd
->ppa_list
, rqd
->dma_ppa_list
);
714 mempool_free(rqd
, rrpc
->rq_pool
);
717 static int rrpc_read_ppalist_rq(struct rrpc
*rrpc
, struct bio
*bio
,
718 struct nvm_rq
*rqd
, unsigned long flags
, int npages
)
720 struct rrpc_inflight_rq
*r
= rrpc_get_inflight_rq(rqd
);
721 struct rrpc_addr
*gp
;
722 sector_t laddr
= rrpc_get_laddr(bio
);
723 int is_gc
= flags
& NVM_IOTYPE_GC
;
726 if (!is_gc
&& rrpc_lock_rq(rrpc
, bio
, rqd
)) {
727 nvm_dev_dma_free(rrpc
->dev
, rqd
->ppa_list
, rqd
->dma_ppa_list
);
728 return NVM_IO_REQUEUE
;
731 for (i
= 0; i
< npages
; i
++) {
732 /* We assume that mapping occurs at 4KB granularity */
733 BUG_ON(!(laddr
+ i
>= 0 && laddr
+ i
< rrpc
->nr_sects
));
734 gp
= &rrpc
->trans_map
[laddr
+ i
];
737 rqd
->ppa_list
[i
] = rrpc_ppa_to_gaddr(rrpc
->dev
,
741 rrpc_unlock_laddr(rrpc
, r
);
742 nvm_dev_dma_free(rrpc
->dev
, rqd
->ppa_list
,
748 rqd
->opcode
= NVM_OP_HBREAD
;
753 static int rrpc_read_rq(struct rrpc
*rrpc
, struct bio
*bio
, struct nvm_rq
*rqd
,
756 struct rrpc_rq
*rrqd
= nvm_rq_to_pdu(rqd
);
757 int is_gc
= flags
& NVM_IOTYPE_GC
;
758 sector_t laddr
= rrpc_get_laddr(bio
);
759 struct rrpc_addr
*gp
;
761 if (!is_gc
&& rrpc_lock_rq(rrpc
, bio
, rqd
))
762 return NVM_IO_REQUEUE
;
764 BUG_ON(!(laddr
>= 0 && laddr
< rrpc
->nr_sects
));
765 gp
= &rrpc
->trans_map
[laddr
];
768 rqd
->ppa_addr
= rrpc_ppa_to_gaddr(rrpc
->dev
, gp
->addr
);
771 rrpc_unlock_rq(rrpc
, rqd
);
775 rqd
->opcode
= NVM_OP_HBREAD
;
781 static int rrpc_write_ppalist_rq(struct rrpc
*rrpc
, struct bio
*bio
,
782 struct nvm_rq
*rqd
, unsigned long flags
, int npages
)
784 struct rrpc_inflight_rq
*r
= rrpc_get_inflight_rq(rqd
);
786 sector_t laddr
= rrpc_get_laddr(bio
);
787 int is_gc
= flags
& NVM_IOTYPE_GC
;
790 if (!is_gc
&& rrpc_lock_rq(rrpc
, bio
, rqd
)) {
791 nvm_dev_dma_free(rrpc
->dev
, rqd
->ppa_list
, rqd
->dma_ppa_list
);
792 return NVM_IO_REQUEUE
;
795 for (i
= 0; i
< npages
; i
++) {
796 /* We assume that mapping occurs at 4KB granularity */
797 p
= rrpc_map_page(rrpc
, laddr
+ i
, is_gc
);
800 rrpc_unlock_laddr(rrpc
, r
);
801 nvm_dev_dma_free(rrpc
->dev
, rqd
->ppa_list
,
804 return NVM_IO_REQUEUE
;
807 rqd
->ppa_list
[i
] = rrpc_ppa_to_gaddr(rrpc
->dev
,
811 rqd
->opcode
= NVM_OP_HBWRITE
;
816 static int rrpc_write_rq(struct rrpc
*rrpc
, struct bio
*bio
,
817 struct nvm_rq
*rqd
, unsigned long flags
)
819 struct rrpc_rq
*rrqd
= nvm_rq_to_pdu(rqd
);
821 int is_gc
= flags
& NVM_IOTYPE_GC
;
822 sector_t laddr
= rrpc_get_laddr(bio
);
824 if (!is_gc
&& rrpc_lock_rq(rrpc
, bio
, rqd
))
825 return NVM_IO_REQUEUE
;
827 p
= rrpc_map_page(rrpc
, laddr
, is_gc
);
830 rrpc_unlock_rq(rrpc
, rqd
);
832 return NVM_IO_REQUEUE
;
835 rqd
->ppa_addr
= rrpc_ppa_to_gaddr(rrpc
->dev
, p
->addr
);
836 rqd
->opcode
= NVM_OP_HBWRITE
;
842 static int rrpc_setup_rq(struct rrpc
*rrpc
, struct bio
*bio
,
843 struct nvm_rq
*rqd
, unsigned long flags
, uint8_t npages
)
846 rqd
->ppa_list
= nvm_dev_dma_alloc(rrpc
->dev
, GFP_KERNEL
,
848 if (!rqd
->ppa_list
) {
849 pr_err("rrpc: not able to allocate ppa list\n");
853 if (bio_rw(bio
) == WRITE
)
854 return rrpc_write_ppalist_rq(rrpc
, bio
, rqd
, flags
,
857 return rrpc_read_ppalist_rq(rrpc
, bio
, rqd
, flags
, npages
);
860 if (bio_rw(bio
) == WRITE
)
861 return rrpc_write_rq(rrpc
, bio
, rqd
, flags
);
863 return rrpc_read_rq(rrpc
, bio
, rqd
, flags
);
866 static int rrpc_submit_io(struct rrpc
*rrpc
, struct bio
*bio
,
867 struct nvm_rq
*rqd
, unsigned long flags
)
870 struct rrpc_rq
*rrq
= nvm_rq_to_pdu(rqd
);
871 uint8_t nr_pages
= rrpc_get_pages(bio
);
872 int bio_size
= bio_sectors(bio
) << 9;
874 if (bio_size
< rrpc
->dev
->sec_size
)
876 else if (bio_size
> rrpc
->dev
->max_rq_size
)
879 err
= rrpc_setup_rq(rrpc
, bio
, rqd
, flags
, nr_pages
);
885 rqd
->ins
= &rrpc
->instance
;
886 rqd
->nr_ppas
= nr_pages
;
889 err
= nvm_submit_io(rrpc
->dev
, rqd
);
891 pr_err("rrpc: I/O submission failed: %d\n", err
);
893 if (!(flags
& NVM_IOTYPE_GC
)) {
894 rrpc_unlock_rq(rrpc
, rqd
);
895 if (rqd
->nr_ppas
> 1)
896 nvm_dev_dma_free(rrpc
->dev
,
897 rqd
->ppa_list
, rqd
->dma_ppa_list
);
905 static blk_qc_t
rrpc_make_rq(struct request_queue
*q
, struct bio
*bio
)
907 struct rrpc
*rrpc
= q
->queuedata
;
911 if (bio
->bi_rw
& REQ_DISCARD
) {
912 rrpc_discard(rrpc
, bio
);
913 return BLK_QC_T_NONE
;
916 rqd
= mempool_alloc(rrpc
->rq_pool
, GFP_KERNEL
);
918 pr_err_ratelimited("rrpc: not able to queue bio.");
920 return BLK_QC_T_NONE
;
922 memset(rqd
, 0, sizeof(struct nvm_rq
));
924 err
= rrpc_submit_io(rrpc
, bio
, rqd
, NVM_IOTYPE_NONE
);
927 return BLK_QC_T_NONE
;
935 spin_lock(&rrpc
->bio_lock
);
936 bio_list_add(&rrpc
->requeue_bios
, bio
);
937 spin_unlock(&rrpc
->bio_lock
);
938 queue_work(rrpc
->kgc_wq
, &rrpc
->ws_requeue
);
942 mempool_free(rqd
, rrpc
->rq_pool
);
943 return BLK_QC_T_NONE
;
946 static void rrpc_requeue(struct work_struct
*work
)
948 struct rrpc
*rrpc
= container_of(work
, struct rrpc
, ws_requeue
);
949 struct bio_list bios
;
952 bio_list_init(&bios
);
954 spin_lock(&rrpc
->bio_lock
);
955 bio_list_merge(&bios
, &rrpc
->requeue_bios
);
956 bio_list_init(&rrpc
->requeue_bios
);
957 spin_unlock(&rrpc
->bio_lock
);
959 while ((bio
= bio_list_pop(&bios
)))
960 rrpc_make_rq(rrpc
->disk
->queue
, bio
);
963 static void rrpc_gc_free(struct rrpc
*rrpc
)
966 destroy_workqueue(rrpc
->krqd_wq
);
969 destroy_workqueue(rrpc
->kgc_wq
);
972 static int rrpc_gc_init(struct rrpc
*rrpc
)
974 rrpc
->krqd_wq
= alloc_workqueue("rrpc-lun", WQ_MEM_RECLAIM
|WQ_UNBOUND
,
979 rrpc
->kgc_wq
= alloc_workqueue("rrpc-bg", WQ_MEM_RECLAIM
, 1);
983 setup_timer(&rrpc
->gc_timer
, rrpc_gc_timer
, (unsigned long)rrpc
);
988 static void rrpc_map_free(struct rrpc
*rrpc
)
990 vfree(rrpc
->rev_trans_map
);
991 vfree(rrpc
->trans_map
);
994 static int rrpc_l2p_update(u64 slba
, u32 nlb
, __le64
*entries
, void *private)
996 struct rrpc
*rrpc
= (struct rrpc
*)private;
997 struct nvm_dev
*dev
= rrpc
->dev
;
998 struct rrpc_addr
*addr
= rrpc
->trans_map
+ slba
;
999 struct rrpc_rev_addr
*raddr
= rrpc
->rev_trans_map
;
1000 u64 elba
= slba
+ nlb
;
1003 if (unlikely(elba
> dev
->total_secs
)) {
1004 pr_err("nvm: L2P data from device is out of bounds!\n");
1008 for (i
= 0; i
< nlb
; i
++) {
1009 u64 pba
= le64_to_cpu(entries
[i
]);
1011 /* LNVM treats address-spaces as silos, LBA and PBA are
1012 * equally large and zero-indexed.
1014 if (unlikely(pba
>= dev
->total_secs
&& pba
!= U64_MAX
)) {
1015 pr_err("nvm: L2P data entry is out of bounds!\n");
1019 /* Address zero is a special one. The first page on a disk is
1020 * protected. As it often holds internal device boot
1026 div_u64_rem(pba
, rrpc
->nr_sects
, &mod
);
1029 raddr
[mod
].addr
= slba
+ i
;
1035 static int rrpc_map_init(struct rrpc
*rrpc
)
1037 struct nvm_dev
*dev
= rrpc
->dev
;
1041 rrpc
->trans_map
= vzalloc(sizeof(struct rrpc_addr
) * rrpc
->nr_sects
);
1042 if (!rrpc
->trans_map
)
1045 rrpc
->rev_trans_map
= vmalloc(sizeof(struct rrpc_rev_addr
)
1047 if (!rrpc
->rev_trans_map
)
1050 for (i
= 0; i
< rrpc
->nr_sects
; i
++) {
1051 struct rrpc_addr
*p
= &rrpc
->trans_map
[i
];
1052 struct rrpc_rev_addr
*r
= &rrpc
->rev_trans_map
[i
];
1054 p
->addr
= ADDR_EMPTY
;
1055 r
->addr
= ADDR_EMPTY
;
1058 if (!dev
->ops
->get_l2p_tbl
)
1061 /* Bring up the mapping table from device */
1062 ret
= dev
->ops
->get_l2p_tbl(dev
, rrpc
->soffset
, rrpc
->nr_sects
,
1063 rrpc_l2p_update
, rrpc
);
1065 pr_err("nvm: rrpc: could not read L2P table.\n");
1072 /* Minimum pages needed within a lun */
1073 #define PAGE_POOL_SIZE 16
1074 #define ADDR_POOL_SIZE 64
1076 static int rrpc_core_init(struct rrpc
*rrpc
)
1078 down_write(&rrpc_lock
);
1079 if (!rrpc_gcb_cache
) {
1080 rrpc_gcb_cache
= kmem_cache_create("rrpc_gcb",
1081 sizeof(struct rrpc_block_gc
), 0, 0, NULL
);
1082 if (!rrpc_gcb_cache
) {
1083 up_write(&rrpc_lock
);
1087 rrpc_rq_cache
= kmem_cache_create("rrpc_rq",
1088 sizeof(struct nvm_rq
) + sizeof(struct rrpc_rq
),
1090 if (!rrpc_rq_cache
) {
1091 kmem_cache_destroy(rrpc_gcb_cache
);
1092 up_write(&rrpc_lock
);
1096 up_write(&rrpc_lock
);
1098 rrpc
->page_pool
= mempool_create_page_pool(PAGE_POOL_SIZE
, 0);
1099 if (!rrpc
->page_pool
)
1102 rrpc
->gcb_pool
= mempool_create_slab_pool(rrpc
->dev
->nr_luns
,
1104 if (!rrpc
->gcb_pool
)
1107 rrpc
->rq_pool
= mempool_create_slab_pool(64, rrpc_rq_cache
);
1111 spin_lock_init(&rrpc
->inflights
.lock
);
1112 INIT_LIST_HEAD(&rrpc
->inflights
.reqs
);
1117 static void rrpc_core_free(struct rrpc
*rrpc
)
1119 mempool_destroy(rrpc
->page_pool
);
1120 mempool_destroy(rrpc
->gcb_pool
);
1121 mempool_destroy(rrpc
->rq_pool
);
1124 static void rrpc_luns_free(struct rrpc
*rrpc
)
1126 struct nvm_dev
*dev
= rrpc
->dev
;
1127 struct nvm_lun
*lun
;
1128 struct rrpc_lun
*rlun
;
1134 for (i
= 0; i
< rrpc
->nr_luns
; i
++) {
1135 rlun
= &rrpc
->luns
[i
];
1139 dev
->mt
->release_lun(dev
, lun
->id
);
1140 vfree(rlun
->blocks
);
1146 static int rrpc_luns_init(struct rrpc
*rrpc
, int lun_begin
, int lun_end
)
1148 struct nvm_dev
*dev
= rrpc
->dev
;
1149 struct rrpc_lun
*rlun
;
1150 int i
, j
, ret
= -EINVAL
;
1152 if (dev
->sec_per_blk
> MAX_INVALID_PAGES_STORAGE
* BITS_PER_LONG
) {
1153 pr_err("rrpc: number of pages per block too high.");
1157 spin_lock_init(&rrpc
->rev_lock
);
1159 rrpc
->luns
= kcalloc(rrpc
->nr_luns
, sizeof(struct rrpc_lun
),
1165 for (i
= 0; i
< rrpc
->nr_luns
; i
++) {
1166 int lunid
= lun_begin
+ i
;
1167 struct nvm_lun
*lun
;
1169 if (dev
->mt
->reserve_lun(dev
, lunid
)) {
1170 pr_err("rrpc: lun %u is already allocated\n", lunid
);
1174 lun
= dev
->mt
->get_lun(dev
, lunid
);
1178 rlun
= &rrpc
->luns
[i
];
1180 rlun
->blocks
= vzalloc(sizeof(struct rrpc_block
) *
1181 rrpc
->dev
->blks_per_lun
);
1182 if (!rlun
->blocks
) {
1187 for (j
= 0; j
< rrpc
->dev
->blks_per_lun
; j
++) {
1188 struct rrpc_block
*rblk
= &rlun
->blocks
[j
];
1189 struct nvm_block
*blk
= &lun
->blocks
[j
];
1193 INIT_LIST_HEAD(&rblk
->prio
);
1194 spin_lock_init(&rblk
->lock
);
1198 INIT_LIST_HEAD(&rlun
->prio_list
);
1199 INIT_LIST_HEAD(&rlun
->open_list
);
1200 INIT_LIST_HEAD(&rlun
->closed_list
);
1202 INIT_WORK(&rlun
->ws_gc
, rrpc_lun_gc
);
1203 spin_lock_init(&rlun
->lock
);
1211 /* returns 0 on success and stores the beginning address in *begin */
1212 static int rrpc_area_init(struct rrpc
*rrpc
, sector_t
*begin
)
1214 struct nvm_dev
*dev
= rrpc
->dev
;
1215 struct nvmm_type
*mt
= dev
->mt
;
1216 sector_t size
= rrpc
->nr_sects
* dev
->sec_size
;
1221 ret
= mt
->get_area(dev
, begin
, size
);
1223 *begin
>>= (ilog2(dev
->sec_size
) - 9);
1228 static void rrpc_area_free(struct rrpc
*rrpc
)
1230 struct nvm_dev
*dev
= rrpc
->dev
;
1231 struct nvmm_type
*mt
= dev
->mt
;
1232 sector_t begin
= rrpc
->soffset
<< (ilog2(dev
->sec_size
) - 9);
1234 mt
->put_area(dev
, begin
);
1237 static void rrpc_free(struct rrpc
*rrpc
)
1240 rrpc_map_free(rrpc
);
1241 rrpc_core_free(rrpc
);
1242 rrpc_luns_free(rrpc
);
1243 rrpc_area_free(rrpc
);
1248 static void rrpc_exit(void *private)
1250 struct rrpc
*rrpc
= private;
1252 del_timer(&rrpc
->gc_timer
);
1254 flush_workqueue(rrpc
->krqd_wq
);
1255 flush_workqueue(rrpc
->kgc_wq
);
1260 static sector_t
rrpc_capacity(void *private)
1262 struct rrpc
*rrpc
= private;
1263 struct nvm_dev
*dev
= rrpc
->dev
;
1264 sector_t reserved
, provisioned
;
1266 /* cur, gc, and two emergency blocks for each lun */
1267 reserved
= rrpc
->nr_luns
* dev
->sec_per_blk
* 4;
1268 provisioned
= rrpc
->nr_sects
- reserved
;
1270 if (reserved
> rrpc
->nr_sects
) {
1271 pr_err("rrpc: not enough space available to expose storage.\n");
1275 sector_div(provisioned
, 10);
1276 return provisioned
* 9 * NR_PHY_IN_LOG
;
1280 * Looks up the logical address from reverse trans map and check if its valid by
1281 * comparing the logical to physical address with the physical address.
1282 * Returns 0 on free, otherwise 1 if in use
1284 static void rrpc_block_map_update(struct rrpc
*rrpc
, struct rrpc_block
*rblk
)
1286 struct nvm_dev
*dev
= rrpc
->dev
;
1288 struct rrpc_addr
*laddr
;
1289 u64 bpaddr
, paddr
, pladdr
;
1291 bpaddr
= block_to_rel_addr(rrpc
, rblk
);
1292 for (offset
= 0; offset
< dev
->sec_per_blk
; offset
++) {
1293 paddr
= bpaddr
+ offset
;
1295 pladdr
= rrpc
->rev_trans_map
[paddr
].addr
;
1296 if (pladdr
== ADDR_EMPTY
)
1299 laddr
= &rrpc
->trans_map
[pladdr
];
1301 if (paddr
== laddr
->addr
) {
1304 set_bit(offset
, rblk
->invalid_pages
);
1305 rblk
->nr_invalid_pages
++;
1310 static int rrpc_blocks_init(struct rrpc
*rrpc
)
1312 struct rrpc_lun
*rlun
;
1313 struct rrpc_block
*rblk
;
1314 int lun_iter
, blk_iter
;
1316 for (lun_iter
= 0; lun_iter
< rrpc
->nr_luns
; lun_iter
++) {
1317 rlun
= &rrpc
->luns
[lun_iter
];
1319 for (blk_iter
= 0; blk_iter
< rrpc
->dev
->blks_per_lun
;
1321 rblk
= &rlun
->blocks
[blk_iter
];
1322 rrpc_block_map_update(rrpc
, rblk
);
1329 static int rrpc_luns_configure(struct rrpc
*rrpc
)
1331 struct rrpc_lun
*rlun
;
1332 struct rrpc_block
*rblk
;
1335 for (i
= 0; i
< rrpc
->nr_luns
; i
++) {
1336 rlun
= &rrpc
->luns
[i
];
1338 rblk
= rrpc_get_blk(rrpc
, rlun
, 0);
1342 rrpc_set_lun_cur(rlun
, rblk
);
1344 /* Emergency gc block */
1345 rblk
= rrpc_get_blk(rrpc
, rlun
, 1);
1348 rlun
->gc_cur
= rblk
;
1353 rrpc_put_blks(rrpc
);
1357 static struct nvm_tgt_type tt_rrpc
;
1359 static void *rrpc_init(struct nvm_dev
*dev
, struct gendisk
*tdisk
,
1360 int lun_begin
, int lun_end
)
1362 struct request_queue
*bqueue
= dev
->q
;
1363 struct request_queue
*tqueue
= tdisk
->queue
;
1368 if (!(dev
->identity
.dom
& NVM_RSP_L2P
)) {
1369 pr_err("nvm: rrpc: device does not support l2p (%x)\n",
1371 return ERR_PTR(-EINVAL
);
1374 rrpc
= kzalloc(sizeof(struct rrpc
), GFP_KERNEL
);
1376 return ERR_PTR(-ENOMEM
);
1378 rrpc
->instance
.tt
= &tt_rrpc
;
1382 bio_list_init(&rrpc
->requeue_bios
);
1383 spin_lock_init(&rrpc
->bio_lock
);
1384 INIT_WORK(&rrpc
->ws_requeue
, rrpc_requeue
);
1386 rrpc
->nr_luns
= lun_end
- lun_begin
+ 1;
1387 rrpc
->total_blocks
= (unsigned long)dev
->blks_per_lun
* rrpc
->nr_luns
;
1388 rrpc
->nr_sects
= (unsigned long long)dev
->sec_per_lun
* rrpc
->nr_luns
;
1390 /* simple round-robin strategy */
1391 atomic_set(&rrpc
->next_lun
, -1);
1393 ret
= rrpc_area_init(rrpc
, &soffset
);
1395 pr_err("nvm: rrpc: could not initialize area\n");
1396 return ERR_PTR(ret
);
1398 rrpc
->soffset
= soffset
;
1400 ret
= rrpc_luns_init(rrpc
, lun_begin
, lun_end
);
1402 pr_err("nvm: rrpc: could not initialize luns\n");
1406 rrpc
->poffset
= dev
->sec_per_lun
* lun_begin
;
1407 rrpc
->lun_offset
= lun_begin
;
1409 ret
= rrpc_core_init(rrpc
);
1411 pr_err("nvm: rrpc: could not initialize core\n");
1415 ret
= rrpc_map_init(rrpc
);
1417 pr_err("nvm: rrpc: could not initialize maps\n");
1421 ret
= rrpc_blocks_init(rrpc
);
1423 pr_err("nvm: rrpc: could not initialize state for blocks\n");
1427 ret
= rrpc_luns_configure(rrpc
);
1429 pr_err("nvm: rrpc: not enough blocks available in LUNs.\n");
1433 ret
= rrpc_gc_init(rrpc
);
1435 pr_err("nvm: rrpc: could not initialize gc\n");
1439 /* inherit the size from the underlying device */
1440 blk_queue_logical_block_size(tqueue
, queue_physical_block_size(bqueue
));
1441 blk_queue_max_hw_sectors(tqueue
, queue_max_hw_sectors(bqueue
));
1443 pr_info("nvm: rrpc initialized with %u luns and %llu pages.\n",
1444 rrpc
->nr_luns
, (unsigned long long)rrpc
->nr_sects
);
1446 mod_timer(&rrpc
->gc_timer
, jiffies
+ msecs_to_jiffies(10));
1451 return ERR_PTR(ret
);
1454 /* round robin, page-based FTL, and cost-based GC */
1455 static struct nvm_tgt_type tt_rrpc
= {
1457 .version
= {1, 0, 0},
1459 .make_rq
= rrpc_make_rq
,
1460 .capacity
= rrpc_capacity
,
1461 .end_io
= rrpc_end_io
,
1467 static int __init
rrpc_module_init(void)
1469 return nvm_register_tgt_type(&tt_rrpc
);
1472 static void rrpc_module_exit(void)
1474 nvm_unregister_tgt_type(&tt_rrpc
);
1477 module_init(rrpc_module_init
);
1478 module_exit(rrpc_module_exit
);
1479 MODULE_LICENSE("GPL v2");
1480 MODULE_DESCRIPTION("Block-Device Target for Open-Channel SSDs");