2 * drivers/mtd/nand/au1550nd.c
4 * Copyright (C) 2004 Embedded Edge, LLC
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
12 #include <linux/slab.h>
13 #include <linux/gpio.h>
14 #include <linux/module.h>
15 #include <linux/interrupt.h>
16 #include <linux/mtd/mtd.h>
17 #include <linux/mtd/nand.h>
18 #include <linux/mtd/partitions.h>
19 #include <linux/platform_device.h>
21 #include <asm/mach-au1x00/au1000.h>
22 #include <asm/mach-au1x00/au1550nd.h>
26 struct nand_chip chip
;
30 void (*write_byte
)(struct mtd_info
*, u_char
);
34 * au_read_byte - read one byte from the chip
35 * @mtd: MTD device structure
37 * read function for 8bit buswidth
39 static u_char
au_read_byte(struct mtd_info
*mtd
)
41 struct nand_chip
*this = mtd_to_nand(mtd
);
42 u_char ret
= readb(this->IO_ADDR_R
);
43 wmb(); /* drain writebuffer */
48 * au_write_byte - write one byte to the chip
49 * @mtd: MTD device structure
50 * @byte: pointer to data byte to write
52 * write function for 8it buswidth
54 static void au_write_byte(struct mtd_info
*mtd
, u_char byte
)
56 struct nand_chip
*this = mtd_to_nand(mtd
);
57 writeb(byte
, this->IO_ADDR_W
);
58 wmb(); /* drain writebuffer */
62 * au_read_byte16 - read one byte endianness aware from the chip
63 * @mtd: MTD device structure
65 * read function for 16bit buswidth with endianness conversion
67 static u_char
au_read_byte16(struct mtd_info
*mtd
)
69 struct nand_chip
*this = mtd_to_nand(mtd
);
70 u_char ret
= (u_char
) cpu_to_le16(readw(this->IO_ADDR_R
));
71 wmb(); /* drain writebuffer */
76 * au_write_byte16 - write one byte endianness aware to the chip
77 * @mtd: MTD device structure
78 * @byte: pointer to data byte to write
80 * write function for 16bit buswidth with endianness conversion
82 static void au_write_byte16(struct mtd_info
*mtd
, u_char byte
)
84 struct nand_chip
*this = mtd_to_nand(mtd
);
85 writew(le16_to_cpu((u16
) byte
), this->IO_ADDR_W
);
86 wmb(); /* drain writebuffer */
90 * au_read_word - read one word from the chip
91 * @mtd: MTD device structure
93 * read function for 16bit buswidth without endianness conversion
95 static u16
au_read_word(struct mtd_info
*mtd
)
97 struct nand_chip
*this = mtd_to_nand(mtd
);
98 u16 ret
= readw(this->IO_ADDR_R
);
99 wmb(); /* drain writebuffer */
104 * au_write_buf - write buffer to chip
105 * @mtd: MTD device structure
107 * @len: number of bytes to write
109 * write function for 8bit buswidth
111 static void au_write_buf(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
114 struct nand_chip
*this = mtd_to_nand(mtd
);
116 for (i
= 0; i
< len
; i
++) {
117 writeb(buf
[i
], this->IO_ADDR_W
);
118 wmb(); /* drain writebuffer */
123 * au_read_buf - read chip data into buffer
124 * @mtd: MTD device structure
125 * @buf: buffer to store date
126 * @len: number of bytes to read
128 * read function for 8bit buswidth
130 static void au_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
133 struct nand_chip
*this = mtd_to_nand(mtd
);
135 for (i
= 0; i
< len
; i
++) {
136 buf
[i
] = readb(this->IO_ADDR_R
);
137 wmb(); /* drain writebuffer */
142 * au_write_buf16 - write buffer to chip
143 * @mtd: MTD device structure
145 * @len: number of bytes to write
147 * write function for 16bit buswidth
149 static void au_write_buf16(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
152 struct nand_chip
*this = mtd_to_nand(mtd
);
153 u16
*p
= (u16
*) buf
;
156 for (i
= 0; i
< len
; i
++) {
157 writew(p
[i
], this->IO_ADDR_W
);
158 wmb(); /* drain writebuffer */
164 * au_read_buf16 - read chip data into buffer
165 * @mtd: MTD device structure
166 * @buf: buffer to store date
167 * @len: number of bytes to read
169 * read function for 16bit buswidth
171 static void au_read_buf16(struct mtd_info
*mtd
, u_char
*buf
, int len
)
174 struct nand_chip
*this = mtd_to_nand(mtd
);
175 u16
*p
= (u16
*) buf
;
178 for (i
= 0; i
< len
; i
++) {
179 p
[i
] = readw(this->IO_ADDR_R
);
180 wmb(); /* drain writebuffer */
184 /* Select the chip by setting nCE to low */
185 #define NAND_CTL_SETNCE 1
186 /* Deselect the chip by setting nCE to high */
187 #define NAND_CTL_CLRNCE 2
188 /* Select the command latch by setting CLE to high */
189 #define NAND_CTL_SETCLE 3
190 /* Deselect the command latch by setting CLE to low */
191 #define NAND_CTL_CLRCLE 4
192 /* Select the address latch by setting ALE to high */
193 #define NAND_CTL_SETALE 5
194 /* Deselect the address latch by setting ALE to low */
195 #define NAND_CTL_CLRALE 6
197 static void au1550_hwcontrol(struct mtd_info
*mtd
, int cmd
)
199 struct nand_chip
*this = mtd_to_nand(mtd
);
200 struct au1550nd_ctx
*ctx
= container_of(this, struct au1550nd_ctx
,
205 case NAND_CTL_SETCLE
:
206 this->IO_ADDR_W
= ctx
->base
+ MEM_STNAND_CMD
;
209 case NAND_CTL_CLRCLE
:
210 this->IO_ADDR_W
= ctx
->base
+ MEM_STNAND_DATA
;
213 case NAND_CTL_SETALE
:
214 this->IO_ADDR_W
= ctx
->base
+ MEM_STNAND_ADDR
;
217 case NAND_CTL_CLRALE
:
218 this->IO_ADDR_W
= ctx
->base
+ MEM_STNAND_DATA
;
219 /* FIXME: Nobody knows why this is necessary,
220 * but it works only that way */
224 case NAND_CTL_SETNCE
:
225 /* assert (force assert) chip enable */
226 alchemy_wrsmem((1 << (4 + ctx
->cs
)), AU1000_MEM_STNDCTL
);
229 case NAND_CTL_CLRNCE
:
230 /* deassert chip enable */
231 alchemy_wrsmem(0, AU1000_MEM_STNDCTL
);
235 this->IO_ADDR_R
= this->IO_ADDR_W
;
237 wmb(); /* Drain the writebuffer */
240 int au1550_device_ready(struct mtd_info
*mtd
)
242 return (alchemy_rdsmem(AU1000_MEM_STSTAT
) & 0x1) ? 1 : 0;
246 * au1550_select_chip - control -CE line
247 * Forbid driving -CE manually permitting the NAND controller to do this.
248 * Keeping -CE asserted during the whole sector reads interferes with the
249 * NOR flash and PCMCIA drivers as it causes contention on the static bus.
250 * We only have to hold -CE low for the NAND read commands since the flash
251 * chip needs it to be asserted during chip not ready time but the NAND
252 * controller keeps it released.
254 * @mtd: MTD device structure
255 * @chip: chipnumber to select, -1 for deselect
257 static void au1550_select_chip(struct mtd_info
*mtd
, int chip
)
262 * au1550_command - Send command to NAND device
263 * @mtd: MTD device structure
264 * @command: the command to be sent
265 * @column: the column address for this command, -1 if none
266 * @page_addr: the page address for this command, -1 if none
268 static void au1550_command(struct mtd_info
*mtd
, unsigned command
, int column
, int page_addr
)
270 struct nand_chip
*this = mtd_to_nand(mtd
);
271 struct au1550nd_ctx
*ctx
= container_of(this, struct au1550nd_ctx
,
273 int ce_override
= 0, i
;
274 unsigned long flags
= 0;
276 /* Begin command latch cycle */
277 au1550_hwcontrol(mtd
, NAND_CTL_SETCLE
);
279 * Write out the command to the device.
281 if (command
== NAND_CMD_SEQIN
) {
284 if (column
>= mtd
->writesize
) {
286 column
-= mtd
->writesize
;
287 readcmd
= NAND_CMD_READOOB
;
288 } else if (column
< 256) {
289 /* First 256 bytes --> READ0 */
290 readcmd
= NAND_CMD_READ0
;
293 readcmd
= NAND_CMD_READ1
;
295 ctx
->write_byte(mtd
, readcmd
);
297 ctx
->write_byte(mtd
, command
);
299 /* Set ALE and clear CLE to start address cycle */
300 au1550_hwcontrol(mtd
, NAND_CTL_CLRCLE
);
302 if (column
!= -1 || page_addr
!= -1) {
303 au1550_hwcontrol(mtd
, NAND_CTL_SETALE
);
305 /* Serially input address */
307 /* Adjust columns for 16 bit buswidth */
308 if (this->options
& NAND_BUSWIDTH_16
&&
309 !nand_opcode_8bits(command
))
311 ctx
->write_byte(mtd
, column
);
313 if (page_addr
!= -1) {
314 ctx
->write_byte(mtd
, (u8
)(page_addr
& 0xff));
316 if (command
== NAND_CMD_READ0
||
317 command
== NAND_CMD_READ1
||
318 command
== NAND_CMD_READOOB
) {
320 * NAND controller will release -CE after
321 * the last address byte is written, so we'll
322 * have to forcibly assert it. No interrupts
323 * are allowed while we do this as we don't
324 * want the NOR flash or PCMCIA drivers to
325 * steal our precious bytes of data...
328 local_irq_save(flags
);
329 au1550_hwcontrol(mtd
, NAND_CTL_SETNCE
);
332 ctx
->write_byte(mtd
, (u8
)(page_addr
>> 8));
334 /* One more address cycle for devices > 32MiB */
335 if (this->chipsize
> (32 << 20))
337 ((page_addr
>> 16) & 0x0f));
339 /* Latch in address */
340 au1550_hwcontrol(mtd
, NAND_CTL_CLRALE
);
344 * Program and erase have their own busy handlers.
345 * Status and sequential in need no delay.
349 case NAND_CMD_PAGEPROG
:
350 case NAND_CMD_ERASE1
:
351 case NAND_CMD_ERASE2
:
353 case NAND_CMD_STATUS
:
361 case NAND_CMD_READOOB
:
362 /* Check if we're really driving -CE low (just in case) */
363 if (unlikely(!ce_override
))
366 /* Apply a short delay always to ensure that we do wait tWB. */
368 /* Wait for a chip to become ready... */
369 for (i
= this->chip_delay
; !this->dev_ready(mtd
) && i
> 0; --i
)
372 /* Release -CE and re-enable interrupts. */
373 au1550_hwcontrol(mtd
, NAND_CTL_CLRNCE
);
374 local_irq_restore(flags
);
377 /* Apply this short delay always to ensure that we do wait tWB. */
380 while(!this->dev_ready(mtd
));
383 static int find_nand_cs(unsigned long nand_base
)
386 (void __iomem
*)KSEG1ADDR(AU1000_STATIC_MEM_PHYS_ADDR
);
387 unsigned long addr
, staddr
, start
, mask
, end
;
390 for (i
= 0; i
< 4; i
++) {
391 addr
= 0x1000 + (i
* 0x10); /* CSx */
392 staddr
= __raw_readl(base
+ addr
+ 0x08); /* STADDRx */
393 /* figure out the decoded range of this CS */
394 start
= (staddr
<< 4) & 0xfffc0000;
395 mask
= (staddr
<< 18) & 0xfffc0000;
396 end
= (start
| (start
- 1)) & ~(start
^ mask
);
397 if ((nand_base
>= start
) && (nand_base
< end
))
404 static int au1550nd_probe(struct platform_device
*pdev
)
406 struct au1550nd_platdata
*pd
;
407 struct au1550nd_ctx
*ctx
;
408 struct nand_chip
*this;
409 struct mtd_info
*mtd
;
413 pd
= dev_get_platdata(&pdev
->dev
);
415 dev_err(&pdev
->dev
, "missing platform data\n");
419 ctx
= kzalloc(sizeof(*ctx
), GFP_KERNEL
);
423 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
425 dev_err(&pdev
->dev
, "no NAND memory resource\n");
429 if (request_mem_region(r
->start
, resource_size(r
), "au1550-nand")) {
430 dev_err(&pdev
->dev
, "cannot claim NAND memory area\n");
435 ctx
->base
= ioremap_nocache(r
->start
, 0x1000);
437 dev_err(&pdev
->dev
, "cannot remap NAND memory area\n");
443 mtd
= nand_to_mtd(this);
444 mtd
->dev
.parent
= &pdev
->dev
;
446 /* figure out which CS# r->start belongs to */
447 cs
= find_nand_cs(r
->start
);
449 dev_err(&pdev
->dev
, "cannot detect NAND chipselect\n");
455 this->dev_ready
= au1550_device_ready
;
456 this->select_chip
= au1550_select_chip
;
457 this->cmdfunc
= au1550_command
;
459 /* 30 us command delay time */
460 this->chip_delay
= 30;
461 this->ecc
.mode
= NAND_ECC_SOFT
;
462 this->ecc
.algo
= NAND_ECC_HAMMING
;
465 this->options
|= NAND_BUSWIDTH_16
;
467 this->read_byte
= (pd
->devwidth
) ? au_read_byte16
: au_read_byte
;
468 ctx
->write_byte
= (pd
->devwidth
) ? au_write_byte16
: au_write_byte
;
469 this->read_word
= au_read_word
;
470 this->write_buf
= (pd
->devwidth
) ? au_write_buf16
: au_write_buf
;
471 this->read_buf
= (pd
->devwidth
) ? au_read_buf16
: au_read_buf
;
473 ret
= nand_scan(mtd
, 1);
475 dev_err(&pdev
->dev
, "NAND scan failed with %d\n", ret
);
479 mtd_device_register(mtd
, pd
->parts
, pd
->num_parts
);
481 platform_set_drvdata(pdev
, ctx
);
488 release_mem_region(r
->start
, resource_size(r
));
494 static int au1550nd_remove(struct platform_device
*pdev
)
496 struct au1550nd_ctx
*ctx
= platform_get_drvdata(pdev
);
497 struct resource
*r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
499 nand_release(nand_to_mtd(&ctx
->chip
));
501 release_mem_region(r
->start
, 0x1000);
506 static struct platform_driver au1550nd_driver
= {
508 .name
= "au1550-nand",
510 .probe
= au1550nd_probe
,
511 .remove
= au1550nd_remove
,
514 module_platform_driver(au1550nd_driver
);
516 MODULE_LICENSE("GPL");
517 MODULE_AUTHOR("Embedded Edge, LLC");
518 MODULE_DESCRIPTION("Board-specific glue layer for NAND flash on Pb1550 board");