net: smc91x: ACPI Enable lan91x adapters
[linux/fpc-iii.git] / drivers / mtd / nand / mxc_nand.c
blob5173fadc9a4e637f01817ed040a42b72af1d7a68
1 /*
2 * Copyright 2004-2007 Freescale Semiconductor, Inc. All Rights Reserved.
3 * Copyright 2008 Sascha Hauer, kernel@pengutronix.de
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License
7 * as published by the Free Software Foundation; either version 2
8 * of the License, or (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
17 * MA 02110-1301, USA.
20 #include <linux/delay.h>
21 #include <linux/slab.h>
22 #include <linux/init.h>
23 #include <linux/module.h>
24 #include <linux/mtd/mtd.h>
25 #include <linux/mtd/nand.h>
26 #include <linux/mtd/partitions.h>
27 #include <linux/interrupt.h>
28 #include <linux/device.h>
29 #include <linux/platform_device.h>
30 #include <linux/clk.h>
31 #include <linux/err.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/completion.h>
35 #include <linux/of.h>
36 #include <linux/of_device.h>
38 #include <asm/mach/flash.h>
39 #include <linux/platform_data/mtd-mxc_nand.h>
41 #define DRIVER_NAME "mxc_nand"
43 /* Addresses for NFC registers */
44 #define NFC_V1_V2_BUF_SIZE (host->regs + 0x00)
45 #define NFC_V1_V2_BUF_ADDR (host->regs + 0x04)
46 #define NFC_V1_V2_FLASH_ADDR (host->regs + 0x06)
47 #define NFC_V1_V2_FLASH_CMD (host->regs + 0x08)
48 #define NFC_V1_V2_CONFIG (host->regs + 0x0a)
49 #define NFC_V1_V2_ECC_STATUS_RESULT (host->regs + 0x0c)
50 #define NFC_V1_V2_RSLTMAIN_AREA (host->regs + 0x0e)
51 #define NFC_V1_V2_RSLTSPARE_AREA (host->regs + 0x10)
52 #define NFC_V1_V2_WRPROT (host->regs + 0x12)
53 #define NFC_V1_UNLOCKSTART_BLKADDR (host->regs + 0x14)
54 #define NFC_V1_UNLOCKEND_BLKADDR (host->regs + 0x16)
55 #define NFC_V21_UNLOCKSTART_BLKADDR0 (host->regs + 0x20)
56 #define NFC_V21_UNLOCKSTART_BLKADDR1 (host->regs + 0x24)
57 #define NFC_V21_UNLOCKSTART_BLKADDR2 (host->regs + 0x28)
58 #define NFC_V21_UNLOCKSTART_BLKADDR3 (host->regs + 0x2c)
59 #define NFC_V21_UNLOCKEND_BLKADDR0 (host->regs + 0x22)
60 #define NFC_V21_UNLOCKEND_BLKADDR1 (host->regs + 0x26)
61 #define NFC_V21_UNLOCKEND_BLKADDR2 (host->regs + 0x2a)
62 #define NFC_V21_UNLOCKEND_BLKADDR3 (host->regs + 0x2e)
63 #define NFC_V1_V2_NF_WRPRST (host->regs + 0x18)
64 #define NFC_V1_V2_CONFIG1 (host->regs + 0x1a)
65 #define NFC_V1_V2_CONFIG2 (host->regs + 0x1c)
67 #define NFC_V2_CONFIG1_ECC_MODE_4 (1 << 0)
68 #define NFC_V1_V2_CONFIG1_SP_EN (1 << 2)
69 #define NFC_V1_V2_CONFIG1_ECC_EN (1 << 3)
70 #define NFC_V1_V2_CONFIG1_INT_MSK (1 << 4)
71 #define NFC_V1_V2_CONFIG1_BIG (1 << 5)
72 #define NFC_V1_V2_CONFIG1_RST (1 << 6)
73 #define NFC_V1_V2_CONFIG1_CE (1 << 7)
74 #define NFC_V2_CONFIG1_ONE_CYCLE (1 << 8)
75 #define NFC_V2_CONFIG1_PPB(x) (((x) & 0x3) << 9)
76 #define NFC_V2_CONFIG1_FP_INT (1 << 11)
78 #define NFC_V1_V2_CONFIG2_INT (1 << 15)
81 * Operation modes for the NFC. Valid for v1, v2 and v3
82 * type controllers.
84 #define NFC_CMD (1 << 0)
85 #define NFC_ADDR (1 << 1)
86 #define NFC_INPUT (1 << 2)
87 #define NFC_OUTPUT (1 << 3)
88 #define NFC_ID (1 << 4)
89 #define NFC_STATUS (1 << 5)
91 #define NFC_V3_FLASH_CMD (host->regs_axi + 0x00)
92 #define NFC_V3_FLASH_ADDR0 (host->regs_axi + 0x04)
94 #define NFC_V3_CONFIG1 (host->regs_axi + 0x34)
95 #define NFC_V3_CONFIG1_SP_EN (1 << 0)
96 #define NFC_V3_CONFIG1_RBA(x) (((x) & 0x7 ) << 4)
98 #define NFC_V3_ECC_STATUS_RESULT (host->regs_axi + 0x38)
100 #define NFC_V3_LAUNCH (host->regs_axi + 0x40)
102 #define NFC_V3_WRPROT (host->regs_ip + 0x0)
103 #define NFC_V3_WRPROT_LOCK_TIGHT (1 << 0)
104 #define NFC_V3_WRPROT_LOCK (1 << 1)
105 #define NFC_V3_WRPROT_UNLOCK (1 << 2)
106 #define NFC_V3_WRPROT_BLS_UNLOCK (2 << 6)
108 #define NFC_V3_WRPROT_UNLOCK_BLK_ADD0 (host->regs_ip + 0x04)
110 #define NFC_V3_CONFIG2 (host->regs_ip + 0x24)
111 #define NFC_V3_CONFIG2_PS_512 (0 << 0)
112 #define NFC_V3_CONFIG2_PS_2048 (1 << 0)
113 #define NFC_V3_CONFIG2_PS_4096 (2 << 0)
114 #define NFC_V3_CONFIG2_ONE_CYCLE (1 << 2)
115 #define NFC_V3_CONFIG2_ECC_EN (1 << 3)
116 #define NFC_V3_CONFIG2_2CMD_PHASES (1 << 4)
117 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE0 (1 << 5)
118 #define NFC_V3_CONFIG2_ECC_MODE_8 (1 << 6)
119 #define NFC_V3_CONFIG2_PPB(x, shift) (((x) & 0x3) << shift)
120 #define NFC_V3_CONFIG2_NUM_ADDR_PHASE1(x) (((x) & 0x3) << 12)
121 #define NFC_V3_CONFIG2_INT_MSK (1 << 15)
122 #define NFC_V3_CONFIG2_ST_CMD(x) (((x) & 0xff) << 24)
123 #define NFC_V3_CONFIG2_SPAS(x) (((x) & 0xff) << 16)
125 #define NFC_V3_CONFIG3 (host->regs_ip + 0x28)
126 #define NFC_V3_CONFIG3_ADD_OP(x) (((x) & 0x3) << 0)
127 #define NFC_V3_CONFIG3_FW8 (1 << 3)
128 #define NFC_V3_CONFIG3_SBB(x) (((x) & 0x7) << 8)
129 #define NFC_V3_CONFIG3_NUM_OF_DEVICES(x) (((x) & 0x7) << 12)
130 #define NFC_V3_CONFIG3_RBB_MODE (1 << 15)
131 #define NFC_V3_CONFIG3_NO_SDMA (1 << 20)
133 #define NFC_V3_IPC (host->regs_ip + 0x2C)
134 #define NFC_V3_IPC_CREQ (1 << 0)
135 #define NFC_V3_IPC_INT (1 << 31)
137 #define NFC_V3_DELAY_LINE (host->regs_ip + 0x34)
139 struct mxc_nand_host;
141 struct mxc_nand_devtype_data {
142 void (*preset)(struct mtd_info *);
143 void (*send_cmd)(struct mxc_nand_host *, uint16_t, int);
144 void (*send_addr)(struct mxc_nand_host *, uint16_t, int);
145 void (*send_page)(struct mtd_info *, unsigned int);
146 void (*send_read_id)(struct mxc_nand_host *);
147 uint16_t (*get_dev_status)(struct mxc_nand_host *);
148 int (*check_int)(struct mxc_nand_host *);
149 void (*irq_control)(struct mxc_nand_host *, int);
150 u32 (*get_ecc_status)(struct mxc_nand_host *);
151 const struct mtd_ooblayout_ops *ooblayout;
152 void (*select_chip)(struct mtd_info *mtd, int chip);
153 int (*correct_data)(struct mtd_info *mtd, u_char *dat,
154 u_char *read_ecc, u_char *calc_ecc);
157 * On i.MX21 the CONFIG2:INT bit cannot be read if interrupts are masked
158 * (CONFIG1:INT_MSK is set). To handle this the driver uses
159 * enable_irq/disable_irq_nosync instead of CONFIG1:INT_MSK
161 int irqpending_quirk;
162 int needs_ip;
164 size_t regs_offset;
165 size_t spare0_offset;
166 size_t axi_offset;
168 int spare_len;
169 int eccbytes;
170 int eccsize;
171 int ppb_shift;
174 struct mxc_nand_host {
175 struct nand_chip nand;
176 struct device *dev;
178 void __iomem *spare0;
179 void __iomem *main_area0;
181 void __iomem *base;
182 void __iomem *regs;
183 void __iomem *regs_axi;
184 void __iomem *regs_ip;
185 int status_request;
186 struct clk *clk;
187 int clk_act;
188 int irq;
189 int eccsize;
190 int used_oobsize;
191 int active_cs;
193 struct completion op_completion;
195 uint8_t *data_buf;
196 unsigned int buf_start;
198 const struct mxc_nand_devtype_data *devtype_data;
199 struct mxc_nand_platform_data pdata;
202 static const char * const part_probes[] = {
203 "cmdlinepart", "RedBoot", "ofpart", NULL };
205 static void memcpy32_fromio(void *trg, const void __iomem *src, size_t size)
207 int i;
208 u32 *t = trg;
209 const __iomem u32 *s = src;
211 for (i = 0; i < (size >> 2); i++)
212 *t++ = __raw_readl(s++);
215 static void memcpy16_fromio(void *trg, const void __iomem *src, size_t size)
217 int i;
218 u16 *t = trg;
219 const __iomem u16 *s = src;
221 /* We assume that src (IO) is always 32bit aligned */
222 if (PTR_ALIGN(trg, 4) == trg && IS_ALIGNED(size, 4)) {
223 memcpy32_fromio(trg, src, size);
224 return;
227 for (i = 0; i < (size >> 1); i++)
228 *t++ = __raw_readw(s++);
231 static inline void memcpy32_toio(void __iomem *trg, const void *src, int size)
233 /* __iowrite32_copy use 32bit size values so divide by 4 */
234 __iowrite32_copy(trg, src, size / 4);
237 static void memcpy16_toio(void __iomem *trg, const void *src, int size)
239 int i;
240 __iomem u16 *t = trg;
241 const u16 *s = src;
243 /* We assume that trg (IO) is always 32bit aligned */
244 if (PTR_ALIGN(src, 4) == src && IS_ALIGNED(size, 4)) {
245 memcpy32_toio(trg, src, size);
246 return;
249 for (i = 0; i < (size >> 1); i++)
250 __raw_writew(*s++, t++);
253 static int check_int_v3(struct mxc_nand_host *host)
255 uint32_t tmp;
257 tmp = readl(NFC_V3_IPC);
258 if (!(tmp & NFC_V3_IPC_INT))
259 return 0;
261 tmp &= ~NFC_V3_IPC_INT;
262 writel(tmp, NFC_V3_IPC);
264 return 1;
267 static int check_int_v1_v2(struct mxc_nand_host *host)
269 uint32_t tmp;
271 tmp = readw(NFC_V1_V2_CONFIG2);
272 if (!(tmp & NFC_V1_V2_CONFIG2_INT))
273 return 0;
275 if (!host->devtype_data->irqpending_quirk)
276 writew(tmp & ~NFC_V1_V2_CONFIG2_INT, NFC_V1_V2_CONFIG2);
278 return 1;
281 static void irq_control_v1_v2(struct mxc_nand_host *host, int activate)
283 uint16_t tmp;
285 tmp = readw(NFC_V1_V2_CONFIG1);
287 if (activate)
288 tmp &= ~NFC_V1_V2_CONFIG1_INT_MSK;
289 else
290 tmp |= NFC_V1_V2_CONFIG1_INT_MSK;
292 writew(tmp, NFC_V1_V2_CONFIG1);
295 static void irq_control_v3(struct mxc_nand_host *host, int activate)
297 uint32_t tmp;
299 tmp = readl(NFC_V3_CONFIG2);
301 if (activate)
302 tmp &= ~NFC_V3_CONFIG2_INT_MSK;
303 else
304 tmp |= NFC_V3_CONFIG2_INT_MSK;
306 writel(tmp, NFC_V3_CONFIG2);
309 static void irq_control(struct mxc_nand_host *host, int activate)
311 if (host->devtype_data->irqpending_quirk) {
312 if (activate)
313 enable_irq(host->irq);
314 else
315 disable_irq_nosync(host->irq);
316 } else {
317 host->devtype_data->irq_control(host, activate);
321 static u32 get_ecc_status_v1(struct mxc_nand_host *host)
323 return readw(NFC_V1_V2_ECC_STATUS_RESULT);
326 static u32 get_ecc_status_v2(struct mxc_nand_host *host)
328 return readl(NFC_V1_V2_ECC_STATUS_RESULT);
331 static u32 get_ecc_status_v3(struct mxc_nand_host *host)
333 return readl(NFC_V3_ECC_STATUS_RESULT);
336 static irqreturn_t mxc_nfc_irq(int irq, void *dev_id)
338 struct mxc_nand_host *host = dev_id;
340 if (!host->devtype_data->check_int(host))
341 return IRQ_NONE;
343 irq_control(host, 0);
345 complete(&host->op_completion);
347 return IRQ_HANDLED;
350 /* This function polls the NANDFC to wait for the basic operation to
351 * complete by checking the INT bit of config2 register.
353 static int wait_op_done(struct mxc_nand_host *host, int useirq)
355 int ret = 0;
358 * If operation is already complete, don't bother to setup an irq or a
359 * loop.
361 if (host->devtype_data->check_int(host))
362 return 0;
364 if (useirq) {
365 unsigned long timeout;
367 reinit_completion(&host->op_completion);
369 irq_control(host, 1);
371 timeout = wait_for_completion_timeout(&host->op_completion, HZ);
372 if (!timeout && !host->devtype_data->check_int(host)) {
373 dev_dbg(host->dev, "timeout waiting for irq\n");
374 ret = -ETIMEDOUT;
376 } else {
377 int max_retries = 8000;
378 int done;
380 do {
381 udelay(1);
383 done = host->devtype_data->check_int(host);
384 if (done)
385 break;
387 } while (--max_retries);
389 if (!done) {
390 dev_dbg(host->dev, "timeout polling for completion\n");
391 ret = -ETIMEDOUT;
395 WARN_ONCE(ret < 0, "timeout! useirq=%d\n", useirq);
397 return ret;
400 static void send_cmd_v3(struct mxc_nand_host *host, uint16_t cmd, int useirq)
402 /* fill command */
403 writel(cmd, NFC_V3_FLASH_CMD);
405 /* send out command */
406 writel(NFC_CMD, NFC_V3_LAUNCH);
408 /* Wait for operation to complete */
409 wait_op_done(host, useirq);
412 /* This function issues the specified command to the NAND device and
413 * waits for completion. */
414 static void send_cmd_v1_v2(struct mxc_nand_host *host, uint16_t cmd, int useirq)
416 pr_debug("send_cmd(host, 0x%x, %d)\n", cmd, useirq);
418 writew(cmd, NFC_V1_V2_FLASH_CMD);
419 writew(NFC_CMD, NFC_V1_V2_CONFIG2);
421 if (host->devtype_data->irqpending_quirk && (cmd == NAND_CMD_RESET)) {
422 int max_retries = 100;
423 /* Reset completion is indicated by NFC_CONFIG2 */
424 /* being set to 0 */
425 while (max_retries-- > 0) {
426 if (readw(NFC_V1_V2_CONFIG2) == 0) {
427 break;
429 udelay(1);
431 if (max_retries < 0)
432 pr_debug("%s: RESET failed\n", __func__);
433 } else {
434 /* Wait for operation to complete */
435 wait_op_done(host, useirq);
439 static void send_addr_v3(struct mxc_nand_host *host, uint16_t addr, int islast)
441 /* fill address */
442 writel(addr, NFC_V3_FLASH_ADDR0);
444 /* send out address */
445 writel(NFC_ADDR, NFC_V3_LAUNCH);
447 wait_op_done(host, 0);
450 /* This function sends an address (or partial address) to the
451 * NAND device. The address is used to select the source/destination for
452 * a NAND command. */
453 static void send_addr_v1_v2(struct mxc_nand_host *host, uint16_t addr, int islast)
455 pr_debug("send_addr(host, 0x%x %d)\n", addr, islast);
457 writew(addr, NFC_V1_V2_FLASH_ADDR);
458 writew(NFC_ADDR, NFC_V1_V2_CONFIG2);
460 /* Wait for operation to complete */
461 wait_op_done(host, islast);
464 static void send_page_v3(struct mtd_info *mtd, unsigned int ops)
466 struct nand_chip *nand_chip = mtd_to_nand(mtd);
467 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
468 uint32_t tmp;
470 tmp = readl(NFC_V3_CONFIG1);
471 tmp &= ~(7 << 4);
472 writel(tmp, NFC_V3_CONFIG1);
474 /* transfer data from NFC ram to nand */
475 writel(ops, NFC_V3_LAUNCH);
477 wait_op_done(host, false);
480 static void send_page_v2(struct mtd_info *mtd, unsigned int ops)
482 struct nand_chip *nand_chip = mtd_to_nand(mtd);
483 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
485 /* NANDFC buffer 0 is used for page read/write */
486 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
488 writew(ops, NFC_V1_V2_CONFIG2);
490 /* Wait for operation to complete */
491 wait_op_done(host, true);
494 static void send_page_v1(struct mtd_info *mtd, unsigned int ops)
496 struct nand_chip *nand_chip = mtd_to_nand(mtd);
497 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
498 int bufs, i;
500 if (mtd->writesize > 512)
501 bufs = 4;
502 else
503 bufs = 1;
505 for (i = 0; i < bufs; i++) {
507 /* NANDFC buffer 0 is used for page read/write */
508 writew((host->active_cs << 4) | i, NFC_V1_V2_BUF_ADDR);
510 writew(ops, NFC_V1_V2_CONFIG2);
512 /* Wait for operation to complete */
513 wait_op_done(host, true);
517 static void send_read_id_v3(struct mxc_nand_host *host)
519 /* Read ID into main buffer */
520 writel(NFC_ID, NFC_V3_LAUNCH);
522 wait_op_done(host, true);
524 memcpy32_fromio(host->data_buf, host->main_area0, 16);
527 /* Request the NANDFC to perform a read of the NAND device ID. */
528 static void send_read_id_v1_v2(struct mxc_nand_host *host)
530 /* NANDFC buffer 0 is used for device ID output */
531 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
533 writew(NFC_ID, NFC_V1_V2_CONFIG2);
535 /* Wait for operation to complete */
536 wait_op_done(host, true);
538 memcpy32_fromio(host->data_buf, host->main_area0, 16);
541 static uint16_t get_dev_status_v3(struct mxc_nand_host *host)
543 writew(NFC_STATUS, NFC_V3_LAUNCH);
544 wait_op_done(host, true);
546 return readl(NFC_V3_CONFIG1) >> 16;
549 /* This function requests the NANDFC to perform a read of the
550 * NAND device status and returns the current status. */
551 static uint16_t get_dev_status_v1_v2(struct mxc_nand_host *host)
553 void __iomem *main_buf = host->main_area0;
554 uint32_t store;
555 uint16_t ret;
557 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
560 * The device status is stored in main_area0. To
561 * prevent corruption of the buffer save the value
562 * and restore it afterwards.
564 store = readl(main_buf);
566 writew(NFC_STATUS, NFC_V1_V2_CONFIG2);
567 wait_op_done(host, true);
569 ret = readw(main_buf);
571 writel(store, main_buf);
573 return ret;
576 /* This functions is used by upper layer to checks if device is ready */
577 static int mxc_nand_dev_ready(struct mtd_info *mtd)
580 * NFC handles R/B internally. Therefore, this function
581 * always returns status as ready.
583 return 1;
586 static void mxc_nand_enable_hwecc(struct mtd_info *mtd, int mode)
589 * If HW ECC is enabled, we turn it on during init. There is
590 * no need to enable again here.
594 static int mxc_nand_correct_data_v1(struct mtd_info *mtd, u_char *dat,
595 u_char *read_ecc, u_char *calc_ecc)
597 struct nand_chip *nand_chip = mtd_to_nand(mtd);
598 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
601 * 1-Bit errors are automatically corrected in HW. No need for
602 * additional correction. 2-Bit errors cannot be corrected by
603 * HW ECC, so we need to return failure
605 uint16_t ecc_status = get_ecc_status_v1(host);
607 if (((ecc_status & 0x3) == 2) || ((ecc_status >> 2) == 2)) {
608 pr_debug("MXC_NAND: HWECC uncorrectable 2-bit ECC error\n");
609 return -EBADMSG;
612 return 0;
615 static int mxc_nand_correct_data_v2_v3(struct mtd_info *mtd, u_char *dat,
616 u_char *read_ecc, u_char *calc_ecc)
618 struct nand_chip *nand_chip = mtd_to_nand(mtd);
619 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
620 u32 ecc_stat, err;
621 int no_subpages = 1;
622 int ret = 0;
623 u8 ecc_bit_mask, err_limit;
625 ecc_bit_mask = (host->eccsize == 4) ? 0x7 : 0xf;
626 err_limit = (host->eccsize == 4) ? 0x4 : 0x8;
628 no_subpages = mtd->writesize >> 9;
630 ecc_stat = host->devtype_data->get_ecc_status(host);
632 do {
633 err = ecc_stat & ecc_bit_mask;
634 if (err > err_limit) {
635 printk(KERN_WARNING "UnCorrectable RS-ECC Error\n");
636 return -EBADMSG;
637 } else {
638 ret += err;
640 ecc_stat >>= 4;
641 } while (--no_subpages);
643 pr_debug("%d Symbol Correctable RS-ECC Error\n", ret);
645 return ret;
648 static int mxc_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
649 u_char *ecc_code)
651 return 0;
654 static u_char mxc_nand_read_byte(struct mtd_info *mtd)
656 struct nand_chip *nand_chip = mtd_to_nand(mtd);
657 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
658 uint8_t ret;
660 /* Check for status request */
661 if (host->status_request)
662 return host->devtype_data->get_dev_status(host) & 0xFF;
664 if (nand_chip->options & NAND_BUSWIDTH_16) {
665 /* only take the lower byte of each word */
666 ret = *(uint16_t *)(host->data_buf + host->buf_start);
668 host->buf_start += 2;
669 } else {
670 ret = *(uint8_t *)(host->data_buf + host->buf_start);
671 host->buf_start++;
674 pr_debug("%s: ret=0x%hhx (start=%u)\n", __func__, ret, host->buf_start);
675 return ret;
678 static uint16_t mxc_nand_read_word(struct mtd_info *mtd)
680 struct nand_chip *nand_chip = mtd_to_nand(mtd);
681 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
682 uint16_t ret;
684 ret = *(uint16_t *)(host->data_buf + host->buf_start);
685 host->buf_start += 2;
687 return ret;
690 /* Write data of length len to buffer buf. The data to be
691 * written on NAND Flash is first copied to RAMbuffer. After the Data Input
692 * Operation by the NFC, the data is written to NAND Flash */
693 static void mxc_nand_write_buf(struct mtd_info *mtd,
694 const u_char *buf, int len)
696 struct nand_chip *nand_chip = mtd_to_nand(mtd);
697 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
698 u16 col = host->buf_start;
699 int n = mtd->oobsize + mtd->writesize - col;
701 n = min(n, len);
703 memcpy(host->data_buf + col, buf, n);
705 host->buf_start += n;
708 /* Read the data buffer from the NAND Flash. To read the data from NAND
709 * Flash first the data output cycle is initiated by the NFC, which copies
710 * the data to RAMbuffer. This data of length len is then copied to buffer buf.
712 static void mxc_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
714 struct nand_chip *nand_chip = mtd_to_nand(mtd);
715 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
716 u16 col = host->buf_start;
717 int n = mtd->oobsize + mtd->writesize - col;
719 n = min(n, len);
721 memcpy(buf, host->data_buf + col, n);
723 host->buf_start += n;
726 /* This function is used by upper layer for select and
727 * deselect of the NAND chip */
728 static void mxc_nand_select_chip_v1_v3(struct mtd_info *mtd, int chip)
730 struct nand_chip *nand_chip = mtd_to_nand(mtd);
731 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
733 if (chip == -1) {
734 /* Disable the NFC clock */
735 if (host->clk_act) {
736 clk_disable_unprepare(host->clk);
737 host->clk_act = 0;
739 return;
742 if (!host->clk_act) {
743 /* Enable the NFC clock */
744 clk_prepare_enable(host->clk);
745 host->clk_act = 1;
749 static void mxc_nand_select_chip_v2(struct mtd_info *mtd, int chip)
751 struct nand_chip *nand_chip = mtd_to_nand(mtd);
752 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
754 if (chip == -1) {
755 /* Disable the NFC clock */
756 if (host->clk_act) {
757 clk_disable_unprepare(host->clk);
758 host->clk_act = 0;
760 return;
763 if (!host->clk_act) {
764 /* Enable the NFC clock */
765 clk_prepare_enable(host->clk);
766 host->clk_act = 1;
769 host->active_cs = chip;
770 writew(host->active_cs << 4, NFC_V1_V2_BUF_ADDR);
774 * The controller splits a page into data chunks of 512 bytes + partial oob.
775 * There are writesize / 512 such chunks, the size of the partial oob parts is
776 * oobsize / #chunks rounded down to a multiple of 2. The last oob chunk then
777 * contains additionally the byte lost by rounding (if any).
778 * This function handles the needed shuffling between host->data_buf (which
779 * holds a page in natural order, i.e. writesize bytes data + oobsize bytes
780 * spare) and the NFC buffer.
782 static void copy_spare(struct mtd_info *mtd, bool bfrom)
784 struct nand_chip *this = mtd_to_nand(mtd);
785 struct mxc_nand_host *host = nand_get_controller_data(this);
786 u16 i, oob_chunk_size;
787 u16 num_chunks = mtd->writesize / 512;
789 u8 *d = host->data_buf + mtd->writesize;
790 u8 __iomem *s = host->spare0;
791 u16 sparebuf_size = host->devtype_data->spare_len;
793 /* size of oob chunk for all but possibly the last one */
794 oob_chunk_size = (host->used_oobsize / num_chunks) & ~1;
796 if (bfrom) {
797 for (i = 0; i < num_chunks - 1; i++)
798 memcpy16_fromio(d + i * oob_chunk_size,
799 s + i * sparebuf_size,
800 oob_chunk_size);
802 /* the last chunk */
803 memcpy16_fromio(d + i * oob_chunk_size,
804 s + i * sparebuf_size,
805 host->used_oobsize - i * oob_chunk_size);
806 } else {
807 for (i = 0; i < num_chunks - 1; i++)
808 memcpy16_toio(&s[i * sparebuf_size],
809 &d[i * oob_chunk_size],
810 oob_chunk_size);
812 /* the last chunk */
813 memcpy16_toio(&s[i * sparebuf_size],
814 &d[i * oob_chunk_size],
815 host->used_oobsize - i * oob_chunk_size);
820 * MXC NANDFC can only perform full page+spare or spare-only read/write. When
821 * the upper layers perform a read/write buf operation, the saved column address
822 * is used to index into the full page. So usually this function is called with
823 * column == 0 (unless no column cycle is needed indicated by column == -1)
825 static void mxc_do_addr_cycle(struct mtd_info *mtd, int column, int page_addr)
827 struct nand_chip *nand_chip = mtd_to_nand(mtd);
828 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
830 /* Write out column address, if necessary */
831 if (column != -1) {
832 host->devtype_data->send_addr(host, column & 0xff,
833 page_addr == -1);
834 if (mtd->writesize > 512)
835 /* another col addr cycle for 2k page */
836 host->devtype_data->send_addr(host,
837 (column >> 8) & 0xff,
838 false);
841 /* Write out page address, if necessary */
842 if (page_addr != -1) {
843 /* paddr_0 - p_addr_7 */
844 host->devtype_data->send_addr(host, (page_addr & 0xff), false);
846 if (mtd->writesize > 512) {
847 if (mtd->size >= 0x10000000) {
848 /* paddr_8 - paddr_15 */
849 host->devtype_data->send_addr(host,
850 (page_addr >> 8) & 0xff,
851 false);
852 host->devtype_data->send_addr(host,
853 (page_addr >> 16) & 0xff,
854 true);
855 } else
856 /* paddr_8 - paddr_15 */
857 host->devtype_data->send_addr(host,
858 (page_addr >> 8) & 0xff, true);
859 } else {
860 /* One more address cycle for higher density devices */
861 if (mtd->size >= 0x4000000) {
862 /* paddr_8 - paddr_15 */
863 host->devtype_data->send_addr(host,
864 (page_addr >> 8) & 0xff,
865 false);
866 host->devtype_data->send_addr(host,
867 (page_addr >> 16) & 0xff,
868 true);
869 } else
870 /* paddr_8 - paddr_15 */
871 host->devtype_data->send_addr(host,
872 (page_addr >> 8) & 0xff, true);
877 static int mxc_v1_ooblayout_ecc(struct mtd_info *mtd, int section,
878 struct mtd_oob_region *oobregion)
880 struct nand_chip *nand_chip = mtd_to_nand(mtd);
882 if (section >= nand_chip->ecc.steps)
883 return -ERANGE;
885 oobregion->offset = (section * 16) + 6;
886 oobregion->length = nand_chip->ecc.bytes;
888 return 0;
891 static int mxc_v1_ooblayout_free(struct mtd_info *mtd, int section,
892 struct mtd_oob_region *oobregion)
894 struct nand_chip *nand_chip = mtd_to_nand(mtd);
896 if (section > nand_chip->ecc.steps)
897 return -ERANGE;
899 if (!section) {
900 if (mtd->writesize <= 512) {
901 oobregion->offset = 0;
902 oobregion->length = 5;
903 } else {
904 oobregion->offset = 2;
905 oobregion->length = 4;
907 } else {
908 oobregion->offset = ((section - 1) * 16) +
909 nand_chip->ecc.bytes + 6;
910 if (section < nand_chip->ecc.steps)
911 oobregion->length = (section * 16) + 6 -
912 oobregion->offset;
913 else
914 oobregion->length = mtd->oobsize - oobregion->offset;
917 return 0;
920 static const struct mtd_ooblayout_ops mxc_v1_ooblayout_ops = {
921 .ecc = mxc_v1_ooblayout_ecc,
922 .free = mxc_v1_ooblayout_free,
925 static int mxc_v2_ooblayout_ecc(struct mtd_info *mtd, int section,
926 struct mtd_oob_region *oobregion)
928 struct nand_chip *nand_chip = mtd_to_nand(mtd);
929 int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
931 if (section >= nand_chip->ecc.steps)
932 return -ERANGE;
934 oobregion->offset = (section * stepsize) + 7;
935 oobregion->length = nand_chip->ecc.bytes;
937 return 0;
940 static int mxc_v2_ooblayout_free(struct mtd_info *mtd, int section,
941 struct mtd_oob_region *oobregion)
943 struct nand_chip *nand_chip = mtd_to_nand(mtd);
944 int stepsize = nand_chip->ecc.bytes == 9 ? 16 : 26;
946 if (section > nand_chip->ecc.steps)
947 return -ERANGE;
949 if (!section) {
950 if (mtd->writesize <= 512) {
951 oobregion->offset = 0;
952 oobregion->length = 5;
953 } else {
954 oobregion->offset = 2;
955 oobregion->length = 4;
957 } else {
958 oobregion->offset = section * stepsize;
959 oobregion->length = 7;
962 return 0;
965 static const struct mtd_ooblayout_ops mxc_v2_ooblayout_ops = {
966 .ecc = mxc_v2_ooblayout_ecc,
967 .free = mxc_v2_ooblayout_free,
971 * v2 and v3 type controllers can do 4bit or 8bit ecc depending
972 * on how much oob the nand chip has. For 8bit ecc we need at least
973 * 26 bytes of oob data per 512 byte block.
975 static int get_eccsize(struct mtd_info *mtd)
977 int oobbytes_per_512 = 0;
979 oobbytes_per_512 = mtd->oobsize * 512 / mtd->writesize;
981 if (oobbytes_per_512 < 26)
982 return 4;
983 else
984 return 8;
987 static void preset_v1(struct mtd_info *mtd)
989 struct nand_chip *nand_chip = mtd_to_nand(mtd);
990 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
991 uint16_t config1 = 0;
993 if (nand_chip->ecc.mode == NAND_ECC_HW && mtd->writesize)
994 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
996 if (!host->devtype_data->irqpending_quirk)
997 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
999 host->eccsize = 1;
1001 writew(config1, NFC_V1_V2_CONFIG1);
1002 /* preset operation */
1004 /* Unlock the internal RAM Buffer */
1005 writew(0x2, NFC_V1_V2_CONFIG);
1007 /* Blocks to be unlocked */
1008 writew(0x0, NFC_V1_UNLOCKSTART_BLKADDR);
1009 writew(0xffff, NFC_V1_UNLOCKEND_BLKADDR);
1011 /* Unlock Block Command for given address range */
1012 writew(0x4, NFC_V1_V2_WRPROT);
1015 static void preset_v2(struct mtd_info *mtd)
1017 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1018 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1019 uint16_t config1 = 0;
1021 config1 |= NFC_V2_CONFIG1_FP_INT;
1023 if (!host->devtype_data->irqpending_quirk)
1024 config1 |= NFC_V1_V2_CONFIG1_INT_MSK;
1026 if (mtd->writesize) {
1027 uint16_t pages_per_block = mtd->erasesize / mtd->writesize;
1029 if (nand_chip->ecc.mode == NAND_ECC_HW)
1030 config1 |= NFC_V1_V2_CONFIG1_ECC_EN;
1032 host->eccsize = get_eccsize(mtd);
1033 if (host->eccsize == 4)
1034 config1 |= NFC_V2_CONFIG1_ECC_MODE_4;
1036 config1 |= NFC_V2_CONFIG1_PPB(ffs(pages_per_block) - 6);
1037 } else {
1038 host->eccsize = 1;
1041 writew(config1, NFC_V1_V2_CONFIG1);
1042 /* preset operation */
1044 /* Unlock the internal RAM Buffer */
1045 writew(0x2, NFC_V1_V2_CONFIG);
1047 /* Blocks to be unlocked */
1048 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR0);
1049 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR1);
1050 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR2);
1051 writew(0x0, NFC_V21_UNLOCKSTART_BLKADDR3);
1052 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR0);
1053 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR1);
1054 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR2);
1055 writew(0xffff, NFC_V21_UNLOCKEND_BLKADDR3);
1057 /* Unlock Block Command for given address range */
1058 writew(0x4, NFC_V1_V2_WRPROT);
1061 static void preset_v3(struct mtd_info *mtd)
1063 struct nand_chip *chip = mtd_to_nand(mtd);
1064 struct mxc_nand_host *host = nand_get_controller_data(chip);
1065 uint32_t config2, config3;
1066 int i, addr_phases;
1068 writel(NFC_V3_CONFIG1_RBA(0), NFC_V3_CONFIG1);
1069 writel(NFC_V3_IPC_CREQ, NFC_V3_IPC);
1071 /* Unlock the internal RAM Buffer */
1072 writel(NFC_V3_WRPROT_BLS_UNLOCK | NFC_V3_WRPROT_UNLOCK,
1073 NFC_V3_WRPROT);
1075 /* Blocks to be unlocked */
1076 for (i = 0; i < NAND_MAX_CHIPS; i++)
1077 writel(0xffff << 16, NFC_V3_WRPROT_UNLOCK_BLK_ADD0 + (i << 2));
1079 writel(0, NFC_V3_IPC);
1081 config2 = NFC_V3_CONFIG2_ONE_CYCLE |
1082 NFC_V3_CONFIG2_2CMD_PHASES |
1083 NFC_V3_CONFIG2_SPAS(mtd->oobsize >> 1) |
1084 NFC_V3_CONFIG2_ST_CMD(0x70) |
1085 NFC_V3_CONFIG2_INT_MSK |
1086 NFC_V3_CONFIG2_NUM_ADDR_PHASE0;
1088 addr_phases = fls(chip->pagemask) >> 3;
1090 if (mtd->writesize == 2048) {
1091 config2 |= NFC_V3_CONFIG2_PS_2048;
1092 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1093 } else if (mtd->writesize == 4096) {
1094 config2 |= NFC_V3_CONFIG2_PS_4096;
1095 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases);
1096 } else {
1097 config2 |= NFC_V3_CONFIG2_PS_512;
1098 config2 |= NFC_V3_CONFIG2_NUM_ADDR_PHASE1(addr_phases - 1);
1101 if (mtd->writesize) {
1102 if (chip->ecc.mode == NAND_ECC_HW)
1103 config2 |= NFC_V3_CONFIG2_ECC_EN;
1105 config2 |= NFC_V3_CONFIG2_PPB(
1106 ffs(mtd->erasesize / mtd->writesize) - 6,
1107 host->devtype_data->ppb_shift);
1108 host->eccsize = get_eccsize(mtd);
1109 if (host->eccsize == 8)
1110 config2 |= NFC_V3_CONFIG2_ECC_MODE_8;
1113 writel(config2, NFC_V3_CONFIG2);
1115 config3 = NFC_V3_CONFIG3_NUM_OF_DEVICES(0) |
1116 NFC_V3_CONFIG3_NO_SDMA |
1117 NFC_V3_CONFIG3_RBB_MODE |
1118 NFC_V3_CONFIG3_SBB(6) | /* Reset default */
1119 NFC_V3_CONFIG3_ADD_OP(0);
1121 if (!(chip->options & NAND_BUSWIDTH_16))
1122 config3 |= NFC_V3_CONFIG3_FW8;
1124 writel(config3, NFC_V3_CONFIG3);
1126 writel(0, NFC_V3_DELAY_LINE);
1129 /* Used by the upper layer to write command to NAND Flash for
1130 * different operations to be carried out on NAND Flash */
1131 static void mxc_nand_command(struct mtd_info *mtd, unsigned command,
1132 int column, int page_addr)
1134 struct nand_chip *nand_chip = mtd_to_nand(mtd);
1135 struct mxc_nand_host *host = nand_get_controller_data(nand_chip);
1137 pr_debug("mxc_nand_command (cmd = 0x%x, col = 0x%x, page = 0x%x)\n",
1138 command, column, page_addr);
1140 /* Reset command state information */
1141 host->status_request = false;
1143 /* Command pre-processing step */
1144 switch (command) {
1145 case NAND_CMD_RESET:
1146 host->devtype_data->preset(mtd);
1147 host->devtype_data->send_cmd(host, command, false);
1148 break;
1150 case NAND_CMD_STATUS:
1151 host->buf_start = 0;
1152 host->status_request = true;
1154 host->devtype_data->send_cmd(host, command, true);
1155 WARN_ONCE(column != -1 || page_addr != -1,
1156 "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1157 command, column, page_addr);
1158 mxc_do_addr_cycle(mtd, column, page_addr);
1159 break;
1161 case NAND_CMD_READ0:
1162 case NAND_CMD_READOOB:
1163 if (command == NAND_CMD_READ0)
1164 host->buf_start = column;
1165 else
1166 host->buf_start = column + mtd->writesize;
1168 command = NAND_CMD_READ0; /* only READ0 is valid */
1170 host->devtype_data->send_cmd(host, command, false);
1171 WARN_ONCE(column < 0,
1172 "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1173 command, column, page_addr);
1174 mxc_do_addr_cycle(mtd, 0, page_addr);
1176 if (mtd->writesize > 512)
1177 host->devtype_data->send_cmd(host,
1178 NAND_CMD_READSTART, true);
1180 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1182 memcpy32_fromio(host->data_buf, host->main_area0,
1183 mtd->writesize);
1184 copy_spare(mtd, true);
1185 break;
1187 case NAND_CMD_SEQIN:
1188 if (column >= mtd->writesize)
1189 /* call ourself to read a page */
1190 mxc_nand_command(mtd, NAND_CMD_READ0, 0, page_addr);
1192 host->buf_start = column;
1194 host->devtype_data->send_cmd(host, command, false);
1195 WARN_ONCE(column < -1,
1196 "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1197 command, column, page_addr);
1198 mxc_do_addr_cycle(mtd, 0, page_addr);
1199 break;
1201 case NAND_CMD_PAGEPROG:
1202 memcpy32_toio(host->main_area0, host->data_buf, mtd->writesize);
1203 copy_spare(mtd, false);
1204 host->devtype_data->send_page(mtd, NFC_INPUT);
1205 host->devtype_data->send_cmd(host, command, true);
1206 WARN_ONCE(column != -1 || page_addr != -1,
1207 "Unexpected column/row value (cmd=%u, col=%d, row=%d)\n",
1208 command, column, page_addr);
1209 mxc_do_addr_cycle(mtd, column, page_addr);
1210 break;
1212 case NAND_CMD_READID:
1213 host->devtype_data->send_cmd(host, command, true);
1214 mxc_do_addr_cycle(mtd, column, page_addr);
1215 host->devtype_data->send_read_id(host);
1216 host->buf_start = 0;
1217 break;
1219 case NAND_CMD_ERASE1:
1220 case NAND_CMD_ERASE2:
1221 host->devtype_data->send_cmd(host, command, false);
1222 WARN_ONCE(column != -1,
1223 "Unexpected column value (cmd=%u, col=%d)\n",
1224 command, column);
1225 mxc_do_addr_cycle(mtd, column, page_addr);
1227 break;
1228 case NAND_CMD_PARAM:
1229 host->devtype_data->send_cmd(host, command, false);
1230 mxc_do_addr_cycle(mtd, column, page_addr);
1231 host->devtype_data->send_page(mtd, NFC_OUTPUT);
1232 memcpy32_fromio(host->data_buf, host->main_area0, 512);
1233 host->buf_start = 0;
1234 break;
1235 default:
1236 WARN_ONCE(1, "Unimplemented command (cmd=%u)\n",
1237 command);
1238 break;
1243 * The generic flash bbt decriptors overlap with our ecc
1244 * hardware, so define some i.MX specific ones.
1246 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
1247 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
1249 static struct nand_bbt_descr bbt_main_descr = {
1250 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1251 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1252 .offs = 0,
1253 .len = 4,
1254 .veroffs = 4,
1255 .maxblocks = 4,
1256 .pattern = bbt_pattern,
1259 static struct nand_bbt_descr bbt_mirror_descr = {
1260 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1261 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1262 .offs = 0,
1263 .len = 4,
1264 .veroffs = 4,
1265 .maxblocks = 4,
1266 .pattern = mirror_pattern,
1269 /* v1 + irqpending_quirk: i.MX21 */
1270 static const struct mxc_nand_devtype_data imx21_nand_devtype_data = {
1271 .preset = preset_v1,
1272 .send_cmd = send_cmd_v1_v2,
1273 .send_addr = send_addr_v1_v2,
1274 .send_page = send_page_v1,
1275 .send_read_id = send_read_id_v1_v2,
1276 .get_dev_status = get_dev_status_v1_v2,
1277 .check_int = check_int_v1_v2,
1278 .irq_control = irq_control_v1_v2,
1279 .get_ecc_status = get_ecc_status_v1,
1280 .ooblayout = &mxc_v1_ooblayout_ops,
1281 .select_chip = mxc_nand_select_chip_v1_v3,
1282 .correct_data = mxc_nand_correct_data_v1,
1283 .irqpending_quirk = 1,
1284 .needs_ip = 0,
1285 .regs_offset = 0xe00,
1286 .spare0_offset = 0x800,
1287 .spare_len = 16,
1288 .eccbytes = 3,
1289 .eccsize = 1,
1292 /* v1 + !irqpending_quirk: i.MX27, i.MX31 */
1293 static const struct mxc_nand_devtype_data imx27_nand_devtype_data = {
1294 .preset = preset_v1,
1295 .send_cmd = send_cmd_v1_v2,
1296 .send_addr = send_addr_v1_v2,
1297 .send_page = send_page_v1,
1298 .send_read_id = send_read_id_v1_v2,
1299 .get_dev_status = get_dev_status_v1_v2,
1300 .check_int = check_int_v1_v2,
1301 .irq_control = irq_control_v1_v2,
1302 .get_ecc_status = get_ecc_status_v1,
1303 .ooblayout = &mxc_v1_ooblayout_ops,
1304 .select_chip = mxc_nand_select_chip_v1_v3,
1305 .correct_data = mxc_nand_correct_data_v1,
1306 .irqpending_quirk = 0,
1307 .needs_ip = 0,
1308 .regs_offset = 0xe00,
1309 .spare0_offset = 0x800,
1310 .axi_offset = 0,
1311 .spare_len = 16,
1312 .eccbytes = 3,
1313 .eccsize = 1,
1316 /* v21: i.MX25, i.MX35 */
1317 static const struct mxc_nand_devtype_data imx25_nand_devtype_data = {
1318 .preset = preset_v2,
1319 .send_cmd = send_cmd_v1_v2,
1320 .send_addr = send_addr_v1_v2,
1321 .send_page = send_page_v2,
1322 .send_read_id = send_read_id_v1_v2,
1323 .get_dev_status = get_dev_status_v1_v2,
1324 .check_int = check_int_v1_v2,
1325 .irq_control = irq_control_v1_v2,
1326 .get_ecc_status = get_ecc_status_v2,
1327 .ooblayout = &mxc_v2_ooblayout_ops,
1328 .select_chip = mxc_nand_select_chip_v2,
1329 .correct_data = mxc_nand_correct_data_v2_v3,
1330 .irqpending_quirk = 0,
1331 .needs_ip = 0,
1332 .regs_offset = 0x1e00,
1333 .spare0_offset = 0x1000,
1334 .axi_offset = 0,
1335 .spare_len = 64,
1336 .eccbytes = 9,
1337 .eccsize = 0,
1340 /* v3.2a: i.MX51 */
1341 static const struct mxc_nand_devtype_data imx51_nand_devtype_data = {
1342 .preset = preset_v3,
1343 .send_cmd = send_cmd_v3,
1344 .send_addr = send_addr_v3,
1345 .send_page = send_page_v3,
1346 .send_read_id = send_read_id_v3,
1347 .get_dev_status = get_dev_status_v3,
1348 .check_int = check_int_v3,
1349 .irq_control = irq_control_v3,
1350 .get_ecc_status = get_ecc_status_v3,
1351 .ooblayout = &mxc_v2_ooblayout_ops,
1352 .select_chip = mxc_nand_select_chip_v1_v3,
1353 .correct_data = mxc_nand_correct_data_v2_v3,
1354 .irqpending_quirk = 0,
1355 .needs_ip = 1,
1356 .regs_offset = 0,
1357 .spare0_offset = 0x1000,
1358 .axi_offset = 0x1e00,
1359 .spare_len = 64,
1360 .eccbytes = 0,
1361 .eccsize = 0,
1362 .ppb_shift = 7,
1365 /* v3.2b: i.MX53 */
1366 static const struct mxc_nand_devtype_data imx53_nand_devtype_data = {
1367 .preset = preset_v3,
1368 .send_cmd = send_cmd_v3,
1369 .send_addr = send_addr_v3,
1370 .send_page = send_page_v3,
1371 .send_read_id = send_read_id_v3,
1372 .get_dev_status = get_dev_status_v3,
1373 .check_int = check_int_v3,
1374 .irq_control = irq_control_v3,
1375 .get_ecc_status = get_ecc_status_v3,
1376 .ooblayout = &mxc_v2_ooblayout_ops,
1377 .select_chip = mxc_nand_select_chip_v1_v3,
1378 .correct_data = mxc_nand_correct_data_v2_v3,
1379 .irqpending_quirk = 0,
1380 .needs_ip = 1,
1381 .regs_offset = 0,
1382 .spare0_offset = 0x1000,
1383 .axi_offset = 0x1e00,
1384 .spare_len = 64,
1385 .eccbytes = 0,
1386 .eccsize = 0,
1387 .ppb_shift = 8,
1390 static inline int is_imx21_nfc(struct mxc_nand_host *host)
1392 return host->devtype_data == &imx21_nand_devtype_data;
1395 static inline int is_imx27_nfc(struct mxc_nand_host *host)
1397 return host->devtype_data == &imx27_nand_devtype_data;
1400 static inline int is_imx25_nfc(struct mxc_nand_host *host)
1402 return host->devtype_data == &imx25_nand_devtype_data;
1405 static inline int is_imx51_nfc(struct mxc_nand_host *host)
1407 return host->devtype_data == &imx51_nand_devtype_data;
1410 static inline int is_imx53_nfc(struct mxc_nand_host *host)
1412 return host->devtype_data == &imx53_nand_devtype_data;
1415 static const struct platform_device_id mxcnd_devtype[] = {
1417 .name = "imx21-nand",
1418 .driver_data = (kernel_ulong_t) &imx21_nand_devtype_data,
1419 }, {
1420 .name = "imx27-nand",
1421 .driver_data = (kernel_ulong_t) &imx27_nand_devtype_data,
1422 }, {
1423 .name = "imx25-nand",
1424 .driver_data = (kernel_ulong_t) &imx25_nand_devtype_data,
1425 }, {
1426 .name = "imx51-nand",
1427 .driver_data = (kernel_ulong_t) &imx51_nand_devtype_data,
1428 }, {
1429 .name = "imx53-nand",
1430 .driver_data = (kernel_ulong_t) &imx53_nand_devtype_data,
1431 }, {
1432 /* sentinel */
1435 MODULE_DEVICE_TABLE(platform, mxcnd_devtype);
1437 #ifdef CONFIG_OF_MTD
1438 static const struct of_device_id mxcnd_dt_ids[] = {
1440 .compatible = "fsl,imx21-nand",
1441 .data = &imx21_nand_devtype_data,
1442 }, {
1443 .compatible = "fsl,imx27-nand",
1444 .data = &imx27_nand_devtype_data,
1445 }, {
1446 .compatible = "fsl,imx25-nand",
1447 .data = &imx25_nand_devtype_data,
1448 }, {
1449 .compatible = "fsl,imx51-nand",
1450 .data = &imx51_nand_devtype_data,
1451 }, {
1452 .compatible = "fsl,imx53-nand",
1453 .data = &imx53_nand_devtype_data,
1455 { /* sentinel */ }
1457 MODULE_DEVICE_TABLE(of, mxcnd_dt_ids);
1459 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1461 struct device_node *np = host->dev->of_node;
1462 const struct of_device_id *of_id =
1463 of_match_device(mxcnd_dt_ids, host->dev);
1465 if (!np)
1466 return 1;
1468 host->devtype_data = of_id->data;
1470 return 0;
1472 #else
1473 static int __init mxcnd_probe_dt(struct mxc_nand_host *host)
1475 return 1;
1477 #endif
1479 static int mxcnd_probe(struct platform_device *pdev)
1481 struct nand_chip *this;
1482 struct mtd_info *mtd;
1483 struct mxc_nand_host *host;
1484 struct resource *res;
1485 int err = 0;
1487 /* Allocate memory for MTD device structure and private data */
1488 host = devm_kzalloc(&pdev->dev, sizeof(struct mxc_nand_host),
1489 GFP_KERNEL);
1490 if (!host)
1491 return -ENOMEM;
1493 /* allocate a temporary buffer for the nand_scan_ident() */
1494 host->data_buf = devm_kzalloc(&pdev->dev, PAGE_SIZE, GFP_KERNEL);
1495 if (!host->data_buf)
1496 return -ENOMEM;
1498 host->dev = &pdev->dev;
1499 /* structures must be linked */
1500 this = &host->nand;
1501 mtd = nand_to_mtd(this);
1502 mtd->dev.parent = &pdev->dev;
1503 mtd->name = DRIVER_NAME;
1505 /* 50 us command delay time */
1506 this->chip_delay = 5;
1508 nand_set_controller_data(this, host);
1509 nand_set_flash_node(this, pdev->dev.of_node),
1510 this->dev_ready = mxc_nand_dev_ready;
1511 this->cmdfunc = mxc_nand_command;
1512 this->read_byte = mxc_nand_read_byte;
1513 this->read_word = mxc_nand_read_word;
1514 this->write_buf = mxc_nand_write_buf;
1515 this->read_buf = mxc_nand_read_buf;
1517 host->clk = devm_clk_get(&pdev->dev, NULL);
1518 if (IS_ERR(host->clk))
1519 return PTR_ERR(host->clk);
1521 err = mxcnd_probe_dt(host);
1522 if (err > 0) {
1523 struct mxc_nand_platform_data *pdata =
1524 dev_get_platdata(&pdev->dev);
1525 if (pdata) {
1526 host->pdata = *pdata;
1527 host->devtype_data = (struct mxc_nand_devtype_data *)
1528 pdev->id_entry->driver_data;
1529 } else {
1530 err = -ENODEV;
1533 if (err < 0)
1534 return err;
1536 if (host->devtype_data->needs_ip) {
1537 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1538 host->regs_ip = devm_ioremap_resource(&pdev->dev, res);
1539 if (IS_ERR(host->regs_ip))
1540 return PTR_ERR(host->regs_ip);
1542 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1543 } else {
1544 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1547 host->base = devm_ioremap_resource(&pdev->dev, res);
1548 if (IS_ERR(host->base))
1549 return PTR_ERR(host->base);
1551 host->main_area0 = host->base;
1553 if (host->devtype_data->regs_offset)
1554 host->regs = host->base + host->devtype_data->regs_offset;
1555 host->spare0 = host->base + host->devtype_data->spare0_offset;
1556 if (host->devtype_data->axi_offset)
1557 host->regs_axi = host->base + host->devtype_data->axi_offset;
1559 this->ecc.bytes = host->devtype_data->eccbytes;
1560 host->eccsize = host->devtype_data->eccsize;
1562 this->select_chip = host->devtype_data->select_chip;
1563 this->ecc.size = 512;
1564 mtd_set_ooblayout(mtd, host->devtype_data->ooblayout);
1566 if (host->pdata.hw_ecc) {
1567 this->ecc.mode = NAND_ECC_HW;
1568 } else {
1569 this->ecc.mode = NAND_ECC_SOFT;
1570 this->ecc.algo = NAND_ECC_HAMMING;
1573 /* NAND bus width determines access functions used by upper layer */
1574 if (host->pdata.width == 2)
1575 this->options |= NAND_BUSWIDTH_16;
1577 /* update flash based bbt */
1578 if (host->pdata.flash_bbt)
1579 this->bbt_options |= NAND_BBT_USE_FLASH;
1581 init_completion(&host->op_completion);
1583 host->irq = platform_get_irq(pdev, 0);
1584 if (host->irq < 0)
1585 return host->irq;
1588 * Use host->devtype_data->irq_control() here instead of irq_control()
1589 * because we must not disable_irq_nosync without having requested the
1590 * irq.
1592 host->devtype_data->irq_control(host, 0);
1594 err = devm_request_irq(&pdev->dev, host->irq, mxc_nfc_irq,
1595 0, DRIVER_NAME, host);
1596 if (err)
1597 return err;
1599 err = clk_prepare_enable(host->clk);
1600 if (err)
1601 return err;
1602 host->clk_act = 1;
1605 * Now that we "own" the interrupt make sure the interrupt mask bit is
1606 * cleared on i.MX21. Otherwise we can't read the interrupt status bit
1607 * on this machine.
1609 if (host->devtype_data->irqpending_quirk) {
1610 disable_irq_nosync(host->irq);
1611 host->devtype_data->irq_control(host, 1);
1614 /* first scan to find the device and get the page size */
1615 if (nand_scan_ident(mtd, is_imx25_nfc(host) ? 4 : 1, NULL)) {
1616 err = -ENXIO;
1617 goto escan;
1620 switch (this->ecc.mode) {
1621 case NAND_ECC_HW:
1622 this->ecc.calculate = mxc_nand_calculate_ecc;
1623 this->ecc.hwctl = mxc_nand_enable_hwecc;
1624 this->ecc.correct = host->devtype_data->correct_data;
1625 break;
1627 case NAND_ECC_SOFT:
1628 break;
1630 default:
1631 err = -EINVAL;
1632 goto escan;
1635 if (this->bbt_options & NAND_BBT_USE_FLASH) {
1636 this->bbt_td = &bbt_main_descr;
1637 this->bbt_md = &bbt_mirror_descr;
1640 /* allocate the right size buffer now */
1641 devm_kfree(&pdev->dev, (void *)host->data_buf);
1642 host->data_buf = devm_kzalloc(&pdev->dev, mtd->writesize + mtd->oobsize,
1643 GFP_KERNEL);
1644 if (!host->data_buf) {
1645 err = -ENOMEM;
1646 goto escan;
1649 /* Call preset again, with correct writesize this time */
1650 host->devtype_data->preset(mtd);
1652 if (!this->ecc.bytes) {
1653 if (host->eccsize == 8)
1654 this->ecc.bytes = 18;
1655 else if (host->eccsize == 4)
1656 this->ecc.bytes = 9;
1660 * Experimentation shows that i.MX NFC can only handle up to 218 oob
1661 * bytes. Limit used_oobsize to 218 so as to not confuse copy_spare()
1662 * into copying invalid data to/from the spare IO buffer, as this
1663 * might cause ECC data corruption when doing sub-page write to a
1664 * partially written page.
1666 host->used_oobsize = min(mtd->oobsize, 218U);
1668 if (this->ecc.mode == NAND_ECC_HW) {
1669 if (is_imx21_nfc(host) || is_imx27_nfc(host))
1670 this->ecc.strength = 1;
1671 else
1672 this->ecc.strength = (host->eccsize == 4) ? 4 : 8;
1675 /* second phase scan */
1676 if (nand_scan_tail(mtd)) {
1677 err = -ENXIO;
1678 goto escan;
1681 /* Register the partitions */
1682 mtd_device_parse_register(mtd, part_probes,
1683 NULL,
1684 host->pdata.parts,
1685 host->pdata.nr_parts);
1687 platform_set_drvdata(pdev, host);
1689 return 0;
1691 escan:
1692 if (host->clk_act)
1693 clk_disable_unprepare(host->clk);
1695 return err;
1698 static int mxcnd_remove(struct platform_device *pdev)
1700 struct mxc_nand_host *host = platform_get_drvdata(pdev);
1702 nand_release(nand_to_mtd(&host->nand));
1703 if (host->clk_act)
1704 clk_disable_unprepare(host->clk);
1706 return 0;
1709 static struct platform_driver mxcnd_driver = {
1710 .driver = {
1711 .name = DRIVER_NAME,
1712 .of_match_table = of_match_ptr(mxcnd_dt_ids),
1714 .id_table = mxcnd_devtype,
1715 .probe = mxcnd_probe,
1716 .remove = mxcnd_remove,
1718 module_platform_driver(mxcnd_driver);
1720 MODULE_AUTHOR("Freescale Semiconductor, Inc.");
1721 MODULE_DESCRIPTION("MXC NAND MTD driver");
1722 MODULE_LICENSE("GPL");