1 /* linux/drivers/mtd/nand/s3c2410.c
3 * Copyright © 2004-2008 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
5 * Ben Dooks <ben@simtec.co.uk>
7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #define pr_fmt(fmt) "nand-s3c2410: " fmt
26 #ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
30 #include <linux/module.h>
31 #include <linux/types.h>
32 #include <linux/kernel.h>
33 #include <linux/string.h>
35 #include <linux/ioport.h>
36 #include <linux/platform_device.h>
37 #include <linux/delay.h>
38 #include <linux/err.h>
39 #include <linux/slab.h>
40 #include <linux/clk.h>
41 #include <linux/cpufreq.h>
43 #include <linux/mtd/mtd.h>
44 #include <linux/mtd/nand.h>
45 #include <linux/mtd/nand_ecc.h>
46 #include <linux/mtd/partitions.h>
48 #include <linux/platform_data/mtd-nand-s3c2410.h>
50 #define S3C2410_NFREG(x) (x)
52 #define S3C2410_NFCONF S3C2410_NFREG(0x00)
53 #define S3C2410_NFCMD S3C2410_NFREG(0x04)
54 #define S3C2410_NFADDR S3C2410_NFREG(0x08)
55 #define S3C2410_NFDATA S3C2410_NFREG(0x0C)
56 #define S3C2410_NFSTAT S3C2410_NFREG(0x10)
57 #define S3C2410_NFECC S3C2410_NFREG(0x14)
58 #define S3C2440_NFCONT S3C2410_NFREG(0x04)
59 #define S3C2440_NFCMD S3C2410_NFREG(0x08)
60 #define S3C2440_NFADDR S3C2410_NFREG(0x0C)
61 #define S3C2440_NFDATA S3C2410_NFREG(0x10)
62 #define S3C2440_NFSTAT S3C2410_NFREG(0x20)
63 #define S3C2440_NFMECC0 S3C2410_NFREG(0x2C)
64 #define S3C2412_NFSTAT S3C2410_NFREG(0x28)
65 #define S3C2412_NFMECC0 S3C2410_NFREG(0x34)
66 #define S3C2410_NFCONF_EN (1<<15)
67 #define S3C2410_NFCONF_INITECC (1<<12)
68 #define S3C2410_NFCONF_nFCE (1<<11)
69 #define S3C2410_NFCONF_TACLS(x) ((x)<<8)
70 #define S3C2410_NFCONF_TWRPH0(x) ((x)<<4)
71 #define S3C2410_NFCONF_TWRPH1(x) ((x)<<0)
72 #define S3C2410_NFSTAT_BUSY (1<<0)
73 #define S3C2440_NFCONF_TACLS(x) ((x)<<12)
74 #define S3C2440_NFCONF_TWRPH0(x) ((x)<<8)
75 #define S3C2440_NFCONF_TWRPH1(x) ((x)<<4)
76 #define S3C2440_NFCONT_INITECC (1<<4)
77 #define S3C2440_NFCONT_nFCE (1<<1)
78 #define S3C2440_NFCONT_ENABLE (1<<0)
79 #define S3C2440_NFSTAT_READY (1<<0)
80 #define S3C2412_NFCONF_NANDBOOT (1<<31)
81 #define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5)
82 #define S3C2412_NFCONT_nFCE0 (1<<1)
83 #define S3C2412_NFSTAT_READY (1<<0)
85 /* new oob placement block for use with hardware ecc generation
87 static int s3c2410_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
88 struct mtd_oob_region
*oobregion
)
93 oobregion
->offset
= 0;
94 oobregion
->length
= 3;
99 static int s3c2410_ooblayout_free(struct mtd_info
*mtd
, int section
,
100 struct mtd_oob_region
*oobregion
)
105 oobregion
->offset
= 8;
106 oobregion
->length
= 8;
111 static const struct mtd_ooblayout_ops s3c2410_ooblayout_ops
= {
112 .ecc
= s3c2410_ooblayout_ecc
,
113 .free
= s3c2410_ooblayout_free
,
116 /* controller and mtd information */
118 struct s3c2410_nand_info
;
121 * struct s3c2410_nand_mtd - driver MTD structure
122 * @mtd: The MTD instance to pass to the MTD layer.
123 * @chip: The NAND chip information.
124 * @set: The platform information supplied for this set of NAND chips.
125 * @info: Link back to the hardware information.
126 * @scan_res: The result from calling nand_scan_ident().
128 struct s3c2410_nand_mtd
{
129 struct nand_chip chip
;
130 struct s3c2410_nand_set
*set
;
131 struct s3c2410_nand_info
*info
;
141 enum s3c_nand_clk_state
{
147 /* overview of the s3c2410 nand state */
150 * struct s3c2410_nand_info - NAND controller state.
151 * @mtds: An array of MTD instances on this controoler.
152 * @platform: The platform data for this board.
153 * @device: The platform device we bound to.
154 * @clk: The clock resource for this controller.
155 * @regs: The area mapped for the hardware registers.
156 * @sel_reg: Pointer to the register controlling the NAND selection.
157 * @sel_bit: The bit in @sel_reg to select the NAND chip.
158 * @mtd_count: The number of MTDs created from this controller.
159 * @save_sel: The contents of @sel_reg to be saved over suspend.
160 * @clk_rate: The clock rate from @clk.
161 * @clk_state: The current clock state.
162 * @cpu_type: The exact type of this controller.
164 struct s3c2410_nand_info
{
166 struct nand_hw_control controller
;
167 struct s3c2410_nand_mtd
*mtds
;
168 struct s3c2410_platform_nand
*platform
;
171 struct device
*device
;
174 void __iomem
*sel_reg
;
177 unsigned long save_sel
;
178 unsigned long clk_rate
;
179 enum s3c_nand_clk_state clk_state
;
181 enum s3c_cpu_type cpu_type
;
183 #ifdef CONFIG_CPU_FREQ
184 struct notifier_block freq_transition
;
188 /* conversion functions */
190 static struct s3c2410_nand_mtd
*s3c2410_nand_mtd_toours(struct mtd_info
*mtd
)
192 return container_of(mtd_to_nand(mtd
), struct s3c2410_nand_mtd
,
196 static struct s3c2410_nand_info
*s3c2410_nand_mtd_toinfo(struct mtd_info
*mtd
)
198 return s3c2410_nand_mtd_toours(mtd
)->info
;
201 static struct s3c2410_nand_info
*to_nand_info(struct platform_device
*dev
)
203 return platform_get_drvdata(dev
);
206 static struct s3c2410_platform_nand
*to_nand_plat(struct platform_device
*dev
)
208 return dev_get_platdata(&dev
->dev
);
211 static inline int allow_clk_suspend(struct s3c2410_nand_info
*info
)
213 #ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
221 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
222 * @info: The controller instance.
223 * @new_state: State to which clock should be set.
225 static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info
*info
,
226 enum s3c_nand_clk_state new_state
)
228 if (!allow_clk_suspend(info
) && new_state
== CLOCK_SUSPEND
)
231 if (info
->clk_state
== CLOCK_ENABLE
) {
232 if (new_state
!= CLOCK_ENABLE
)
233 clk_disable_unprepare(info
->clk
);
235 if (new_state
== CLOCK_ENABLE
)
236 clk_prepare_enable(info
->clk
);
239 info
->clk_state
= new_state
;
242 /* timing calculations */
244 #define NS_IN_KHZ 1000000
247 * s3c_nand_calc_rate - calculate timing data.
248 * @wanted: The cycle time in nanoseconds.
249 * @clk: The clock rate in kHz.
250 * @max: The maximum divider value.
252 * Calculate the timing value from the given parameters.
254 static int s3c_nand_calc_rate(int wanted
, unsigned long clk
, int max
)
258 result
= DIV_ROUND_UP((wanted
* clk
), NS_IN_KHZ
);
260 pr_debug("result %d from %ld, %d\n", result
, clk
, wanted
);
263 pr_err("%d ns is too big for current clock rate %ld\n",
274 #define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
276 /* controller setup */
279 * s3c2410_nand_setrate - setup controller timing information.
280 * @info: The controller instance.
282 * Given the information supplied by the platform, calculate and set
283 * the necessary timing registers in the hardware to generate the
284 * necessary timing cycles to the hardware.
286 static int s3c2410_nand_setrate(struct s3c2410_nand_info
*info
)
288 struct s3c2410_platform_nand
*plat
= info
->platform
;
289 int tacls_max
= (info
->cpu_type
== TYPE_S3C2412
) ? 8 : 4;
290 int tacls
, twrph0
, twrph1
;
291 unsigned long clkrate
= clk_get_rate(info
->clk
);
292 unsigned long uninitialized_var(set
), cfg
, uninitialized_var(mask
);
295 /* calculate the timing information for the controller */
297 info
->clk_rate
= clkrate
;
298 clkrate
/= 1000; /* turn clock into kHz for ease of use */
301 tacls
= s3c_nand_calc_rate(plat
->tacls
, clkrate
, tacls_max
);
302 twrph0
= s3c_nand_calc_rate(plat
->twrph0
, clkrate
, 8);
303 twrph1
= s3c_nand_calc_rate(plat
->twrph1
, clkrate
, 8);
305 /* default timings */
311 if (tacls
< 0 || twrph0
< 0 || twrph1
< 0) {
312 dev_err(info
->device
, "cannot get suitable timings\n");
316 dev_info(info
->device
, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
317 tacls
, to_ns(tacls
, clkrate
), twrph0
, to_ns(twrph0
, clkrate
),
318 twrph1
, to_ns(twrph1
, clkrate
));
320 switch (info
->cpu_type
) {
322 mask
= (S3C2410_NFCONF_TACLS(3) |
323 S3C2410_NFCONF_TWRPH0(7) |
324 S3C2410_NFCONF_TWRPH1(7));
325 set
= S3C2410_NFCONF_EN
;
326 set
|= S3C2410_NFCONF_TACLS(tacls
- 1);
327 set
|= S3C2410_NFCONF_TWRPH0(twrph0
- 1);
328 set
|= S3C2410_NFCONF_TWRPH1(twrph1
- 1);
333 mask
= (S3C2440_NFCONF_TACLS(tacls_max
- 1) |
334 S3C2440_NFCONF_TWRPH0(7) |
335 S3C2440_NFCONF_TWRPH1(7));
337 set
= S3C2440_NFCONF_TACLS(tacls
- 1);
338 set
|= S3C2440_NFCONF_TWRPH0(twrph0
- 1);
339 set
|= S3C2440_NFCONF_TWRPH1(twrph1
- 1);
346 local_irq_save(flags
);
348 cfg
= readl(info
->regs
+ S3C2410_NFCONF
);
351 writel(cfg
, info
->regs
+ S3C2410_NFCONF
);
353 local_irq_restore(flags
);
355 dev_dbg(info
->device
, "NF_CONF is 0x%lx\n", cfg
);
361 * s3c2410_nand_inithw - basic hardware initialisation
362 * @info: The hardware state.
364 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
365 * to setup the hardware access speeds and set the controller to be enabled.
367 static int s3c2410_nand_inithw(struct s3c2410_nand_info
*info
)
371 ret
= s3c2410_nand_setrate(info
);
375 switch (info
->cpu_type
) {
382 /* enable the controller and de-assert nFCE */
384 writel(S3C2440_NFCONT_ENABLE
, info
->regs
+ S3C2440_NFCONT
);
391 * s3c2410_nand_select_chip - select the given nand chip
392 * @mtd: The MTD instance for this chip.
393 * @chip: The chip number.
395 * This is called by the MTD layer to either select a given chip for the
396 * @mtd instance, or to indicate that the access has finished and the
397 * chip can be de-selected.
399 * The routine ensures that the nFCE line is correctly setup, and any
400 * platform specific selection code is called to route nFCE to the specific
403 static void s3c2410_nand_select_chip(struct mtd_info
*mtd
, int chip
)
405 struct s3c2410_nand_info
*info
;
406 struct s3c2410_nand_mtd
*nmtd
;
407 struct nand_chip
*this = mtd_to_nand(mtd
);
410 nmtd
= nand_get_controller_data(this);
414 s3c2410_nand_clk_set_state(info
, CLOCK_ENABLE
);
416 cur
= readl(info
->sel_reg
);
419 cur
|= info
->sel_bit
;
421 if (nmtd
->set
!= NULL
&& chip
> nmtd
->set
->nr_chips
) {
422 dev_err(info
->device
, "invalid chip %d\n", chip
);
426 if (info
->platform
!= NULL
) {
427 if (info
->platform
->select_chip
!= NULL
)
428 (info
->platform
->select_chip
) (nmtd
->set
, chip
);
431 cur
&= ~info
->sel_bit
;
434 writel(cur
, info
->sel_reg
);
437 s3c2410_nand_clk_set_state(info
, CLOCK_SUSPEND
);
440 /* s3c2410_nand_hwcontrol
442 * Issue command and address cycles to the chip
445 static void s3c2410_nand_hwcontrol(struct mtd_info
*mtd
, int cmd
,
448 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
450 if (cmd
== NAND_CMD_NONE
)
454 writeb(cmd
, info
->regs
+ S3C2410_NFCMD
);
456 writeb(cmd
, info
->regs
+ S3C2410_NFADDR
);
459 /* command and control functions */
461 static void s3c2440_nand_hwcontrol(struct mtd_info
*mtd
, int cmd
,
464 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
466 if (cmd
== NAND_CMD_NONE
)
470 writeb(cmd
, info
->regs
+ S3C2440_NFCMD
);
472 writeb(cmd
, info
->regs
+ S3C2440_NFADDR
);
475 /* s3c2410_nand_devready()
477 * returns 0 if the nand is busy, 1 if it is ready
480 static int s3c2410_nand_devready(struct mtd_info
*mtd
)
482 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
483 return readb(info
->regs
+ S3C2410_NFSTAT
) & S3C2410_NFSTAT_BUSY
;
486 static int s3c2440_nand_devready(struct mtd_info
*mtd
)
488 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
489 return readb(info
->regs
+ S3C2440_NFSTAT
) & S3C2440_NFSTAT_READY
;
492 static int s3c2412_nand_devready(struct mtd_info
*mtd
)
494 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
495 return readb(info
->regs
+ S3C2412_NFSTAT
) & S3C2412_NFSTAT_READY
;
498 /* ECC handling functions */
500 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
501 static int s3c2410_nand_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
502 u_char
*read_ecc
, u_char
*calc_ecc
)
504 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
505 unsigned int diff0
, diff1
, diff2
;
506 unsigned int bit
, byte
;
508 pr_debug("%s(%p,%p,%p,%p)\n", __func__
, mtd
, dat
, read_ecc
, calc_ecc
);
510 diff0
= read_ecc
[0] ^ calc_ecc
[0];
511 diff1
= read_ecc
[1] ^ calc_ecc
[1];
512 diff2
= read_ecc
[2] ^ calc_ecc
[2];
514 pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
515 __func__
, 3, read_ecc
, 3, calc_ecc
,
516 diff0
, diff1
, diff2
);
518 if (diff0
== 0 && diff1
== 0 && diff2
== 0)
519 return 0; /* ECC is ok */
521 /* sometimes people do not think about using the ECC, so check
522 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
523 * the error, on the assumption that this is an un-eccd page.
525 if (read_ecc
[0] == 0xff && read_ecc
[1] == 0xff && read_ecc
[2] == 0xff
526 && info
->platform
->ignore_unset_ecc
)
529 /* Can we correct this ECC (ie, one row and column change).
530 * Note, this is similar to the 256 error code on smartmedia */
532 if (((diff0
^ (diff0
>> 1)) & 0x55) == 0x55 &&
533 ((diff1
^ (diff1
>> 1)) & 0x55) == 0x55 &&
534 ((diff2
^ (diff2
>> 1)) & 0x55) == 0x55) {
535 /* calculate the bit position of the error */
537 bit
= ((diff2
>> 3) & 1) |
541 /* calculate the byte position of the error */
543 byte
= ((diff2
<< 7) & 0x100) |
544 ((diff1
<< 0) & 0x80) |
545 ((diff1
<< 1) & 0x40) |
546 ((diff1
<< 2) & 0x20) |
547 ((diff1
<< 3) & 0x10) |
548 ((diff0
>> 4) & 0x08) |
549 ((diff0
>> 3) & 0x04) |
550 ((diff0
>> 2) & 0x02) |
551 ((diff0
>> 1) & 0x01);
553 dev_dbg(info
->device
, "correcting error bit %d, byte %d\n",
556 dat
[byte
] ^= (1 << bit
);
560 /* if there is only one bit difference in the ECC, then
561 * one of only a row or column parity has changed, which
562 * means the error is most probably in the ECC itself */
564 diff0
|= (diff1
<< 8);
565 diff0
|= (diff2
<< 16);
567 /* equal to "(diff0 & ~(1 << __ffs(diff0)))" */
568 if ((diff0
& (diff0
- 1)) == 0)
576 * These allow the s3c2410 and s3c2440 to use the controller's ECC
577 * generator block to ECC the data as it passes through]
580 static void s3c2410_nand_enable_hwecc(struct mtd_info
*mtd
, int mode
)
582 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
585 ctrl
= readl(info
->regs
+ S3C2410_NFCONF
);
586 ctrl
|= S3C2410_NFCONF_INITECC
;
587 writel(ctrl
, info
->regs
+ S3C2410_NFCONF
);
590 static void s3c2412_nand_enable_hwecc(struct mtd_info
*mtd
, int mode
)
592 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
595 ctrl
= readl(info
->regs
+ S3C2440_NFCONT
);
596 writel(ctrl
| S3C2412_NFCONT_INIT_MAIN_ECC
,
597 info
->regs
+ S3C2440_NFCONT
);
600 static void s3c2440_nand_enable_hwecc(struct mtd_info
*mtd
, int mode
)
602 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
605 ctrl
= readl(info
->regs
+ S3C2440_NFCONT
);
606 writel(ctrl
| S3C2440_NFCONT_INITECC
, info
->regs
+ S3C2440_NFCONT
);
609 static int s3c2410_nand_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
,
612 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
614 ecc_code
[0] = readb(info
->regs
+ S3C2410_NFECC
+ 0);
615 ecc_code
[1] = readb(info
->regs
+ S3C2410_NFECC
+ 1);
616 ecc_code
[2] = readb(info
->regs
+ S3C2410_NFECC
+ 2);
618 pr_debug("%s: returning ecc %*phN\n", __func__
, 3, ecc_code
);
623 static int s3c2412_nand_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
,
626 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
627 unsigned long ecc
= readl(info
->regs
+ S3C2412_NFMECC0
);
630 ecc_code
[1] = ecc
>> 8;
631 ecc_code
[2] = ecc
>> 16;
633 pr_debug("%s: returning ecc %*phN\n", __func__
, 3, ecc_code
);
638 static int s3c2440_nand_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
,
641 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
642 unsigned long ecc
= readl(info
->regs
+ S3C2440_NFMECC0
);
645 ecc_code
[1] = ecc
>> 8;
646 ecc_code
[2] = ecc
>> 16;
648 pr_debug("%s: returning ecc %06lx\n", __func__
, ecc
& 0xffffff);
654 /* over-ride the standard functions for a little more speed. We can
655 * use read/write block to move the data buffers to/from the controller
658 static void s3c2410_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
660 struct nand_chip
*this = mtd_to_nand(mtd
);
661 readsb(this->IO_ADDR_R
, buf
, len
);
664 static void s3c2440_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
666 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
668 readsl(info
->regs
+ S3C2440_NFDATA
, buf
, len
>> 2);
670 /* cleanup if we've got less than a word to do */
674 for (; len
& 3; len
--)
675 *buf
++ = readb(info
->regs
+ S3C2440_NFDATA
);
679 static void s3c2410_nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
,
682 struct nand_chip
*this = mtd_to_nand(mtd
);
683 writesb(this->IO_ADDR_W
, buf
, len
);
686 static void s3c2440_nand_write_buf(struct mtd_info
*mtd
, const u_char
*buf
,
689 struct s3c2410_nand_info
*info
= s3c2410_nand_mtd_toinfo(mtd
);
691 writesl(info
->regs
+ S3C2440_NFDATA
, buf
, len
>> 2);
693 /* cleanup any fractional write */
697 for (; len
& 3; len
--, buf
++)
698 writeb(*buf
, info
->regs
+ S3C2440_NFDATA
);
702 /* cpufreq driver support */
704 #ifdef CONFIG_CPU_FREQ
706 static int s3c2410_nand_cpufreq_transition(struct notifier_block
*nb
,
707 unsigned long val
, void *data
)
709 struct s3c2410_nand_info
*info
;
710 unsigned long newclk
;
712 info
= container_of(nb
, struct s3c2410_nand_info
, freq_transition
);
713 newclk
= clk_get_rate(info
->clk
);
715 if ((val
== CPUFREQ_POSTCHANGE
&& newclk
< info
->clk_rate
) ||
716 (val
== CPUFREQ_PRECHANGE
&& newclk
> info
->clk_rate
)) {
717 s3c2410_nand_setrate(info
);
723 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info
*info
)
725 info
->freq_transition
.notifier_call
= s3c2410_nand_cpufreq_transition
;
727 return cpufreq_register_notifier(&info
->freq_transition
,
728 CPUFREQ_TRANSITION_NOTIFIER
);
732 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info
*info
)
734 cpufreq_unregister_notifier(&info
->freq_transition
,
735 CPUFREQ_TRANSITION_NOTIFIER
);
739 static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info
*info
)
745 s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info
*info
)
750 /* device management functions */
752 static int s3c24xx_nand_remove(struct platform_device
*pdev
)
754 struct s3c2410_nand_info
*info
= to_nand_info(pdev
);
759 s3c2410_nand_cpufreq_deregister(info
);
761 /* Release all our mtds and their partitions, then go through
762 * freeing the resources used
765 if (info
->mtds
!= NULL
) {
766 struct s3c2410_nand_mtd
*ptr
= info
->mtds
;
769 for (mtdno
= 0; mtdno
< info
->mtd_count
; mtdno
++, ptr
++) {
770 pr_debug("releasing mtd %d (%p)\n", mtdno
, ptr
);
771 nand_release(nand_to_mtd(&ptr
->chip
));
775 /* free the common resources */
777 if (!IS_ERR(info
->clk
))
778 s3c2410_nand_clk_set_state(info
, CLOCK_DISABLE
);
783 static int s3c2410_nand_add_partition(struct s3c2410_nand_info
*info
,
784 struct s3c2410_nand_mtd
*mtd
,
785 struct s3c2410_nand_set
*set
)
788 struct mtd_info
*mtdinfo
= nand_to_mtd(&mtd
->chip
);
790 mtdinfo
->name
= set
->name
;
792 return mtd_device_parse_register(mtdinfo
, NULL
, NULL
,
793 set
->partitions
, set
->nr_partitions
);
800 * s3c2410_nand_init_chip - initialise a single instance of an chip
801 * @info: The base NAND controller the chip is on.
802 * @nmtd: The new controller MTD instance to fill in.
803 * @set: The information passed from the board specific platform data.
805 * Initialise the given @nmtd from the information in @info and @set. This
806 * readies the structure for use with the MTD layer functions by ensuring
807 * all pointers are setup and the necessary control routines selected.
809 static void s3c2410_nand_init_chip(struct s3c2410_nand_info
*info
,
810 struct s3c2410_nand_mtd
*nmtd
,
811 struct s3c2410_nand_set
*set
)
813 struct nand_chip
*chip
= &nmtd
->chip
;
814 void __iomem
*regs
= info
->regs
;
816 chip
->write_buf
= s3c2410_nand_write_buf
;
817 chip
->read_buf
= s3c2410_nand_read_buf
;
818 chip
->select_chip
= s3c2410_nand_select_chip
;
819 chip
->chip_delay
= 50;
820 nand_set_controller_data(chip
, nmtd
);
821 chip
->options
= set
->options
;
822 chip
->controller
= &info
->controller
;
824 switch (info
->cpu_type
) {
826 chip
->IO_ADDR_W
= regs
+ S3C2410_NFDATA
;
827 info
->sel_reg
= regs
+ S3C2410_NFCONF
;
828 info
->sel_bit
= S3C2410_NFCONF_nFCE
;
829 chip
->cmd_ctrl
= s3c2410_nand_hwcontrol
;
830 chip
->dev_ready
= s3c2410_nand_devready
;
834 chip
->IO_ADDR_W
= regs
+ S3C2440_NFDATA
;
835 info
->sel_reg
= regs
+ S3C2440_NFCONT
;
836 info
->sel_bit
= S3C2440_NFCONT_nFCE
;
837 chip
->cmd_ctrl
= s3c2440_nand_hwcontrol
;
838 chip
->dev_ready
= s3c2440_nand_devready
;
839 chip
->read_buf
= s3c2440_nand_read_buf
;
840 chip
->write_buf
= s3c2440_nand_write_buf
;
844 chip
->IO_ADDR_W
= regs
+ S3C2440_NFDATA
;
845 info
->sel_reg
= regs
+ S3C2440_NFCONT
;
846 info
->sel_bit
= S3C2412_NFCONT_nFCE0
;
847 chip
->cmd_ctrl
= s3c2440_nand_hwcontrol
;
848 chip
->dev_ready
= s3c2412_nand_devready
;
850 if (readl(regs
+ S3C2410_NFCONF
) & S3C2412_NFCONF_NANDBOOT
)
851 dev_info(info
->device
, "System booted from NAND\n");
856 chip
->IO_ADDR_R
= chip
->IO_ADDR_W
;
861 #ifdef CONFIG_MTD_NAND_S3C2410_HWECC
862 chip
->ecc
.calculate
= s3c2410_nand_calculate_ecc
;
863 chip
->ecc
.correct
= s3c2410_nand_correct_data
;
864 chip
->ecc
.mode
= NAND_ECC_HW
;
865 chip
->ecc
.strength
= 1;
867 switch (info
->cpu_type
) {
869 chip
->ecc
.hwctl
= s3c2410_nand_enable_hwecc
;
870 chip
->ecc
.calculate
= s3c2410_nand_calculate_ecc
;
874 chip
->ecc
.hwctl
= s3c2412_nand_enable_hwecc
;
875 chip
->ecc
.calculate
= s3c2412_nand_calculate_ecc
;
879 chip
->ecc
.hwctl
= s3c2440_nand_enable_hwecc
;
880 chip
->ecc
.calculate
= s3c2440_nand_calculate_ecc
;
884 chip
->ecc
.mode
= NAND_ECC_SOFT
;
885 chip
->ecc
.algo
= NAND_ECC_HAMMING
;
888 if (set
->disable_ecc
)
889 chip
->ecc
.mode
= NAND_ECC_NONE
;
891 switch (chip
->ecc
.mode
) {
893 dev_info(info
->device
, "NAND ECC disabled\n");
896 dev_info(info
->device
, "NAND soft ECC\n");
899 dev_info(info
->device
, "NAND hardware ECC\n");
902 dev_info(info
->device
, "NAND ECC UNKNOWN\n");
906 /* If you use u-boot BBT creation code, specifying this flag will
907 * let the kernel fish out the BBT from the NAND, and also skip the
908 * full NAND scan that can take 1/2s or so. Little things... */
909 if (set
->flash_bbt
) {
910 chip
->bbt_options
|= NAND_BBT_USE_FLASH
;
911 chip
->options
|= NAND_SKIP_BBTSCAN
;
916 * s3c2410_nand_update_chip - post probe update
917 * @info: The controller instance.
918 * @nmtd: The driver version of the MTD instance.
920 * This routine is called after the chip probe has successfully completed
921 * and the relevant per-chip information updated. This call ensure that
922 * we update the internal state accordingly.
924 * The internal state is currently limited to the ECC state information.
926 static void s3c2410_nand_update_chip(struct s3c2410_nand_info
*info
,
927 struct s3c2410_nand_mtd
*nmtd
)
929 struct nand_chip
*chip
= &nmtd
->chip
;
931 dev_dbg(info
->device
, "chip %p => page shift %d\n",
932 chip
, chip
->page_shift
);
934 if (chip
->ecc
.mode
!= NAND_ECC_HW
)
937 /* change the behaviour depending on whether we are using
938 * the large or small page nand device */
940 if (chip
->page_shift
> 10) {
941 chip
->ecc
.size
= 256;
944 chip
->ecc
.size
= 512;
946 mtd_set_ooblayout(nand_to_mtd(chip
), &s3c2410_ooblayout_ops
);
950 /* s3c24xx_nand_probe
952 * called by device layer when it finds a device matching
953 * one our driver can handled. This code checks to see if
954 * it can allocate all necessary resources then calls the
955 * nand layer to look for devices
957 static int s3c24xx_nand_probe(struct platform_device
*pdev
)
959 struct s3c2410_platform_nand
*plat
= to_nand_plat(pdev
);
960 enum s3c_cpu_type cpu_type
;
961 struct s3c2410_nand_info
*info
;
962 struct s3c2410_nand_mtd
*nmtd
;
963 struct s3c2410_nand_set
*sets
;
964 struct resource
*res
;
970 cpu_type
= platform_get_device_id(pdev
)->driver_data
;
972 info
= devm_kzalloc(&pdev
->dev
, sizeof(*info
), GFP_KERNEL
);
978 platform_set_drvdata(pdev
, info
);
980 spin_lock_init(&info
->controller
.lock
);
981 init_waitqueue_head(&info
->controller
.wq
);
983 /* get the clock source and enable it */
985 info
->clk
= devm_clk_get(&pdev
->dev
, "nand");
986 if (IS_ERR(info
->clk
)) {
987 dev_err(&pdev
->dev
, "failed to get clock\n");
992 s3c2410_nand_clk_set_state(info
, CLOCK_ENABLE
);
994 /* allocate and map the resource */
996 /* currently we assume we have the one resource */
997 res
= pdev
->resource
;
998 size
= resource_size(res
);
1000 info
->device
= &pdev
->dev
;
1001 info
->platform
= plat
;
1002 info
->cpu_type
= cpu_type
;
1004 info
->regs
= devm_ioremap_resource(&pdev
->dev
, res
);
1005 if (IS_ERR(info
->regs
)) {
1006 err
= PTR_ERR(info
->regs
);
1010 dev_dbg(&pdev
->dev
, "mapped registers at %p\n", info
->regs
);
1012 /* initialise the hardware */
1014 err
= s3c2410_nand_inithw(info
);
1018 sets
= (plat
!= NULL
) ? plat
->sets
: NULL
;
1019 nr_sets
= (plat
!= NULL
) ? plat
->nr_sets
: 1;
1021 info
->mtd_count
= nr_sets
;
1023 /* allocate our information */
1025 size
= nr_sets
* sizeof(*info
->mtds
);
1026 info
->mtds
= devm_kzalloc(&pdev
->dev
, size
, GFP_KERNEL
);
1027 if (info
->mtds
== NULL
) {
1032 /* initialise all possible chips */
1036 for (setno
= 0; setno
< nr_sets
; setno
++, nmtd
++) {
1037 struct mtd_info
*mtd
= nand_to_mtd(&nmtd
->chip
);
1039 pr_debug("initialising set %d (%p, info %p)\n",
1042 mtd
->dev
.parent
= &pdev
->dev
;
1043 s3c2410_nand_init_chip(info
, nmtd
, sets
);
1045 nmtd
->scan_res
= nand_scan_ident(mtd
,
1046 (sets
) ? sets
->nr_chips
: 1,
1049 if (nmtd
->scan_res
== 0) {
1050 s3c2410_nand_update_chip(info
, nmtd
);
1051 nand_scan_tail(mtd
);
1052 s3c2410_nand_add_partition(info
, nmtd
, sets
);
1059 err
= s3c2410_nand_cpufreq_register(info
);
1061 dev_err(&pdev
->dev
, "failed to init cpufreq support\n");
1065 if (allow_clk_suspend(info
)) {
1066 dev_info(&pdev
->dev
, "clock idle support enabled\n");
1067 s3c2410_nand_clk_set_state(info
, CLOCK_SUSPEND
);
1073 s3c24xx_nand_remove(pdev
);
1083 static int s3c24xx_nand_suspend(struct platform_device
*dev
, pm_message_t pm
)
1085 struct s3c2410_nand_info
*info
= platform_get_drvdata(dev
);
1088 info
->save_sel
= readl(info
->sel_reg
);
1090 /* For the moment, we must ensure nFCE is high during
1091 * the time we are suspended. This really should be
1092 * handled by suspending the MTDs we are using, but
1093 * that is currently not the case. */
1095 writel(info
->save_sel
| info
->sel_bit
, info
->sel_reg
);
1097 s3c2410_nand_clk_set_state(info
, CLOCK_DISABLE
);
1103 static int s3c24xx_nand_resume(struct platform_device
*dev
)
1105 struct s3c2410_nand_info
*info
= platform_get_drvdata(dev
);
1109 s3c2410_nand_clk_set_state(info
, CLOCK_ENABLE
);
1110 s3c2410_nand_inithw(info
);
1112 /* Restore the state of the nFCE line. */
1114 sel
= readl(info
->sel_reg
);
1115 sel
&= ~info
->sel_bit
;
1116 sel
|= info
->save_sel
& info
->sel_bit
;
1117 writel(sel
, info
->sel_reg
);
1119 s3c2410_nand_clk_set_state(info
, CLOCK_SUSPEND
);
1126 #define s3c24xx_nand_suspend NULL
1127 #define s3c24xx_nand_resume NULL
1130 /* driver device registration */
1132 static const struct platform_device_id s3c24xx_driver_ids
[] = {
1134 .name
= "s3c2410-nand",
1135 .driver_data
= TYPE_S3C2410
,
1137 .name
= "s3c2440-nand",
1138 .driver_data
= TYPE_S3C2440
,
1140 .name
= "s3c2412-nand",
1141 .driver_data
= TYPE_S3C2412
,
1143 .name
= "s3c6400-nand",
1144 .driver_data
= TYPE_S3C2412
, /* compatible with 2412 */
1149 MODULE_DEVICE_TABLE(platform
, s3c24xx_driver_ids
);
1151 static struct platform_driver s3c24xx_nand_driver
= {
1152 .probe
= s3c24xx_nand_probe
,
1153 .remove
= s3c24xx_nand_remove
,
1154 .suspend
= s3c24xx_nand_suspend
,
1155 .resume
= s3c24xx_nand_resume
,
1156 .id_table
= s3c24xx_driver_ids
,
1158 .name
= "s3c24xx-nand",
1162 module_platform_driver(s3c24xx_nand_driver
);
1164 MODULE_LICENSE("GPL");
1165 MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1166 MODULE_DESCRIPTION("S3C24XX MTD NAND driver");