2 * linux/drivers/mtd/onenand/onenand_base.c
4 * Copyright © 2005-2009 Samsung Electronics
5 * Copyright © 2007 Nokia Corporation
7 * Kyungmin Park <kyungmin.park@samsung.com>
10 * Adrian Hunter <ext-adrian.hunter@nokia.com>:
11 * auto-placement support, read-while load support, various fixes
13 * Vishak G <vishak.g at samsung.com>, Rohit Hagargundgi <h.rohit at samsung.com>
14 * Flex-OneNAND support
15 * Amul Kumar Saha <amul.saha at samsung.com>
18 * This program is free software; you can redistribute it and/or modify
19 * it under the terms of the GNU General Public License version 2 as
20 * published by the Free Software Foundation.
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/moduleparam.h>
26 #include <linux/slab.h>
27 #include <linux/sched.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/jiffies.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/onenand.h>
33 #include <linux/mtd/partitions.h>
38 * Multiblock erase if number of blocks to erase is 2 or more.
39 * Maximum number of blocks for simultaneous erase is 64.
41 #define MB_ERASE_MIN_BLK_COUNT 2
42 #define MB_ERASE_MAX_BLK_COUNT 64
44 /* Default Flex-OneNAND boundary and lock respectively */
45 static int flex_bdry
[MAX_DIES
* 2] = { -1, 0, -1, 0 };
47 module_param_array(flex_bdry
, int, NULL
, 0400);
48 MODULE_PARM_DESC(flex_bdry
, "SLC Boundary information for Flex-OneNAND"
49 "Syntax:flex_bdry=DIE_BDRY,LOCK,..."
50 "DIE_BDRY: SLC boundary of the die"
51 "LOCK: Locking information for SLC boundary"
52 " : 0->Set boundary in unlocked status"
53 " : 1->Set boundary in locked status");
55 /* Default OneNAND/Flex-OneNAND OTP options*/
58 module_param(otp
, int, 0400);
59 MODULE_PARM_DESC(otp
, "Corresponding behaviour of OneNAND in OTP"
60 "Syntax : otp=LOCK_TYPE"
61 "LOCK_TYPE : Keys issued, for specific OTP Lock type"
62 " : 0 -> Default (No Blocks Locked)"
63 " : 1 -> OTP Block lock"
64 " : 2 -> 1st Block lock"
65 " : 3 -> BOTH OTP Block and 1st Block lock");
68 * flexonenand_oob_128 - oob info for Flex-Onenand with 4KB page
69 * For now, we expose only 64 out of 80 ecc bytes
71 static int flexonenand_ooblayout_ecc(struct mtd_info
*mtd
, int section
,
72 struct mtd_oob_region
*oobregion
)
77 oobregion
->offset
= (section
* 16) + 6;
78 oobregion
->length
= 10;
83 static int flexonenand_ooblayout_free(struct mtd_info
*mtd
, int section
,
84 struct mtd_oob_region
*oobregion
)
89 oobregion
->offset
= (section
* 16) + 2;
90 oobregion
->length
= 4;
95 static const struct mtd_ooblayout_ops flexonenand_ooblayout_ops
= {
96 .ecc
= flexonenand_ooblayout_ecc
,
97 .free
= flexonenand_ooblayout_free
,
101 * onenand_oob_128 - oob info for OneNAND with 4KB page
103 * Based on specification:
104 * 4Gb M-die OneNAND Flash (KFM4G16Q4M, KFN8G16Q4M). Rev. 1.3, Apr. 2010
107 static int onenand_ooblayout_128_ecc(struct mtd_info
*mtd
, int section
,
108 struct mtd_oob_region
*oobregion
)
113 oobregion
->offset
= (section
* 16) + 7;
114 oobregion
->length
= 9;
119 static int onenand_ooblayout_128_free(struct mtd_info
*mtd
, int section
,
120 struct mtd_oob_region
*oobregion
)
126 * free bytes are using the spare area fields marked as
127 * "Managed by internal ECC logic for Logical Sector Number area"
129 oobregion
->offset
= (section
* 16) + 2;
130 oobregion
->length
= 3;
135 static const struct mtd_ooblayout_ops onenand_oob_128_ooblayout_ops
= {
136 .ecc
= onenand_ooblayout_128_ecc
,
137 .free
= onenand_ooblayout_128_free
,
141 * onenand_oob_32_64 - oob info for large (2KB) page
143 static int onenand_ooblayout_32_64_ecc(struct mtd_info
*mtd
, int section
,
144 struct mtd_oob_region
*oobregion
)
149 oobregion
->offset
= (section
* 16) + 8;
150 oobregion
->length
= 5;
155 static int onenand_ooblayout_32_64_free(struct mtd_info
*mtd
, int section
,
156 struct mtd_oob_region
*oobregion
)
158 int sections
= (mtd
->oobsize
/ 32) * 2;
160 if (section
>= sections
)
164 oobregion
->offset
= ((section
- 1) * 16) + 14;
165 oobregion
->length
= 2;
167 oobregion
->offset
= (section
* 16) + 2;
168 oobregion
->length
= 3;
174 static const struct mtd_ooblayout_ops onenand_oob_32_64_ooblayout_ops
= {
175 .ecc
= onenand_ooblayout_32_64_ecc
,
176 .free
= onenand_ooblayout_32_64_free
,
179 static const unsigned char ffchars
[] = {
180 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
181 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 16 */
182 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
183 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 32 */
184 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
185 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 48 */
186 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
187 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 64 */
188 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
189 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 80 */
190 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
191 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 96 */
192 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
193 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 112 */
194 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
195 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, /* 128 */
199 * onenand_readw - [OneNAND Interface] Read OneNAND register
200 * @param addr address to read
202 * Read OneNAND register
204 static unsigned short onenand_readw(void __iomem
*addr
)
210 * onenand_writew - [OneNAND Interface] Write OneNAND register with value
211 * @param value value to write
212 * @param addr address to write
214 * Write OneNAND register with value
216 static void onenand_writew(unsigned short value
, void __iomem
*addr
)
222 * onenand_block_address - [DEFAULT] Get block address
223 * @param this onenand chip data structure
224 * @param block the block
225 * @return translated block address if DDP, otherwise same
227 * Setup Start Address 1 Register (F100h)
229 static int onenand_block_address(struct onenand_chip
*this, int block
)
231 /* Device Flash Core select, NAND Flash Block Address */
232 if (block
& this->density_mask
)
233 return ONENAND_DDP_CHIP1
| (block
^ this->density_mask
);
239 * onenand_bufferram_address - [DEFAULT] Get bufferram address
240 * @param this onenand chip data structure
241 * @param block the block
242 * @return set DBS value if DDP, otherwise 0
244 * Setup Start Address 2 Register (F101h) for DDP
246 static int onenand_bufferram_address(struct onenand_chip
*this, int block
)
248 /* Device BufferRAM Select */
249 if (block
& this->density_mask
)
250 return ONENAND_DDP_CHIP1
;
252 return ONENAND_DDP_CHIP0
;
256 * onenand_page_address - [DEFAULT] Get page address
257 * @param page the page address
258 * @param sector the sector address
259 * @return combined page and sector address
261 * Setup Start Address 8 Register (F107h)
263 static int onenand_page_address(int page
, int sector
)
265 /* Flash Page Address, Flash Sector Address */
268 fpa
= page
& ONENAND_FPA_MASK
;
269 fsa
= sector
& ONENAND_FSA_MASK
;
271 return ((fpa
<< ONENAND_FPA_SHIFT
) | fsa
);
275 * onenand_buffer_address - [DEFAULT] Get buffer address
276 * @param dataram1 DataRAM index
277 * @param sectors the sector address
278 * @param count the number of sectors
279 * @return the start buffer value
281 * Setup Start Buffer Register (F200h)
283 static int onenand_buffer_address(int dataram1
, int sectors
, int count
)
287 /* BufferRAM Sector Address */
288 bsa
= sectors
& ONENAND_BSA_MASK
;
291 bsa
|= ONENAND_BSA_DATARAM1
; /* DataRAM1 */
293 bsa
|= ONENAND_BSA_DATARAM0
; /* DataRAM0 */
295 /* BufferRAM Sector Count */
296 bsc
= count
& ONENAND_BSC_MASK
;
298 return ((bsa
<< ONENAND_BSA_SHIFT
) | bsc
);
302 * flexonenand_block- For given address return block number
303 * @param this - OneNAND device structure
304 * @param addr - Address for which block number is needed
306 static unsigned flexonenand_block(struct onenand_chip
*this, loff_t addr
)
308 unsigned boundary
, blk
, die
= 0;
310 if (ONENAND_IS_DDP(this) && addr
>= this->diesize
[0]) {
312 addr
-= this->diesize
[0];
315 boundary
= this->boundary
[die
];
317 blk
= addr
>> (this->erase_shift
- 1);
319 blk
= (blk
+ boundary
+ 1) >> 1;
321 blk
+= die
? this->density_mask
: 0;
325 inline unsigned onenand_block(struct onenand_chip
*this, loff_t addr
)
327 if (!FLEXONENAND(this))
328 return addr
>> this->erase_shift
;
329 return flexonenand_block(this, addr
);
333 * flexonenand_addr - Return address of the block
334 * @this: OneNAND device structure
335 * @block: Block number on Flex-OneNAND
337 * Return address of the block
339 static loff_t
flexonenand_addr(struct onenand_chip
*this, int block
)
342 int die
= 0, boundary
;
344 if (ONENAND_IS_DDP(this) && block
>= this->density_mask
) {
345 block
-= this->density_mask
;
347 ofs
= this->diesize
[0];
350 boundary
= this->boundary
[die
];
351 ofs
+= (loff_t
)block
<< (this->erase_shift
- 1);
352 if (block
> (boundary
+ 1))
353 ofs
+= (loff_t
)(block
- boundary
- 1) << (this->erase_shift
- 1);
357 loff_t
onenand_addr(struct onenand_chip
*this, int block
)
359 if (!FLEXONENAND(this))
360 return (loff_t
)block
<< this->erase_shift
;
361 return flexonenand_addr(this, block
);
363 EXPORT_SYMBOL(onenand_addr
);
366 * onenand_get_density - [DEFAULT] Get OneNAND density
367 * @param dev_id OneNAND device ID
369 * Get OneNAND density from device ID
371 static inline int onenand_get_density(int dev_id
)
373 int density
= dev_id
>> ONENAND_DEVICE_DENSITY_SHIFT
;
374 return (density
& ONENAND_DEVICE_DENSITY_MASK
);
378 * flexonenand_region - [Flex-OneNAND] Return erase region of addr
379 * @param mtd MTD device structure
380 * @param addr address whose erase region needs to be identified
382 int flexonenand_region(struct mtd_info
*mtd
, loff_t addr
)
386 for (i
= 0; i
< mtd
->numeraseregions
; i
++)
387 if (addr
< mtd
->eraseregions
[i
].offset
)
391 EXPORT_SYMBOL(flexonenand_region
);
394 * onenand_command - [DEFAULT] Send command to OneNAND device
395 * @param mtd MTD device structure
396 * @param cmd the command to be sent
397 * @param addr offset to read from or write to
398 * @param len number of bytes to read or write
400 * Send command to OneNAND device. This function is used for middle/large page
401 * devices (1KB/2KB Bytes per page)
403 static int onenand_command(struct mtd_info
*mtd
, int cmd
, loff_t addr
, size_t len
)
405 struct onenand_chip
*this = mtd
->priv
;
406 int value
, block
, page
;
408 /* Address translation */
410 case ONENAND_CMD_UNLOCK
:
411 case ONENAND_CMD_LOCK
:
412 case ONENAND_CMD_LOCK_TIGHT
:
413 case ONENAND_CMD_UNLOCK_ALL
:
418 case FLEXONENAND_CMD_PI_ACCESS
:
419 /* addr contains die index */
420 block
= addr
* this->density_mask
;
424 case ONENAND_CMD_ERASE
:
425 case ONENAND_CMD_MULTIBLOCK_ERASE
:
426 case ONENAND_CMD_ERASE_VERIFY
:
427 case ONENAND_CMD_BUFFERRAM
:
428 case ONENAND_CMD_OTP_ACCESS
:
429 block
= onenand_block(this, addr
);
433 case FLEXONENAND_CMD_READ_PI
:
434 cmd
= ONENAND_CMD_READ
;
435 block
= addr
* this->density_mask
;
440 block
= onenand_block(this, addr
);
441 if (FLEXONENAND(this))
442 page
= (int) (addr
- onenand_addr(this, block
))>>\
445 page
= (int) (addr
>> this->page_shift
);
446 if (ONENAND_IS_2PLANE(this)) {
447 /* Make the even block number */
449 /* Is it the odd plane? */
450 if (addr
& this->writesize
)
454 page
&= this->page_mask
;
458 /* NOTE: The setting order of the registers is very important! */
459 if (cmd
== ONENAND_CMD_BUFFERRAM
) {
460 /* Select DataRAM for DDP */
461 value
= onenand_bufferram_address(this, block
);
462 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
464 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this))
465 /* It is always BufferRAM0 */
466 ONENAND_SET_BUFFERRAM0(this);
468 /* Switch to the next data buffer */
469 ONENAND_SET_NEXT_BUFFERRAM(this);
475 /* Write 'DFS, FBA' of Flash */
476 value
= onenand_block_address(this, block
);
477 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS1
);
479 /* Select DataRAM for DDP */
480 value
= onenand_bufferram_address(this, block
);
481 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
485 /* Now we use page size operation */
486 int sectors
= 0, count
= 0;
490 case FLEXONENAND_CMD_RECOVER_LSB
:
491 case ONENAND_CMD_READ
:
492 case ONENAND_CMD_READOOB
:
493 if (ONENAND_IS_4KB_PAGE(this))
494 /* It is always BufferRAM0 */
495 dataram
= ONENAND_SET_BUFFERRAM0(this);
497 dataram
= ONENAND_SET_NEXT_BUFFERRAM(this);
501 if (ONENAND_IS_2PLANE(this) && cmd
== ONENAND_CMD_PROG
)
502 cmd
= ONENAND_CMD_2X_PROG
;
503 dataram
= ONENAND_CURRENT_BUFFERRAM(this);
507 /* Write 'FPA, FSA' of Flash */
508 value
= onenand_page_address(page
, sectors
);
509 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS8
);
511 /* Write 'BSA, BSC' of DataRAM */
512 value
= onenand_buffer_address(dataram
, sectors
, count
);
513 this->write_word(value
, this->base
+ ONENAND_REG_START_BUFFER
);
516 /* Interrupt clear */
517 this->write_word(ONENAND_INT_CLEAR
, this->base
+ ONENAND_REG_INTERRUPT
);
520 this->write_word(cmd
, this->base
+ ONENAND_REG_COMMAND
);
526 * onenand_read_ecc - return ecc status
527 * @param this onenand chip structure
529 static inline int onenand_read_ecc(struct onenand_chip
*this)
531 int ecc
, i
, result
= 0;
533 if (!FLEXONENAND(this) && !ONENAND_IS_4KB_PAGE(this))
534 return this->read_word(this->base
+ ONENAND_REG_ECC_STATUS
);
536 for (i
= 0; i
< 4; i
++) {
537 ecc
= this->read_word(this->base
+ ONENAND_REG_ECC_STATUS
+ i
*2);
540 if (ecc
& FLEXONENAND_UNCORRECTABLE_ERROR
)
541 return ONENAND_ECC_2BIT_ALL
;
543 result
= ONENAND_ECC_1BIT_ALL
;
550 * onenand_wait - [DEFAULT] wait until the command is done
551 * @param mtd MTD device structure
552 * @param state state to select the max. timeout value
554 * Wait for command done. This applies to all OneNAND command
555 * Read can take up to 30us, erase up to 2ms and program up to 350us
556 * according to general OneNAND specs
558 static int onenand_wait(struct mtd_info
*mtd
, int state
)
560 struct onenand_chip
* this = mtd
->priv
;
561 unsigned long timeout
;
562 unsigned int flags
= ONENAND_INT_MASTER
;
563 unsigned int interrupt
= 0;
566 /* The 20 msec is enough */
567 timeout
= jiffies
+ msecs_to_jiffies(20);
568 while (time_before(jiffies
, timeout
)) {
569 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
571 if (interrupt
& flags
)
574 if (state
!= FL_READING
&& state
!= FL_PREPARING_ERASE
)
577 /* To get correct interrupt status in timeout case */
578 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
580 ctrl
= this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
);
583 * In the Spec. it checks the controller status first
584 * However if you get the correct information in case of
585 * power off recovery (POR) test, it should read ECC status first
587 if (interrupt
& ONENAND_INT_READ
) {
588 int ecc
= onenand_read_ecc(this);
590 if (ecc
& ONENAND_ECC_2BIT_ALL
) {
591 printk(KERN_ERR
"%s: ECC error = 0x%04x\n",
593 mtd
->ecc_stats
.failed
++;
595 } else if (ecc
& ONENAND_ECC_1BIT_ALL
) {
596 printk(KERN_DEBUG
"%s: correctable ECC error = 0x%04x\n",
598 mtd
->ecc_stats
.corrected
++;
601 } else if (state
== FL_READING
) {
602 printk(KERN_ERR
"%s: read timeout! ctrl=0x%04x intr=0x%04x\n",
603 __func__
, ctrl
, interrupt
);
607 if (state
== FL_PREPARING_ERASE
&& !(interrupt
& ONENAND_INT_ERASE
)) {
608 printk(KERN_ERR
"%s: mb erase timeout! ctrl=0x%04x intr=0x%04x\n",
609 __func__
, ctrl
, interrupt
);
613 if (!(interrupt
& ONENAND_INT_MASTER
)) {
614 printk(KERN_ERR
"%s: timeout! ctrl=0x%04x intr=0x%04x\n",
615 __func__
, ctrl
, interrupt
);
619 /* If there's controller error, it's a real error */
620 if (ctrl
& ONENAND_CTRL_ERROR
) {
621 printk(KERN_ERR
"%s: controller error = 0x%04x\n",
623 if (ctrl
& ONENAND_CTRL_LOCK
)
624 printk(KERN_ERR
"%s: it's locked error.\n", __func__
);
632 * onenand_interrupt - [DEFAULT] onenand interrupt handler
633 * @param irq onenand interrupt number
634 * @param dev_id interrupt data
638 static irqreturn_t
onenand_interrupt(int irq
, void *data
)
640 struct onenand_chip
*this = data
;
642 /* To handle shared interrupt */
643 if (!this->complete
.done
)
644 complete(&this->complete
);
650 * onenand_interrupt_wait - [DEFAULT] wait until the command is done
651 * @param mtd MTD device structure
652 * @param state state to select the max. timeout value
654 * Wait for command done.
656 static int onenand_interrupt_wait(struct mtd_info
*mtd
, int state
)
658 struct onenand_chip
*this = mtd
->priv
;
660 wait_for_completion(&this->complete
);
662 return onenand_wait(mtd
, state
);
666 * onenand_try_interrupt_wait - [DEFAULT] try interrupt wait
667 * @param mtd MTD device structure
668 * @param state state to select the max. timeout value
670 * Try interrupt based wait (It is used one-time)
672 static int onenand_try_interrupt_wait(struct mtd_info
*mtd
, int state
)
674 struct onenand_chip
*this = mtd
->priv
;
675 unsigned long remain
, timeout
;
677 /* We use interrupt wait first */
678 this->wait
= onenand_interrupt_wait
;
680 timeout
= msecs_to_jiffies(100);
681 remain
= wait_for_completion_timeout(&this->complete
, timeout
);
683 printk(KERN_INFO
"OneNAND: There's no interrupt. "
684 "We use the normal wait\n");
686 /* Release the irq */
687 free_irq(this->irq
, this);
689 this->wait
= onenand_wait
;
692 return onenand_wait(mtd
, state
);
696 * onenand_setup_wait - [OneNAND Interface] setup onenand wait method
697 * @param mtd MTD device structure
699 * There's two method to wait onenand work
700 * 1. polling - read interrupt status register
701 * 2. interrupt - use the kernel interrupt method
703 static void onenand_setup_wait(struct mtd_info
*mtd
)
705 struct onenand_chip
*this = mtd
->priv
;
708 init_completion(&this->complete
);
710 if (this->irq
<= 0) {
711 this->wait
= onenand_wait
;
715 if (request_irq(this->irq
, &onenand_interrupt
,
716 IRQF_SHARED
, "onenand", this)) {
717 /* If we can't get irq, use the normal wait */
718 this->wait
= onenand_wait
;
722 /* Enable interrupt */
723 syscfg
= this->read_word(this->base
+ ONENAND_REG_SYS_CFG1
);
724 syscfg
|= ONENAND_SYS_CFG1_IOBE
;
725 this->write_word(syscfg
, this->base
+ ONENAND_REG_SYS_CFG1
);
727 this->wait
= onenand_try_interrupt_wait
;
731 * onenand_bufferram_offset - [DEFAULT] BufferRAM offset
732 * @param mtd MTD data structure
733 * @param area BufferRAM area
734 * @return offset given area
736 * Return BufferRAM offset given area
738 static inline int onenand_bufferram_offset(struct mtd_info
*mtd
, int area
)
740 struct onenand_chip
*this = mtd
->priv
;
742 if (ONENAND_CURRENT_BUFFERRAM(this)) {
743 /* Note: the 'this->writesize' is a real page size */
744 if (area
== ONENAND_DATARAM
)
745 return this->writesize
;
746 if (area
== ONENAND_SPARERAM
)
754 * onenand_read_bufferram - [OneNAND Interface] Read the bufferram area
755 * @param mtd MTD data structure
756 * @param area BufferRAM area
757 * @param buffer the databuffer to put/get data
758 * @param offset offset to read from or write to
759 * @param count number of bytes to read/write
761 * Read the BufferRAM area
763 static int onenand_read_bufferram(struct mtd_info
*mtd
, int area
,
764 unsigned char *buffer
, int offset
, size_t count
)
766 struct onenand_chip
*this = mtd
->priv
;
767 void __iomem
*bufferram
;
769 bufferram
= this->base
+ area
;
771 bufferram
+= onenand_bufferram_offset(mtd
, area
);
773 if (ONENAND_CHECK_BYTE_ACCESS(count
)) {
776 /* Align with word(16-bit) size */
779 /* Read word and save byte */
780 word
= this->read_word(bufferram
+ offset
+ count
);
781 buffer
[count
] = (word
& 0xff);
784 memcpy(buffer
, bufferram
+ offset
, count
);
790 * onenand_sync_read_bufferram - [OneNAND Interface] Read the bufferram area with Sync. Burst mode
791 * @param mtd MTD data structure
792 * @param area BufferRAM area
793 * @param buffer the databuffer to put/get data
794 * @param offset offset to read from or write to
795 * @param count number of bytes to read/write
797 * Read the BufferRAM area with Sync. Burst Mode
799 static int onenand_sync_read_bufferram(struct mtd_info
*mtd
, int area
,
800 unsigned char *buffer
, int offset
, size_t count
)
802 struct onenand_chip
*this = mtd
->priv
;
803 void __iomem
*bufferram
;
805 bufferram
= this->base
+ area
;
807 bufferram
+= onenand_bufferram_offset(mtd
, area
);
809 this->mmcontrol(mtd
, ONENAND_SYS_CFG1_SYNC_READ
);
811 if (ONENAND_CHECK_BYTE_ACCESS(count
)) {
814 /* Align with word(16-bit) size */
817 /* Read word and save byte */
818 word
= this->read_word(bufferram
+ offset
+ count
);
819 buffer
[count
] = (word
& 0xff);
822 memcpy(buffer
, bufferram
+ offset
, count
);
824 this->mmcontrol(mtd
, 0);
830 * onenand_write_bufferram - [OneNAND Interface] Write the bufferram area
831 * @param mtd MTD data structure
832 * @param area BufferRAM area
833 * @param buffer the databuffer to put/get data
834 * @param offset offset to read from or write to
835 * @param count number of bytes to read/write
837 * Write the BufferRAM area
839 static int onenand_write_bufferram(struct mtd_info
*mtd
, int area
,
840 const unsigned char *buffer
, int offset
, size_t count
)
842 struct onenand_chip
*this = mtd
->priv
;
843 void __iomem
*bufferram
;
845 bufferram
= this->base
+ area
;
847 bufferram
+= onenand_bufferram_offset(mtd
, area
);
849 if (ONENAND_CHECK_BYTE_ACCESS(count
)) {
853 /* Align with word(16-bit) size */
856 /* Calculate byte access offset */
857 byte_offset
= offset
+ count
;
859 /* Read word and save byte */
860 word
= this->read_word(bufferram
+ byte_offset
);
861 word
= (word
& ~0xff) | buffer
[count
];
862 this->write_word(word
, bufferram
+ byte_offset
);
865 memcpy(bufferram
+ offset
, buffer
, count
);
871 * onenand_get_2x_blockpage - [GENERIC] Get blockpage at 2x program mode
872 * @param mtd MTD data structure
873 * @param addr address to check
874 * @return blockpage address
876 * Get blockpage address at 2x program mode
878 static int onenand_get_2x_blockpage(struct mtd_info
*mtd
, loff_t addr
)
880 struct onenand_chip
*this = mtd
->priv
;
881 int blockpage
, block
, page
;
883 /* Calculate the even block number */
884 block
= (int) (addr
>> this->erase_shift
) & ~1;
885 /* Is it the odd plane? */
886 if (addr
& this->writesize
)
888 page
= (int) (addr
>> (this->page_shift
+ 1)) & this->page_mask
;
889 blockpage
= (block
<< 7) | page
;
895 * onenand_check_bufferram - [GENERIC] Check BufferRAM information
896 * @param mtd MTD data structure
897 * @param addr address to check
898 * @return 1 if there are valid data, otherwise 0
900 * Check bufferram if there is data we required
902 static int onenand_check_bufferram(struct mtd_info
*mtd
, loff_t addr
)
904 struct onenand_chip
*this = mtd
->priv
;
905 int blockpage
, found
= 0;
908 if (ONENAND_IS_2PLANE(this))
909 blockpage
= onenand_get_2x_blockpage(mtd
, addr
);
911 blockpage
= (int) (addr
>> this->page_shift
);
913 /* Is there valid data? */
914 i
= ONENAND_CURRENT_BUFFERRAM(this);
915 if (this->bufferram
[i
].blockpage
== blockpage
)
918 /* Check another BufferRAM */
919 i
= ONENAND_NEXT_BUFFERRAM(this);
920 if (this->bufferram
[i
].blockpage
== blockpage
) {
921 ONENAND_SET_NEXT_BUFFERRAM(this);
926 if (found
&& ONENAND_IS_DDP(this)) {
927 /* Select DataRAM for DDP */
928 int block
= onenand_block(this, addr
);
929 int value
= onenand_bufferram_address(this, block
);
930 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
937 * onenand_update_bufferram - [GENERIC] Update BufferRAM information
938 * @param mtd MTD data structure
939 * @param addr address to update
940 * @param valid valid flag
942 * Update BufferRAM information
944 static void onenand_update_bufferram(struct mtd_info
*mtd
, loff_t addr
,
947 struct onenand_chip
*this = mtd
->priv
;
951 if (ONENAND_IS_2PLANE(this))
952 blockpage
= onenand_get_2x_blockpage(mtd
, addr
);
954 blockpage
= (int) (addr
>> this->page_shift
);
956 /* Invalidate another BufferRAM */
957 i
= ONENAND_NEXT_BUFFERRAM(this);
958 if (this->bufferram
[i
].blockpage
== blockpage
)
959 this->bufferram
[i
].blockpage
= -1;
961 /* Update BufferRAM */
962 i
= ONENAND_CURRENT_BUFFERRAM(this);
964 this->bufferram
[i
].blockpage
= blockpage
;
966 this->bufferram
[i
].blockpage
= -1;
970 * onenand_invalidate_bufferram - [GENERIC] Invalidate BufferRAM information
971 * @param mtd MTD data structure
972 * @param addr start address to invalidate
973 * @param len length to invalidate
975 * Invalidate BufferRAM information
977 static void onenand_invalidate_bufferram(struct mtd_info
*mtd
, loff_t addr
,
980 struct onenand_chip
*this = mtd
->priv
;
982 loff_t end_addr
= addr
+ len
;
984 /* Invalidate BufferRAM */
985 for (i
= 0; i
< MAX_BUFFERRAM
; i
++) {
986 loff_t buf_addr
= this->bufferram
[i
].blockpage
<< this->page_shift
;
987 if (buf_addr
>= addr
&& buf_addr
< end_addr
)
988 this->bufferram
[i
].blockpage
= -1;
993 * onenand_get_device - [GENERIC] Get chip for selected access
994 * @param mtd MTD device structure
995 * @param new_state the state which is requested
997 * Get the device and lock it for exclusive access
999 static int onenand_get_device(struct mtd_info
*mtd
, int new_state
)
1001 struct onenand_chip
*this = mtd
->priv
;
1002 DECLARE_WAITQUEUE(wait
, current
);
1005 * Grab the lock and see if the device is available
1008 spin_lock(&this->chip_lock
);
1009 if (this->state
== FL_READY
) {
1010 this->state
= new_state
;
1011 spin_unlock(&this->chip_lock
);
1012 if (new_state
!= FL_PM_SUSPENDED
&& this->enable
)
1016 if (new_state
== FL_PM_SUSPENDED
) {
1017 spin_unlock(&this->chip_lock
);
1018 return (this->state
== FL_PM_SUSPENDED
) ? 0 : -EAGAIN
;
1020 set_current_state(TASK_UNINTERRUPTIBLE
);
1021 add_wait_queue(&this->wq
, &wait
);
1022 spin_unlock(&this->chip_lock
);
1024 remove_wait_queue(&this->wq
, &wait
);
1031 * onenand_release_device - [GENERIC] release chip
1032 * @param mtd MTD device structure
1034 * Deselect, release chip lock and wake up anyone waiting on the device
1036 static void onenand_release_device(struct mtd_info
*mtd
)
1038 struct onenand_chip
*this = mtd
->priv
;
1040 if (this->state
!= FL_PM_SUSPENDED
&& this->disable
)
1042 /* Release the chip */
1043 spin_lock(&this->chip_lock
);
1044 this->state
= FL_READY
;
1046 spin_unlock(&this->chip_lock
);
1050 * onenand_transfer_auto_oob - [INTERN] oob auto-placement transfer
1051 * @param mtd MTD device structure
1052 * @param buf destination address
1053 * @param column oob offset to read from
1054 * @param thislen oob length to read
1056 static int onenand_transfer_auto_oob(struct mtd_info
*mtd
, uint8_t *buf
, int column
,
1059 struct onenand_chip
*this = mtd
->priv
;
1062 this->read_bufferram(mtd
, ONENAND_SPARERAM
, this->oob_buf
, 0,
1064 ret
= mtd_ooblayout_get_databytes(mtd
, buf
, this->oob_buf
,
1073 * onenand_recover_lsb - [Flex-OneNAND] Recover LSB page data
1074 * @param mtd MTD device structure
1075 * @param addr address to recover
1076 * @param status return value from onenand_wait / onenand_bbt_wait
1078 * MLC NAND Flash cell has paired pages - LSB page and MSB page. LSB page has
1079 * lower page address and MSB page has higher page address in paired pages.
1080 * If power off occurs during MSB page program, the paired LSB page data can
1081 * become corrupt. LSB page recovery read is a way to read LSB page though page
1082 * data are corrupted. When uncorrectable error occurs as a result of LSB page
1083 * read after power up, issue LSB page recovery read.
1085 static int onenand_recover_lsb(struct mtd_info
*mtd
, loff_t addr
, int status
)
1087 struct onenand_chip
*this = mtd
->priv
;
1090 /* Recovery is only for Flex-OneNAND */
1091 if (!FLEXONENAND(this))
1094 /* check if we failed due to uncorrectable error */
1095 if (!mtd_is_eccerr(status
) && status
!= ONENAND_BBT_READ_ECC_ERROR
)
1098 /* check if address lies in MLC region */
1099 i
= flexonenand_region(mtd
, addr
);
1100 if (mtd
->eraseregions
[i
].erasesize
< (1 << this->erase_shift
))
1103 /* We are attempting to reread, so decrement stats.failed
1104 * which was incremented by onenand_wait due to read failure
1106 printk(KERN_INFO
"%s: Attempting to recover from uncorrectable read\n",
1108 mtd
->ecc_stats
.failed
--;
1110 /* Issue the LSB page recovery command */
1111 this->command(mtd
, FLEXONENAND_CMD_RECOVER_LSB
, addr
, this->writesize
);
1112 return this->wait(mtd
, FL_READING
);
1116 * onenand_mlc_read_ops_nolock - MLC OneNAND read main and/or out-of-band
1117 * @param mtd MTD device structure
1118 * @param from offset to read from
1119 * @param ops: oob operation description structure
1121 * MLC OneNAND / Flex-OneNAND has 4KB page size and 4KB dataram.
1122 * So, read-while-load is not present.
1124 static int onenand_mlc_read_ops_nolock(struct mtd_info
*mtd
, loff_t from
,
1125 struct mtd_oob_ops
*ops
)
1127 struct onenand_chip
*this = mtd
->priv
;
1128 struct mtd_ecc_stats stats
;
1129 size_t len
= ops
->len
;
1130 size_t ooblen
= ops
->ooblen
;
1131 u_char
*buf
= ops
->datbuf
;
1132 u_char
*oobbuf
= ops
->oobbuf
;
1133 int read
= 0, column
, thislen
;
1134 int oobread
= 0, oobcolumn
, thisooblen
, oobsize
;
1136 int writesize
= this->writesize
;
1138 pr_debug("%s: from = 0x%08x, len = %i\n", __func__
, (unsigned int)from
,
1141 oobsize
= mtd_oobavail(mtd
, ops
);
1142 oobcolumn
= from
& (mtd
->oobsize
- 1);
1144 /* Do not allow reads past end of device */
1145 if (from
+ len
> mtd
->size
) {
1146 printk(KERN_ERR
"%s: Attempt read beyond end of device\n",
1153 stats
= mtd
->ecc_stats
;
1155 while (read
< len
) {
1158 thislen
= min_t(int, writesize
, len
- read
);
1160 column
= from
& (writesize
- 1);
1161 if (column
+ thislen
> writesize
)
1162 thislen
= writesize
- column
;
1164 if (!onenand_check_bufferram(mtd
, from
)) {
1165 this->command(mtd
, ONENAND_CMD_READ
, from
, writesize
);
1167 ret
= this->wait(mtd
, FL_READING
);
1169 ret
= onenand_recover_lsb(mtd
, from
, ret
);
1170 onenand_update_bufferram(mtd
, from
, !ret
);
1171 if (mtd_is_eccerr(ret
))
1177 this->read_bufferram(mtd
, ONENAND_DATARAM
, buf
, column
, thislen
);
1179 thisooblen
= oobsize
- oobcolumn
;
1180 thisooblen
= min_t(int, thisooblen
, ooblen
- oobread
);
1182 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
1183 onenand_transfer_auto_oob(mtd
, oobbuf
, oobcolumn
, thisooblen
);
1185 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, oobcolumn
, thisooblen
);
1186 oobread
+= thisooblen
;
1187 oobbuf
+= thisooblen
;
1200 * Return success, if no ECC failures, else -EBADMSG
1201 * fs driver will take care of that, because
1202 * retlen == desired len and result == -EBADMSG
1205 ops
->oobretlen
= oobread
;
1210 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1213 /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1214 return mtd
->ecc_stats
.corrected
!= stats
.corrected
? 1 : 0;
1218 * onenand_read_ops_nolock - [OneNAND Interface] OneNAND read main and/or out-of-band
1219 * @param mtd MTD device structure
1220 * @param from offset to read from
1221 * @param ops: oob operation description structure
1223 * OneNAND read main and/or out-of-band data
1225 static int onenand_read_ops_nolock(struct mtd_info
*mtd
, loff_t from
,
1226 struct mtd_oob_ops
*ops
)
1228 struct onenand_chip
*this = mtd
->priv
;
1229 struct mtd_ecc_stats stats
;
1230 size_t len
= ops
->len
;
1231 size_t ooblen
= ops
->ooblen
;
1232 u_char
*buf
= ops
->datbuf
;
1233 u_char
*oobbuf
= ops
->oobbuf
;
1234 int read
= 0, column
, thislen
;
1235 int oobread
= 0, oobcolumn
, thisooblen
, oobsize
;
1236 int ret
= 0, boundary
= 0;
1237 int writesize
= this->writesize
;
1239 pr_debug("%s: from = 0x%08x, len = %i\n", __func__
, (unsigned int)from
,
1242 oobsize
= mtd_oobavail(mtd
, ops
);
1243 oobcolumn
= from
& (mtd
->oobsize
- 1);
1245 /* Do not allow reads past end of device */
1246 if ((from
+ len
) > mtd
->size
) {
1247 printk(KERN_ERR
"%s: Attempt read beyond end of device\n",
1254 stats
= mtd
->ecc_stats
;
1256 /* Read-while-load method */
1258 /* Do first load to bufferRAM */
1260 if (!onenand_check_bufferram(mtd
, from
)) {
1261 this->command(mtd
, ONENAND_CMD_READ
, from
, writesize
);
1262 ret
= this->wait(mtd
, FL_READING
);
1263 onenand_update_bufferram(mtd
, from
, !ret
);
1264 if (mtd_is_eccerr(ret
))
1269 thislen
= min_t(int, writesize
, len
- read
);
1270 column
= from
& (writesize
- 1);
1271 if (column
+ thislen
> writesize
)
1272 thislen
= writesize
- column
;
1275 /* If there is more to load then start next load */
1277 if (read
+ thislen
< len
) {
1278 this->command(mtd
, ONENAND_CMD_READ
, from
, writesize
);
1280 * Chip boundary handling in DDP
1281 * Now we issued chip 1 read and pointed chip 1
1282 * bufferram so we have to point chip 0 bufferram.
1284 if (ONENAND_IS_DDP(this) &&
1285 unlikely(from
== (this->chipsize
>> 1))) {
1286 this->write_word(ONENAND_DDP_CHIP0
, this->base
+ ONENAND_REG_START_ADDRESS2
);
1290 ONENAND_SET_PREV_BUFFERRAM(this);
1292 /* While load is going, read from last bufferRAM */
1293 this->read_bufferram(mtd
, ONENAND_DATARAM
, buf
, column
, thislen
);
1295 /* Read oob area if needed */
1297 thisooblen
= oobsize
- oobcolumn
;
1298 thisooblen
= min_t(int, thisooblen
, ooblen
- oobread
);
1300 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
1301 onenand_transfer_auto_oob(mtd
, oobbuf
, oobcolumn
, thisooblen
);
1303 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, oobcolumn
, thisooblen
);
1304 oobread
+= thisooblen
;
1305 oobbuf
+= thisooblen
;
1309 /* See if we are done */
1313 /* Set up for next read from bufferRAM */
1314 if (unlikely(boundary
))
1315 this->write_word(ONENAND_DDP_CHIP1
, this->base
+ ONENAND_REG_START_ADDRESS2
);
1316 ONENAND_SET_NEXT_BUFFERRAM(this);
1318 thislen
= min_t(int, writesize
, len
- read
);
1321 /* Now wait for load */
1322 ret
= this->wait(mtd
, FL_READING
);
1323 onenand_update_bufferram(mtd
, from
, !ret
);
1324 if (mtd_is_eccerr(ret
))
1329 * Return success, if no ECC failures, else -EBADMSG
1330 * fs driver will take care of that, because
1331 * retlen == desired len and result == -EBADMSG
1334 ops
->oobretlen
= oobread
;
1339 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1342 /* return max bitflips per ecc step; ONENANDs correct 1 bit only */
1343 return mtd
->ecc_stats
.corrected
!= stats
.corrected
? 1 : 0;
1347 * onenand_read_oob_nolock - [MTD Interface] OneNAND read out-of-band
1348 * @param mtd MTD device structure
1349 * @param from offset to read from
1350 * @param ops: oob operation description structure
1352 * OneNAND read out-of-band data from the spare area
1354 static int onenand_read_oob_nolock(struct mtd_info
*mtd
, loff_t from
,
1355 struct mtd_oob_ops
*ops
)
1357 struct onenand_chip
*this = mtd
->priv
;
1358 struct mtd_ecc_stats stats
;
1359 int read
= 0, thislen
, column
, oobsize
;
1360 size_t len
= ops
->ooblen
;
1361 unsigned int mode
= ops
->mode
;
1362 u_char
*buf
= ops
->oobbuf
;
1363 int ret
= 0, readcmd
;
1365 from
+= ops
->ooboffs
;
1367 pr_debug("%s: from = 0x%08x, len = %i\n", __func__
, (unsigned int)from
,
1370 /* Initialize return length value */
1373 if (mode
== MTD_OPS_AUTO_OOB
)
1374 oobsize
= mtd
->oobavail
;
1376 oobsize
= mtd
->oobsize
;
1378 column
= from
& (mtd
->oobsize
- 1);
1380 if (unlikely(column
>= oobsize
)) {
1381 printk(KERN_ERR
"%s: Attempted to start read outside oob\n",
1386 /* Do not allow reads past end of device */
1387 if (unlikely(from
>= mtd
->size
||
1388 column
+ len
> ((mtd
->size
>> this->page_shift
) -
1389 (from
>> this->page_shift
)) * oobsize
)) {
1390 printk(KERN_ERR
"%s: Attempted to read beyond end of device\n",
1395 stats
= mtd
->ecc_stats
;
1397 readcmd
= ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ
: ONENAND_CMD_READOOB
;
1399 while (read
< len
) {
1402 thislen
= oobsize
- column
;
1403 thislen
= min_t(int, thislen
, len
);
1405 this->command(mtd
, readcmd
, from
, mtd
->oobsize
);
1407 onenand_update_bufferram(mtd
, from
, 0);
1409 ret
= this->wait(mtd
, FL_READING
);
1411 ret
= onenand_recover_lsb(mtd
, from
, ret
);
1413 if (ret
&& !mtd_is_eccerr(ret
)) {
1414 printk(KERN_ERR
"%s: read failed = 0x%x\n",
1419 if (mode
== MTD_OPS_AUTO_OOB
)
1420 onenand_transfer_auto_oob(mtd
, buf
, column
, thislen
);
1422 this->read_bufferram(mtd
, ONENAND_SPARERAM
, buf
, column
, thislen
);
1434 from
+= mtd
->writesize
;
1439 ops
->oobretlen
= read
;
1444 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1451 * onenand_read - [MTD Interface] Read data from flash
1452 * @param mtd MTD device structure
1453 * @param from offset to read from
1454 * @param len number of bytes to read
1455 * @param retlen pointer to variable to store the number of read bytes
1456 * @param buf the databuffer to put data
1460 static int onenand_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1461 size_t *retlen
, u_char
*buf
)
1463 struct onenand_chip
*this = mtd
->priv
;
1464 struct mtd_oob_ops ops
= {
1472 onenand_get_device(mtd
, FL_READING
);
1473 ret
= ONENAND_IS_4KB_PAGE(this) ?
1474 onenand_mlc_read_ops_nolock(mtd
, from
, &ops
) :
1475 onenand_read_ops_nolock(mtd
, from
, &ops
);
1476 onenand_release_device(mtd
);
1478 *retlen
= ops
.retlen
;
1483 * onenand_read_oob - [MTD Interface] Read main and/or out-of-band
1484 * @param mtd: MTD device structure
1485 * @param from: offset to read from
1486 * @param ops: oob operation description structure
1488 * Read main and/or out-of-band
1490 static int onenand_read_oob(struct mtd_info
*mtd
, loff_t from
,
1491 struct mtd_oob_ops
*ops
)
1493 struct onenand_chip
*this = mtd
->priv
;
1496 switch (ops
->mode
) {
1497 case MTD_OPS_PLACE_OOB
:
1498 case MTD_OPS_AUTO_OOB
:
1501 /* Not implemented yet */
1506 onenand_get_device(mtd
, FL_READING
);
1508 ret
= ONENAND_IS_4KB_PAGE(this) ?
1509 onenand_mlc_read_ops_nolock(mtd
, from
, ops
) :
1510 onenand_read_ops_nolock(mtd
, from
, ops
);
1512 ret
= onenand_read_oob_nolock(mtd
, from
, ops
);
1513 onenand_release_device(mtd
);
1519 * onenand_bbt_wait - [DEFAULT] wait until the command is done
1520 * @param mtd MTD device structure
1521 * @param state state to select the max. timeout value
1523 * Wait for command done.
1525 static int onenand_bbt_wait(struct mtd_info
*mtd
, int state
)
1527 struct onenand_chip
*this = mtd
->priv
;
1528 unsigned long timeout
;
1529 unsigned int interrupt
, ctrl
, ecc
, addr1
, addr8
;
1531 /* The 20 msec is enough */
1532 timeout
= jiffies
+ msecs_to_jiffies(20);
1533 while (time_before(jiffies
, timeout
)) {
1534 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
1535 if (interrupt
& ONENAND_INT_MASTER
)
1538 /* To get correct interrupt status in timeout case */
1539 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
1540 ctrl
= this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
);
1541 addr1
= this->read_word(this->base
+ ONENAND_REG_START_ADDRESS1
);
1542 addr8
= this->read_word(this->base
+ ONENAND_REG_START_ADDRESS8
);
1544 if (interrupt
& ONENAND_INT_READ
) {
1545 ecc
= onenand_read_ecc(this);
1546 if (ecc
& ONENAND_ECC_2BIT_ALL
) {
1547 printk(KERN_DEBUG
"%s: ecc 0x%04x ctrl 0x%04x "
1548 "intr 0x%04x addr1 %#x addr8 %#x\n",
1549 __func__
, ecc
, ctrl
, interrupt
, addr1
, addr8
);
1550 return ONENAND_BBT_READ_ECC_ERROR
;
1553 printk(KERN_ERR
"%s: read timeout! ctrl 0x%04x "
1554 "intr 0x%04x addr1 %#x addr8 %#x\n",
1555 __func__
, ctrl
, interrupt
, addr1
, addr8
);
1556 return ONENAND_BBT_READ_FATAL_ERROR
;
1559 /* Initial bad block case: 0x2400 or 0x0400 */
1560 if (ctrl
& ONENAND_CTRL_ERROR
) {
1561 printk(KERN_DEBUG
"%s: ctrl 0x%04x intr 0x%04x addr1 %#x "
1562 "addr8 %#x\n", __func__
, ctrl
, interrupt
, addr1
, addr8
);
1563 return ONENAND_BBT_READ_ERROR
;
1570 * onenand_bbt_read_oob - [MTD Interface] OneNAND read out-of-band for bbt scan
1571 * @param mtd MTD device structure
1572 * @param from offset to read from
1573 * @param ops oob operation description structure
1575 * OneNAND read out-of-band data from the spare area for bbt scan
1577 int onenand_bbt_read_oob(struct mtd_info
*mtd
, loff_t from
,
1578 struct mtd_oob_ops
*ops
)
1580 struct onenand_chip
*this = mtd
->priv
;
1581 int read
= 0, thislen
, column
;
1582 int ret
= 0, readcmd
;
1583 size_t len
= ops
->ooblen
;
1584 u_char
*buf
= ops
->oobbuf
;
1586 pr_debug("%s: from = 0x%08x, len = %zi\n", __func__
, (unsigned int)from
,
1589 /* Initialize return value */
1592 /* Do not allow reads past end of device */
1593 if (unlikely((from
+ len
) > mtd
->size
)) {
1594 printk(KERN_ERR
"%s: Attempt read beyond end of device\n",
1596 return ONENAND_BBT_READ_FATAL_ERROR
;
1599 /* Grab the lock and see if the device is available */
1600 onenand_get_device(mtd
, FL_READING
);
1602 column
= from
& (mtd
->oobsize
- 1);
1604 readcmd
= ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ
: ONENAND_CMD_READOOB
;
1606 while (read
< len
) {
1609 thislen
= mtd
->oobsize
- column
;
1610 thislen
= min_t(int, thislen
, len
);
1612 this->command(mtd
, readcmd
, from
, mtd
->oobsize
);
1614 onenand_update_bufferram(mtd
, from
, 0);
1616 ret
= this->bbt_wait(mtd
, FL_READING
);
1618 ret
= onenand_recover_lsb(mtd
, from
, ret
);
1623 this->read_bufferram(mtd
, ONENAND_SPARERAM
, buf
, column
, thislen
);
1632 /* Update Page size */
1633 from
+= this->writesize
;
1638 /* Deselect and wake up anyone waiting on the device */
1639 onenand_release_device(mtd
);
1641 ops
->oobretlen
= read
;
1645 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
1647 * onenand_verify_oob - [GENERIC] verify the oob contents after a write
1648 * @param mtd MTD device structure
1649 * @param buf the databuffer to verify
1650 * @param to offset to read from
1652 static int onenand_verify_oob(struct mtd_info
*mtd
, const u_char
*buf
, loff_t to
)
1654 struct onenand_chip
*this = mtd
->priv
;
1655 u_char
*oob_buf
= this->oob_buf
;
1656 int status
, i
, readcmd
;
1658 readcmd
= ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_READ
: ONENAND_CMD_READOOB
;
1660 this->command(mtd
, readcmd
, to
, mtd
->oobsize
);
1661 onenand_update_bufferram(mtd
, to
, 0);
1662 status
= this->wait(mtd
, FL_READING
);
1666 this->read_bufferram(mtd
, ONENAND_SPARERAM
, oob_buf
, 0, mtd
->oobsize
);
1667 for (i
= 0; i
< mtd
->oobsize
; i
++)
1668 if (buf
[i
] != 0xFF && buf
[i
] != oob_buf
[i
])
1675 * onenand_verify - [GENERIC] verify the chip contents after a write
1676 * @param mtd MTD device structure
1677 * @param buf the databuffer to verify
1678 * @param addr offset to read from
1679 * @param len number of bytes to read and compare
1681 static int onenand_verify(struct mtd_info
*mtd
, const u_char
*buf
, loff_t addr
, size_t len
)
1683 struct onenand_chip
*this = mtd
->priv
;
1685 int thislen
, column
;
1687 column
= addr
& (this->writesize
- 1);
1690 thislen
= min_t(int, this->writesize
- column
, len
);
1692 this->command(mtd
, ONENAND_CMD_READ
, addr
, this->writesize
);
1694 onenand_update_bufferram(mtd
, addr
, 0);
1696 ret
= this->wait(mtd
, FL_READING
);
1700 onenand_update_bufferram(mtd
, addr
, 1);
1702 this->read_bufferram(mtd
, ONENAND_DATARAM
, this->verify_buf
, 0, mtd
->writesize
);
1704 if (memcmp(buf
, this->verify_buf
+ column
, thislen
))
1716 #define onenand_verify(...) (0)
1717 #define onenand_verify_oob(...) (0)
1720 #define NOTALIGNED(x) ((x & (this->subpagesize - 1)) != 0)
1722 static void onenand_panic_wait(struct mtd_info
*mtd
)
1724 struct onenand_chip
*this = mtd
->priv
;
1725 unsigned int interrupt
;
1728 for (i
= 0; i
< 2000; i
++) {
1729 interrupt
= this->read_word(this->base
+ ONENAND_REG_INTERRUPT
);
1730 if (interrupt
& ONENAND_INT_MASTER
)
1737 * onenand_panic_write - [MTD Interface] write buffer to FLASH in a panic context
1738 * @param mtd MTD device structure
1739 * @param to offset to write to
1740 * @param len number of bytes to write
1741 * @param retlen pointer to variable to store the number of written bytes
1742 * @param buf the data to write
1746 static int onenand_panic_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
1747 size_t *retlen
, const u_char
*buf
)
1749 struct onenand_chip
*this = mtd
->priv
;
1750 int column
, subpage
;
1753 if (this->state
== FL_PM_SUSPENDED
)
1756 /* Wait for any existing operation to clear */
1757 onenand_panic_wait(mtd
);
1759 pr_debug("%s: to = 0x%08x, len = %i\n", __func__
, (unsigned int)to
,
1762 /* Reject writes, which are not page aligned */
1763 if (unlikely(NOTALIGNED(to
) || NOTALIGNED(len
))) {
1764 printk(KERN_ERR
"%s: Attempt to write not page aligned data\n",
1769 column
= to
& (mtd
->writesize
- 1);
1771 /* Loop until all data write */
1772 while (written
< len
) {
1773 int thislen
= min_t(int, mtd
->writesize
- column
, len
- written
);
1774 u_char
*wbuf
= (u_char
*) buf
;
1776 this->command(mtd
, ONENAND_CMD_BUFFERRAM
, to
, thislen
);
1778 /* Partial page write */
1779 subpage
= thislen
< mtd
->writesize
;
1781 memset(this->page_buf
, 0xff, mtd
->writesize
);
1782 memcpy(this->page_buf
+ column
, buf
, thislen
);
1783 wbuf
= this->page_buf
;
1786 this->write_bufferram(mtd
, ONENAND_DATARAM
, wbuf
, 0, mtd
->writesize
);
1787 this->write_bufferram(mtd
, ONENAND_SPARERAM
, ffchars
, 0, mtd
->oobsize
);
1789 this->command(mtd
, ONENAND_CMD_PROG
, to
, mtd
->writesize
);
1791 onenand_panic_wait(mtd
);
1793 /* In partial page write we don't update bufferram */
1794 onenand_update_bufferram(mtd
, to
, !subpage
);
1795 if (ONENAND_IS_2PLANE(this)) {
1796 ONENAND_SET_BUFFERRAM1(this);
1797 onenand_update_bufferram(mtd
, to
+ this->writesize
, !subpage
);
1815 * onenand_fill_auto_oob - [INTERN] oob auto-placement transfer
1816 * @param mtd MTD device structure
1817 * @param oob_buf oob buffer
1818 * @param buf source address
1819 * @param column oob offset to write to
1820 * @param thislen oob length to write
1822 static int onenand_fill_auto_oob(struct mtd_info
*mtd
, u_char
*oob_buf
,
1823 const u_char
*buf
, int column
, int thislen
)
1825 return mtd_ooblayout_set_databytes(mtd
, buf
, oob_buf
, column
, thislen
);
1829 * onenand_write_ops_nolock - [OneNAND Interface] write main and/or out-of-band
1830 * @param mtd MTD device structure
1831 * @param to offset to write to
1832 * @param ops oob operation description structure
1834 * Write main and/or oob with ECC
1836 static int onenand_write_ops_nolock(struct mtd_info
*mtd
, loff_t to
,
1837 struct mtd_oob_ops
*ops
)
1839 struct onenand_chip
*this = mtd
->priv
;
1840 int written
= 0, column
, thislen
= 0, subpage
= 0;
1841 int prev
= 0, prevlen
= 0, prev_subpage
= 0, first
= 1;
1842 int oobwritten
= 0, oobcolumn
, thisooblen
, oobsize
;
1843 size_t len
= ops
->len
;
1844 size_t ooblen
= ops
->ooblen
;
1845 const u_char
*buf
= ops
->datbuf
;
1846 const u_char
*oob
= ops
->oobbuf
;
1850 pr_debug("%s: to = 0x%08x, len = %i\n", __func__
, (unsigned int)to
,
1853 /* Initialize retlen, in case of early exit */
1857 /* Reject writes, which are not page aligned */
1858 if (unlikely(NOTALIGNED(to
) || NOTALIGNED(len
))) {
1859 printk(KERN_ERR
"%s: Attempt to write not page aligned data\n",
1864 /* Check zero length */
1867 oobsize
= mtd_oobavail(mtd
, ops
);
1868 oobcolumn
= to
& (mtd
->oobsize
- 1);
1870 column
= to
& (mtd
->writesize
- 1);
1872 /* Loop until all data write */
1874 if (written
< len
) {
1875 u_char
*wbuf
= (u_char
*) buf
;
1877 thislen
= min_t(int, mtd
->writesize
- column
, len
- written
);
1878 thisooblen
= min_t(int, oobsize
- oobcolumn
, ooblen
- oobwritten
);
1882 this->command(mtd
, ONENAND_CMD_BUFFERRAM
, to
, thislen
);
1884 /* Partial page write */
1885 subpage
= thislen
< mtd
->writesize
;
1887 memset(this->page_buf
, 0xff, mtd
->writesize
);
1888 memcpy(this->page_buf
+ column
, buf
, thislen
);
1889 wbuf
= this->page_buf
;
1892 this->write_bufferram(mtd
, ONENAND_DATARAM
, wbuf
, 0, mtd
->writesize
);
1895 oobbuf
= this->oob_buf
;
1897 /* We send data to spare ram with oobsize
1898 * to prevent byte access */
1899 memset(oobbuf
, 0xff, mtd
->oobsize
);
1900 if (ops
->mode
== MTD_OPS_AUTO_OOB
)
1901 onenand_fill_auto_oob(mtd
, oobbuf
, oob
, oobcolumn
, thisooblen
);
1903 memcpy(oobbuf
+ oobcolumn
, oob
, thisooblen
);
1905 oobwritten
+= thisooblen
;
1909 oobbuf
= (u_char
*) ffchars
;
1911 this->write_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, 0, mtd
->oobsize
);
1913 ONENAND_SET_NEXT_BUFFERRAM(this);
1916 * 2 PLANE, MLC, and Flex-OneNAND do not support
1917 * write-while-program feature.
1919 if (!ONENAND_IS_2PLANE(this) && !ONENAND_IS_4KB_PAGE(this) && !first
) {
1920 ONENAND_SET_PREV_BUFFERRAM(this);
1922 ret
= this->wait(mtd
, FL_WRITING
);
1924 /* In partial page write we don't update bufferram */
1925 onenand_update_bufferram(mtd
, prev
, !ret
&& !prev_subpage
);
1928 printk(KERN_ERR
"%s: write failed %d\n",
1933 if (written
== len
) {
1934 /* Only check verify write turn on */
1935 ret
= onenand_verify(mtd
, buf
- len
, to
- len
, len
);
1937 printk(KERN_ERR
"%s: verify failed %d\n",
1942 ONENAND_SET_NEXT_BUFFERRAM(this);
1946 cmd
= ONENAND_CMD_PROG
;
1948 /* Exclude 1st OTP and OTP blocks for cache program feature */
1949 if (ONENAND_IS_CACHE_PROGRAM(this) &&
1950 likely(onenand_block(this, to
) != 0) &&
1951 ONENAND_IS_4KB_PAGE(this) &&
1952 ((written
+ thislen
) < len
)) {
1953 cmd
= ONENAND_CMD_2X_CACHE_PROG
;
1957 this->command(mtd
, cmd
, to
, mtd
->writesize
);
1960 * 2 PLANE, MLC, and Flex-OneNAND wait here
1962 if (ONENAND_IS_2PLANE(this) || ONENAND_IS_4KB_PAGE(this)) {
1963 ret
= this->wait(mtd
, FL_WRITING
);
1965 /* In partial page write we don't update bufferram */
1966 onenand_update_bufferram(mtd
, to
, !ret
&& !subpage
);
1968 printk(KERN_ERR
"%s: write failed %d\n",
1973 /* Only check verify write turn on */
1974 ret
= onenand_verify(mtd
, buf
, to
, thislen
);
1976 printk(KERN_ERR
"%s: verify failed %d\n",
1990 prev_subpage
= subpage
;
1998 /* In error case, clear all bufferrams */
2000 onenand_invalidate_bufferram(mtd
, 0, -1);
2002 ops
->retlen
= written
;
2003 ops
->oobretlen
= oobwritten
;
2010 * onenand_write_oob_nolock - [INTERN] OneNAND write out-of-band
2011 * @param mtd MTD device structure
2012 * @param to offset to write to
2013 * @param len number of bytes to write
2014 * @param retlen pointer to variable to store the number of written bytes
2015 * @param buf the data to write
2016 * @param mode operation mode
2018 * OneNAND write out-of-band
2020 static int onenand_write_oob_nolock(struct mtd_info
*mtd
, loff_t to
,
2021 struct mtd_oob_ops
*ops
)
2023 struct onenand_chip
*this = mtd
->priv
;
2024 int column
, ret
= 0, oobsize
;
2025 int written
= 0, oobcmd
;
2027 size_t len
= ops
->ooblen
;
2028 const u_char
*buf
= ops
->oobbuf
;
2029 unsigned int mode
= ops
->mode
;
2033 pr_debug("%s: to = 0x%08x, len = %i\n", __func__
, (unsigned int)to
,
2036 /* Initialize retlen, in case of early exit */
2039 if (mode
== MTD_OPS_AUTO_OOB
)
2040 oobsize
= mtd
->oobavail
;
2042 oobsize
= mtd
->oobsize
;
2044 column
= to
& (mtd
->oobsize
- 1);
2046 if (unlikely(column
>= oobsize
)) {
2047 printk(KERN_ERR
"%s: Attempted to start write outside oob\n",
2052 /* For compatibility with NAND: Do not allow write past end of page */
2053 if (unlikely(column
+ len
> oobsize
)) {
2054 printk(KERN_ERR
"%s: Attempt to write past end of page\n",
2059 /* Do not allow reads past end of device */
2060 if (unlikely(to
>= mtd
->size
||
2061 column
+ len
> ((mtd
->size
>> this->page_shift
) -
2062 (to
>> this->page_shift
)) * oobsize
)) {
2063 printk(KERN_ERR
"%s: Attempted to write past end of device\n",
2068 oobbuf
= this->oob_buf
;
2070 oobcmd
= ONENAND_IS_4KB_PAGE(this) ? ONENAND_CMD_PROG
: ONENAND_CMD_PROGOOB
;
2072 /* Loop until all data write */
2073 while (written
< len
) {
2074 int thislen
= min_t(int, oobsize
, len
- written
);
2078 this->command(mtd
, ONENAND_CMD_BUFFERRAM
, to
, mtd
->oobsize
);
2080 /* We send data to spare ram with oobsize
2081 * to prevent byte access */
2082 memset(oobbuf
, 0xff, mtd
->oobsize
);
2083 if (mode
== MTD_OPS_AUTO_OOB
)
2084 onenand_fill_auto_oob(mtd
, oobbuf
, buf
, column
, thislen
);
2086 memcpy(oobbuf
+ column
, buf
, thislen
);
2087 this->write_bufferram(mtd
, ONENAND_SPARERAM
, oobbuf
, 0, mtd
->oobsize
);
2089 if (ONENAND_IS_4KB_PAGE(this)) {
2090 /* Set main area of DataRAM to 0xff*/
2091 memset(this->page_buf
, 0xff, mtd
->writesize
);
2092 this->write_bufferram(mtd
, ONENAND_DATARAM
,
2093 this->page_buf
, 0, mtd
->writesize
);
2096 this->command(mtd
, oobcmd
, to
, mtd
->oobsize
);
2098 onenand_update_bufferram(mtd
, to
, 0);
2099 if (ONENAND_IS_2PLANE(this)) {
2100 ONENAND_SET_BUFFERRAM1(this);
2101 onenand_update_bufferram(mtd
, to
+ this->writesize
, 0);
2104 ret
= this->wait(mtd
, FL_WRITING
);
2106 printk(KERN_ERR
"%s: write failed %d\n", __func__
, ret
);
2110 ret
= onenand_verify_oob(mtd
, oobbuf
, to
);
2112 printk(KERN_ERR
"%s: verify failed %d\n",
2121 to
+= mtd
->writesize
;
2126 ops
->oobretlen
= written
;
2132 * onenand_write - [MTD Interface] write buffer to FLASH
2133 * @param mtd MTD device structure
2134 * @param to offset to write to
2135 * @param len number of bytes to write
2136 * @param retlen pointer to variable to store the number of written bytes
2137 * @param buf the data to write
2141 static int onenand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2142 size_t *retlen
, const u_char
*buf
)
2144 struct mtd_oob_ops ops
= {
2147 .datbuf
= (u_char
*) buf
,
2152 onenand_get_device(mtd
, FL_WRITING
);
2153 ret
= onenand_write_ops_nolock(mtd
, to
, &ops
);
2154 onenand_release_device(mtd
);
2156 *retlen
= ops
.retlen
;
2161 * onenand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2162 * @param mtd: MTD device structure
2163 * @param to: offset to write
2164 * @param ops: oob operation description structure
2166 static int onenand_write_oob(struct mtd_info
*mtd
, loff_t to
,
2167 struct mtd_oob_ops
*ops
)
2171 switch (ops
->mode
) {
2172 case MTD_OPS_PLACE_OOB
:
2173 case MTD_OPS_AUTO_OOB
:
2176 /* Not implemented yet */
2181 onenand_get_device(mtd
, FL_WRITING
);
2183 ret
= onenand_write_ops_nolock(mtd
, to
, ops
);
2185 ret
= onenand_write_oob_nolock(mtd
, to
, ops
);
2186 onenand_release_device(mtd
);
2192 * onenand_block_isbad_nolock - [GENERIC] Check if a block is marked bad
2193 * @param mtd MTD device structure
2194 * @param ofs offset from device start
2195 * @param allowbbt 1, if its allowed to access the bbt area
2197 * Check, if the block is bad. Either by reading the bad block table or
2198 * calling of the scan function.
2200 static int onenand_block_isbad_nolock(struct mtd_info
*mtd
, loff_t ofs
, int allowbbt
)
2202 struct onenand_chip
*this = mtd
->priv
;
2203 struct bbm_info
*bbm
= this->bbm
;
2205 /* Return info from the table */
2206 return bbm
->isbad_bbt(mtd
, ofs
, allowbbt
);
2210 static int onenand_multiblock_erase_verify(struct mtd_info
*mtd
,
2211 struct erase_info
*instr
)
2213 struct onenand_chip
*this = mtd
->priv
;
2214 loff_t addr
= instr
->addr
;
2215 int len
= instr
->len
;
2216 unsigned int block_size
= (1 << this->erase_shift
);
2220 this->command(mtd
, ONENAND_CMD_ERASE_VERIFY
, addr
, block_size
);
2221 ret
= this->wait(mtd
, FL_VERIFYING_ERASE
);
2223 printk(KERN_ERR
"%s: Failed verify, block %d\n",
2224 __func__
, onenand_block(this, addr
));
2225 instr
->state
= MTD_ERASE_FAILED
;
2226 instr
->fail_addr
= addr
;
2236 * onenand_multiblock_erase - [INTERN] erase block(s) using multiblock erase
2237 * @param mtd MTD device structure
2238 * @param instr erase instruction
2239 * @param region erase region
2241 * Erase one or more blocks up to 64 block at a time
2243 static int onenand_multiblock_erase(struct mtd_info
*mtd
,
2244 struct erase_info
*instr
,
2245 unsigned int block_size
)
2247 struct onenand_chip
*this = mtd
->priv
;
2248 loff_t addr
= instr
->addr
;
2249 int len
= instr
->len
;
2254 instr
->state
= MTD_ERASING
;
2256 if (ONENAND_IS_DDP(this)) {
2257 loff_t bdry_addr
= this->chipsize
>> 1;
2258 if (addr
< bdry_addr
&& (addr
+ len
) > bdry_addr
)
2259 bdry_block
= bdry_addr
>> this->erase_shift
;
2264 /* Check if we have a bad block, we do not erase bad blocks */
2265 if (onenand_block_isbad_nolock(mtd
, addr
, 0)) {
2266 printk(KERN_WARNING
"%s: attempt to erase a bad block "
2267 "at addr 0x%012llx\n",
2268 __func__
, (unsigned long long) addr
);
2269 instr
->state
= MTD_ERASE_FAILED
;
2279 /* loop over 64 eb batches */
2281 struct erase_info verify_instr
= *instr
;
2282 int max_eb_count
= MB_ERASE_MAX_BLK_COUNT
;
2284 verify_instr
.addr
= addr
;
2285 verify_instr
.len
= 0;
2287 /* do not cross chip boundary */
2289 int this_block
= (addr
>> this->erase_shift
);
2291 if (this_block
< bdry_block
) {
2292 max_eb_count
= min(max_eb_count
,
2293 (bdry_block
- this_block
));
2299 while (len
> block_size
&& eb_count
< (max_eb_count
- 1)) {
2300 this->command(mtd
, ONENAND_CMD_MULTIBLOCK_ERASE
,
2302 onenand_invalidate_bufferram(mtd
, addr
, block_size
);
2304 ret
= this->wait(mtd
, FL_PREPARING_ERASE
);
2306 printk(KERN_ERR
"%s: Failed multiblock erase, "
2307 "block %d\n", __func__
,
2308 onenand_block(this, addr
));
2309 instr
->state
= MTD_ERASE_FAILED
;
2310 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2319 /* last block of 64-eb series */
2321 this->command(mtd
, ONENAND_CMD_ERASE
, addr
, block_size
);
2322 onenand_invalidate_bufferram(mtd
, addr
, block_size
);
2324 ret
= this->wait(mtd
, FL_ERASING
);
2325 /* Check if it is write protected */
2327 printk(KERN_ERR
"%s: Failed erase, block %d\n",
2328 __func__
, onenand_block(this, addr
));
2329 instr
->state
= MTD_ERASE_FAILED
;
2330 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2339 verify_instr
.len
= eb_count
* block_size
;
2340 if (onenand_multiblock_erase_verify(mtd
, &verify_instr
)) {
2341 instr
->state
= verify_instr
.state
;
2342 instr
->fail_addr
= verify_instr
.fail_addr
;
2352 * onenand_block_by_block_erase - [INTERN] erase block(s) using regular erase
2353 * @param mtd MTD device structure
2354 * @param instr erase instruction
2355 * @param region erase region
2356 * @param block_size erase block size
2358 * Erase one or more blocks one block at a time
2360 static int onenand_block_by_block_erase(struct mtd_info
*mtd
,
2361 struct erase_info
*instr
,
2362 struct mtd_erase_region_info
*region
,
2363 unsigned int block_size
)
2365 struct onenand_chip
*this = mtd
->priv
;
2366 loff_t addr
= instr
->addr
;
2367 int len
= instr
->len
;
2368 loff_t region_end
= 0;
2372 /* region is set for Flex-OneNAND */
2373 region_end
= region
->offset
+ region
->erasesize
* region
->numblocks
;
2376 instr
->state
= MTD_ERASING
;
2378 /* Loop through the blocks */
2382 /* Check if we have a bad block, we do not erase bad blocks */
2383 if (onenand_block_isbad_nolock(mtd
, addr
, 0)) {
2384 printk(KERN_WARNING
"%s: attempt to erase a bad block "
2385 "at addr 0x%012llx\n",
2386 __func__
, (unsigned long long) addr
);
2387 instr
->state
= MTD_ERASE_FAILED
;
2391 this->command(mtd
, ONENAND_CMD_ERASE
, addr
, block_size
);
2393 onenand_invalidate_bufferram(mtd
, addr
, block_size
);
2395 ret
= this->wait(mtd
, FL_ERASING
);
2396 /* Check, if it is write protected */
2398 printk(KERN_ERR
"%s: Failed erase, block %d\n",
2399 __func__
, onenand_block(this, addr
));
2400 instr
->state
= MTD_ERASE_FAILED
;
2401 instr
->fail_addr
= addr
;
2408 if (region
&& addr
== region_end
) {
2413 block_size
= region
->erasesize
;
2414 region_end
= region
->offset
+ region
->erasesize
* region
->numblocks
;
2416 if (len
& (block_size
- 1)) {
2417 /* FIXME: This should be handled at MTD partitioning level. */
2418 printk(KERN_ERR
"%s: Unaligned address\n",
2428 * onenand_erase - [MTD Interface] erase block(s)
2429 * @param mtd MTD device structure
2430 * @param instr erase instruction
2432 * Erase one or more blocks
2434 static int onenand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
2436 struct onenand_chip
*this = mtd
->priv
;
2437 unsigned int block_size
;
2438 loff_t addr
= instr
->addr
;
2439 loff_t len
= instr
->len
;
2441 struct mtd_erase_region_info
*region
= NULL
;
2442 loff_t region_offset
= 0;
2444 pr_debug("%s: start=0x%012llx, len=%llu\n", __func__
,
2445 (unsigned long long)instr
->addr
,
2446 (unsigned long long)instr
->len
);
2448 if (FLEXONENAND(this)) {
2449 /* Find the eraseregion of this address */
2450 int i
= flexonenand_region(mtd
, addr
);
2452 region
= &mtd
->eraseregions
[i
];
2453 block_size
= region
->erasesize
;
2455 /* Start address within region must align on block boundary.
2456 * Erase region's start offset is always block start address.
2458 region_offset
= region
->offset
;
2460 block_size
= 1 << this->erase_shift
;
2462 /* Start address must align on block boundary */
2463 if (unlikely((addr
- region_offset
) & (block_size
- 1))) {
2464 printk(KERN_ERR
"%s: Unaligned address\n", __func__
);
2468 /* Length must align on block boundary */
2469 if (unlikely(len
& (block_size
- 1))) {
2470 printk(KERN_ERR
"%s: Length not block aligned\n", __func__
);
2474 /* Grab the lock and see if the device is available */
2475 onenand_get_device(mtd
, FL_ERASING
);
2477 if (ONENAND_IS_4KB_PAGE(this) || region
||
2478 instr
->len
< MB_ERASE_MIN_BLK_COUNT
* block_size
) {
2479 /* region is set for Flex-OneNAND (no mb erase) */
2480 ret
= onenand_block_by_block_erase(mtd
, instr
,
2481 region
, block_size
);
2483 ret
= onenand_multiblock_erase(mtd
, instr
, block_size
);
2486 /* Deselect and wake up anyone waiting on the device */
2487 onenand_release_device(mtd
);
2489 /* Do call back function */
2491 instr
->state
= MTD_ERASE_DONE
;
2492 mtd_erase_callback(instr
);
2499 * onenand_sync - [MTD Interface] sync
2500 * @param mtd MTD device structure
2502 * Sync is actually a wait for chip ready function
2504 static void onenand_sync(struct mtd_info
*mtd
)
2506 pr_debug("%s: called\n", __func__
);
2508 /* Grab the lock and see if the device is available */
2509 onenand_get_device(mtd
, FL_SYNCING
);
2511 /* Release it and go back */
2512 onenand_release_device(mtd
);
2516 * onenand_block_isbad - [MTD Interface] Check whether the block at the given offset is bad
2517 * @param mtd MTD device structure
2518 * @param ofs offset relative to mtd start
2520 * Check whether the block is bad
2522 static int onenand_block_isbad(struct mtd_info
*mtd
, loff_t ofs
)
2526 onenand_get_device(mtd
, FL_READING
);
2527 ret
= onenand_block_isbad_nolock(mtd
, ofs
, 0);
2528 onenand_release_device(mtd
);
2533 * onenand_default_block_markbad - [DEFAULT] mark a block bad
2534 * @param mtd MTD device structure
2535 * @param ofs offset from device start
2537 * This is the default implementation, which can be overridden by
2538 * a hardware specific driver.
2540 static int onenand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2542 struct onenand_chip
*this = mtd
->priv
;
2543 struct bbm_info
*bbm
= this->bbm
;
2544 u_char buf
[2] = {0, 0};
2545 struct mtd_oob_ops ops
= {
2546 .mode
= MTD_OPS_PLACE_OOB
,
2553 /* Get block number */
2554 block
= onenand_block(this, ofs
);
2556 bbm
->bbt
[block
>> 2] |= 0x01 << ((block
& 0x03) << 1);
2558 /* We write two bytes, so we don't have to mess with 16-bit access */
2559 ofs
+= mtd
->oobsize
+ (bbm
->badblockpos
& ~0x01);
2560 /* FIXME : What to do when marking SLC block in partition
2561 * with MLC erasesize? For now, it is not advisable to
2562 * create partitions containing both SLC and MLC regions.
2564 return onenand_write_oob_nolock(mtd
, ofs
, &ops
);
2568 * onenand_block_markbad - [MTD Interface] Mark the block at the given offset as bad
2569 * @param mtd MTD device structure
2570 * @param ofs offset relative to mtd start
2572 * Mark the block as bad
2574 static int onenand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2576 struct onenand_chip
*this = mtd
->priv
;
2579 ret
= onenand_block_isbad(mtd
, ofs
);
2581 /* If it was bad already, return success and do nothing */
2587 onenand_get_device(mtd
, FL_WRITING
);
2588 ret
= this->block_markbad(mtd
, ofs
);
2589 onenand_release_device(mtd
);
2594 * onenand_do_lock_cmd - [OneNAND Interface] Lock or unlock block(s)
2595 * @param mtd MTD device structure
2596 * @param ofs offset relative to mtd start
2597 * @param len number of bytes to lock or unlock
2598 * @param cmd lock or unlock command
2600 * Lock or unlock one or more blocks
2602 static int onenand_do_lock_cmd(struct mtd_info
*mtd
, loff_t ofs
, size_t len
, int cmd
)
2604 struct onenand_chip
*this = mtd
->priv
;
2605 int start
, end
, block
, value
, status
;
2608 start
= onenand_block(this, ofs
);
2609 end
= onenand_block(this, ofs
+ len
) - 1;
2611 if (cmd
== ONENAND_CMD_LOCK
)
2612 wp_status_mask
= ONENAND_WP_LS
;
2614 wp_status_mask
= ONENAND_WP_US
;
2616 /* Continuous lock scheme */
2617 if (this->options
& ONENAND_HAS_CONT_LOCK
) {
2618 /* Set start block address */
2619 this->write_word(start
, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2620 /* Set end block address */
2621 this->write_word(end
, this->base
+ ONENAND_REG_END_BLOCK_ADDRESS
);
2622 /* Write lock command */
2623 this->command(mtd
, cmd
, 0, 0);
2625 /* There's no return value */
2626 this->wait(mtd
, FL_LOCKING
);
2629 while (this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
)
2630 & ONENAND_CTRL_ONGO
)
2633 /* Check lock status */
2634 status
= this->read_word(this->base
+ ONENAND_REG_WP_STATUS
);
2635 if (!(status
& wp_status_mask
))
2636 printk(KERN_ERR
"%s: wp status = 0x%x\n",
2642 /* Block lock scheme */
2643 for (block
= start
; block
< end
+ 1; block
++) {
2644 /* Set block address */
2645 value
= onenand_block_address(this, block
);
2646 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS1
);
2647 /* Select DataRAM for DDP */
2648 value
= onenand_bufferram_address(this, block
);
2649 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
2650 /* Set start block address */
2651 this->write_word(block
, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2652 /* Write lock command */
2653 this->command(mtd
, cmd
, 0, 0);
2655 /* There's no return value */
2656 this->wait(mtd
, FL_LOCKING
);
2659 while (this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
)
2660 & ONENAND_CTRL_ONGO
)
2663 /* Check lock status */
2664 status
= this->read_word(this->base
+ ONENAND_REG_WP_STATUS
);
2665 if (!(status
& wp_status_mask
))
2666 printk(KERN_ERR
"%s: block = %d, wp status = 0x%x\n",
2667 __func__
, block
, status
);
2674 * onenand_lock - [MTD Interface] Lock block(s)
2675 * @param mtd MTD device structure
2676 * @param ofs offset relative to mtd start
2677 * @param len number of bytes to unlock
2679 * Lock one or more blocks
2681 static int onenand_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2685 onenand_get_device(mtd
, FL_LOCKING
);
2686 ret
= onenand_do_lock_cmd(mtd
, ofs
, len
, ONENAND_CMD_LOCK
);
2687 onenand_release_device(mtd
);
2692 * onenand_unlock - [MTD Interface] Unlock block(s)
2693 * @param mtd MTD device structure
2694 * @param ofs offset relative to mtd start
2695 * @param len number of bytes to unlock
2697 * Unlock one or more blocks
2699 static int onenand_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
2703 onenand_get_device(mtd
, FL_LOCKING
);
2704 ret
= onenand_do_lock_cmd(mtd
, ofs
, len
, ONENAND_CMD_UNLOCK
);
2705 onenand_release_device(mtd
);
2710 * onenand_check_lock_status - [OneNAND Interface] Check lock status
2711 * @param this onenand chip data structure
2715 static int onenand_check_lock_status(struct onenand_chip
*this)
2717 unsigned int value
, block
, status
;
2720 end
= this->chipsize
>> this->erase_shift
;
2721 for (block
= 0; block
< end
; block
++) {
2722 /* Set block address */
2723 value
= onenand_block_address(this, block
);
2724 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS1
);
2725 /* Select DataRAM for DDP */
2726 value
= onenand_bufferram_address(this, block
);
2727 this->write_word(value
, this->base
+ ONENAND_REG_START_ADDRESS2
);
2728 /* Set start block address */
2729 this->write_word(block
, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2731 /* Check lock status */
2732 status
= this->read_word(this->base
+ ONENAND_REG_WP_STATUS
);
2733 if (!(status
& ONENAND_WP_US
)) {
2734 printk(KERN_ERR
"%s: block = %d, wp status = 0x%x\n",
2735 __func__
, block
, status
);
2744 * onenand_unlock_all - [OneNAND Interface] unlock all blocks
2745 * @param mtd MTD device structure
2749 static void onenand_unlock_all(struct mtd_info
*mtd
)
2751 struct onenand_chip
*this = mtd
->priv
;
2753 loff_t len
= mtd
->size
;
2755 if (this->options
& ONENAND_HAS_UNLOCK_ALL
) {
2756 /* Set start block address */
2757 this->write_word(0, this->base
+ ONENAND_REG_START_BLOCK_ADDRESS
);
2758 /* Write unlock command */
2759 this->command(mtd
, ONENAND_CMD_UNLOCK_ALL
, 0, 0);
2761 /* There's no return value */
2762 this->wait(mtd
, FL_LOCKING
);
2765 while (this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
)
2766 & ONENAND_CTRL_ONGO
)
2769 /* Don't check lock status */
2770 if (this->options
& ONENAND_SKIP_UNLOCK_CHECK
)
2773 /* Check lock status */
2774 if (onenand_check_lock_status(this))
2777 /* Workaround for all block unlock in DDP */
2778 if (ONENAND_IS_DDP(this) && !FLEXONENAND(this)) {
2779 /* All blocks on another chip */
2780 ofs
= this->chipsize
>> 1;
2781 len
= this->chipsize
>> 1;
2785 onenand_do_lock_cmd(mtd
, ofs
, len
, ONENAND_CMD_UNLOCK
);
2788 #ifdef CONFIG_MTD_ONENAND_OTP
2791 * onenand_otp_command - Send OTP specific command to OneNAND device
2792 * @param mtd MTD device structure
2793 * @param cmd the command to be sent
2794 * @param addr offset to read from or write to
2795 * @param len number of bytes to read or write
2797 static int onenand_otp_command(struct mtd_info
*mtd
, int cmd
, loff_t addr
,
2800 struct onenand_chip
*this = mtd
->priv
;
2801 int value
, block
, page
;
2803 /* Address translation */
2805 case ONENAND_CMD_OTP_ACCESS
:
2806 block
= (int) (addr
>> this->erase_shift
);
2811 block
= (int) (addr
>> this->erase_shift
);
2812 page
= (int) (addr
>> this->page_shift
);
2814 if (ONENAND_IS_2PLANE(this)) {
2815 /* Make the even block number */
2817 /* Is it the odd plane? */
2818 if (addr
& this->writesize
)
2822 page
&= this->page_mask
;
2827 /* Write 'DFS, FBA' of Flash */
2828 value
= onenand_block_address(this, block
);
2829 this->write_word(value
, this->base
+
2830 ONENAND_REG_START_ADDRESS1
);
2834 /* Now we use page size operation */
2835 int sectors
= 4, count
= 4;
2840 if (ONENAND_IS_2PLANE(this) && cmd
== ONENAND_CMD_PROG
)
2841 cmd
= ONENAND_CMD_2X_PROG
;
2842 dataram
= ONENAND_CURRENT_BUFFERRAM(this);
2846 /* Write 'FPA, FSA' of Flash */
2847 value
= onenand_page_address(page
, sectors
);
2848 this->write_word(value
, this->base
+
2849 ONENAND_REG_START_ADDRESS8
);
2851 /* Write 'BSA, BSC' of DataRAM */
2852 value
= onenand_buffer_address(dataram
, sectors
, count
);
2853 this->write_word(value
, this->base
+ ONENAND_REG_START_BUFFER
);
2856 /* Interrupt clear */
2857 this->write_word(ONENAND_INT_CLEAR
, this->base
+ ONENAND_REG_INTERRUPT
);
2860 this->write_word(cmd
, this->base
+ ONENAND_REG_COMMAND
);
2866 * onenand_otp_write_oob_nolock - [INTERN] OneNAND write out-of-band, specific to OTP
2867 * @param mtd MTD device structure
2868 * @param to offset to write to
2869 * @param len number of bytes to write
2870 * @param retlen pointer to variable to store the number of written bytes
2871 * @param buf the data to write
2873 * OneNAND write out-of-band only for OTP
2875 static int onenand_otp_write_oob_nolock(struct mtd_info
*mtd
, loff_t to
,
2876 struct mtd_oob_ops
*ops
)
2878 struct onenand_chip
*this = mtd
->priv
;
2879 int column
, ret
= 0, oobsize
;
2882 size_t len
= ops
->ooblen
;
2883 const u_char
*buf
= ops
->oobbuf
;
2884 int block
, value
, status
;
2888 /* Initialize retlen, in case of early exit */
2891 oobsize
= mtd
->oobsize
;
2893 column
= to
& (mtd
->oobsize
- 1);
2895 oobbuf
= this->oob_buf
;
2897 /* Loop until all data write */
2898 while (written
< len
) {
2899 int thislen
= min_t(int, oobsize
, len
- written
);
2903 block
= (int) (to
>> this->erase_shift
);
2905 * Write 'DFS, FBA' of Flash
2906 * Add: F100h DQ=DFS, FBA
2909 value
= onenand_block_address(this, block
);
2910 this->write_word(value
, this->base
+
2911 ONENAND_REG_START_ADDRESS1
);
2914 * Select DataRAM for DDP
2918 value
= onenand_bufferram_address(this, block
);
2919 this->write_word(value
, this->base
+
2920 ONENAND_REG_START_ADDRESS2
);
2921 ONENAND_SET_NEXT_BUFFERRAM(this);
2924 * Enter OTP access mode
2926 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
2927 this->wait(mtd
, FL_OTPING
);
2929 /* We send data to spare ram with oobsize
2930 * to prevent byte access */
2931 memcpy(oobbuf
+ column
, buf
, thislen
);
2934 * Write Data into DataRAM
2936 * in sector0/spare/page0
2939 this->write_bufferram(mtd
, ONENAND_SPARERAM
,
2940 oobbuf
, 0, mtd
->oobsize
);
2942 onenand_otp_command(mtd
, ONENAND_CMD_PROGOOB
, to
, mtd
->oobsize
);
2943 onenand_update_bufferram(mtd
, to
, 0);
2944 if (ONENAND_IS_2PLANE(this)) {
2945 ONENAND_SET_BUFFERRAM1(this);
2946 onenand_update_bufferram(mtd
, to
+ this->writesize
, 0);
2949 ret
= this->wait(mtd
, FL_WRITING
);
2951 printk(KERN_ERR
"%s: write failed %d\n", __func__
, ret
);
2955 /* Exit OTP access mode */
2956 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
2957 this->wait(mtd
, FL_RESETING
);
2959 status
= this->read_word(this->base
+ ONENAND_REG_CTRL_STATUS
);
2962 if (status
== 0x60) {
2963 printk(KERN_DEBUG
"\nBLOCK\tSTATUS\n");
2964 printk(KERN_DEBUG
"1st Block\tLOCKED\n");
2965 printk(KERN_DEBUG
"OTP Block\tLOCKED\n");
2966 } else if (status
== 0x20) {
2967 printk(KERN_DEBUG
"\nBLOCK\tSTATUS\n");
2968 printk(KERN_DEBUG
"1st Block\tLOCKED\n");
2969 printk(KERN_DEBUG
"OTP Block\tUN-LOCKED\n");
2970 } else if (status
== 0x40) {
2971 printk(KERN_DEBUG
"\nBLOCK\tSTATUS\n");
2972 printk(KERN_DEBUG
"1st Block\tUN-LOCKED\n");
2973 printk(KERN_DEBUG
"OTP Block\tLOCKED\n");
2975 printk(KERN_DEBUG
"Reboot to check\n");
2982 to
+= mtd
->writesize
;
2987 ops
->oobretlen
= written
;
2992 /* Internal OTP operation */
2993 typedef int (*otp_op_t
)(struct mtd_info
*mtd
, loff_t form
, size_t len
,
2994 size_t *retlen
, u_char
*buf
);
2997 * do_otp_read - [DEFAULT] Read OTP block area
2998 * @param mtd MTD device structure
2999 * @param from The offset to read
3000 * @param len number of bytes to read
3001 * @param retlen pointer to variable to store the number of readbytes
3002 * @param buf the databuffer to put/get data
3004 * Read OTP block area.
3006 static int do_otp_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
3007 size_t *retlen
, u_char
*buf
)
3009 struct onenand_chip
*this = mtd
->priv
;
3010 struct mtd_oob_ops ops
= {
3018 /* Enter OTP access mode */
3019 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
3020 this->wait(mtd
, FL_OTPING
);
3022 ret
= ONENAND_IS_4KB_PAGE(this) ?
3023 onenand_mlc_read_ops_nolock(mtd
, from
, &ops
) :
3024 onenand_read_ops_nolock(mtd
, from
, &ops
);
3026 /* Exit OTP access mode */
3027 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
3028 this->wait(mtd
, FL_RESETING
);
3034 * do_otp_write - [DEFAULT] Write OTP block area
3035 * @param mtd MTD device structure
3036 * @param to The offset to write
3037 * @param len number of bytes to write
3038 * @param retlen pointer to variable to store the number of write bytes
3039 * @param buf the databuffer to put/get data
3041 * Write OTP block area.
3043 static int do_otp_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
3044 size_t *retlen
, u_char
*buf
)
3046 struct onenand_chip
*this = mtd
->priv
;
3047 unsigned char *pbuf
= buf
;
3049 struct mtd_oob_ops ops
;
3051 /* Force buffer page aligned */
3052 if (len
< mtd
->writesize
) {
3053 memcpy(this->page_buf
, buf
, len
);
3054 memset(this->page_buf
+ len
, 0xff, mtd
->writesize
- len
);
3055 pbuf
= this->page_buf
;
3056 len
= mtd
->writesize
;
3059 /* Enter OTP access mode */
3060 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
3061 this->wait(mtd
, FL_OTPING
);
3067 ret
= onenand_write_ops_nolock(mtd
, to
, &ops
);
3068 *retlen
= ops
.retlen
;
3070 /* Exit OTP access mode */
3071 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
3072 this->wait(mtd
, FL_RESETING
);
3078 * do_otp_lock - [DEFAULT] Lock OTP block area
3079 * @param mtd MTD device structure
3080 * @param from The offset to lock
3081 * @param len number of bytes to lock
3082 * @param retlen pointer to variable to store the number of lock bytes
3083 * @param buf the databuffer to put/get data
3085 * Lock OTP block area.
3087 static int do_otp_lock(struct mtd_info
*mtd
, loff_t from
, size_t len
,
3088 size_t *retlen
, u_char
*buf
)
3090 struct onenand_chip
*this = mtd
->priv
;
3091 struct mtd_oob_ops ops
;
3094 if (FLEXONENAND(this)) {
3096 /* Enter OTP access mode */
3097 this->command(mtd
, ONENAND_CMD_OTP_ACCESS
, 0, 0);
3098 this->wait(mtd
, FL_OTPING
);
3100 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3101 * main area of page 49.
3103 ops
.len
= mtd
->writesize
;
3107 ret
= onenand_write_ops_nolock(mtd
, mtd
->writesize
* 49, &ops
);
3108 *retlen
= ops
.retlen
;
3110 /* Exit OTP access mode */
3111 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
3112 this->wait(mtd
, FL_RESETING
);
3114 ops
.mode
= MTD_OPS_PLACE_OOB
;
3118 ret
= onenand_otp_write_oob_nolock(mtd
, from
, &ops
);
3119 *retlen
= ops
.oobretlen
;
3126 * onenand_otp_walk - [DEFAULT] Handle OTP operation
3127 * @param mtd MTD device structure
3128 * @param from The offset to read/write
3129 * @param len number of bytes to read/write
3130 * @param retlen pointer to variable to store the number of read bytes
3131 * @param buf the databuffer to put/get data
3132 * @param action do given action
3133 * @param mode specify user and factory
3135 * Handle OTP operation.
3137 static int onenand_otp_walk(struct mtd_info
*mtd
, loff_t from
, size_t len
,
3138 size_t *retlen
, u_char
*buf
,
3139 otp_op_t action
, int mode
)
3141 struct onenand_chip
*this = mtd
->priv
;
3148 density
= onenand_get_density(this->device_id
);
3149 if (density
< ONENAND_DEVICE_DENSITY_512Mb
)
3154 if (mode
== MTD_OTP_FACTORY
) {
3155 from
+= mtd
->writesize
* otp_pages
;
3156 otp_pages
= ONENAND_PAGES_PER_BLOCK
- otp_pages
;
3159 /* Check User/Factory boundary */
3160 if (mode
== MTD_OTP_USER
) {
3161 if (mtd
->writesize
* otp_pages
< from
+ len
)
3164 if (mtd
->writesize
* otp_pages
< len
)
3168 onenand_get_device(mtd
, FL_OTPING
);
3169 while (len
> 0 && otp_pages
> 0) {
3170 if (!action
) { /* OTP Info functions */
3171 struct otp_info
*otpinfo
;
3173 len
-= sizeof(struct otp_info
);
3179 otpinfo
= (struct otp_info
*) buf
;
3180 otpinfo
->start
= from
;
3181 otpinfo
->length
= mtd
->writesize
;
3182 otpinfo
->locked
= 0;
3184 from
+= mtd
->writesize
;
3185 buf
+= sizeof(struct otp_info
);
3186 *retlen
+= sizeof(struct otp_info
);
3190 ret
= action(mtd
, from
, len
, &tmp_retlen
, buf
);
3194 *retlen
+= tmp_retlen
;
3201 onenand_release_device(mtd
);
3207 * onenand_get_fact_prot_info - [MTD Interface] Read factory OTP info
3208 * @param mtd MTD device structure
3209 * @param len number of bytes to read
3210 * @param retlen pointer to variable to store the number of read bytes
3211 * @param buf the databuffer to put/get data
3213 * Read factory OTP info.
3215 static int onenand_get_fact_prot_info(struct mtd_info
*mtd
, size_t len
,
3216 size_t *retlen
, struct otp_info
*buf
)
3218 return onenand_otp_walk(mtd
, 0, len
, retlen
, (u_char
*) buf
, NULL
,
3223 * onenand_read_fact_prot_reg - [MTD Interface] Read factory OTP area
3224 * @param mtd MTD device structure
3225 * @param from The offset to read
3226 * @param len number of bytes to read
3227 * @param retlen pointer to variable to store the number of read bytes
3228 * @param buf the databuffer to put/get data
3230 * Read factory OTP area.
3232 static int onenand_read_fact_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3233 size_t len
, size_t *retlen
, u_char
*buf
)
3235 return onenand_otp_walk(mtd
, from
, len
, retlen
, buf
, do_otp_read
, MTD_OTP_FACTORY
);
3239 * onenand_get_user_prot_info - [MTD Interface] Read user OTP info
3240 * @param mtd MTD device structure
3241 * @param retlen pointer to variable to store the number of read bytes
3242 * @param len number of bytes to read
3243 * @param buf the databuffer to put/get data
3245 * Read user OTP info.
3247 static int onenand_get_user_prot_info(struct mtd_info
*mtd
, size_t len
,
3248 size_t *retlen
, struct otp_info
*buf
)
3250 return onenand_otp_walk(mtd
, 0, len
, retlen
, (u_char
*) buf
, NULL
,
3255 * onenand_read_user_prot_reg - [MTD Interface] Read user OTP area
3256 * @param mtd MTD device structure
3257 * @param from The offset to read
3258 * @param len number of bytes to read
3259 * @param retlen pointer to variable to store the number of read bytes
3260 * @param buf the databuffer to put/get data
3262 * Read user OTP area.
3264 static int onenand_read_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3265 size_t len
, size_t *retlen
, u_char
*buf
)
3267 return onenand_otp_walk(mtd
, from
, len
, retlen
, buf
, do_otp_read
, MTD_OTP_USER
);
3271 * onenand_write_user_prot_reg - [MTD Interface] Write user OTP area
3272 * @param mtd MTD device structure
3273 * @param from The offset to write
3274 * @param len number of bytes to write
3275 * @param retlen pointer to variable to store the number of write bytes
3276 * @param buf the databuffer to put/get data
3278 * Write user OTP area.
3280 static int onenand_write_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3281 size_t len
, size_t *retlen
, u_char
*buf
)
3283 return onenand_otp_walk(mtd
, from
, len
, retlen
, buf
, do_otp_write
, MTD_OTP_USER
);
3287 * onenand_lock_user_prot_reg - [MTD Interface] Lock user OTP area
3288 * @param mtd MTD device structure
3289 * @param from The offset to lock
3290 * @param len number of bytes to unlock
3292 * Write lock mark on spare area in page 0 in OTP block
3294 static int onenand_lock_user_prot_reg(struct mtd_info
*mtd
, loff_t from
,
3297 struct onenand_chip
*this = mtd
->priv
;
3298 u_char
*buf
= FLEXONENAND(this) ? this->page_buf
: this->oob_buf
;
3301 unsigned int otp_lock_offset
= ONENAND_OTP_LOCK_OFFSET
;
3303 memset(buf
, 0xff, FLEXONENAND(this) ? this->writesize
3306 * Write lock mark to 8th word of sector0 of page0 of the spare0.
3307 * We write 16 bytes spare area instead of 2 bytes.
3308 * For Flex-OneNAND, we write lock mark to 1st word of sector 4 of
3309 * main area of page 49.
3313 len
= FLEXONENAND(this) ? mtd
->writesize
: 16;
3316 * Note: OTP lock operation
3317 * OTP block : 0xXXFC XX 1111 1100
3318 * 1st block : 0xXXF3 (If chip support) XX 1111 0011
3319 * Both : 0xXXF0 (If chip support) XX 1111 0000
3321 if (FLEXONENAND(this))
3322 otp_lock_offset
= FLEXONENAND_OTP_LOCK_OFFSET
;
3324 /* ONENAND_OTP_AREA | ONENAND_OTP_BLOCK0 | ONENAND_OTP_AREA_BLOCK0 */
3326 buf
[otp_lock_offset
] = 0xFC;
3328 buf
[otp_lock_offset
] = 0xF3;
3330 buf
[otp_lock_offset
] = 0xF0;
3332 printk(KERN_DEBUG
"[OneNAND] Invalid option selected for OTP\n");
3334 ret
= onenand_otp_walk(mtd
, from
, len
, &retlen
, buf
, do_otp_lock
, MTD_OTP_USER
);
3336 return ret
? : retlen
;
3339 #endif /* CONFIG_MTD_ONENAND_OTP */
3342 * onenand_check_features - Check and set OneNAND features
3343 * @param mtd MTD data structure
3345 * Check and set OneNAND features
3349 static void onenand_check_features(struct mtd_info
*mtd
)
3351 struct onenand_chip
*this = mtd
->priv
;
3352 unsigned int density
, process
, numbufs
;
3354 /* Lock scheme depends on density and process */
3355 density
= onenand_get_density(this->device_id
);
3356 process
= this->version_id
>> ONENAND_VERSION_PROCESS_SHIFT
;
3357 numbufs
= this->read_word(this->base
+ ONENAND_REG_NUM_BUFFERS
) >> 8;
3361 case ONENAND_DEVICE_DENSITY_4Gb
:
3362 if (ONENAND_IS_DDP(this))
3363 this->options
|= ONENAND_HAS_2PLANE
;
3364 else if (numbufs
== 1) {
3365 this->options
|= ONENAND_HAS_4KB_PAGE
;
3366 this->options
|= ONENAND_HAS_CACHE_PROGRAM
;
3368 * There are two different 4KiB pagesize chips
3369 * and no way to detect it by H/W config values.
3371 * To detect the correct NOP for each chips,
3372 * It should check the version ID as workaround.
3374 * Now it has as following
3375 * KFM4G16Q4M has NOP 4 with version ID 0x0131
3376 * KFM4G16Q5M has NOP 1 with versoin ID 0x013e
3378 if ((this->version_id
& 0xf) == 0xe)
3379 this->options
|= ONENAND_HAS_NOP_1
;
3382 case ONENAND_DEVICE_DENSITY_2Gb
:
3383 /* 2Gb DDP does not have 2 plane */
3384 if (!ONENAND_IS_DDP(this))
3385 this->options
|= ONENAND_HAS_2PLANE
;
3386 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3388 case ONENAND_DEVICE_DENSITY_1Gb
:
3389 /* A-Die has all block unlock */
3391 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3395 /* Some OneNAND has continuous lock scheme */
3397 this->options
|= ONENAND_HAS_CONT_LOCK
;
3401 /* The MLC has 4KiB pagesize. */
3402 if (ONENAND_IS_MLC(this))
3403 this->options
|= ONENAND_HAS_4KB_PAGE
;
3405 if (ONENAND_IS_4KB_PAGE(this))
3406 this->options
&= ~ONENAND_HAS_2PLANE
;
3408 if (FLEXONENAND(this)) {
3409 this->options
&= ~ONENAND_HAS_CONT_LOCK
;
3410 this->options
|= ONENAND_HAS_UNLOCK_ALL
;
3413 if (this->options
& ONENAND_HAS_CONT_LOCK
)
3414 printk(KERN_DEBUG
"Lock scheme is Continuous Lock\n");
3415 if (this->options
& ONENAND_HAS_UNLOCK_ALL
)
3416 printk(KERN_DEBUG
"Chip support all block unlock\n");
3417 if (this->options
& ONENAND_HAS_2PLANE
)
3418 printk(KERN_DEBUG
"Chip has 2 plane\n");
3419 if (this->options
& ONENAND_HAS_4KB_PAGE
)
3420 printk(KERN_DEBUG
"Chip has 4KiB pagesize\n");
3421 if (this->options
& ONENAND_HAS_CACHE_PROGRAM
)
3422 printk(KERN_DEBUG
"Chip has cache program feature\n");
3426 * onenand_print_device_info - Print device & version ID
3427 * @param device device ID
3428 * @param version version ID
3430 * Print device & version ID
3432 static void onenand_print_device_info(int device
, int version
)
3434 int vcc
, demuxed
, ddp
, density
, flexonenand
;
3436 vcc
= device
& ONENAND_DEVICE_VCC_MASK
;
3437 demuxed
= device
& ONENAND_DEVICE_IS_DEMUX
;
3438 ddp
= device
& ONENAND_DEVICE_IS_DDP
;
3439 density
= onenand_get_density(device
);
3440 flexonenand
= device
& DEVICE_IS_FLEXONENAND
;
3441 printk(KERN_INFO
"%s%sOneNAND%s %dMB %sV 16-bit (0x%02x)\n",
3442 demuxed
? "" : "Muxed ",
3443 flexonenand
? "Flex-" : "",
3446 vcc
? "2.65/3.3" : "1.8",
3448 printk(KERN_INFO
"OneNAND version = 0x%04x\n", version
);
3451 static const struct onenand_manufacturers onenand_manuf_ids
[] = {
3452 {ONENAND_MFR_SAMSUNG
, "Samsung"},
3453 {ONENAND_MFR_NUMONYX
, "Numonyx"},
3457 * onenand_check_maf - Check manufacturer ID
3458 * @param manuf manufacturer ID
3460 * Check manufacturer ID
3462 static int onenand_check_maf(int manuf
)
3464 int size
= ARRAY_SIZE(onenand_manuf_ids
);
3468 for (i
= 0; i
< size
; i
++)
3469 if (manuf
== onenand_manuf_ids
[i
].id
)
3473 name
= onenand_manuf_ids
[i
].name
;
3477 printk(KERN_DEBUG
"OneNAND Manufacturer: %s (0x%0x)\n", name
, manuf
);
3483 * flexonenand_get_boundary - Reads the SLC boundary
3484 * @param onenand_info - onenand info structure
3486 static int flexonenand_get_boundary(struct mtd_info
*mtd
)
3488 struct onenand_chip
*this = mtd
->priv
;
3493 syscfg
= this->read_word(this->base
+ ONENAND_REG_SYS_CFG1
);
3494 this->write_word((syscfg
| 0x0100), this->base
+ ONENAND_REG_SYS_CFG1
);
3496 for (die
= 0; die
< this->dies
; die
++) {
3497 this->command(mtd
, FLEXONENAND_CMD_PI_ACCESS
, die
, 0);
3498 this->wait(mtd
, FL_SYNCING
);
3500 this->command(mtd
, FLEXONENAND_CMD_READ_PI
, die
, 0);
3501 this->wait(mtd
, FL_READING
);
3503 bdry
= this->read_word(this->base
+ ONENAND_DATARAM
);
3504 if ((bdry
>> FLEXONENAND_PI_UNLOCK_SHIFT
) == 3)
3508 this->boundary
[die
] = bdry
& FLEXONENAND_PI_MASK
;
3510 this->command(mtd
, ONENAND_CMD_RESET
, 0, 0);
3511 this->wait(mtd
, FL_RESETING
);
3513 printk(KERN_INFO
"Die %d boundary: %d%s\n", die
,
3514 this->boundary
[die
], locked
? "(Locked)" : "(Unlocked)");
3518 this->write_word(syscfg
, this->base
+ ONENAND_REG_SYS_CFG1
);
3523 * flexonenand_get_size - Fill up fields in onenand_chip and mtd_info
3524 * boundary[], diesize[], mtd->size, mtd->erasesize
3525 * @param mtd - MTD device structure
3527 static void flexonenand_get_size(struct mtd_info
*mtd
)
3529 struct onenand_chip
*this = mtd
->priv
;
3530 int die
, i
, eraseshift
, density
;
3531 int blksperdie
, maxbdry
;
3534 density
= onenand_get_density(this->device_id
);
3535 blksperdie
= ((loff_t
)(16 << density
) << 20) >> (this->erase_shift
);
3536 blksperdie
>>= ONENAND_IS_DDP(this) ? 1 : 0;
3537 maxbdry
= blksperdie
- 1;
3538 eraseshift
= this->erase_shift
- 1;
3540 mtd
->numeraseregions
= this->dies
<< 1;
3542 /* This fills up the device boundary */
3543 flexonenand_get_boundary(mtd
);
3546 for (; die
< this->dies
; die
++) {
3547 if (!die
|| this->boundary
[die
-1] != maxbdry
) {
3549 mtd
->eraseregions
[i
].offset
= ofs
;
3550 mtd
->eraseregions
[i
].erasesize
= 1 << eraseshift
;
3551 mtd
->eraseregions
[i
].numblocks
=
3552 this->boundary
[die
] + 1;
3553 ofs
+= mtd
->eraseregions
[i
].numblocks
<< eraseshift
;
3556 mtd
->numeraseregions
-= 1;
3557 mtd
->eraseregions
[i
].numblocks
+=
3558 this->boundary
[die
] + 1;
3559 ofs
+= (this->boundary
[die
] + 1) << (eraseshift
- 1);
3561 if (this->boundary
[die
] != maxbdry
) {
3563 mtd
->eraseregions
[i
].offset
= ofs
;
3564 mtd
->eraseregions
[i
].erasesize
= 1 << eraseshift
;
3565 mtd
->eraseregions
[i
].numblocks
= maxbdry
^
3566 this->boundary
[die
];
3567 ofs
+= mtd
->eraseregions
[i
].numblocks
<< eraseshift
;
3570 mtd
->numeraseregions
-= 1;
3573 /* Expose MLC erase size except when all blocks are SLC */
3574 mtd
->erasesize
= 1 << this->erase_shift
;
3575 if (mtd
->numeraseregions
== 1)
3576 mtd
->erasesize
>>= 1;
3578 printk(KERN_INFO
"Device has %d eraseregions\n", mtd
->numeraseregions
);
3579 for (i
= 0; i
< mtd
->numeraseregions
; i
++)
3580 printk(KERN_INFO
"[offset: 0x%08x, erasesize: 0x%05x,"
3581 " numblocks: %04u]\n",
3582 (unsigned int) mtd
->eraseregions
[i
].offset
,
3583 mtd
->eraseregions
[i
].erasesize
,
3584 mtd
->eraseregions
[i
].numblocks
);
3586 for (die
= 0, mtd
->size
= 0; die
< this->dies
; die
++) {
3587 this->diesize
[die
] = (loff_t
)blksperdie
<< this->erase_shift
;
3588 this->diesize
[die
] -= (loff_t
)(this->boundary
[die
] + 1)
3589 << (this->erase_shift
- 1);
3590 mtd
->size
+= this->diesize
[die
];
3595 * flexonenand_check_blocks_erased - Check if blocks are erased
3596 * @param mtd_info - mtd info structure
3597 * @param start - first erase block to check
3598 * @param end - last erase block to check
3600 * Converting an unerased block from MLC to SLC
3601 * causes byte values to change. Since both data and its ECC
3602 * have changed, reads on the block give uncorrectable error.
3603 * This might lead to the block being detected as bad.
3605 * Avoid this by ensuring that the block to be converted is
3608 static int flexonenand_check_blocks_erased(struct mtd_info
*mtd
, int start
, int end
)
3610 struct onenand_chip
*this = mtd
->priv
;
3613 struct mtd_oob_ops ops
= {
3614 .mode
= MTD_OPS_PLACE_OOB
,
3616 .ooblen
= mtd
->oobsize
,
3618 .oobbuf
= this->oob_buf
,
3622 printk(KERN_DEBUG
"Check blocks from %d to %d\n", start
, end
);
3624 for (block
= start
; block
<= end
; block
++) {
3625 addr
= flexonenand_addr(this, block
);
3626 if (onenand_block_isbad_nolock(mtd
, addr
, 0))
3630 * Since main area write results in ECC write to spare,
3631 * it is sufficient to check only ECC bytes for change.
3633 ret
= onenand_read_oob_nolock(mtd
, addr
, &ops
);
3637 for (i
= 0; i
< mtd
->oobsize
; i
++)
3638 if (this->oob_buf
[i
] != 0xff)
3641 if (i
!= mtd
->oobsize
) {
3642 printk(KERN_WARNING
"%s: Block %d not erased.\n",
3652 * flexonenand_set_boundary - Writes the SLC boundary
3653 * @param mtd - mtd info structure
3655 static int flexonenand_set_boundary(struct mtd_info
*mtd
, int die
,
3656 int boundary
, int lock
)
3658 struct onenand_chip
*this = mtd
->priv
;
3659 int ret
, density
, blksperdie
, old
, new, thisboundary
;
3662 /* Change only once for SDP Flex-OneNAND */
3663 if (die
&& (!ONENAND_IS_DDP(this)))
3666 /* boundary value of -1 indicates no required change */
3667 if (boundary
< 0 || boundary
== this->boundary
[die
])
3670 density
= onenand_get_density(this->device_id
);
3671 blksperdie
= ((16 << density
) << 20) >> this->erase_shift
;
3672 blksperdie
>>= ONENAND_IS_DDP(this) ? 1 : 0;
3674 if (boundary
>= blksperdie
) {
3675 printk(KERN_ERR
"%s: Invalid boundary value. "
3676 "Boundary not changed.\n", __func__
);
3680 /* Check if converting blocks are erased */
3681 old
= this->boundary
[die
] + (die
* this->density_mask
);
3682 new = boundary
+ (die
* this->density_mask
);
3683 ret
= flexonenand_check_blocks_erased(mtd
, min(old
, new) + 1, max(old
, new));
3685 printk(KERN_ERR
"%s: Please erase blocks "
3686 "before boundary change\n", __func__
);
3690 this->command(mtd
, FLEXONENAND_CMD_PI_ACCESS
, die
, 0);
3691 this->wait(mtd
, FL_SYNCING
);
3693 /* Check is boundary is locked */
3694 this->command(mtd
, FLEXONENAND_CMD_READ_PI
, die
, 0);
3695 this->wait(mtd
, FL_READING
);
3697 thisboundary
= this->read_word(this->base
+ ONENAND_DATARAM
);
3698 if ((thisboundary
>> FLEXONENAND_PI_UNLOCK_SHIFT
) != 3) {
3699 printk(KERN_ERR
"%s: boundary locked\n", __func__
);
3704 printk(KERN_INFO
"Changing die %d boundary: %d%s\n",
3705 die
, boundary
, lock
? "(Locked)" : "(Unlocked)");
3707 addr
= die
? this->diesize
[0] : 0;
3709 boundary
&= FLEXONENAND_PI_MASK
;
3710 boundary
|= lock
? 0 : (3 << FLEXONENAND_PI_UNLOCK_SHIFT
);
3712 this->command(mtd
, ONENAND_CMD_ERASE
, addr
, 0);
3713 ret
= this->wait(mtd
, FL_ERASING
);
3715 printk(KERN_ERR
"%s: Failed PI erase for Die %d\n",
3720 this->write_word(boundary
, this->base
+ ONENAND_DATARAM
);
3721 this->command(mtd
, ONENAND_CMD_PROG
, addr
, 0);
3722 ret
= this->wait(mtd
, FL_WRITING
);
3724 printk(KERN_ERR
"%s: Failed PI write for Die %d\n",
3729 this->command(mtd
, FLEXONENAND_CMD_PI_UPDATE
, die
, 0);
3730 ret
= this->wait(mtd
, FL_WRITING
);
3732 this->write_word(ONENAND_CMD_RESET
, this->base
+ ONENAND_REG_COMMAND
);
3733 this->wait(mtd
, FL_RESETING
);
3735 /* Recalculate device size on boundary change*/
3736 flexonenand_get_size(mtd
);
3742 * onenand_chip_probe - [OneNAND Interface] The generic chip probe
3743 * @param mtd MTD device structure
3745 * OneNAND detection method:
3746 * Compare the values from command with ones from register
3748 static int onenand_chip_probe(struct mtd_info
*mtd
)
3750 struct onenand_chip
*this = mtd
->priv
;
3751 int bram_maf_id
, bram_dev_id
, maf_id
, dev_id
;
3754 /* Save system configuration 1 */
3755 syscfg
= this->read_word(this->base
+ ONENAND_REG_SYS_CFG1
);
3756 /* Clear Sync. Burst Read mode to read BootRAM */
3757 this->write_word((syscfg
& ~ONENAND_SYS_CFG1_SYNC_READ
& ~ONENAND_SYS_CFG1_SYNC_WRITE
), this->base
+ ONENAND_REG_SYS_CFG1
);
3759 /* Send the command for reading device ID from BootRAM */
3760 this->write_word(ONENAND_CMD_READID
, this->base
+ ONENAND_BOOTRAM
);
3762 /* Read manufacturer and device IDs from BootRAM */
3763 bram_maf_id
= this->read_word(this->base
+ ONENAND_BOOTRAM
+ 0x0);
3764 bram_dev_id
= this->read_word(this->base
+ ONENAND_BOOTRAM
+ 0x2);
3766 /* Reset OneNAND to read default register values */
3767 this->write_word(ONENAND_CMD_RESET
, this->base
+ ONENAND_BOOTRAM
);
3769 this->wait(mtd
, FL_RESETING
);
3771 /* Restore system configuration 1 */
3772 this->write_word(syscfg
, this->base
+ ONENAND_REG_SYS_CFG1
);
3774 /* Check manufacturer ID */
3775 if (onenand_check_maf(bram_maf_id
))
3778 /* Read manufacturer and device IDs from Register */
3779 maf_id
= this->read_word(this->base
+ ONENAND_REG_MANUFACTURER_ID
);
3780 dev_id
= this->read_word(this->base
+ ONENAND_REG_DEVICE_ID
);
3782 /* Check OneNAND device */
3783 if (maf_id
!= bram_maf_id
|| dev_id
!= bram_dev_id
)
3790 * onenand_probe - [OneNAND Interface] Probe the OneNAND device
3791 * @param mtd MTD device structure
3793 static int onenand_probe(struct mtd_info
*mtd
)
3795 struct onenand_chip
*this = mtd
->priv
;
3800 ret
= this->chip_probe(mtd
);
3804 /* Device and version IDs from Register */
3805 dev_id
= this->read_word(this->base
+ ONENAND_REG_DEVICE_ID
);
3806 ver_id
= this->read_word(this->base
+ ONENAND_REG_VERSION_ID
);
3807 this->technology
= this->read_word(this->base
+ ONENAND_REG_TECHNOLOGY
);
3809 /* Flash device information */
3810 onenand_print_device_info(dev_id
, ver_id
);
3811 this->device_id
= dev_id
;
3812 this->version_id
= ver_id
;
3814 /* Check OneNAND features */
3815 onenand_check_features(mtd
);
3817 density
= onenand_get_density(dev_id
);
3818 if (FLEXONENAND(this)) {
3819 this->dies
= ONENAND_IS_DDP(this) ? 2 : 1;
3820 /* Maximum possible erase regions */
3821 mtd
->numeraseregions
= this->dies
<< 1;
3822 mtd
->eraseregions
= kzalloc(sizeof(struct mtd_erase_region_info
)
3823 * (this->dies
<< 1), GFP_KERNEL
);
3824 if (!mtd
->eraseregions
)
3829 * For Flex-OneNAND, chipsize represents maximum possible device size.
3830 * mtd->size represents the actual device size.
3832 this->chipsize
= (16 << density
) << 20;
3834 /* OneNAND page size & block size */
3835 /* The data buffer size is equal to page size */
3836 mtd
->writesize
= this->read_word(this->base
+ ONENAND_REG_DATA_BUFFER_SIZE
);
3837 /* We use the full BufferRAM */
3838 if (ONENAND_IS_4KB_PAGE(this))
3839 mtd
->writesize
<<= 1;
3841 mtd
->oobsize
= mtd
->writesize
>> 5;
3842 /* Pages per a block are always 64 in OneNAND */
3843 mtd
->erasesize
= mtd
->writesize
<< 6;
3845 * Flex-OneNAND SLC area has 64 pages per block.
3846 * Flex-OneNAND MLC area has 128 pages per block.
3847 * Expose MLC erase size to find erase_shift and page_mask.
3849 if (FLEXONENAND(this))
3850 mtd
->erasesize
<<= 1;
3852 this->erase_shift
= ffs(mtd
->erasesize
) - 1;
3853 this->page_shift
= ffs(mtd
->writesize
) - 1;
3854 this->page_mask
= (1 << (this->erase_shift
- this->page_shift
)) - 1;
3855 /* Set density mask. it is used for DDP */
3856 if (ONENAND_IS_DDP(this))
3857 this->density_mask
= this->chipsize
>> (this->erase_shift
+ 1);
3858 /* It's real page size */
3859 this->writesize
= mtd
->writesize
;
3861 /* REVISIT: Multichip handling */
3863 if (FLEXONENAND(this))
3864 flexonenand_get_size(mtd
);
3866 mtd
->size
= this->chipsize
;
3869 * We emulate the 4KiB page and 256KiB erase block size
3870 * But oobsize is still 64 bytes.
3871 * It is only valid if you turn on 2X program support,
3872 * Otherwise it will be ignored by compiler.
3874 if (ONENAND_IS_2PLANE(this)) {
3875 mtd
->writesize
<<= 1;
3876 mtd
->erasesize
<<= 1;
3883 * onenand_suspend - [MTD Interface] Suspend the OneNAND flash
3884 * @param mtd MTD device structure
3886 static int onenand_suspend(struct mtd_info
*mtd
)
3888 return onenand_get_device(mtd
, FL_PM_SUSPENDED
);
3892 * onenand_resume - [MTD Interface] Resume the OneNAND flash
3893 * @param mtd MTD device structure
3895 static void onenand_resume(struct mtd_info
*mtd
)
3897 struct onenand_chip
*this = mtd
->priv
;
3899 if (this->state
== FL_PM_SUSPENDED
)
3900 onenand_release_device(mtd
);
3902 printk(KERN_ERR
"%s: resume() called for the chip which is not "
3903 "in suspended state\n", __func__
);
3907 * onenand_scan - [OneNAND Interface] Scan for the OneNAND device
3908 * @param mtd MTD device structure
3909 * @param maxchips Number of chips to scan for
3911 * This fills out all the not initialized function pointers
3912 * with the defaults.
3913 * The flash ID is read and the mtd/chip structures are
3914 * filled with the appropriate values.
3916 int onenand_scan(struct mtd_info
*mtd
, int maxchips
)
3919 struct onenand_chip
*this = mtd
->priv
;
3921 if (!this->read_word
)
3922 this->read_word
= onenand_readw
;
3923 if (!this->write_word
)
3924 this->write_word
= onenand_writew
;
3927 this->command
= onenand_command
;
3929 onenand_setup_wait(mtd
);
3930 if (!this->bbt_wait
)
3931 this->bbt_wait
= onenand_bbt_wait
;
3932 if (!this->unlock_all
)
3933 this->unlock_all
= onenand_unlock_all
;
3935 if (!this->chip_probe
)
3936 this->chip_probe
= onenand_chip_probe
;
3938 if (!this->read_bufferram
)
3939 this->read_bufferram
= onenand_read_bufferram
;
3940 if (!this->write_bufferram
)
3941 this->write_bufferram
= onenand_write_bufferram
;
3943 if (!this->block_markbad
)
3944 this->block_markbad
= onenand_default_block_markbad
;
3945 if (!this->scan_bbt
)
3946 this->scan_bbt
= onenand_default_bbt
;
3948 if (onenand_probe(mtd
))
3951 /* Set Sync. Burst Read after probing */
3952 if (this->mmcontrol
) {
3953 printk(KERN_INFO
"OneNAND Sync. Burst Read support\n");
3954 this->read_bufferram
= onenand_sync_read_bufferram
;
3957 /* Allocate buffers, if necessary */
3958 if (!this->page_buf
) {
3959 this->page_buf
= kzalloc(mtd
->writesize
, GFP_KERNEL
);
3960 if (!this->page_buf
)
3962 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
3963 this->verify_buf
= kzalloc(mtd
->writesize
, GFP_KERNEL
);
3964 if (!this->verify_buf
) {
3965 kfree(this->page_buf
);
3969 this->options
|= ONENAND_PAGEBUF_ALLOC
;
3971 if (!this->oob_buf
) {
3972 this->oob_buf
= kzalloc(mtd
->oobsize
, GFP_KERNEL
);
3973 if (!this->oob_buf
) {
3974 if (this->options
& ONENAND_PAGEBUF_ALLOC
) {
3975 this->options
&= ~ONENAND_PAGEBUF_ALLOC
;
3976 kfree(this->page_buf
);
3980 this->options
|= ONENAND_OOBBUF_ALLOC
;
3983 this->state
= FL_READY
;
3984 init_waitqueue_head(&this->wq
);
3985 spin_lock_init(&this->chip_lock
);
3988 * Allow subpage writes up to oobsize.
3990 switch (mtd
->oobsize
) {
3992 if (FLEXONENAND(this)) {
3993 mtd_set_ooblayout(mtd
, &flexonenand_ooblayout_ops
);
3994 mtd
->subpage_sft
= 0;
3996 mtd_set_ooblayout(mtd
, &onenand_oob_128_ooblayout_ops
);
3997 mtd
->subpage_sft
= 2;
3999 if (ONENAND_IS_NOP_1(this))
4000 mtd
->subpage_sft
= 0;
4003 mtd_set_ooblayout(mtd
, &onenand_oob_32_64_ooblayout_ops
);
4004 mtd
->subpage_sft
= 2;
4008 mtd_set_ooblayout(mtd
, &onenand_oob_32_64_ooblayout_ops
);
4009 mtd
->subpage_sft
= 1;
4013 printk(KERN_WARNING
"%s: No OOB scheme defined for oobsize %d\n",
4014 __func__
, mtd
->oobsize
);
4015 mtd
->subpage_sft
= 0;
4016 /* To prevent kernel oops */
4017 mtd_set_ooblayout(mtd
, &onenand_oob_32_64_ooblayout_ops
);
4021 this->subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
4024 * The number of bytes available for a client to place data into
4025 * the out of band area
4027 ret
= mtd_ooblayout_count_freebytes(mtd
);
4031 mtd
->oobavail
= ret
;
4033 mtd
->ecc_strength
= 1;
4035 /* Fill in remaining MTD driver data */
4036 mtd
->type
= ONENAND_IS_MLC(this) ? MTD_MLCNANDFLASH
: MTD_NANDFLASH
;
4037 mtd
->flags
= MTD_CAP_NANDFLASH
;
4038 mtd
->_erase
= onenand_erase
;
4040 mtd
->_unpoint
= NULL
;
4041 mtd
->_read
= onenand_read
;
4042 mtd
->_write
= onenand_write
;
4043 mtd
->_read_oob
= onenand_read_oob
;
4044 mtd
->_write_oob
= onenand_write_oob
;
4045 mtd
->_panic_write
= onenand_panic_write
;
4046 #ifdef CONFIG_MTD_ONENAND_OTP
4047 mtd
->_get_fact_prot_info
= onenand_get_fact_prot_info
;
4048 mtd
->_read_fact_prot_reg
= onenand_read_fact_prot_reg
;
4049 mtd
->_get_user_prot_info
= onenand_get_user_prot_info
;
4050 mtd
->_read_user_prot_reg
= onenand_read_user_prot_reg
;
4051 mtd
->_write_user_prot_reg
= onenand_write_user_prot_reg
;
4052 mtd
->_lock_user_prot_reg
= onenand_lock_user_prot_reg
;
4054 mtd
->_sync
= onenand_sync
;
4055 mtd
->_lock
= onenand_lock
;
4056 mtd
->_unlock
= onenand_unlock
;
4057 mtd
->_suspend
= onenand_suspend
;
4058 mtd
->_resume
= onenand_resume
;
4059 mtd
->_block_isbad
= onenand_block_isbad
;
4060 mtd
->_block_markbad
= onenand_block_markbad
;
4061 mtd
->owner
= THIS_MODULE
;
4062 mtd
->writebufsize
= mtd
->writesize
;
4064 /* Unlock whole block */
4065 if (!(this->options
& ONENAND_SKIP_INITIAL_UNLOCKING
))
4066 this->unlock_all(mtd
);
4068 ret
= this->scan_bbt(mtd
);
4069 if ((!FLEXONENAND(this)) || ret
)
4072 /* Change Flex-OneNAND boundaries if required */
4073 for (i
= 0; i
< MAX_DIES
; i
++)
4074 flexonenand_set_boundary(mtd
, i
, flex_bdry
[2 * i
],
4075 flex_bdry
[(2 * i
) + 1]);
4081 * onenand_release - [OneNAND Interface] Free resources held by the OneNAND device
4082 * @param mtd MTD device structure
4084 void onenand_release(struct mtd_info
*mtd
)
4086 struct onenand_chip
*this = mtd
->priv
;
4088 /* Deregister partitions */
4089 mtd_device_unregister(mtd
);
4091 /* Free bad block table memory, if allocated */
4093 struct bbm_info
*bbm
= this->bbm
;
4097 /* Buffers allocated by onenand_scan */
4098 if (this->options
& ONENAND_PAGEBUF_ALLOC
) {
4099 kfree(this->page_buf
);
4100 #ifdef CONFIG_MTD_ONENAND_VERIFY_WRITE
4101 kfree(this->verify_buf
);
4104 if (this->options
& ONENAND_OOBBUF_ALLOC
)
4105 kfree(this->oob_buf
);
4106 kfree(mtd
->eraseregions
);
4109 EXPORT_SYMBOL_GPL(onenand_scan
);
4110 EXPORT_SYMBOL_GPL(onenand_release
);
4112 MODULE_LICENSE("GPL");
4113 MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
4114 MODULE_DESCRIPTION("Generic OneNAND flash driver code");